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ABSTRACT

Conformal gravity has a weak-field limit that augments the Newtonian potential −GM/R by
a linear potential γ c2R/2. Mannheim has shown that an appropriate choice of γ enables a
satisfying fit to the flat rotation curves of large spiral galaxies and simultaneously to the rising
rotation curves of low surface brightness galaxies, without invoking dark matter. Here, we
extend to larger scales the comparison of Newtonian and conformal gravity by analysis of
X-ray gas in the Abell 2029 galaxy cluster. The Newtonian analysis yields a mass profile
rising roughly as M ∝ R2 from 1010 M� at 2 kpc to 1014 M� at 200 kpc, and this can be
interpreted as the profile of an extensive dark matter halo that dominates the cluster potential.
In conformal gravity, the potential is non-uniform inside a spherical shell, so that both interior
and exterior mass distributions must be taken into account. We derive the conformal gravity
potential both inside and outside a spherical shell, enabling the evaluation of potentials for
spherically symmetric mass distributions. A conformal gravity analysis of X-ray gas in Abell
2029 then yields a total mass profile that rises from 1010 M� at 2 kpc to 1.4 × 1012 M� at
30 kpc, and then remains roughly constant out to 300 kpc. With this mass profile, conformal
gravity is able to bind the X-ray gas with no need for dark matter. However, integrating the
X-ray gas density profile gives a baryon mass of 1013 M� inside 200 kpc, nearly 10 times more
than what is required to hold the hot gas in hydrostatic equilibrium. This discrepancy may rule
out conformal gravity unless there is a significant breakdown of hydrostatic equilibrium in the
outskirts of the potential well. The required velocities, V ∼ 2000 km s−1, may be observable
via Doppler profiles in high-resolution X-ray spectroscopy. It is also possible that the mass
distribution outside the cluster significantly reduces conformal gravity in the cluster outskirts.
Our approximate treatment of this effect suggests that it is negligible, but a more sophisticated
analysis might yield a different conclusion.

Key words: galaxies: clusters: individual: Abell 2029 – cosmology: theory – dark matter –
X-rays: galaxies: clusters.

1 I N T RO D U C T I O N

Rich clusters of galaxies are generally filled with hot gas that appears
to be in virial equilibrium. X-ray observations of thermal emission
from the hot gas have recently achieved sufficient spatial and spectral
resolution to establish reliably the run of density, temperature and
abundances with radius. Measurements of the hot gas pressure and
density profile then provide the basis for inferring the total mass
profile of the gravitational well that confines the hot gas. Assuming
that the hot gas is in hydrostatic equilibrium,

dP
dR

= −ρ
d�

dR
= −ρg, (1)
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the gas pressure P(R) and density ρ(R) provide a probe of the gravi-
tational potential � and the corresponding acceleration g. For New-
tonian gravity, the potential and acceleration are

�N = − G M
R

(2)

and

gN = d�N

d R
= G M

R2
. (3)

The mass profile needed to confine and maintain the hydrostatically
supported X-ray gas is then

MN = − R2

Gρ

dP
dR

= R c2
s

G

[
−d ln P

d ln R

]
, (4)
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1668 K. Horne

where the sound speed for a perfect gas equation of state is

c2
s = P

ρ
= k T

μ mH
, (5)

with μ mean molecular weight and mH the mass of a hydrogen atom.
Fits to observed X-ray spectra provide estimates for T (R), ρ(R)

and abundances [hence μ(R)], yielding cs(R) and P(R), as functions
of distance R from the cluster centre. This enables estimates of
the mass profile, M(R), via equation (4). Differentiation of P(R)
makes the result unstable to measurement errors, however, so the
usual procedure is to fit a smooth function to the observed P(R),
and differentiate that smooth function when evaluating M(R). The
observations typically show that T(R) is a weak function of R, while
ρ(R) decreases rapidly with R. Thus P(R) decreases with R, and
the resulting M(R) from equation (4) is then positive. If T(R) and
P(R) are asymptotically power-law functions, the factor R in the
numerator of equation (4) usually makes M(R) increase steeply with
R. To make M(R) decrease T would need to drop off faster than 1/R.
Thus the Newtonian analysis usually yields M(R) rising with R rather
than reaching a constant value.

In the mass budget for known baryons, stars typically dominate
in the core and hot gas in the outskirts of the cluster. The stellar
baryons can usually be made to match the total mass profile in the
inner regions by adopting a plausible mass-to-light ratio for the stars.
In the outer regions of the cluster, where the hot gas dominates the
baryon density, Newtonian gravity from known baryonic sources
appears to be insufficient by factors of the order of 10, and this is
taken as evidence that the cluster potential in these outer regions is
dominated by dark matter.

In this paper, we consider whether Mannheim’s conformal grav-
ity theory (Mannheim & Kazanas 1989; Mannheim 1993, 1997,
2001, 2006) can account for the confinement of hot gas in galaxy
clusters without recourse to dark matter. (Mannheim 1996) showed
that the velocity dispersion in the virialized core of the Coma cluster
could be accounted for, and raised some questions about the time-
scale to reach virial equilibrium in the outskirts of the cluster. In
Section 2 we briefly summarize relevant features of conformal grav-
ity, including its success in fitting observations of spiral galaxy ro-
tation curves. We then derive (with help from Appendix A) the
required modifications to equation (4). In Section 3, we apply the
analysis to Chandra observations of the hot gas in the rich galaxy
cluster Abell 2029. We find that Netwonian gravity provides insuf-
ficient inward acceleration while conformal gravity provides more
than enough inward acceleration to hold the hot gas in hydrostatic
equilibrium. In Section 4, we discuss the problem of too much con-
formal gravity in the cluster outskirts, and several possibilities for
reducing it. Section 5 summarizes our conclusions. Appendix A
develops conformal gravity formulae for the potential, gravity and
rotation curve for a spherical shell, for a Hernquist mass profile,
and for a uniform density sphere. We show also that long-range
shielding of the linear potential may occur if overdense regions are
cancelled by surrounding voids of equivalent mass.

2 C O N F O R M A L G R AV I T Y

Conformal gravity is a covariant metric theory of gravity derived
from the principle of local conformal symmetry. Invariance to local
isotropic stretching of the space–time fabric

gμν(x) → �2(x)gμν(x), (6)

where gμν(x) is the metric tensor, leads to a unique scalar action

IW = −α

∫ √−g d4x Cμνλκ Cμνλκ , (7)

where C μνλκ is the conformal Weyl tensor (Weyl 1918) and α is a
dimensionless scalar. As in general relativity, test particles follow
geodessic trajectories in curved space–time. However, Einstein’s
second-order field equations are replaced in conformal gravity by
fourth-order field equations derived from the Weyl action.

An exact solution for the vacuum exterior to a static point source
is given (Mannheim & Kazanas 1989) by the line element

ds2 = −B(r )c2dt2 + dr 2

B(r )
+ r 2(dθ2 + sin2 θdφ2), (8)

with time coordinate t, spherical polar spatial coordinates r , θ , φ,
and

B(r ) = 1 − 3βγ − β(2 − 3βγ )

r
+ γ r − κr 2, (9)

where β, γ and κ are integration constants. Solutions including
charge and spin are also available (Mannheim & Kazanas 1991).
Identifying B(r ) = 1 + 2�/c2, the effective gravitational potential
is

�

c2
= −β (1 − 3βγ/2)

r
− 3 β γ

2
+ γ r

2
− κr 2

2
. (10)

Consistency with Solar system dynamics requires B(r ) → 1 −
2GM/c2r for M ∼ M� and r < 1015 cm. This is obtained if γ �
10−15 cm−1 and

β = G M
c2

= 1.48 × 105

(
M

M�

)
cm. (11)

The solution connects smoothly on to a Schwarzschild metric for
r � r 1, and a Robertson–Walker metric with 3-space curvature
K = −κ − γ 2/4 for r 	 r 1, where r 1 = (2β/γ ) (Mannheim &
Kazanas 1989).

2.1 Galaxy rotation curves

The fourth-order field equations of conformal gravity lead in the
weak-field limit to a fourth-order Poisson equation,


4� = −4πGρ, (12)

with the vacuum solution

�

c2
= −β

r
+ γ r

2
− κ r 2

2
. (13)

The quadratic term, important on cosmological scales, is hereafter
neglected. The linear potential term augments Newtonian grav-
ity with an additional r-independent inward acceleration γ c2/2.
This term enables successful fits to spiral galaxy rotation curves
(Mannheim 1993, 1997) provided

γ = γ0 +
(

M
M�

)
γ �, (14)

with γ 0 = 3.06 × 10−30 cm−1 and γ � = 5.42 × 10−41 cm−1.
In this paper, we adopt the equivalent parametrization

� = �N + �M

= − G M
R

+ G M0

R0

(
M
M0

+ 1

)
R
R0

,
(15)

where the values of γ 0 and γ � above translate to R0 ≈ 24 kpc
and M 0 ≈ 5.6 × 1010 M�. The first term is the Newtonian
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Conformal gravity analysis of Abell 2029 1669

potential, and the additional non-Newtonian terms are the
Mannheim potential.

Strictly speaking, this is the Newton–Mannheim potential for
empty space around a point mass M. For extended mass distribu-
tions, we assume for the moment that we can replace M by the
enclosed mass M(R). For a spherically symmetric mass distribu-
tion this approximation is exact for the Newtonian potential, but
there are corrections to the Mannheim potential. These we derive
in Appendix A and take into account in the analysis of cluster mass
profiles to follow below.

The inward gravitational acceleration arising from the Newton–
Mannheim potential is

g = d�

dR
= G M

R2
+ g0

(
M
M0

+ 1

)
, (16)

where

g0 =
(

G M0

R2
0

)
≈ 1.4 × 10−9 cm s−2. (17)

The corresponding circular orbit velocity is

V 2 = g R = G M
R

+ V 2
0

(
M
M0

+ 1

)
R
R0

, (18)

where

V0 =
(

G M0

R0

)1/2

≈ 100 km s−1. (19)

The Mannheim terms affect dynamics in the outskirts of galax-
ies. The transition between the interior Newtonian and exterior
Mannheim regimes occurs at

RM ≈ R0

(
M

M + M0

)
. (20)

For large galaxies, M > M 0, the Mannheim radius is RM ≈R0, in-
dependent of mass. As the Kepler velocity falls, the Mannheim ve-
locity rises, giving a flat rotation curve with V ∼ V0

√
2M/M0 over

a wide range in R around RM before rising as V ∼ V0
√

RM/R0 M0.
For smaller galaxies, M < M 0, the Newtonian region shrinks to
R < RM ≈ R0 M/M 0, outside which the velocity profile is V ≈
V0

√
R/R0, independent of mass. This accounts for the rising rota-

tion curves of low surface brightness galaxies that are often inter-
preted as dark matter dominated.

2.2 Galaxy cluster mass profiles

For galaxy clusters, we have M > M0, and we therefore expect
the Mannheim terms to be important for R > R0 ≈ 24 kpc. The
hydrostatic equilibrium equation is now

g = − 1

ρ

dP
dR

= G M
R2

+ g0

(
M
M0

+ 1

)
+ �g. (21)

Here, we denote by �g the correction that accounts for the effect
of the extended mass distribution. The extended source corrections
are derived in Appendix A. These arise because the Mannheim ef-
fects from a spherical shell differ from those from a point source of
equivalent mass. For completeness, we note here that

�g(R)

g0
= 2

3

∫
r>R

R
r

dM
M0

− 1

3

∫
r<R

(
r
R

)2
dM
M0

, (22)

where d M = 4π r 2ρ dr . Thus external shells of material, r > R,

enhance the inward gravity, and internal shells, r < R, are a bit
weaker than the equivalent point mass.

If MN is the mass profile derived by Newtonian dynamics,
given by equation (4), then the mass profile obtained including the
Mannheim terms is

M = MN − M0 (R/R0)2 − �M
1 + (R/R0)2 , (23)

where �M = R2�g/G. Note that because �g depends on the
mass profile, M(R), we must iterate equation (23) to obtain a self-
consistent solution.

The Mannheim corrections tend to reduce the mass, and thus
offer the hope that a finite total mass can be achieved. Note that for
R > R0 the denominator of equation (23) is an increasing function
of R. If the numerator fails to increase at least as fast, the ratio can
give M decreasing with R. This unphysical result could either rule
out the conformal gravity theory, or else indicate a breakdown of
the assumption of hydrostatic equilibrium.

3 A P P L I C AT I O N TO A B E L L 2 0 2 9

To illustrate the difference between a Newtonian and conformal
gravity analysis of X-ray gas in galaxy cluster potentials, we con-
sider the Abell 2029 galaxy cluster. Chandra observations of the
X-ray gas are described in (Lewis, Stocke & Buote 2002), where
the radial profiles of gas temperature and Fe abundance are evalu-
ated from spectral fits to spatially resolved X-ray spectra. A mass
profile dominated by dark matter in the outer regions is derived from
the Newtonian analysis presented in (Lewis, Buote & Stocke 2003).

We have repeated the analysis of (Lewis et al. 2003) from the
measured temperature and density versus angular distance. We adopt
H 0 = 70 km s−1 Mpc−1, redshift z = 0.0767, luminosity distance
d = cz/H 0 = 328 Mpc, and angular scale 1.59 arcsec pc−1. Fig. 1
summarizes the results of our analysis, showing the radial profile
of the temperature (a), density (b), sound speed (c) and pressure (d)
in the hot gas, and the derived radial profiles for gravity (e, f) and
enclosed mass (g, h), assuming hydrostatic equilibrium, for both
Newtonian (e, g) and conformal gravity (f, h).

The temperature T(R) rises from 3 × 107 K at 2 kpc to 108 K at
200 kpc, while the gas density ρ(R) drops by a factor of 30 and
the pressure P(R) by a factor of 10 over the same range. For the
sound speed cs we assume a mean molecular weight μ = 0.6, and
we plot for comparison in Fig. 1(c) the observed velocity dispersion
σ V of the starlight in the central cD galaxy (Dressler 1979), and
of the cluster galaxies (Dressler 1981; Dale & Uson 2000). From
the density and pressure profiles, we use equation (1) to derive the
inward acceleration g(R) that is required to support the hot gas in
hydrostatic equilibrium (Figs 1e and f). Large error bars in the inner
regions stem from the numerical derivative of the pressure profile,
mainly from uncertainties in the gas temperature measurements.
The gravity profile is almost flat, varying by less than a factor of 3
between 2 and 300 kpc. The derived gravity, g ≈ 2–6 × 10−8 cm s−2,
is just above the acceleration threshold a0 ≈ 1.2 × 10−8 cm s−2 in
the modified Newtonian dynamics (MOND) theory (Milgrom 1983;
Sanders & McGaugh 2002). We therefore expect that a MOND anal-
ysis of A2029 would give results similar to those of the Newtonian
analysis, with a slightly higher gravity and lower total mass, but still
insufficient baryons to generate the gravity required to bind the hot
gas (Sanders 2003).

In the lower panels of Fig. 1, thick lines with error bars show
the gravity and total mass profile derived from the hot gas thermal
equilibrium equation, for Newtonian (Fig. 1g) and conformal gravity
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1670 K. Horne

Figure 1. Top two rows: analysis of Chandra observations of X-ray spectra emitted by hot gas in the galaxy cluster Abell 2029 yields estimates for the
temperature (a), density (b), sound speed (c) and pressure (d) versus radius, from (Lewis et al. 2003). In (c) the observed velocity dispersion σ V of starlight from
the central CD galaxy (Dressler 1979) is is somewhat below the hot gas sound speed cs, while that of the cluster galaxies (Dressler 1981; Dale & Uson 2000)
is somewhat above. Bottom two rows: thick lines give the inward gravity (e, f) required to maintain the hot gas in hydrostatic equilibrium, and the resulting
enclosed total mass profiles (g, h), for both Newtonian (e, g) and conformal gravity (f, h). For comparison, thin curves give gravity and mass profiles for the
baryons, divided into contributions from stars and hot gas, marked with stars and open circles, respectively. Newtonian gravity is insufficient while conformal
gravity is more than sufficient to bind the hot gas in the outskirts of the cluster.
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Conformal gravity analysis of Abell 2029 1671

(Fig. 1h). For comparison, the thin dashed curves (marked with
stars and open symbols) show the gravity and mass profiles for the
stars and hot gas, and the unmarked thin curve is the total mass
of known baryons (stars plus hot gas). For the gas we integrate
the gas density profile derived from the Chandra spectra (Lewis
et al. 2003). For the stars we adopt a Hernquist model (Section A5)
with characteristic radius A = 46 kpc and total mass M = 4.5 ×
1012 M�. This matches the stellar mass profile derived by (Lewis
et al. 2003) from the photometry of (Uson, Boughn & Kuhn 1991)
for a mass-to-light ratio M �/LV ≈ 12.

In the heart of the cluster, R < 20 kpc, Newtonian gravity of
the stars dominates the dynamics. The adopted stellar mass profile
is in good agreement with what is required to hold the hot gas in
hydrostatic equilibrium. The star density falls more rapidly than the
gas density, so that hot gas dominates the baryon budget in the cluster
outskirts. At 200 kpc, Newtonian gravity from interior baryons falls
short by a factor of 10 of what is required to confine the hot gas.
(Lewis et al. 2003) find a mass-to-light ratio rising from ∼12 inside
20 kpc to above ∼100 outside 200 kpc, and our Newtonian analysis
broadly confirms their findings.

Total enclosed mass profiles derived for Newtonian and confor-
mal gravity are shown in the bottom panel of Fig. 1. With Newtonian
gravity the total mass profile rises from 1010 M� at R ≈ 2 kpc to
1014 M� at R ≈ 200 kpc. This is a factor of 10 higher than the gas
mass, obtained by integrating the gas density profile, which rises
from from 108 M� at R ≈ 2 kpc to 1013 M� at R ≈ 200 kpc. Ris-
ing mass profiles such as this are currently interpreted as evidence
for an extensive dark matter halo.

Our conformal gravity analysis gives a total mass profile that rises
from 1010 M� at 2 kpc to 1.4 × 1012 M� at 30 kpc, and then re-
mains flat out to 300 kpc. We present two solutions, shown as the
two thick lines in Figs 1(f) and (h). One satisfies the hydrostatic
equilibrium equation (21) exactly, but the numerical integration of
equation (23) gives M(R) decreasing slightly in the outer regions.
For the second solution we force the density to be positive when
integrating equation (23), so that M(R) cannot decrease with R, and
this solution does not quite satisfy equation (21), having a slightly
higher gravity inside and lower gravity outside 30 kpc. The agree-
ment between the two is satisfactory. Within the uncertainties of
the analysis, the total mass reaches an asymptotic value, rather than
continuing to rise indefinitely.

4 TO O M U C H C O N F O R M A L G R AV I T Y

We have found that the radial structure of the X-ray gas in A2029
requires a gravitational acceleration log g ≈ −7.4, approximately
independent of radius. With Newtonian gravity, this requires a total
mass increasing roughly as M ∝ R2, rising to 1014 M� at 200 kpc
where it exceeds by a factor of 10 the enclosed mass of stars and gas.
The conventional interpretation is that Newtonian gravity requires
this cluster, and others like it, to reside within an extensive halo
of dark matter. In A2029, the inferred dark matter density falls off
roughly as ρ ∝ R−1.

With conformal gravity, a total mass M ≈ 1.4 × 1012 M�
(≈25 M 0) within about 30 kpc (1.1R0) suffices to account for the
radial structure of the X-ray gas in A2029. Gas at larger radii is con-
fined by the inward gravitational acceleration g0 M/M0 arising from
the source-generated Mannheim potential of the interior baryons.
We conclude that conformal gravity does not require dark matter to
confine the X-ray gas in A2029, and by extension in other similar
galaxy clusters.

However, the apparent success of conformal gravity in eliminat-
ing the need for dark matter is somewhat marred by the fact that the
gas mass rises to 1013 M� at 200 kpc, a factor of 10 higher than the
required total mass. Thus conformal gravity in our analysis gener-
ates an inward acceleration that is more than sufficient to hold the
gas in hydrostatic equilibrium.

What may have gone wrong? We discuss briefly several possibil-
ities that we have considered.

(1) Does hydrostatic equilibrium break down? Could the gas be
rotating, falling in, flowing out, or supported by supersonic tur-
bulence? The X-ray surface brightness in A2029 is quite smooth
(Lewis et al. 2002), indicating that the gas is relatively relaxed and
not obviously disturbed. The central cD galaxy is clearly flattened
and rotating, with a 2:1 axis ratio (Uson et al. 1991), a velocity
dispersion of 400–500 km s−1 (Fig. 1c) and a projected rotation ve-
locity of 200 km s−1 (Dressler 1979). The X-ray emission is also
flattened, with a 1.4:1 axis ratio (Lewis et al. 2002), so there is some
evidence for rotational support, or at least an anisotropic potential
well. The X-ray gas sound speed is 600–1400 km s−1 (Fig. 1c), and
comparable bulk velocities would be required to significantly affect
the gas dynamics. The cluster galaxies have a velocity dispersion of
≈1450 km s−1 (Dressler 1981; Oegerle, Hill & Fitchett 1995; Dale
& Uson 2000), and these may help to stir up the hot gas. A velocity
V ∼ √

2Rg ≈ 2000 km s−1 could loft gas to R ≈ 200 kpc against
the gravity g ≈ g0 M/M 0 ≈ 3 × 10−8 cm s−2. Measurements of
Doppler shifts or broadening of X-ray spectral lines emitted by the
hot gas could test the hypothesis that bulk motions augment thermal
gas pressure support.

(2) Our analysis adopted a mean molecular weight of 0.6, neglect-
ing the observed radial gradient of Fe abundance, which decreases
from twice to half solar between 2 and 200 kpc (Lewis et al. 2002).
Higher metal abundances in the core will supply fewer electrons
per baryon, increasing the mean molecular weight and lowering the
sound speed there, but this effect should not be large enough to affect
our analysis significantly.

(3) The derived total mass profile in Fig. 1(h) is close to the
baryon mass profile for the stars only, omitting the gas. If somehow
the Mannheim linear potential were generated by baryons (or other
sources) associated with the stars, but not by those associated with
the hot gas, that would give a more satisfying fit. This is probably a
logical possibility, since the strength of the source-generated linear
potential depends on the internal structure of the sources. Heavy
nuclei could have a stronger linear potential per baryon than lighter
nuclei, for example. However, we regard this as a rather inelegant
solution.

(4) In conformal gravity, exterior matter can affect the interior
dynamics. Because the linear potential increases without bound,
sources well outside the cluster may not be negligible. In particular,
Section A6 shows that the effective gravity in the outskirts of the
cluster could be reduced if the cluster is surrounded by a low-density
region. Such a void may be expected if the cluster was assembled
by gravitational collapse, collecting matter from a larger region of
originally nearly uniform baryon density. The background baryon
density is

ρ̄b = 3 H 2
0 �b

8π G
(1 + z)3. (24)

Using H 0 = 70 km s−1 Mpc−1, �b = 0.04 and z = 0.0767 gives
ρ̄b ≈ 4.6 × 10−31 g cm−3. If the cluster mass M matches the mass
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1672 K. Horne

deficit in the surrounding void, the void radius would be

Rvoid ≈
(

3M
4πρ̄b

)1/3

=
(

2G M
H 2

0 �b

)1/3
1

1 + z

≈ 18 Mpc

(
M

1013 M�

)1/3 (
�b

0.04

)−1/3

. (25)

The outward acceleration produced within the cluster by this exter-
nal void (see Section A6) is

gvoid ≈ g0
M
M0

R
Rvoid

≈ 2.6 × 10−9 cm s−2

(
M

1013 M�

)2/3 (
R

200 kpc

)
. (26)

This is two orders of magnitude smaller than what would be re-
quired to significantly reduce the conformal gravity in the cluster
outskirts. In our analysis, we used the results in Section A6 to in-
clude the outward acceleration caused by an external void, but this
has little effect on the results. However, treating the external mass
distribution as a spherical void around the cluster may be too simple
to accurately evaluate the order of magnitude of the external effects,
so we consider this possibility worthy of further investigation.

(5) We neglected the quadratic term κ r2/2 in the Mannheim po-
tential (equation 13). This term can generate a repulsive gravity
g = c2κr/2, increasing with r, and is normally attributed to effects
of the external negatively curved space–time (Mannheim 2001),
with κ ∼ (H 0/c)2. We neglected the quadratic term in this paper
because it should be important only on cosmological scales. We
could postulate a source-generated contribution to κ , analogous to
the splitting of γ into γ 0 and γ � that was required to fit rotation
curves of both low- and high-mass galaxies. Adding a new fitting
parameter would not be an economical solution unless analysis of
other clusters showed that the same value works for all clusters.
Even then, the required term would probably upset the conformal
gravity cosmology (Mannheim 2001).

5 S U M M A RY A N D C O N C L U S I O N

We have shown that conformal gravity is sufficient without dark
matter to bind the observed X-ray gas in the rich galaxy cluster
Abell 2029. We have used the temperature and density profile de-
rived from Chandra observations of X-ray emission from the hot
gas in Abell 2029 (Lewis et al. 2002, 2003) to derive the mass pro-
file of the cluster in the context of both Newtonian and conformal
gravity. With Newtonian gravity the mass profile rises continuously
from 1010 M� at 2 kpc to 1014 M� at 200 kpc, consistent with the
results of (Lewis et al. 2003), requiring a dark matter halo that
dominates the potential. With conformal gravity, however, the mass
profile rises to to 1012 M� at 30 kpc, and is constant thereafter. The
source-generated linear potential of conformal gravity provides a
potential well deep enough to bind the X-ray gas in Abell 2029
without resorting to dark matter.

However, this promising result is spoiled by the fact that the total
mass in stars and gas, mainly in gas, rises to 1013 M� at 200 kpc.
This exceeds by a factor 10 the mass found from the conformal
gravity analysis of the hot gas. Conformal gravity therefore appears
to be more than sufficient to bind the X-ray gas. This discrepancy
might be due to a violation of the assumption of hydrostatic equi-
librium in the X-ray gas. Potentially observable bulk velocities or
velocity dispersions, of the order of 2000 km s−1 could test this hy-
pothesis. Alternatively, dynamics in the cluster outskirts might be
significantly affected by the external mass distribution. Our rough

estimate, allowing for an external void of equal mass to the cluster,
suggests that this effect is too small, but more detailed investigation
may yield different conclusions.
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A P P E N D I X A : S P H E R I C A L P OT E N T I A L S

A1 Newtonian gravity

Most readers will be familiar with the main properties of the New-
tonian potential,

�N = − G M
R

, (A1)

which gives rise to Newton’s inverse-square law

gN = d�N

dR
= G M

R2
, (A2)

and the Keplerian velocity

VK =
(

R
d�N

dR

)1/2

=
(

G M
R

)1/2

. (A3)

The above results apply to empty space around a point mass M.
In the Newtonian case, the generalization to extended spherically
symmetric mass distributions ρ(R) is a straightforward replacement
of the point mass M by M(R), the mass enclosed within radius R,

M(R) = 4π

∫ R

0

r 2ρ(r ) dr . (A4)

This is possible because the potential from a spherical shell en-
closing the point at radius R is constant, and thus there is no net
acceleration from the material at larger radii.
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A2 Conformal gravity

In the weak-gravity limit, conformal gravity augments the famil-
iar Newtonian potential with an additional ‘Mannheim’ potential
(Mannheim 1993, 1997)

�M =
[

γ�c2

2

(
M

M�

)
+ γ0 c2

2

]
R, (A5)

The Mannheim potential is proportional to R, and has two parts.
The source-generated part, γ �c2 RM/2 M�, scales with mass and
is interpreted as arising from the internal structure of elementary
particles. The cosmological part, γ 0 c2 R/2, is independent of mass
and stems from the curved external space–time in which the object
is embedded.

We can write the Newton–Mannheim potential in a dimensionless
form,

� = V 2
0

[
−μ

x
+ (μ + 1) x

]
, (A6)

by introducing a dimensionless mass μ = M/M 0, where

M0 = γ0

γ� M�
≈ 5.6 × 1010 M� (A7)

and a dimensionless radius x = R/R0, where

R0 =
(

2 G M0

γ0 c2

)1/2

≈ 24 kpc. (A8)

Corresponding scales for velocity and acceleration are

V0 =
(

G M0

R0

)1/2

=
(

γ0 c2 R0

2

)1/2

≈ 100 km s−1 (A9)

and

g0 = V 2
0

R0
= G M0

R2
0

= γ0 c2

2
≈ 1.4 × 10−9 cm s−2. (A10)

The numerical values given above arise by tuning two parameters
of the theory to fit observations, namely R0 is set to fit the flat ro-
tation curves observed in large spiral galaxies, and M0 is set to fit
the rising rotation curves observed in low surface brightness galax-
ies (Mannheim 1993, 1997). The mass scale M0 separates the large
spirals (M > M 0), in which the source-generated γ � potential dom-
inates, and the low surface-brightness galaxies (M < M 0), in which
the cosmology-generated γ 0 term dominates.

The Mannheim potential alters Newtonian dynamics in the out-
skirts of galaxies. Differentiating the potential gives the inward grav-
itational acceleration,

g = d�

dR
= g0

(
μ

x2
+ μ + 1

)
. (A11)

The corresponding circular orbit velocity is

V = (Rg)1/2 = V0

[
μ

x
+ (μ + 1) x

]1/2

. (A12)

Unlike MOND (Milgrom 1983; Sanders & McGaugh 2002), which
is designed to produce flat rotation curves, the Newton–Mannheim
potential leads to a rising velocity profile at large R, V → V 0(μ +
1)1/2x1/2 ∝ R1/2. However, as the Kepler velocity falls, the
Mannheim velocity rises, and the velocity gradient vanishes at
x = x M, where

xM =
(

μ

μ + 1

)1/2

. (A13)

This defines the ‘Mannheim radius’,

RM = R0

(
M

M + M0

)1/2

, (A14)

where the velocity gradient vanishes, and the velocity is

VM = V0

[
μ

xM
+ (μ + 1)xM

]1/2

= V0 21/2 μ1/4(μ + 1)1/4. (A15)

A3 Spherical shells

Spherical shells are the basis functions used to construct more gen-
eral spherically symmetric mass distributions. By integrating the
Newton–Mannheim potential over a spherical shell of mass M =
M 0 μ and radius A = R0 a, we find

� = V 2
0

⎧⎪⎪⎨⎪⎪⎩
μ

(
− 1

x
+ x + a2

3 x

)
+ x if x > a,

μ

(
− 1

a
+ a + x2

3 a

)
+ x if x < a,

(A16)

where R = R0 x . The potential is symmetric to an interchange of a
and x. In comparison with the point-mass potential (equation A6),
the effect of the finite shell size is to reduce the external Newtonian
gravity, by a factor of (1 − a2/3). The potential inside the spherical
shell is also non-uniform, so that external shells produce an acceler-
ation towards their centre. We can subtract a constant to make �M

vanish at the origin, �M → �M − V 2
0 μ a, leaving

� = V 2
0

⎧⎪⎨⎪⎩
μ

(
− 1

x
+ x − a + a2

3 x

)
+ x if x > a,

μ

(
− 1

a
+ x2

3 a

)
+ x if x < a.

(A17)

The inward gravitational acceleration is

g = d�

dR
= g0

⎧⎪⎨⎪⎩
μ

( 1

x2
+ 1 − a2

3 x2

)
+ 1 if x > a,

μ

(2 x
3 a

)
+ 1 if x < a.

(A18)

The corresponding circular orbit velocity is

V 2 = g R = V 2
0

⎧⎪⎪⎨⎪⎪⎩
μ

(
1

x
+ x − a2

3 x

)
+ x if x > a,

μ

(
2 x2

3 a

)
+ x if x < a.

(A19)

Fig. A1 illustrates the effects of the Newton–Mannheim potential.
As is well known, the Newtonian potential is constant inside a mass
shell. As a result, the inward Newtonian acceleration jumps abruptly
to zero as we pass from outside to inside the shell. When we are
inside the shell, the Newtonian inverse-square law forces exerted by
equal solid angles on opposite sides of the sky have equal magnitude
but opposite direction, thus cancelling.

The Mannheim potential likewise makes a transition as we move
inside the shell, but in this case the transition is gradual rather than
sudden. The far side of the shell has a larger effect than the near
side, and thus there is no sudden transition as we move from outside
to inside the shell. The interior and exterior terms meet smoothly at
x = a, effecting a smooth transition between the asymptotic limits
� → V 2

0μ a for x � a and � → V 2
0(μ + 1) x for x 	 a. Near

the centre of the shell we have a harmonic potential, giving Hooke’s
law acceleration towards the centre of symmetry.

A4 Spherical density profiles

From the results for spherical shells, it is straightforward to construct
results for an extended spherically symmetric density profile ρ(r).
We define the interior and exterior moments of the mass profile,
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1674 K. Horne

Figure A1. The potential, acceleration, and velocity from a uniform spher-
ical shell. Dashed and dot–dashed curves give results individually for the
Newtonian and Mannheim parts of the potential, while the solid curve shows
the result when both terms are combined.

In(R) ≡
∫

r<R

rndM = 4π

∫ R

0

ρ(r ) rn+2 dr , (A20)

En(R) ≡
∫

r>R

rndM = 4π

∫ ∞

R

ρ(r ) rn+2 dr . (A21)

Here dM = 4πρr 2 dr . Note that I0(R) is the enclosed mass M(R).
In dimensionless form, the moments are in(x) = In(R)/M 0 R0

n and
en(x) = En(R)/M 0 R0

n , where x = R/R0.
The Newtonian potential,

�N = −G

[
I0(R)

R
+ E−1(R)

]
= −V 2

0

[
i0(x)

x
+ e−1(x)

]
, (A22)

depends not only on the interior mass I 0(R) = M(R), which gives
rise to the familiar inverse-square law, but also on the exterior mo-
ment E−1(R). This exterior moment is usually omitted from the
Newtonian potential, and the justification for this omission is some-
what subtle. The inward Newtonian acceleration is

gN = d�N

dR
= −G

[
d

dR

(
M
R

)
+ dE−1

dR

]
= G M

R2
− G

R
dM
dR

+ 4π G ρ R. (A23)

Note that dM/dR = 4πR2ρ, so that the last two terms cancel –
the gradient of E−1(R) is exactly cancelled by the term arising from
the gradient of M(R). It turns out that when evaluating gradients of
the potential, for both �N and �M , we can treat all of the moments
as if they were R-independent constants, even though they are not.
This arises because for each term InRk there is a corresponding term
EmRj, with n + k = m + j . The gradient of the first term cancels that
of the second term, as mass added to the interior moment balances
removal of the same mass from the exterior moment.

Consider next the Mannheim potential

�M = γ�c2

2 M�

(
I0 R + I2

3 R
+ E1 + E−1 R2

3

)
+ γ0c2

2
R

= V 2
0

(
i0 x + i2

3 x
+ e1 + e−1 x2

3
+ x

)
. (A24)

This depends on two interior moments, I0 and I2, and two exterior
moments, E1 and E−1. The I0 term is the linear potential from
interior shells treated as point masses at the origin. The I2 term
softens the influence of the interior shells with larger radii. The E−1

term represents a harmonic potential arising from exterior shells.
The new I2 and E−1 terms arise because the linear potential from
the far side is stronger than that from the near side of a shell. The E1

term has no spatial dependence and hence no physical effect (apart
from cancelling the interface term when taking the gradient of I0R,
as discussed above).

Differentiating the Newton–Mannheim potential gives the inward
gravitational acceleration,

g = g0

(
i0

x2
+ i0 − i2

3 x2
+ 2 e−1 x

3
+ 1

)
, (A25)

and the corresponding circular orbit velocity profile,

V = V0

(
i0

x
+ i0 x − i2

3 x
+ 2 e−1 x2

3
+ x

)1/2

. (A26)

The Newtonian acceleration and Keplerian velocity depend only
on the enclosed mass I 0(R) = M(R) and are independent of the
exterior moments. The Mannheim acceleration and velocity depend
on two interior moments, I0(R) and I2(R), and one exterior moment
E−1(R).

A5 Hernquist model

The Hernquist model (Hernquist 1990) is a useful approximation to
the mass distribution of an elliptical galaxy. It has a finite total mass
M, a characteristic radius A, and a density profile

ρ = M A
2π R (R + A)3

= M0

R3
0

μ a
2π x (x + a)3

, (A27)

where as before the dimensionless variables are μ = M/M 0, x =
R/R0 and a = A/R0. Evaluating the required moments, we find

i0 = μ x2

(x + a)2 , (A28)

i2 = μ a2

[
x
(

2 x2 + 9 x a + 6 a2
)

a (x + a)2 − 6 ln

(
x + a

a

)]
, (A29)

for the interior moments, and

e−1 = μ a
(x + a)2 , (A30)
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Figure A2. The potential, acceleration and velocity for a spherical model
with Hernquist density profile (Hernquist 1990). Dashed and dot–dashed
curves give results individually for the Newtonian and Mannheim parts of
the potential, while the solid curve shows the result when both terms are
combined.

e1 = μ a

[
3 − a (4 x + 3 a)

(x + a)2
− 2 ln

(
x + a

a

)]
, (A31)

for the exterior moments. As in equation (A17), we have added a
constant to e1 so that �M vanishes at the origin.

The inward gravitational acceleration is

g
g0

= μ

(x + a)2 + μ

[
1 − 2 a

x
+ 2 a2

x2
ln

(
x + a

a

)]
+ 1. (A32)

The corresponding circular orbit velocity is(
V
V0

)2

= μ x
(x + a)2 + μ

[
x − 2 a + 2 a2

x
ln

(
x + a

a

)]
+ x .

(A33)

The first term arises from Newton’s inverse-square law, and the
other terms arise from Mannheim’s linear potential. These results
are illustrated in Fig. A2. Note that the velocity remains approxi-
mately constant over a wide range in radius and then rises asymp-
totically as V → V0

√
(μ + 1)x = V0

√
(M + M0)R/R0 M0 =√

G(M + M0)R/R3
0 .

A6 Shielding by an external void

A case of special interest is the uniform density sphere. While such
spheres do not exist in astrophysics, a void in which the uniform

Figure A3. Conformal and Newtonian gravity profiles are shown at three
compression ratios for a sphere of matter from a uniform background density
that is compressed to a smaller radius. A void in the background density
surrounds the compressed sphere, and the negative effective gravity of this
void effectively shields long-range gravitational influences of the overdense
sphere. Vertical dotted lines give the radii of the void and of the outer edge
of the compressed sphere at three overdensities, δ = δρ/ρ̄ = 1, 10 and 100.
The dashed lines show the gravity profile from the compressed sphere, the
negative curve is the gravity profile from the void, and the positive curves
give the inward gravity of the full system.

background baryon density,

ρ̄b = �bρc(1 + z)3 = 3H 2
0 �b(1 + z)3

8πG
, (A34)

is entirely evacuated will act gravitationally like a uniform sphere
of negative density −ρ̄b. Since galaxies and clusters of galaxies are
assembled by gravitational instabilities that draw material from this
initially uniform background, it is reasonable to expect that these
mass concentrations are surrounded by voids of comparable mass.
Equating the compact object mass M with the mass deficit of the
surrounding void, relative to the background density, leads to an
estimate of the void radius

Rvoid ≈
(

3 M
4π ρ̄b

)1/3

=
(

2 G M
H 2

0 �b

)1/3
1

1 + z
. (A35)

The effect of an equal-mass void in the background density sur-
rounding each compact mass M is to effectively shield the grav-
itational effect of that mass from objects at large distances R 	
Rvoid. This is somewhat analogous to Debye shielding of charges in
a plasma.
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The Newtonian gravity decreases with radius, and the external
effects cancel exactly in spherical symmetry, so that the effect of this
shielding is unimportant. In conformal gravity the linear potential
G(M + M 0) R/R2

0 increases indefinitely with distance R, giving
a gravitational acceleration G(M + M0)/R2

0 that is independent of
R. The effective shielding of long-range gravitational influences by
the external void around each overdense region is thus essential for
practical calculations.

In spherical symmetry the external mass profile also has a gravi-
tational influence, since the linear potential is non-uniform inside a
spherical mass shell, giving rise to acceleration towards the centre of
the shell. Thus, an external void reduces the effective gravity near its
centre by producing an outward acceleration g(R) ≈ GMR/R2

0Rvoid

for R � Rvoid. Outside the void the acceleration it produces ap-
proaches an asymptotic value g → G M/R2

0 for R � Rvoid.
Thus motivated, we evaluate the gravity at R = R0 x for a uniform

sphere of mass M = M 0 μ and radius A = R0 a. The dimensionless
interior moments are

in =

⎧⎪⎨⎪⎩
3 μ an

n + 3
if x > a,

3 μ xn+3

(n + 3) an
if x < a.

, (A36)

and the dimensionless exterior moments are

en =

⎧⎪⎨⎪⎩
0 if x > a,

3 μ an

n + 3

[
1 −

(
x
a

)n+3
]

if x < a.
(A37)

Inserting these into equation (A25) gives the gravity

g
g0

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μ

{
1

x2
+

[
1 − 1

5

(
a
x

)2
]}

+ 1 if x > a,

μ

{
x
a3

+ x
a

[
1 − 1

5

(
x
a

)2
]}

+ 1 if x < a.

(A38)

The first term in the square bracket arises from Newton’s inverse-
square law, and the rest of the terms arise in conformal gravity from
Mannheim’s linear potential.

Fig. A3 illustrates the shielding by the exterior void for the
case of a uniform density sphere that is compressed from the
uniform density background. At large distances, the inward grav-
ity from the overdensity in the compressed matter is effectively
shielded by the negative effective gravity from the mass deficit in the
void.
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