
Work supported in part by the US Department of Energy contract DE-AC02-76SF00515

X-ray free-electron lasers

J Feldhaus1, J Arthur2 and J B Hastings2

1 Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany
2 Stanford Linear Accelerator Center, Stanford, CA 94309, USA

Abstract

In a free-electron laser (FEL) the lasing medium is a high-energy beam of

electrons flying with relativistic speed through a periodic magnetic field. The

interaction between the synchrotron radiation that is produced and the electrons

in the beam induces a periodic bunching of the electrons, greatly increasing

the intensity of radiation produced at a particular wavelength. Depending

only on a phase match between the electron energy and the magnetic period,

the wavelength of the FEL radiation can be continuously tuned within a

wide spectral range. The FEL concept can be adapted to produce radiation

wavelengths from millimetres to Ångstroms, and can in principle produce hard

x-ray beams with unprecedented peak brightness, exceeding that of the brightest

synchrotron source by ten orders of magnitude or more. This paper focuses on

short-wavelength FELs. It reviews the physics and characteristic properties of

single-pass FELs, as well as current technical developments aiming for fully

coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as

range. First experimental results at wavelengths around 100 nm and examples

of scientific applications planned on the new, emerging x-ray FEL facilities are

presented.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Basic physical principles tell us that small building blocks of matter, such as atoms, molecules,

and nano-sized man-made structures, are able to very rapidly change their structure and

properties in time: smaller is generally faster, as illustrated in figure 1. Exploration of the

physics, chemistry and biology of the nanoworld therefore naturally demands experimental

techniques and tools that can image sub-nanometre structure with sub-picosecond time

resolution. Conventional lasers offer the required time resolution, but they cannot directly

resolve the structures of atoms, molecules and the smallest man-made objects. On the other

hand, today’s synchrotron x-ray sources can be used to image the nanoworld, either by direct

real-space imaging methods or by diffraction, but their time resolution is limited. The potential
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of providing the sub-picosecond pulse length of a conventional laser at the x-ray wavelength

of a synchrotron radiation source is promised by the development of a new type of radiation

source known as an x-ray free-electron laser (XFEL).

The free-electron laser (FEL) is in a sense an extension of the undulator radiation source

that has proven so useful to the synchrotron community. An undulator is a periodic magnet

array that imposes a periodic deflection on a relativistic electron beam. Interference effects

enhance the probability of each electron emitting radiation at wavelengths selected by a phase

match between the electron energy and the undulator period. Ordinarily, these interference

effects apply independently to the radiation probability for each electron, with no inter-electron

effects. However, with a very long undulator and a carefully prepared electron beam, an effect

arises that is known as the FEL instability. It introduces correlations between the electrons,

and opens the possibility of greatly enhanced peak x-ray brightness. This instability produces

exponential growth of the intensity of the emitted radiation at a particular wavelength. The

radiation field that initiates the instability can be either the spontaneous undulator radiation

or an external seed field. In the case of FEL action arising from spontaneous radiation, the

process is called self-amplified spontaneous emission (SASE). If an external seed is used then

the FEL is referred to as an FEL amplifier.

Since the 1960s, research on the generation of short-wavelength coherent radiation

has been concentrated mainly in the direction of atomic and molecular lasers, and optical

resonators. While extremely successful in the infrared, visible and ultraviolet, these lasers

have limited tunability, and this line of development has limitations at shorter wavelengths

[1]. Short wavelengths can be produced by utilizing the nonlinear response of a material

to up-convert visible laser light. For example, a gas target illuminated by an intense

pulse of visible light can produce a series of high harmonics extending into the soft x-ray

regime [2]. However, such processes are very inefficient. As electron beam techniques

have become more advanced, the FEL has become a viable alternative to a conventional

laser, especially for applications involving extreme tunability or high intensity at very short

wavelengths.

Both conventional lasers and FELs rely on concepts first published by Einstein in

1905. But whereas conventional lasers have their scientific root in Einstein’s paper on the

photoelectric effect and the quantization of light [3], free electron lasers grow from a different

source: Einstein’s paper on special relativity [4]. The FEL process is essentially classical (see

below), but it is intimately related to the relativistic transformations for fast-moving bodies

and electromagnetic fields.

The FEL is the result of many years of theoretical and experimental work on the generation

of radiation from relativistic electron beams. Theoretical work on FELs was done in the 1960s

and 1970s by Palmer [5], Robinson [6] and Csonka [7]. In 1971, Madey [8] re-analysed the

possibility of exchanging energy between free electrons and electromagnetic radiation in the

small-gain regime, using a quantum-theoretical approach. This was followed by successful

experimental demonstration of an FEL amplifier [9], and an FEL oscillator [10] at 10 µm

wavelength by Madey and collaborators.

This initial work was based on the small-gain regime of FEL amplification, requiring

multiple passes of an electron pulse through an optical cavity to build up the FEL field. The

idea of using the FEL collective instability to produce infrared radiation using a single-pass

amplifier starting from noise was first proposed by Kondratenko and Saldin in 1980 [11].

Murphy and Pellegrini in 1985 [12] proposed use of the FEL instability in a single-pass

amplifier starting from noise for soft x-rays. The choice of a single-pass device for the x-ray

region is motivated by the fact that optical cavities have large losses and are difficult to build

at short wavelengths.



Figure 1. X-rays have opened the ultra-small world. XFELs will open the ultra-small and ultra-fast

worlds. Graphic courtesy of J Stöhr.

These ideas motivated the investigation of the scaling laws [13] for a single-pass FEL

starting from noise to reach the 0.1 nm wavelength regime. The analysis showed that the gain

of a SASE-FEL depends on wavelength, and that to reach the soft or hard x-ray region one

needs an electron beam that is very dense in six-dimensional phase-space, a condition which

until recently was difficult to satisfy.

The development of radio frequency photocathode electron guns [14], and the emittance

compensation method [15, 16] changed this situation. At the same time, work on linear

colliders demonstrated that it is possible to accelerate and time-compress electron beams

without spoiling their brightness [17–20]. This has recently been confirmed experimentally at

the sub-picosecond pulse source at SLAC, where 30 kA peak currents are achieved from 80 fs,

3 nC electron bunches accelerated to 28 GeV [21]. These developments have led to major

FEL projects in both Germany and the US, which should soon produce SASE-FEL radiation

down to about 0.1 nm, with peak power of tens of GW, pulse length of about 100 fs (FWHM)

or shorter, full transverse coherence and peak brightness about ten orders of magnitude larger

than that of existing synchrotron radiation sources.

2. The FEL process

The gain medium of a FEL is a relativistic electron beam moving through the periodic

magnetic field of an undulator. In its simplest form an FEL is just a very long undulator,

typically five to ten times longer than those used as synchrotron radiation sources [22]. When

the quality of the electron beam in terms of charge density, emittance and energy spread is

sufficiently high, the interaction between the electrons oscillating in the undulator magnetic

field, and the synchrotron radiation that they spontaneously produce, leads to an instability of

the electron bunch. Its density becomes modulated periodically in the longitudinal direction

with a period length equal to the wavelength of the undulator fundamental radiation. The



Figure 2. The electron orbit in a periodic undulator field (undulator period λu). Three electrons

and the field of an electromagnetic wave (wavelength λ) are shown at three positions along the

undulator. While the electrons move through a full oscillation period λu, the electromagnetic wave

propagates by λu plus one wavelength λ. The transverse movement of each electron has a constant

phase with respect to the electromagnetic field.

bunched electrons, due to their spatial grouping, proceed to radiate in phase with each other, in

contrast to conventional undulators where the electrons radiate independently. The intensity

gain of a FEL is therefore of the order of the number of particles involved and can be as high

as 108.

Initially, the physics of the free-electron laser was described in the quantum mechanical

picture as stimulated emission of bremsstrahlung in a periodic magnetic field [8]. However,

the classical theory is more instructive and is, in fact, completely adequate since the photon

energy of the FEL is orders of magnitude smaller than the electron energy bandwidth involved.

Therefore, virtually all theoretical developments and numerical simulations in recent years

have been based on a classical treatment (see, e.g., [23]). The basic gain mechanism of an

FEL can be derived from the equations of motion in the presence of a nearly constant radiation

field, i.e. in the low-gain regime. The electrons are deflected periodically by the magnetic

field and can therefore exchange energy with a superimposed radiation field �E:

dEe

dt
= −e�ve · �E. (1)

Ee is the electron energy and �ve is the electron velocity, which has a small transverse component

in the direction of �E due to the oscillation. The energy exchange is optimum for wavelengths

close to the on-axis undulator resonance

λ =
λu

2γ 2

(

1 +
K2

2

)

(2)

where γ = Ee/m0c
2 is the electron energy in units of the electron rest mass, λu is the undulator

period and K is the undulator parameter which is proportional to the magnetic field (see [22]).

For the resonance wavelength λ the path length difference between radiation and electrons

over one magnet period λu is λ, and the transverse oscillation of each electron is perfectly

synchronous with the radiation field (see figure 2). Exactly on resonance there are as many

particles that gain energy as particles that lose energy, such that the net gain is zero. Slightly

above resonance, however, this mechanism leads to a net energy transfer from the electron

beam to the radiation field.



Figure 3. Simulation of the density modulation of the electron beam as it develops along the

undulator. The electron density is represented by the density of the dots (left: at the undulator

entrance, middle: in the middle of the exponential growth regime, right: at the undulator exit, i.e.

for saturation).

Depending on its phase with respect to the electromagnetic field, an electron is accelerated

or decelerated by the field on its way through the undulator, leading to a periodic velocity

modulation of the electrons along the beam with a period equal to the wavelength λ of

the superimposed radiation field. This velocity modulation transforms eventually into a

periodic longitudinal density modulation (figure 3) such that more and more electrons radiate

coherently. This, in turn, enhances the interaction with the electron beam and causes an

exponential intensity growth up to a saturation level where maximum bunching is reached.

In the high-gain regime of the FEL the simple theoretical approach indicated above is no

longer sufficient. Also, the electrostatic forces between the electrons have to be taken into

account. It is therefore necessary to solve the equations of motion together with Maxwell’s

equations in a self-consistent way (see, e.g., [23]). This is possible by means of three-

dimensional time-dependent numerical simulation codes. Several such codes have been

developed over the last few years (see, e.g., [24, 25]). They allow one to study the influence

of all relevant electron beam parameters such as charge density, emittance, energy spread, the

axial and transverse profiles of the electron bunch, and the finite pulse duration, and may even

include the interaction with the walls of the vacuum chamber, and undulator field errors and

misalignment. These codes have provided the basis for stringent tests of existing FELs and

for optimizing the parameters of future facilities.

After the first demonstration of an FEL amplifier which was seeded by a CO2 laser

at 10.6 µm wavelength [9], the FEL gain process has been employed in different ways to

build free-electron lasers. Many FEL oscillators have been constructed which work in the

infrared and visible region, with wavelengths from several hundred µm to <200 nm, using

optical cavities and suitable electron bunch timing in the linear accelerator or storage ring (see

figure 4).

It is difficult to push the fundamental wavelength of an FEL oscillator far below 200 nm

because the intense, collimated UV radiation destroys the mirror surfaces (high reflectivity

mirrors are not available for very short wavelengths). Therefore it has been proposed to

generate short-wavelength FEL radiation down to the Ångstrom (0.1 nm) region in a single

pass through a very long undulator, simply amplifying the spontaneous radiation emitted

near the entrance to the undulator. Theoretical work on this concept of self-modulation of a

relativistic electron beam, which has come to be called self-amplified spontaneous emission

(SASE), started in the late 1970s [11, 26]. Since a FEL based on SASE requires very high

electron beam quality, the technical realization at short wavelengths has become feasible

only recently due to the advances made in the quest for a new generation of linear colliders



Figure 4. Principle layout of a FEL oscillator. The mirrors are not needed for a single-pass FEL

operating in the SASE mode but the undulator must be sufficiently long to reach saturation in a

single pass.

Figure 5. Probability distribution of the radiation pulse energy E at 95 nm wavelength measured

in the linear gain regime of the VUV-FEL at DESY.

for particle physics. Several recent experiments in different laboratories have successfully

demonstrated the high gain of SASE at ever shorter wavelengths [27–30], providing the basis

for a new generation of short-wavelength radiation sources. The first user facility for VUV

and soft x-ray radiation based on a SASE FEL will become operational at DESY, in Hamburg,

Germany, in 2005 [31]. The LCLS project at SLAC [32], now under construction, will provide

hard x-rays down to 0.15 nm wavelength by 2009, and a large European XFEL facility at DESY

[33] for wavelengths below 0.1 nm is expected to follow a few years later.

3. The characteristics of SASE FEL radiation

The properties of the radiation generated by a SASE FEL are closely related to its start-up from

noise. Due to the shot noise in the electron beam the amplitudes and phases of the radiation

produced in the entrance of the undulator are random in space and time. The radiation

properties are those of completely chaotic polarized radiation known from statistical optics.

The amplification in the FEL does not change these properties except in the saturation regime.

The statistical properties of SASE FEL radiation have been studied theoretically by different

authors, both in the linear and nonlinear regime (e.g. [34, 35]). They have subsequently

been verified experimentally at the TESLA test facility (TTF) at DESY for VUV wavelengths

around 100 nm [36, 37]. Figure 5 shows the probability distribution P(E) of the radiation

pulse energy E, measured at 95 nm wavelength in the linear gain regime at an active undulator
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Figure 6. Gain curve of the VUV-FEL at the TESLA test facility at DESY measured at a wavelength

of 98 nm [26, 32]. The dots are the average energy in the radiation pulse measured as a function

of the active undulator length. The solid curve is a numerical simulation.

length of 9 m. As predicted by theory, the experimental distribution is in good agreement with

the gamma distribution

P(E) =
MM

Ŵ(M)

(

E

〈E〉

)M−1
1

〈E〉
exp

(

−M
E

〈E〉

)

(3)

with M = 1
/

σ 2
E · σE is the standard deviation of the radiation pulse energy. For the case of

figure 5 the best fit was obtained for M = 2.6.

The parameter M can be interpreted as the number of modes contributing to the radiation

pulse. Together with the gain length Lg = 67 ± 5 cm derived from the measured gain curve

shown in figure 6, it is possible to estimate the radiation pulse duration τrad ≃ MLc/c where

Lc ≃ 2λLg/λu ≃ 5 µm is the coherence (or cooperation) length. The result is a pulse duration

τrad ≃ 50 fs. For a typical pulse energy of 50 µJ this corresponds to a peak radiation power

of ∼1 GW. This is a typical value for the VUV radiation from a SASE FEL at saturation. At

x-ray wavelengths around 0.1 nm simulations predict peak power levels in the 10 to 100 GW

range. In order to extract maximum power from the electron beam, tapered undulators would

have to be used in order to stay on resonance [38].

The pulse duration can also be estimated from the spectral distribution shown in figure 7.

In the time domain the radiation is emitted in short bursts with length Lc, with random

phase relationships between the bursts. The Fourier transform of such a spikey pulse results

in narrow spikes in the spectral domain whose widths �ω are given by the pulse duration:

�ω ≃ 2π/τrad. The upper panel of figure 7 shows the spectral distribution of a single radiation

pulse measured at maximum electron bunch compression, resulting in an average number of

M = 2.6 modes. The pulse duration τrad ≃ 50 fs derived from the spectral line width is

consistent with that estimated from the statistical intensity fluctuations. The lower panel of

figure 7 shows the spectral distribution of a single radiation pulse for a somewhat weaker

electron bunch compression. The pulse duration is now τrad ≃ 100 fs which is reflected in the

narrower line widths and the larger number of modes, M = 6. The average spectral envelope

�ωavg is not much changed since it is determined by the coherence length. However, the

measured value of �ωavg is approximately twice as large as that estimated from the gain

length, and the profile is also distinctly asymmetric for the shortest pulses. More recent FEL

simulations are in full agreement with these results [39]. They use a more realistic electron

distribution based on the so-called start-to-end simulations of the electron bunch from the
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Figure 7. Spectra of single FEL pulses. The CCD image of the horizontally dispersed FEL

radiation is shown in a false colour code on the left. The spectral profiles scanned along the

horizontal centre line of the CCD image are shown on the right hand. The upper spectrum is that of

a short pulse (∼50 fs) with an average of M = 2.6 modes, the lower spectrum belongs to a longer

pulse (∼100 fs) with M = 6.

electron gun to the entrance of the undulator, revealing strong space charge effects which

result in a large correlated energy spread.

While the temporal coherence of a radiation pulse generated by a SASE FEL is only

partial, the spatial coherence can be very high. Although a large number of transverse radiation

modes are excited in the entrance section of the undulator, the fundamental mode dominates

when saturation is reached because it overlaps the electron beam more than other modes and

therefore experiences the highest amplification. The high degree of spatial coherence can be

seen in the diffraction pattern of a double slit behind the VUV-FEL measured at a wavelength

of 95 nm (figure 8). A series of diffraction patterns taken at different active undulator lengths

confirmed that the degree of spatial coherence increases until saturation is reached; in the deep

saturation regime, however, it decreases again slowly because other modes catch up [40].

4. Technical developments to improve the temporal coherence

The statistical properties of SASE FEL radiation discussed in the previous section can be quite

unfavourable for certain applications. For example, spectroscopic techniques are frequently

used in the VUV and soft x-ray (XUV) spectral range, therefore the spectral distribution of

each radiation pulse needs to be controlled, or at least monitored in a non-destructive way.

For time-resolved experiments or studies of nonlinear effects—both key areas of research for

future XUV FELs—it is also crucial to know the temporal structure. It is therefore essential

to develop suitable online diagnostics in order to sort and interpret the data.

The pulse energy can be monitored by measuring the ionization current of a rare gas with

known absorption cross section at low pressure. The method is well known and has been

adapted to short, intense radiation pulses with high repetition rate. It was successfully tested

at TTF [41] and will be used routinely at the upcoming VUV-FEL user facility at DESY. The

online, pulse-resolved and non-destructive measurement of the spectral distribution appears to

be technically feasible [42], and the development of a suitable spectrometer integrated in the

radiation beamlines of the VUV-FEL is underway. The measurement of the temporal structure



Figure 8. Diffraction pattern of two parallel slits illuminated with 95 nm FEL radiation, illustrating

the high degree of transverse coherence. Each slit is 2 mm high and 0.2 mm wide; they are

1 mm apart. The slits are located 12 m behind the exit of the undulator. The image was recorded

by a gated CCD camera viewing a Ce:YAG fluorescent screen 3 m behind the slits. Several

consecutive FEL pulses were accumulated. The lower part is a horizontal cut through the centre

of the diffraction pattern.

of single radiation pulses with high resolution, however, is still in a very early, experimental

stage, and it is not certain at the present time if this can ever be done routinely, online and with

sufficient resolution.

It would be much more elegant if the FEL process could be controlled in such a way

that Fourier-limited radiation pulses with adjustable duration could be produced. This is

straightforward, in principle, if the FEL is used not in the SASE mode (where it amplifies

the shot noise in the electron beam), but rather as an amplifier seeded by coherent radiation.

Since seed pulses of sufficiently intense, coherent radiation are not now available at very short

wavelengths, two different routes to achieve coherent seeding have been investigated.

One is to use an optical seed laser (or a higher harmonic generated in a nonlinear crystal

or a gas) for the first stage of an FEL cascade making use of high-gain harmonic generation

(HGHG). The schematic layout of a HGHG FEL is shown in figure 9. The first, short

undulator, called the modulator, is tuned to the frequency of the coherent seed laser whose

interaction with the electron beam introduces a small longitudinal energy modulation. The

magnetic dispersion section converts this energy modulation into a density modulation. The

second undulator, called the radiator, is tuned to the nth harmonic of the seed frequency. When

the modulated electron beam passes the radiator, the radiation produced by the nth harmonic

component is amplified to saturation. This concept was demonstrated in the mid-infrared by

seeding with a CO2 laser and generating the second harmonic in the radiator [43]. Later this

scheme was employed to generate intense, coherent ultraviolet radiation at 266 nm wavelength



Figure 9. Principle layout of the high-gain harmonic generation (HGHG) scheme.

Figure 10. Schematic layout of a self-seeded FEL for XUV wavelengths.

as the third harmonic of 800 nm using a Ti:sapphire seed laser [44]. The radiation pulse energy

at saturation was typically 100 µJ with a pulse duration of ∼0.6 ps. The third harmonic of

the output radiation at 88 nm wavelength, still at the 1 µJ level, was successfully used for first

experiments probing the superexcited-state dynamics of methyl fluoride [45].

HGHG can be used to generate radiation pulses with <20 fs duration, and in principle

the HGHG FEL can be cascaded to reach still-shorter wavelengths. This concept is currently

being discussed for the next generation of XUV and x-ray sources. However, simulations and

theoretical investigations have shown that the beam quality will eventually be degraded by

noise which is also amplified [46, 47]. At the present time it is not clear where the physical

and technical limits are, therefore intensive research and development is ongoing.

The other possible route to a temporally coherent x-ray FEL is to produce the coherent

seed radiation in a SASE FEL tuned to the same wavelength [48]. This concept, also called

self-seeding, has the advantage that it is independent of any external radiation source (which

must be very stable, continuously tunable, operate at short wavelengths, and must be precisely

matched to the electron beam in space and time, synchronised to <100 fs). The schematic

layout of a self-seeded FEL for the XUV region is shown in figure 10. The first undulator,

a short SASE FEL operating in the linear gain regime, produces radiation pulses with the

characteristic features of SASE (figure 11, left panel) at a power level approximately three

orders of magnitude below saturation in order not to spoil the electron beam quality. The

electron beam is then sent through a magnetic chicane which is designed such that it destroys

the density modulation introduced in the first undulator and delays the electron beam by the

same amount as the radiation pulse. The radiation pulse is spectrally filtered by a narrow-band

grating monochromator which stretches the pulse and provides a coherence length longer than

the electron bunch length. This radiation is the seed for the second undulator which amplifies

it to saturation.



Figure 11. Spectral power distribution after the first (left) and the second undulator (right).

The output radiation exhibits a narrow spectral line with only a small background of

spontaneous radiation (figure 11, right panel). The pulse energy is the same as that of a FEL

operating in the SASE mode, thus the spectral brightness has increased by almost two orders

of magnitude. Due to the saturation in the FEL amplifier, the intensity of the single-line

output radiation is rather insensitive to the fluctuating input seed intensity, although now and

then the shot noise dominates. The statistical properties have been carefully studied and the

design parameters optimized [49]. The hardware components for a self-seeding mode of the

VUV-FEL at DESY, covering a range of 6–60 nm wavelength, are currently under construction

and will be installed and tested in the near future.

5. Generation of femtosecond and attosecond x-ray pulses

The x-ray pulses generated by the SASE FELs currently in operation or under construction

are ∼100 fs long, owing to the compression schemes used for the electron beam. This is

considerably longer than the lifetimes of electronic states accessible with nanometre and

sub-nanometre radiation, which are in the few-femtosecond to sub-femtosecond (attosecond)

range. Even some molecular vibrations can be as short as ∼10 fs. Therefore, a new range of

scientific applications would be opened if the duration of the radiation pulses could be reduced

by one to two orders of magnitude. This should be possible in principle, since the coherence

time varies from several fs to a few hundred attoseconds for wavelengths between 10 nm and

0.1 nm. Several different strategies are being considered for generating ultra-short pulses.

The test experiments at TTF have shown that bunch compression to <100 fs is possible.

Optimized bunch compression techniques might well reduce the pulse duration to the 10 fs

range. Short-pulse XUV radiation with pulse durations down to ∼10 fs can be produced

by cascaded HGHG FELs seeded by femtosecond optical laser pulses. Recently, several

techniques have been proposed for achieving even shorter pulse durations. They rely on

three different approaches: (i) selection of single radiation spikes employing the statistical

properties of the radiation [50], (ii) use of energy-chirped electron bunches [51, 52] and

(iii) local energy modulation of the electron beam by a strong optical laser pulse [38, 53–55].

Saldin et al [50] propose to start with a SASE FEL at 0.8 nm operating in the high-gain

linear regime, and to generate 0.1 nm radiation by frequency multiplication in three successive

steps. The nonlinear harmonic generation increases the intensity fluctuations drastically such

that the single highest radiation spike in the 0.8 nm pulse dominates the distribution at the

eighth harmonic at 0.1 nm. It is sufficient to set a threshold for the pulse energy to select single



Figure 12. An energy-chirped bunch produces a frequency-chirped radiation pulse. A narrow-band

monochromator or a slit in a dispersion section of the accelerator selects a short time slice.

radiation spikes with ∼0.5 fs duration. The higher the threshold, the higher is the contrast

and the lower the probability for finding pulses that exceed the threshold. For example, a

threshold set at twice the average pulse energy would result in a single-line contrast of 90% at

an occurrence of 10%.

Energy-chirped electron bunches can be used in different ways to prepare fs x-ray pulses.

The energy-chirped electron bunch generates a radiation pulse whose frequency varies as a

function of position, i.e. time, along the pulse. The selection of a narrow frequency band then

produces a pulse that is much shorter than the original one (see figure 12). Schroeder et al

[51] propose to impose a strong energy chirp of 0.5% on the electron bunch. A narrow-band

monochromator selects a short temporal pulse which is then amplified to saturation in a second

undulator. The pulse duration is determined by the SASE bandwidth, the monochromator

bandwidth and the frequency chirp [56]. Pulse durations around 10 fs seem to be realistic.

Instead of selecting a narrow bandwidth in the frequency domain, Emma et al [52] propose to

introduce a narrow slit, made of a thin carbon foil, in the bunch compressor chicane where the

(only slightly) energy chirped electron bunch is dispersed in space. The thin carbon foil spoils

the electron beam emittance so much that only the narrow part passing the slit supports the

FEL process. Simulations show that ∼1 fs, saturated x-ray pulses at the 10 GW level could

be generated at 0.15 nm wavelength.

The third approach makes use of intense optical laser pulses, which modulate the energy

of the electron beam. If a very short optical pulse is used, with only a few cycles, and a

carrier-envelope phase adjusted such that the peak electric field coincides with the envelope

peak, a strong local energy modulation is imposed on the electron beam, larger than the

FEL bandwidth. Therefore, the FEL undulator can be tuned such that it amplifies only

within a small fraction of the optical cycle and produces ∼0.3 fs x-ray pulses [38, 53, 54].

This method can be modified by adding a magnetic dispersion section enhancing the electron

density periodically at the frequency of the optical laser [55]. This enhances the SASE process

periodically (‘current-enhanced SASE’), leading to a sequence of narrow (∼0.2 fs) radiation

spikes. The number of spikes depends on the length of the optical pulse and can in principle

be reduced to a single spike.

6. Current status of x-ray FEL projects

The best source for the current status of FEL projects is http://sbfel3.ucsb.edu/www/vl fel.html.

There are many operating FELs in the few to 10s of micron wavelengths worldwide. The VUV



Figure 13. Time-of-flight spectra of the ionization products of Xe atoms and clusters after

irradiation with 98 nm FEL radiation at an average power density of 2 × 1013 W cm−2. N is the

average number of atoms in the cluster.

FEL at DESY is about to become operational with a goal of reaching 6 nm in the not too distant

future. There are in addition to the LCLS at SLAC (under construction) and the European

XFEL in Hamburg (in advanced design), several other FEL proposals pointed toward reaching

1 nm or below. This is an emerging field and there is growing excitement worldwide for the

development of these unique light sources.

7. First experimental results at VUV wavelengths

The GW level VUV pulses from the SASE FEL at the TTF at DESY have been used for two

exploratory experiments on gases and solids demonstrating the unique properties of the new

radiation source. For both experiments the radiation was focused by an ellipsoidal mirror

to approximately 20 µm diameter with power densities up to more than 1013 W cm−2. The

sample position could be moved along the FEL beam in order to vary the fluence by some three

orders of magnitude. Figure 13 shows time-of-flight (TOF) mass spectra of the ionization

products of Xe atoms and clusters after irradiation with 98 nm FEL radiation at an average

power density of 2 × 1013 W cm−2 [57]. At this power level every single Xe atom in the

beam is ionized after a few femtoseconds since the photon energy (12.7 eV) is just above the

photo-ionization potential of Xe (12.1 eV) and the ionization cross section is approximately

50 Mb (1 Mb = 10−18 cm2).



Figure 14. Scanning electron microscope image of a carbon coated mirror irradiated by the TTF

FEL beam with 98 nm wavelength at a fluence of ∼0.2 J cm−2. The spot diameter is approximately

0.2 mm. The black lines indicate regions of high intensity where material is ablated.

For atomic Xe, only singly charged Xe+ ions are observed; multiple ionization is still

negligible (lower curve in figure 13). The splitting of the Xe+ line is caused by different

isotopes. When Xe clusters are exposed to the same power density, highly charged ions up

to X8+ are observed. The larger the clusters, the higher the charge states and the higher their

initial kinetic energy as indicated by the shift of the lines. While Xe atoms absorb only a

single photon, the absorption in clusters is strongly enhanced. At 7 × 1013 W cm−2 and 98 nm

wavelength, each atom in large clusters absorbs up to 30 photons, i.e. ∼400 eV. Subsequently,

the clusters completely disintegrate in a Coulomb explosion. The reasons for the increased

absorption and the development of the unexpectedly high charge states have been discussed

in several publications (see, e.g., [58]). Obviously, multiple ionization of atoms in a cluster

is facilitated by the influence of the neighbouring atoms. The nanoplasma formed by the first

part of the radiation pulse is then further heated by inverse bremsstrahlung processes. The

development of high-charge states is related to the finite cluster size and the dynamics of the

explosion of the nanoplasma.

It should be mentioned that the results for the ionization of atomic Xe shown in figure 13

were different when the measurements were repeated a few weeks later at slightly different

FEL beam conditions. In the later measurement, Xe charge states up to Xe4+ were observed at

the same power density of 2 × 1013 W cm−2 which had only produced Xe+ ions earlier [59].

The reason could be a different temporal structure of the radiation pulse, caused by different

settings of the electron bunch compressor (see also figure 7).

In the second experiment the interaction of the intense VUV radiation pulses with different

solids was investigated [60, 61]. A range of different samples, including Si, SiO2, Au, PMMA

and thin Au and C coatings on Si wafers, was irradiated with fluences up to >1 J cm−2.

Figure 14 shows a damaged amorphous carbon coating on a silicon wafer after irradiation



with 98 nm FEL pulses. Carbon coatings have been investigated because they are the

preferred mirror material for VUV and soft x-ray FEL radiation below the carbon K-edge

[62]. The ions leaving the surface were detected by a time-of-flight spectrometer. As in the

cluster experiments, multiply charged ions with high kinetic energies were detected at high

fluences. For most samples the threshold values for the emission of ions were on the order of

50 mJ cm−2. A careful post-mortem analysis of the irradiated samples using atomic force

microscopy (AFM), Nomarski microscopy and Raman spectroscopy revealed lower damage

thresholds. The first change is seen as a modification of the refractive index, which occurs

already at fluences between 5 mJ cm−2 (for Si) and 30 mJ cm−2 (for SiO2). The thresholds

for surface deformation detected by AFM are between 10 mJ cm−2 (for PMMA and a

15 nm Au coating on Si) and 40 mJ cm−2 (for Si). The ablation behaviour of conducting

or semiconducting materials and insulators was found to be distinctly different in terms of

crater morphology and kinetic energy of the ejected ions. The low damage thresholds seem to

be acceptable for the optics layout of the new VUV-FEL user facility at DESY: a worst case

estimate for 6 nm wavelength and 1 mJ pulse energy results in <0.3 mJ cm−2 absorbed by the

carbon mirror coating.

8. Future scientific applications

The evolution of scientific understanding typically begins with statics and evolves to dynamics.

In studying natural processes, it is usually easier to explore structures than functions. So it is

in the nanoworld, too. X-rays with Ångstrom wavelengths have provided detailed structures

of ever-more-complex systems, with resolution on the atomic scale. Crystallography can

now study proteins with tens of thousands of atoms and determine the average, static atomic

positions with few-Ångstrom resolution. This has proved immensely useful. However, a more

sophisticated understanding of nanostructure raises more questions about nanodynamics. To

study the dynamics of nanosystems, the most common tools today are conventional lasers,

which can routinely provide pulse lengths on the order of tens of femtoseconds, and under

special circumstances less than 1 fs [63]. These fast pulses are needed to study the short-range

motions of atoms undergoing chemical reactions, phase transitions in solids and fast dynamics

in biological systems. Unfortunately, the laser wavelengths are hundreds of times longer

than the interatomic spacing, so that directly observing atomic positions (as one could do

with x-rays) is not possible with lasers. The laser measurements rely on the inference of the

atomic motions through spectroscopic measurements, indirectly observing position changes

through their effects on atomic and molecular energy levels. This indirect approach becomes

very difficult for all but the simplest systems. The XFEL will allow direct observation of

atomic positions, with femtosecond time resolution, and should become the basic tool to study

atomic scale dynamics on the natural time scales of interest in materials science, chemistry and

biology. More broadly, this new source of x-rays will enable the study of transient structures in

molecules, liquids and solids either as a probe or as a pump to create these states. The range of

these applications has been elucidated in the first experiments document for the LCLS [64] and

the technical design report for the TESLA XFEL [33]. In the paragraphs below we will outline

two of these areas: laser-pump-x-ray-probe studies of chemical dynamics, and near-atomic-

resolution diffraction imaging of single nanoscale objects. These examples give some idea of

the scientific breadth to be spanned by the XFEL research, and begin to answer questions like

‘can we see how matter forms and changes?,’ ‘can we image single macromolecules?’, and

‘can we produce a movie of a chemical reaction with atomic resolution?’.



8.1. Structural dynamics in chemistry and molecular biology

The fundamental events of chemistry and molecular biology occur on the distance and time

scales governed by chemical bond lengths and vibrational periods. These chemical bond

properties make x-ray science (with Ångstrom spatial resolution) and ultrafast laser science

(with femtosecond temporal resolution) the optimal experimental tools today for molecular-

scale investigations of chemical phenomena. Conventional x-ray scattering can determine

the static structures of molecules, and femtosecond optical probes can observe the temporal

evolution of excited molecules (by observing the temporal evolution of absorption spectra).

The successful combination of laser and x-ray probes in the femtosecond regime has been

limited by the inherently long pulse duration of a synchrotron (typically 100 picoseconds)

and the extremely low x-ray flux of specialized ultrafast x-ray sources such as laser plasma

sources. XFELs overcome both of these limitations. These ultrafast hard x-ray sources, when

combined with ultrafast optical lasers, will provide a unique opportunity to observe chemical

and biological phenomena with unprecedented temporal and spatial resolution.

The need to develop a detailed molecular-scale understanding of chemical reactivity

motivates the ultrafast experimental studies of chemical dynamics. Much of our understanding

of chemical reaction dynamics has been acquired with ultrafast optical spectroscopy [65–

71]. Of particular significance in these time-resolved studies has been the investigation

of photodissociation and recombination [66, 70–80], photoisomerization [69, 81–92] and

photoinitiated electron transfer reactions [67, 68, 93–96] at surfaces and in liquids, glasses,

solids and proteins. While these extensive investigations have led to a wealth of information

regarding chemical reaction dynamics in the condensed phase, critical aspects of the dynamics

and the influence of the environment on chemical and biological reactions have yet to be fully

characterized experimentally.

Diffraction methods that have atomic-scale resolution are unique in their ability to

correlate length and time scales with greater certainty than can strictly optical measurements,

in most systems. The first attempts at this in the gas phase have used electron diffraction

[97]. There, time resolution is limited to the picosecond scale by space charge effects in the

probe electron beam. The XFEL does not have this limitation. Both the temporal and the

per-pulse intensity provide the opportunity to identify the reaction coordinate and reaction

intermediates, and construct reaction mechanisms with unprecedented spatial precision and

temporal resolution.

Given sufficient photo-excitation yields, crystallography provides the most powerful tool

for measuring the well-ordered structures of excited molecules. This approach has been

successfully applied in a variety of time-resolved crystallography measurements [98–104]

and will certainly be a useful approach for experiments at XFELs. Crystallography does

not, however, fully describe the influence of photoexcitation. Photoexcitation gives a random

distribution of time-evolving defects throughout a crystal. Due to the low concentration of the

excited species and the large range of conformations that excited species can sample during

relaxation, the coherent diffraction pattern will only contain a partial picture of the excitation

process. The diffuse scattering, however, provides access to local structural information

that cannot be observed with crystallography [105, 106]. The lack of long-range order that

leads to diffuse scattering also makes the scattering significantly weaker than coherent Bragg

diffraction. This has made time-resolved applications of diffuse scattering very challenging at

synchrotrons. Given that diffuse scattering experiments will greatly benefit from the increased

flux of XFELs, and that disordered systems have a dominant presence in chemistry and

biology, developing the experimental and theoretical tools necessary for time-resolved diffuse

scattering will be among the first developments at XFELs.



Figure 15. Image reconstruction from a diffuse scattering pattern. Left, a scanning electron

micrograph of the sample (gold dots on a SiN membrane). Right, the image reconstructed from

the diffraction pattern produced by 1.7 nm soft x-rays. From [108].

8.2. Imaging

X-ray scattering has been the most powerful tool for determining the structure of condensed

matter, even of complex macromolecules, at atomic resolution. The only limitations today

are the ability to crystallize the object of interest and the radiation damage that disturbs the

structure while the scattering data is collected. The classic problem of determining the phase

for each Bragg reflection from intensity data has been largely overcome using the anomalous

scattering from one or a few atoms in the structures, a technique now widely used at synchrotron

sources. There are, however, a significant number of important macromolecules that have not

been able to be crystallized, including the general class of membrane proteins. In addition

there are cases where radiation damage has also been a significant impediment to achieving

atomic resolution.

To overcome both of these problems an idea has emerged [107] to use the extraordinary

per-pulse intensity and femtosecond pulse duration from an XFEL to collect diffraction patterns

from single biomolecules. This beautiful idea would overcome the issue of crystallization and

if it proves feasible, it would also avoid the radiation damage limitation. At the crux of the

idea is the ability to obtain the phases from a continuous diffraction pattern of a single object.

Sayre recognized some 50 years ago that applying Shannon’s ideas would permit one to get

the phases from a single unit cell, if one sampled the diffraction pattern at half the Bragg

spacing. The extension of this idea to real experiments by Miao et al [108] has put the concept

of oversampling on a firm basis (see figure 15).

It all sounds simple, but based on the work of Wabnitz et al [57] one naturally asks

whether the molecule does not undergo a giant Coulomb explosion before the full XFEL pulse

has passed the sample. The concept of Hajdu and coworkers requires that the sample remain

intact for most if not all of the FEL pulse. They have performed extensive simulations [107],

which indicate that for pulses with sufficient flux and short enough duration, the molecules do

preserve their structure long enough. Figure 16 shows the damage landscape as a function of

photon pulse duration and intensity. It is clear that the pulse duration needs to approach 5 fs

to be able to use the full intensity that the FEL can deliver. It is comforting that calculations

based on a continuum model of the biomolecule using hydrodynamic codes gives similar



(a)

(b)

(c)

Figure 16. The landscape of radiation damage tolerance. Calculated effects of x-ray pulse

intensity, pulse length and photon energy on crystal damage, and the resulting decrease in fidelity

of the crystal structure derived from the diffraction pattern. The contour lines plot crystallographic

R factors. A low R factor in this case indicates minimal atomic motion during the time of exposure.

From [103].

results for damage thresholds, also indicating that pulses approaching 5 fs will be required if

near-atomic-resolution structures are to be obtained.

If one proceeds under the assumption that the pulse duration/intensity issues can be

addressed and the molecules will survive, there remain significant questions about inverting

the continuous diffraction data with missing information at the smallest angles. This was a

problem that Miao et al solved by ‘filling in’ that region with low-resolution optical diffraction

data, which permitted their inversion algorithm to converge and retrieve the real-space image

of the sample. Recent advances in the development of phase retrieval algorithms have shown

that one can invert diffraction data even if the central region is missing. This so-called ‘shrink

wrap’ algorithm defines the boundary between sample and no sample and thus imposes a

constraint that permits the phase retrieval to converge [109].



There remains the problem of getting sufficient intensity at the large scattering angles

required for near-atomic-scale resolution. Conceptually, this can be solved by simply adding

up diffraction patterns from numerous single-molecule data sets. However, is there enough

scattered intensity from any single pulse to permit determination of the orientation with

sufficient accuracy? Significant progress has recently been made in this area, and results from

Elser indicate that it should be possible to classify diffraction patterns with sufficient angular

accuracy to perform the necessary averaging [110].

If diffraction imaging at near-atomic-resolution is possible, it will certainly not be confined

to the determination of the structures of large biomolecules. Robinson and co-workers have

already collected coherent scattering data from single nanocrystals [111]. The reconstructed

shapes of these particles have reasonable fidelity, considering the quality of the data. If XFEL

imaging proves feasible for such objects, then one can imagine looking at the response of a

nanocrystal to a pump laser, and the associated structural dynamics triggered by the impulse.

If the laser pulse is of sufficient intensity, one can expect pressure-induced phase changes as

well as those triggered by changes in the electronic structure caused by the laser field.

9. Conclusions

Synchrotron radiation has revolutionized the use of x-ray techniques to study atomic and

electronic structures in the broadest set of scientific disciplines that could be imagined. They

have become an everyday tool. The ability to combine the imaging power of SR with the time

resolution available today from optical laser systems will provide a new paradigm for the study

of dynamics on the atomic scale. The steady development of accelerator technology, making

full use of developments in conventional lasers, has opened the door to the construction of

free electron lasers extending to the hard x-ray regime. Already FELs have reached their

design goals for wavelengths in the 100 nm range [30, 36] and have produced exciting and

unexpected scientific results [57]. The XFEL at SLAC is in an advanced stage of design with

first operation expected in 2009, and the European XFEL is not far behind. The potential

scientific impact of these sources is immense and the unexpected awaits.
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