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An efficient first-principles approach to calculate x-ray magnetic circular dichroism (XMCD) and x-ray natural
circular dichroism (XNCD) is developed and applied in the near-edge region at the K and L1 edges in solids.
Computation of circular dichroism requires precise calculations of x-ray absorption spectra (XAS) for circularly
polarized light. For the derivation of the XAS cross section, we used a relativistic description of the photon-electron
interaction that results in an additional term in the cross section that couples the electric dipole operator with
an operator σ · (ǫ × r) that we call the spin position operator. The numerical method relies on pseudopotentials,
on the gauge including projected augmented-wave method, and on a collinear spin relativistic description of
the electronic structure. We apply the method to calculations of K-edge XMCD spectra of ferromagnetic iron,
cobalt, and nickel and of I L1-edge XNCD spectra of α-LiIO3, a compound with broken inversion symmetry. For
XMCD spectra we find that, even if the electric dipole term is the dominant one, the electric quadrupole term
is not negligible (8% in amplitude in the case of iron). The term coupling the electric dipole operator with the
spin-position operator is significant (28% in amplitude in the case of iron). We obtain a sum rule relating this
term to the spin magnetic moment of the p states. In α-LiIO3 we recover the expected angular dependence of the
XNCD spectra.

DOI: 10.1103/PhysRevB.96.085123

I. INTRODUCTION

A dichroic (“two-colored” in Greek) material has the prop-
erty to absorb light differently depending on its polarization.
X-ray circular dichroism is the difference between x-ray ab-
sorption spectra (XAS) obtained from left- and right-circularly
polarized light, so it describes the dependence of the absorption
cross section on the state of circularly polarized light.

In a magnetic sample, the breaking of time-reversal symme-
try permits x-ray magnetic circular dichroism (XMCD). This is
a powerful tool for studying the magnetic structure of complex
systems as it gives element-specific information. Almost
all synchrotron facilities around the world have a beamline
dedicated to XMCD [1]. The existence of well-established
magneto-optical sum rules that allow us to obtain the spin
and orbital contribution to the magnetic moment directly
from the integral of the spectra [2–4] made it an essential
technique to study the magnetic properties of matter. These
sum rules are widely and successfully applied at spin-orbit
split L2,3 edges of transition metals [5–8] and M4,5 edges of
actinides [9]. On the other hand, in the absence of spin-orbit
splitting of the core state (like for the K or L1 edge), only the
orbital magnetization sum rule [2,4] applies, and a quantitative
analysis of the spectra is far from being straightforward. Yet,
for 3d transition elements, measurements of XMCD at the K

edge are the main way to probe magnetism under pressure, and
XMCD is a widely used technique despite the interpretation
difficulties [10–12].

*nadejda.bouldi@impmc.upmc.fr

X-ray natural circular dichroism (XNCD) occurs in non-
centrosymmetric materials (for which the inversion symmetry
is not a symmetry of the system). Up to now, it has been
less widely used than XMCD, but it presents a fundamental
interest as it gives access to element-specific stereochemical
information [13]. In the domain of molecular magnetism,
renewed interest in this technique has recently grown [14]
with the emergence of new materials that are both chiral and
magnetic. Contrary to optical activity to which a large number
of mechanisms contribute [15], XNCD is largely dominated by
a single contribution [13]. At L1 and K edges, XNCD exists
only if p and d orbitals are mixed [16], yielding a unique
measure of the mixing of even and odd orbitals.

The starting point of our work is a density functional
theory (DFT)-based pseudopotential method. Using projector
augmented-wave (PAW) reconstruction, the Lanczos algo-
rithm, and a continued-fraction calculation [17–19], this
method has proved to be successful for the calculation of
absorption (XAS) spectra at the K edge [17,18,20,21]. The
L1 edge, which corresponds to a 2s core hole, is expected to
have the same behavior. In this paper, we propose the same
kind of DFT-based approach for the calculation of XMCD and
XNCD spectra in the near-edge region.

Several calculations of XMCD at the K edge in the
near-edge region can be found in the literature. Most of
these calculations are based on fully relativistic [22–27] or
semirelativistic [28,29] multiple-scattering approaches with
muffin-tin potentials even if efforts have been made to go
beyond this approximation [30,31].
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The technique presented in this paper allows the use of a
free-shape potential. Relativistic perturbations were taken into
account both in the band structure [32] and in the photon-
matter interaction [33]. The method has been implemented
within a highly efficient reciprocal space code that allows the
modeling of a large range of systems [19].

In Sec. II, the terms that enter the absorption cross section up
to the electric quadrupole approximation are listed. Section III
is dedicated to the presentation of the computational method.
Results obtained for XAS and XNCD at the L1 edge of
iodine in both enantiomers of α-LiIO3 and for K-edge XAS
and XMCD spectra in 3d ferromagnetic metals are presented
in Sec. IV. Finally, in Sec. V, the relativistic operator is
examined in detail within the collinear spin approximation. Its
corresponding sum rule is derived and evaluated numerically,
and an expression that allows for a simple implementation of
this term is given.

II. CONTRIBUTIONS TO THE CROSS SECTION

In the case of a fully circularly polarized light with a wave
vector k along z, the circular dichroism (XMCD and XNCD)
cross section is written

σ CD = σ (ǫ2) − σ (ǫ1), (1)

where ǫ2 = 1/
√

2(1,i,0), ǫ1 = ǫ
⋆
2 = 1/

√
2(1, − i,0), and

σ (ǫ) is the XAS cross section of the material. The XMCD
effect at the K edge of 3d transition elements results at most
in an asymmetry in absorption of the order of 10−3. For this
study, it is therefore important to compute the absorption cross
section very accurately.

In a monoelectronic semirelativistic framework the contri-
bution to the XAS cross section from a given core state of
energy Ei is given by (see the Appendix)

σ = 4π2α0h̄ω
∑

f

|〈f |T |i〉|2δ(Ef − Ei − h̄ω), (2)

where α0 is the fine-structure constant, |i〉 is the two-
component wave function that corresponds to the large
components of the Dirac wave function of the core state, and
the sum runs over unoccupied final states with energy Ef . The
wave functions |f 〉 are eigenstates of the time-independent
Foldy-Wouthuysen (FW) Hamiltonian of the electron in the
presence of an electromagnetic field E0,B0 [34,35]:

H FW = mc2 +
p2

2m
+ eV −

eh̄

2m
σ · B0

−
eh̄

4m2c2
σ · (E0 × p) −

eh̄2

8m2c2
∇ · E0. (3)

Finally, T is the sum of three operators: (i) the electric dipole
operator, (ii) the electric quadrupole operator, and (iii) a new
light-matter interaction term that we named the spin-position
operator (see the Appendix):

T = ǫ · r +
i

2
ǫ · rk · r +

ih̄ω

4mc2
σ · (ǫ × r), (4)

where σ is the vector of the Pauli matrices.
The absorption cross section expands in six terms, among

which four terms are significant (see the orders of magni-
tude in the Appendix). The dominant term is the electric

dipole–electric dipole (D-D) term:

σD−D = 4π2α0h̄ω
∑

f

|〈f |ǫ · r|i〉|2δ(Ef − Ei − h̄ω). (5)

It is usually the only term that is taken into account in
calculations of XAS and XMCD spectra at the L2,3 edges
and sometimes at the K edge [29,36–38].

The electric quadrupole–electric-quadrupole (Q-Q) term is

σQ−Q = π2α0h̄ω

×
∑

f

|〈f |(k · r)(ǫ · r)|i〉|2δ(Ef − Ei − h̄ω). (6)

At the K edge, it can reach a few percent of σD−D in amplitude.
It contributes mainly to the preedge region. It is sometimes
included in x-ray absorption calculations [17,39].

When neglecting spin-orbit coupling and in the absence of
an external magnetic field, it is possible to choose real wave
functions. In that case, the D-D and Q-Q terms verify σ (ǫ) =
σ (ǫ∗), which leads to a zero contribution to circular dichroism.
For this reason it is crucial to account for relativistic effects in
the wave functions calculation in order to compute XMCD.

On the other hand, the two following terms can give a non-
vanishing contribution to the circular dichroism cross section
even when wave functions can be chosen real.

The electric dipole–electric quadrupole cross term (D-Q) is

σD−Q = −4π2α0h̄ω
∑

f

Im[〈f |(k · r)(ǫ · r)|i〉

× 〈i|ǫ⋆ · r|f 〉]δ(Ef − Ei − h̄ω). (7)

If |i〉 and |f 〉 are parity invariant (i.e., if inversion r → −r is
a symmetry of the system), then σD−Q = 0. It is, however, this
term that is responsible for XNCD [16] because the electric
dipole–magnetic dipole term (which is responsible for optical
activity in the optical range) is very small in the x-ray range.

The cross term between the electric dipole and the relativis-
tic operator that we call spin position (D-SP) is

σD−SP = −
2π2α0h̄

2ω2

mc2

∑

f

Im[〈f |σ · (ǫ × r)|i〉

× 〈i|ǫ⋆ · r|f 〉]δ(Ef − Ei − h̄ω). (8)

It exists only in magnetic materials. Like the spin-orbit cou-
pling term in the FW Hamiltonian, it arises from the coupling
of the small components of the Dirac wave functions. To our
knowledge, it has never been evaluated before. We will show in
the following that, despite the small prefactor of this term, its
contribution to XMCD at the K edge of 3d metals can account
for up to one third of the XMCD intensity near the edge.

III. METHOD

In the framework of the final-state rule [40] the ab-
sorption cross section is obtained from one-electron wave
functions. Within the frozen-core approximation, the 1s (K-
edge) or 2s (L1-edge) unperturbed core states |i〉 can be
determined from an all-electron isolated atom calculation.
The stationary final states |f 〉 are calculated self-consistently
in the presence of a core hole. Here, they are calculated
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within a semirelativistic pseudopotential-based DFT and PAW
reconstruction framework [32]. The absorption cross section
is then calculated in a continued-fraction scheme using the
Lanczos algorithm [17,18].

A. Collinear semirelativistic self-consistent field calculation

Self-consistent field calculations in this study are based
on DFT with a plane-wave basis set and pseudopotentials
as implemented in QUANTUM ESPRESSO [19] including the
spin-orbit coupling (SOC) term [32]. Since an accurate
implementation of SOC plays a crucial role for the evaluation
of XMCD spectra, we briefly describe the underlying approach
in the following.

In pseudopotential-based methods the potential near the
nuclei is replaced by a fictitious smooth potential. The
valence-electron wave functions are replaced by pseudo-wave-
functions that are exempt from the rapid oscillations near the
core. The size of the plane-wave basis set needed to describe
the system is therefore considerably lowered, which leads
to a much better computational efficiency compared to an
all-electron approach, making an ab initio description of large
systems with thousands of electrons possible.

In the PAW formalism, as described by Blöchl [41], the
physical valence wave functions |�〉 can be reconstructed from
the pseudo-wave-functions |�̃〉 as they are related through a
linear operator T : |�〉 = T |�̃〉, with

T = 1 +
∑

R,n

(|φR,n〉 − |φ̃R,n〉)〈p̃R,n|. (9)

In our case, the set of all-electron partial waves centered
on atomic site R, |φR,n〉, contains solutions of the Dirac
equation for the isolated atom within a scalar relativistic
approximation [42], |φ̃R,n〉 are the corresponding pseudo
partial waves, and 〈p̃R,n| form a complete set of projector
functions. The operator T acts only in augmentation regions
enclosing the atoms. Outside the augmentation regions the
all-electron and pseudo-wave-functions coincide.

The pseudo-Hamiltonian is given by T †H FWT [32,43]

H̃ = Ekin + eṼ loc(r) +
∑

R

eṼ nl
R + H̃SO, (10)

where Ekin is the kinetic energy as implemented in QUANTUM

ESPRESSO and Ṽ loc and Ṽ nl
R are the local part and the nonlocal

part in the separable form of the pseudopotentials. H̃SO is the
pseudo-Hamiltonian corresponding to the time-independent
spin-orbit term in the Foldy-Wouthuysen transformed Hamil-
tonian [43]:

H̃SO = T †

(

eh̄

4m2c2
σ · [∇V (r) × p]

)

T

=
eh̄

4m2c2

(

σ · [∇loc(r) × p] +
∑

R

F nl
R

)

. (11)

F nl
R at the atomic site R are [44]

F nl
R =

∑

n,m

|p̃R
n 〉σ ·

[〈

φR,n

∣

∣∇vR(r) × p|φR,n〉

− 〈φ̃R,n|∇ṽloc
R (r) × p|φ̃R,n〉

]〈

p̃R
m

∣

∣, (12)

where vR and ṽloc
R are the atomic all-electron and local-

channel pseudopotentials, respectively. As these potentials are
spherical, F nl

R is rewritten as

F nl
R =

∑

n,m

∣

∣p̃R
n

〉

σ ·
(

〈φR,n|
1

r

∂vR

∂r
L|φR,n〉

− 〈φ̃R,n|
1

r

∂ṽloc
R

∂r
L|φ̃R,n〉

)

〈

p̃R
m

∣

∣. (13)

The local potential Ṽ loc(r) =
∑

R ṽloc
R (r), and the quantity

1
r

∂ṽloc
R

∂r
decreases in 1/r3, so that the action of the operator

Ṽ loc(r) × p in the augmentation region is, at first order, the
same as the action of ∇ṽloc

R (r) × p. In the PAW framework
any pseudo-wave-function in the augmentation region can be
expanded according to |�̃〉 =

∑

n |φ̃n,R〉〈p̃R
n |�̃〉. Therefore,

the term proportional to ṽloc
R and the term proportional to

Ṽ loc(r) partially compensate each other, so that the dominant
contribution arises from the term

eh̄

4m2c2

∑

nRm

σ ·
∣

∣p̃R
n

〉

〈φR,n|
1

r

∂vR

∂r
L|φR,m〉

〈

p̃R
m

∣

∣. (14)

In this study, we consider collinear spin along z, and only
the z Pauli matrix is considered (diagonal spin-orbit-coupling
approximation):

σ = σzez. (15)

In XMCD experiments a magnetic field is usually applied
parallel to the beam [45], which justifies considering the
quantization axis parallel to k.

This semirelativistic approach, which includes spin-orbit
coupling in a two-component approach, is computationally
less expensive than a fully relativistic one. It has been shown
to reproduce the fully relativistic band structure [32]. For heavy
atoms, the formula can be generalized by substituting ∇Ṽ loc

and ∂ṽloc
R

∂r
with reduced gradients, resulting in a zeroth-order

regular approximation (ZORA) type of Hamiltonian [32].
In this study, the calculations have been performed using

Troullier-Martins norm-conserving pseudopotentials and are
based on the generalized gradient approximation (GGA) with
Perdew-Burke-Ernzerhof (PBE) functionals [46]. The charge
density is evaluated self-consistently in the presence of a core
hole which is described by removing a 1s or 2s electron in the
pseudopotential of the absorbing atom. A jellium background
charge is added in order to ensure charge neutrality. A large
unit cell (supercell) must be built to minimize the interactions
between periodically reproduced core holes, and the k-point
grid can be reduced accordingly.

B. Cross-section calculation

We implemented XMCD and XNCD in the XSPECTRA code
[18] of QUANTUM ESPRESSO [19] distribution. The first results
of this implementation for the terms D-D and Q-Q can be
found in Ref. [47].

In the PAW formalism it has been shown [17,18] that the
contribution of the operator O to the absorption cross section,

σ (ω) = 4π2α0h̄ω
∑

f

|〈f |O|i〉|2δ(Ef − Ei − h̄ω), (16)
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can be rewritten, as the initial wave function is localized around
the absorbing atoms R0,

σ (ω) = 4π2α0h̄ω
∑

f

|〈f̃ |ϕ̃R0〉|2δ(Ef − Ei − h̄ω), (17)

with

|ϕ̃R0〉 =
∑

n

∣

∣p̃R0
n

〉〈

φR0
n

∣

∣O|i〉. (18)

This sum involves, in principle, an infinite number of projec-
tors, but experience demonstrated that two or three linearly
independent projectors are, in general, sufficient in order to
achieve the convergence of the D-D term at the K edge in the
near-edge region [48].

The determination of all empty states in Eq. (17) would
require a lot of computing resources and, as a consequence,
would limit the size of the manageable supercell. To increase
the efficiency of the method, the cross section is evaluated as
developed in Refs. [17,18] via the Green’s function using the
Lanczos algorithm [49], which avoids the heavy workload of
a large matrix inversion. The cross terms D-SP and D-Q are
not in the form of Eq. (16), but they can be determined from
two calculations of this type using the relationship

Im[DB⋆] = 1
4 (|D + iB|2 − |D − iB|2), (19)

where B is either the electric quadrupole or the spin-position
operator and D is the electric dipole operator. For the term
D-SP within the diagonal spin-orbit-coupling approxima-
tion, we have checked that this approach yields the same
result as the computational-time-sparing calculation from
the D-D spin-polarized contributions presented in Sec. V
[Eq. (26)].

The calculated spectra are broadened with a Lorentzian
function. Furthermore, the occupied states, which do not
contribute to the absorption cross section, are cut according
to the method described in Sec. III B of Ref. [29].

For the selected examples below, the different contributions
to the cross sections for left- and right-circularly polarized light
σ (ǫ2) and σ (ǫ1) were computed accurately in order to obtain
circular dichroism.

IV. APPLICATIONS

A. Technical details

For LiIO3, the experimental structure is used [50]: the
� enantiomer of α-LiIO3 belongs to the hexagonal space
group P 63 with lattice parameters a = 5.48 Å and c =
5.17 Å. The atomic positions [15] are Li 2(a) (0,0,0.076),
I 2(b) (1/3,2/3,0), and O 6(c) (0.247,0.342,0.838). The 

enantiomer is the mirror image of the � one (see Fig. 1), and
it belongs to the same space group. A 2 × 2 × 2 supercell
(80 atoms) is used so that the smallest distance between a
core hole and its periodic image is 10.344 Å. Ŵ-centered
k-point grids, 3 × 3 × 3 for the self-consistent charge-density
calculation and 9 × 9 × 9 for the spectra calculation, are used.
A constant Lorentzian broadening, with FWHM set to the
core-hole lifetime broadening of 3.46 eV [51], is applied. As
XNCD is a structural effect and not a magnetic effect, the
calculation is not spin polarized.

FIG. 1. Top: hexagonal α-LiIO3 unit cell for (a) � and (b) 

enantiomers [15]. Bottom: top view of the cells [projection on (001)].

The XMCD calculations for the 3d ferromagnetic metals
are carried out using the following experimental lattice
parameters: a = 2.87 Å for bcc Fe, a = 3.52 Å for fcc Ni,
and a = 2.51 Å and c = 4.07 Å for hcp Co. The number
of atoms per supercell is 64 atoms for Fe and Ni and 96
atoms for Co, so the smallest distance between the periodically
repeated core holes is 9.84 Å in Fe, 9.97 Å in Ni, and 10.03
Å in Co. A Methfessel-Paxton cold smearing of 0.14 eV
(0.01 Ry) and a centered 2 × 2 × 2 k-point grid are used
for the self-consistent charge density calculation. The spectra
calculation is performed with a 6 × 6 × 6 grid for Fe and Co
and an 8 × 8 × 8 grid for Ni. These calculations are performed
with collinear spins along the easy axis of the crystals, that is
to say, [001] for bcc Fe and hcp Co and [111] for fcc Ni [52],
and the wave vector k is set along the same axis.

The spectra are convolved with a Lorentzian broadening
function to simulate the effect of the finite lifetime of the core
hole (constant in energy) and of the inelastic scattering of
the photoelectron (additional energy-dependent broadening)
for which we use the curves published by Müller et al. [53].
Experimental and calculated spectra are normalized such that
the edge jump is equal to 1.

During the calculation of the spectra the origin of the energy
is set to the Fermi energy of the material EF . For the spectra
to be compared with experiment, a rigid shift in energy is
applied to the calculated spectra to make the maxima of the
calculated XAS correspond to the maxima of the experimental
spectra. The same shift is applied to the XMCD spectra. In
the plots, the origin of energy E0 is therefore the one chosen
in the publications from which the experimental spectra are
extracted.

B. XNCD at the L1 edge of I in α-LiIO3

Natural circular dichroism in the inorganic noncentrosym-
metric lithium iodate (LiIO3) crystal was measured in
1998 [15], and it was attributed to the interference of electric
dipole and electric quadrupole transitions [15,16]. Previous
calculations [15,16,54] were indeed able to reproduce the
overall peak positions and intensities in this framework.
The agreement is, however, not entirely satisfactory for the
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FIG. 2. (a) Comparison of experimental [15] and calculated XAS and XNCD spectra at the I L1 edge in LiIO3 for both enantiomers with
k ‖ c. The XNCD spectra arise from the D-Q term exclusively. Here, in the calculation as in the experiment σCD = σR − σL. (b) Calculated
contributions to the XAS at the I L1 edge in LiIO3. The D-Q term was multiplied by 100, and the Q-Q term was multiplied by 500. (c) Angular
dependence of the XNCD at the I L1 edge in LiIO3. Inset: XNCD amplitude as a function of the angle following the law 3 cos2 θ − 1, where θ

is the angle between c and the incident wave vector k.

absorption spectra. These discrepancies have been attributed
to the use of muffin-tin potentials [54].

The approach presented in this work, which does not rely on
the muffin-tin approximation, was applied to compute the XAS
and XNCD spectra for α-LiIO3. The absorption is dominated
by the D-D term, as shown in Fig. 2(b). The XNCD spectra,
on the other hand, are entirely due to the D-Q cross term.

As illustrated by Fig. 2(a), both the calculated XAS and
XNCD spectra at the I L1 edge are in good agreement with
experiment. However, the amplitude of the calculated XNCD
is 4 × 10−2 compared to the edge jump, while the amplitude
of the experimental spectra from Ref. [15] is 6.5 × 10−2. Such
an underestimation was also observed in Ref. [16] within a
multiple-scattering approach.

From Fig. 2(a) (bottom), it becomes obvious that the XNCD
spectra for both enantiomers are opposite. Indeed, changing
an enantiomer for the other (� ↔ ) has the same effect for
XNCD as changing the sign of the magnetic field (B ↔ −B)
for XMCD.

The angular dependence of the calculated XNCD spectra
is depicted in Fig. 2(c), and its amplitude is plotted in the
inset as a function of θ , the angle between k and the c axis
of the crystal. This amplitude varies as 3 cos2 θ − 1, so it is
maximal in the case where k is parallel to the c axis. This
dependence is consistent with the formula derived in Ref. [16]
for point group C6 (the point group of the space group of the
crystal). Note that, as ǫ is kept perpendicular to k and C6 is
a dichroic point group [55], the XAS spectra also present an
angular dependence. This does not prevent a comparison of
the amplitude of the XNCD spectra because the edge jump
remains unchanged.

C. XMCD at the K edge of 3d transition metals

XMCD was recorded at the Fe K edge in magnetized Fe in
1987 [56]. Ever since, a large number of calculations for the
electric dipole term of the XMCD spectra on the Fe K edge
in bcc Fe in the near-edge region have been reported (see,
for example, Refs. [23,25–27,29,38,57,58]). Calculations of
XMCD at the K edge in fcc Ni and hcp Co are fewer in
number [26,57,59,60] and are not really conclusive.

These calculations have been performed with various
methods, often within the electric dipole approximation and
with muffin-tin potentials. Here, we present the calculation
of the three terms (D-D, Q-Q, and D-SP) that are likely
to contribute to the XMCD cross section at the K edge of
ferromagnetic 3d transition metals, showing the relevance of
the D-SP term.

The contribution of the D-SP term to the absorption cross
section is not shown here because it is negligible. On the
other hand, its contribution to the XMCD spectra (Fig. 3) is
significant: it reaches 28% of the D-D term in amplitude. This
can be understood considering the sum rules that are made
explicit in the next section: in the XMCD cross section, the
D-SP term probes the spin polarization of the p states, whereas
the D-D term probes their orbital polarization. In Ref. [59] the
4p orbital magnetic moment in Co, Fe, and Ni is evaluated
to a few 10−4μB (Fe: 5 × 10−4μB , Co: 16 × 10−4μB , Ni:
6 × 10−4μB), and in Ref. [61] the 4p spin magnetic moment
in Fe and Co is evaluated to several 10−2μB (Fe: 5 × 10−2μB ,
Co: 6 × 10−2μB) in the opposite direction. This difference
in order of magnitude of both quantities compensates for the
smallness of the prefactor (h̄ω/4mc2) of the D-SP term (see
Table I in the Appendix).
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FIG. 3. Calculated contributions to the K-edge XMCD spectra in
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To check possible numerical problems, we also performed
the calculations using the FDMNES code [39], where, for this
purpose, the D-SP term was introduced in the same way. This
code follows Wood and Boring [64] to eliminate the small
component and obtain a couple of Schrödinger-like equations,
including the spin-orbit effect, closely akin to but improving
the Pauli equation. Despite the very different approach (no
pseudopotential, calculation in real space and no diagonal
spin-orbit-coupling approximation), we found very similar
results for both the shape and relative amplitude of the D-SP
contribution.

The agreement with the experimental spectra is fair, as
illustrated in Fig. 4. As usual in independent-particle calcula-
tions, the energy axis is slightly compressed [65–67] due to
the energy dependence of the real part of the self-energy [68]
for which corrections to the calculated spectra could be
applied [69]. Alternatively, the position of the calculated peaks
could be improved by phenomenological rescaling [65,68].

For Fe, the main peaks of the experimental XMCD
are reproduced by the calculation. As in calculations by
others [27], the positive peak at 10 eV is overestimated,
probably due to the approximate description of the
exchange-correlation energy. Indeed, the comparison
between the spectra calculated with PBE and local-density
approximation (LDA) functionals (Fig. 5) shows that this
peak would be even more enhanced with LDA.

For Ni and Co, a main negative peak is present near the
main rising edge in the calculation as in the experiment, but
the satellite peaks that appear in the calculation are difficult to
link to the experiment.

In these calculations, the polarization rate of the light is
taken to be 100%, and a single crystal with full 3d spin
polarization is considered. In Fe, Ni, and Co, saturation is
reached with the usual experimentally applied magnetic field,
and the anisotropy is quite weak, so that the rate of circular

polarization of the light Pc is expected to account for most
of the discrepancy in amplitude between the calculated and
experimental XMCD spectra. The data for Fe and Co were
recorded in a 5-T magnet at 5 K and within a setup that
reaches a 90% circular polarization rate [70]. The correction to
the amplitude of the calculated spectra to fit the experimental
condition should therefore be of the order of 0.9. Here, it is
approximately 0.6 in the case of Fe and 1.0 in the case of
Co. The data for Ni were recorded at ambient temperature
in a 0.7-T magnet within a dispersive setup with a diamond
quarter-wave plate for which we can infer that Pc ≈ 0.7 [71].
However, no correction to the amplitude of the calculated
spectra is needed to make it correspond to the amplitude
of the experimental spectra. Thus, whereas our calculation
overestimates the amplitude of the XMCD spectra in the case
of Fe, it underestimates it in the case of Ni.

V. CONTRIBUTION OF THE D-SP TERM TO XMCD: THE

CASE OF COLLINEAR SPINS

A. The SP operator

In this section, we study the spin-position operator SP(ǫ) =
σ · (ǫ × r). We consider collinear spins along z with indepen-
dent spin channels. The spin part of the wave functions |s〉 can
either be the spin-up spinor (1

0) or the spin-down spinor (0
1).

The D-SP term is the cross term between the electric dipole
and the spin-position operator. Spin does not appear in the
electric dipole operator, so it is diagonal in spin:

〈φis|ǫ⋆ · r|φf s ′〉 = 〈φi |ǫ⋆ · r|φf 〉δss ′ . (20)

This imposes s ′ = s. On the other hand, the vector of Pauli
matrices σ appears explicitly in the spin-position operator:

〈φis|σ · (ǫ × r)|φf s〉 = 〈φi |(ǫ × r)|φf 〉 · 〈s|σ |s〉. (21)

As 〈s|σx |s〉 = 〈s|σy |s〉 = 0, we can exclude a priori the terms
that are proportional to σx and σy in the spin-position operator.
In that case the spin-position operator is rewritten as

SPcol(ǫ) = σz(ǫxy − ǫyx)

= σz

4iπ

3
r
[

Y−1
1 (ǫ)Y 1

1 (ur) − Y 1
1 (ǫ)Y−1

1 (ur)
]

.

(22)

Its selection rules are almost the same as those for the electric
dipole [72] one: �l = ±1,�m = ±1.

As Y−1
1 (ǫ1) = 0, Y−1

1 (ǫ2) =
√

3/4π , Y 0
1 (ǫ1) = Y 0

1 (ǫ2) =
0, Y 1

1 (ǫ1) = −
√

3/4π , and Y 1
1 (ǫ2) = 0,

SPcol(ǫ1) = i

√

4π

3
rY−1

1 (ur)σz = σziǫ1 · r, (23)

SPcol(ǫ2) = i

√

4π

3
rY 1

1 (ur)σz = −σziǫ2 · r. (24)

Hence,

σD−SP(ǫ1) = −
h̄ω

2mc2
[σ ↑

D−D(ǫ1) − σ
↓
D−D(ǫ1)], (25)

σD−SP(ǫ2) =
h̄ω

2mc2
[σ ↑

D−D(ǫ2) − σ
↓
D−D(ǫ2)], (26)
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FIG. 4. Comparison between the experimental XAS and XMCD spectra for Fe, Co [62,63], and Ni [60] and the total calculated spectra.
The wave vector and the magnetization axis were set to the easy axis of the crystals, that is to say, [001] for bcc Fe and hcp Co and [111] for
fcc Ni [52].

with

σ s
D−D(ǫ) = 4π2α0h̄ω

×
∑

f

|〈f s |ǫ · r|is〉|2δ(Ef − Ei − h̄ω), (27)

where s =↑ or ↓. Therefore, in the diagonal spin-orbit-
coupling collinear spin case, the D-SP term can be computed
from the D-D cross section for the up and down spin channels.

B. Sum rule at the K edge

A sum rule is a formula in which the integral of the circular
dichroism spectra due to a given term of the cross section

is expressed as a function of the ground-state expectation
value of some operator. The sum rules at L2,3 edges are well
established [61,73] and are widely used to extract quantitative
magnetic ground-state properties. Their derivation is based
on several approximations, including the fact that the radial
integrals are spin and energy independent [74]. At the K

edge the sum rule for the electric dipole-electric dipole
term [3,4,59,75] relates the integral of the XMCD spectra
to the orbital magnetic moment of occupied p states that
is proportional to 〈Lz〉p. This sum rule is, however, almost
impossible to apply in practice because the upper limit of the
integral is not well defined and, in the case of 3d transition
elements, the 4p states are almost unoccupied, so 〈Lz〉p is
very small and has a minor impact on the magnetic moment
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of the material. Deriving a similar sum rule for the D-SP
term is nevertheless very useful to understand why, despite
its very small prefactor, this term is so large in XMCD. We
derive it following the method of Thole et al. [2,4] with
many-body wave functions and operators assuming that all
spins are collinear and within the diagonal spin-orbit-coupling
approximation.

In a many-body framework, using the expression for SP in
terms of spherical harmonics (22),

σD−SP(ǫ) =
2π2h̄2α0ω

2

mc2

1
∑

ν=−1

Re
{

Y−ν
1 (ǫ⋆)

×
[

Y 1
1 (ǫ)ζ 1ν

D−SP − Y−1
1 (ǫ)ζ−1ν

D−SP

]}

, (28)

with

ζ λν
D−SP = (−1)ν

(

4π

3

)2
∑

f

〈f |
∑

i

[

σziriY
λ
1

(

uri

)]⋆|g〉

× 〈g|
∑

i

riY
ν
1

(

uri

)

|f 〉δ(Ef − Eg − h̄ω). (29)

In a second quantized form with l, m, and σ being the usual
quantum numbers [16],

〈g|
∑

i

riY
λ
1

(

uri

)

|f 〉

=
∑

lmσ l0m0σ
′
0

√

3(2l + 1)

4π (2l0 + 1)

× (10l0|l00)(1λlm|l0m0)〈g|a†
l0m0σ

almσ |f 〉Dl0,l, (30)

where Dl0,l =
∫

dr r3R⋆
l0

(r)Rl(r) is assumed (as usual in sum-
rule derivations) to be spin independent. The experimental
procedure enables us to obtain the signal corresponding to a
specific l0. At the K edge l0 = 0 and m0 = 0, so that

〈g|
∑

i

riY
ν
1

(

uri

)

|f 〉 =
√

1

4π

∑

σ

(−1)ν〈g|a†
00σ al−νσ |f 〉D,

(31)

where D = D0,1.

Similarly, as 〈σ ′
0|σz|σ ′〉 = σ ′δσ ′

0,σ
′ ,

〈g|
∑

i

riY
λ
1

(

uri

)

σzi |f 〉 =
∑

σ ′

σ ′(−1)λ〈g|a†
00σ ′al−λσ ′ |f 〉D.

(32)

Using the completeness relation
∫

dE
∑

f |f 〉〈f |δ(Ef −
Eg − E) = 1 − |g〉〈g|, as the core shell is full and under the
assumption that the radial integral D does not depend on
energy,

∫

dE ζ λν
D−SP =

4π

9

∑

σ

(−1)λσ 〈g|a1−νσa
†
1−λσ |g〉|D|2.

(33)

The combination of Eqs. (33) and (28) leads to

∫

dh̄ω

σD−SP(ǫ2
1

)

(h̄ω)2

=
±2π2α0

3mc2
|D|2〈g|a1±1↑a

†
1±1↑ − a1±1↓a

†
1±1↓|g〉. (34)

The difference between the two integrals yields the XMCD
sum rule for the D-SP term:

∫

dh̄ω
σ XMCD

D−SP

(h̄ω)2
= −

2π2α0

3mc2

〈

Sz
1,−1
l=1

〉

|D|2, (35)

with the operator

Sz
1,−1
l=1 =

∑

m=−1,1

a
†
1m↓a1m↓ − a

†
1m↑a1m↑ (36)

corresponding to a partial spin polarization of the occupied p

states.
If one considers the derivative of this sum rule, we see

that the electric dipole–spin-position circular dichroism signal
probes the spin polarization of the empty p states. Figure 6
illustrates the correspondence between both quantities. This
proves the validity of the D-SP sum rule. Unfortunately, this
sum rule cannot be applied directly to experimental spectra,
mainly because of the superposition of the D-D contribution
to the D-SP contribution.

VI. CONCLUSION

We have developed an efficient computational approach
to determine accurate XMCD and XNCD spectra. The main
result is that the contribution from the relativistic term D-SP in
the transition operator is significant in XMCD spectra despite
being negligible in XAS. This importance is explained by the
fact that this term probes the spin of the p states that is two
orders of magnitude larger than its orbital counterpart.

For XNCD, the calculated spectra are in good agreement
with experiment, and the angular dependence corresponds to
the expected one.

A big advantage of the method employed in this paper
to perform XMCD and XNCD calculations is its large
adaptability, which opens opportunities for applications to
several kinds of systems such as strongly correlated materials
or molecules absorbed on functionalized surfaces. The same
method could be applied to compute x-ray magnetochiral

085123-8



X-RAY MAGNETIC AND NATURAL CIRCULAR DICHROISM . . . PHYSICAL REVIEW B 96, 085123 (2017)

0 20 40

D-SP

RxSz
l=1

1,-1
p

fcc-Fe

bcc-Ni

E-E
F

(eV)

hcp-Co

FIG. 6. Comparison between the calculated D-SP spectra without
a core hole for Fe, Co, and Ni and the calculated projected densities
Sz

1,−1
l=1 (E). Sz

1,−1
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p density of states and the dipole XAS spectra times R = h̄ω

2mc2 in
accordance with the sum rule (35).

dichroism (XMχD) that has been observed in magnetized
chiral systems [14]. The features of XMχD differ from those
of XMCD and XNCD, making it a promising probe of the
interplay between chirality and magnetism.
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APPENDIX: SEMIRELATIVISTIC TRANSFORMATION OF

THE RELATIVISTIC CROSS SECTION

We start with the expression for the cross section in a
relativistic framework [33], and we adapt it to the specific
need of our numerical method that is the determination of large
components of the Dirac wave function for the core state and of
Foldy-Wouthuysen (FW) wave functions for the valence states.

1. Relativistic cross section

The contribution to the x-ray absorption (XAS) cross
section from a given four-component Dirac core state |�i〉
of energy Ei is given by [33]

σ (h̄ω) = 4π2α0h̄ω
∑

f

|〈�f |T |�i〉|2δ(Ef − Ei − h̄ω),

(A1)

where the sum runs over unoccupied final states |�f 〉 with
energy Ef , α0 is the fine-structure constant, and T is the
transition operator, defined as

T = ǫ · r +
i

2
ǫ · rk · r −

h̄c

2ω
(ǫ × k) · (r × α), (A2)

where the polarization vector ǫ, the wave vector k, and the
energy h̄ω describe the incident electromagnetic wave; r is
the position operator; and α = (αx,αy,αz) is the vector of
Dirac matrices.

Here, as in our numerical calculations, a one-electron
scheme is used. In a many-body framework the formula for
the cross section would be the same but with N -electron wave
functions and many-body operators that are written as sums
over electrons.

In Ref. [33], the transformation into a two-component
representation for |�i〉 and |�f 〉 was performed by applying
a time-independent FW transformation at order c−2. The
FW transformation of �l is obtained by applying a unitary
operator: ψFW

l = UFW�l , with [76]

UFW = 1 +
β

2mc2
O −

1

8m2c4
O2, (A3)

where β is the standard Dirac matrix. In this expression, O
is the odd operator entering the Dirac Hamiltonian: HD =
βmc2 + O + E , where E is even. It is defined as O = cα ·
(p − eA0), where p is the momentum operator and A0 is the
static vector potential.

Only the large components of ψFW
l , denoted φFW

l , are
nonzero up to order c−2. The cross section can be written
as a function of the large components of ψFW

i and ψFW
f [33]:

σ = 4π2α0h̄ω
∑

f

∣

∣

〈

φFW
f

∣

∣TFW

∣

∣φFW
i

〉∣

∣

2
δ(Ef − Ei − h̄ω).

(A4)

The operator TFW is the projection on the upper components
of UFWT U

†
FW:

TFW = TD + TQ + TMD + TA0 + TSP, (A5)

where

TD = ǫ · r (A6)

and

TQ =
i

2
ǫ · rk · r (A7)

are the standard electric dipole and electric quadrupole

operators.
The magnetic dipole operator TMD is written as

TMD =
1

2mω
(k × ǫ) · (h̄σ + L), (A8)
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where L = r × p and σ is the vector of the Pauli matrices.
TMD is proportional to the total magnetic moment operator
(h̄σ + L) = (2S + L), where S is the spin operator. TMD is
also present in common nonrelativistic derivations [55,77].
Another use of the name “magnetic dipole” is for the spin-
quadrupole coupling term, usually denoted Tz, that appears in
the spin sum rule for XMCD at spin-orbit split edges. It is not
the quantity that is discussed here. The selection rules of TMD

are li = lf and ni = nf [55], so TMD vanishes in the x-ray
energy range because the states involved in the transition have
different principal quantum numbers.

The correction to this term due to the static vector potential
A0 is

TA0 = −
e

2mω
(k × ǫ) · (r × A0). (A9)

The last term in Eq. (A5) is present only when relativistic
effects are included in the calculation of the transition operator:

TSP = −
h̄

4m2c2
(p − eA0) · (ǫ × σ ). (A10)

A similar term was already found in Ref. [47] but was
derived from a semirelativistic Hamiltonian, and this approach
presents a conflict with time-dependent perturbation the-
ory [33]. It can be rewritten noticing that, in the nonrelativistic
limit, |φFW

i 〉 and |φFW
f 〉 are eigenstates of

H 0
0 =

(p − eA0)2

2m
+ eV (r) −

eh̄

2m
σ · B0, (A11)

where B0 is the static external magnetic field. This Hamiltonian
obeys p − eA0 = (m/ih̄)[r,H 0

0 ], so that

−
h̄

4m2c2

〈

φFW
f

∣

∣(p − eA0) · (ǫ × σ )
∣

∣φFW
i

〉

=
i

4mc2
(Ei − Ef )

〈

φFW
f

∣

∣r · (ǫ × σ )
∣

∣φFW
i

〉

=
ih̄ω

4mc2

〈

φFW
f

∣

∣(ǫ × r) · σ

∣

∣φFW
i

〉

.

We name σ · (ǫ × r) the spin-position operator and define the
associated transition operator:

TSP =
ih̄ω

4mc2
σ · (ǫ × r). (A12)

For technical reasons, in the present paper we consider
a different situation than the one in Ref. [33]: we use the
FW wave function for the final states and large components
of the Dirac wave function for the initial (core) state. This
difference in treatment is linked to the fact that the core wave
function is determined from a relativistic atomic code, whereas
the unoccupied states are calculated with a semirelativistic
condensed-matter code.

2. Rewriting the cross section with large components

of the Dirac wave function for the core state

We denote φi and χi the large and small components of
�i , respectively. The order of magnitude of the ratio between
the small and large components is v/c, where v is the velocity
of the particle [78]. Up to order c−1, the small component is

written as [78,79]

χi =
1

2mc
σ · (p − eA0)φi . (A13)

Only the second term in UFW [Eq. (A3)] couples the small
and large components. From Eqs. (A13) and (A3), the large
component of the FW transformed wave function can be
expressed as a function of the large components of the Dirac
wave function up to order c−2,

φFW
i =

(

1 −
1

8m2c4
[O2]p

)

φi +
1

4mc3
Opσ · (p − eA0)φi .

(A14)

[O2]p is the projection of O2 onto large components [78]:

[O2]p = c2(p − eA0)2 − c2eh̄σ · B0

= 2mc2
[

H 0
0 − eV (r)

]

,

and Op = cσ · (p − eA0) is the projection of βO on the top
right components.

The identity cOpσ · (p − eA0) = [O2]p leads to

φFW
i =

(

1 +
1

8m2c4
[O2]p

)

φi . (A15)

From this relation, the cross section of Eq. (A4) can be adapted
to the case that we consider here.

In Ref. [33] the expansion was made to order 1/c2 for the
dipole contribution and to order kr for multipole contributions.
At the same order,

σ = 4π2α0h̄ω
∑

f

∣

∣

〈

φFW
f

∣

∣T ′
FW|φi〉

∣

∣

2
δ(Ef − Ei − h̄ω),

(A16)

where T ′
FW is

T ′
FW = TFW

(

1 +
1

8m2c4
[O2]p

)

= TFW + T e.

There is one extra term in the cross section compared to TFW

that is related to the use of large components of the Dirac wave
function instead of the Foldy-Wouthuysen wave function for
the core state:

T e =
1

4mc2

[

ǫ · rH 0
0 − eǫ · rV (r)

]

. (A17)

We show in the next section that it is negligible for the core
states considered in this work. As the magnetic dipole term is
negligible in the x-ray range, TFW thus contains four operators
[see Eq. (A5) and the subsequent comments], so T ′

FW is written
as

T ′
FW = TD + TQ + Ta0 + TSP + T e. (A18)

3. Order of magnitude of the operators

As the core wave function is very localized, we obtain an
idea of the relative order of magnitude of the operators in
Eq. (A18) by evaluating them at the radius corresponding to
the core state. In Table I these evaluations are given compared
to the electric dipole operator.

085123-10
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TABLE I. Order of magnitude of the operators in Eq. (A18) evaluated at the core-state radius rc compared to the electric dipole operator.
The mean radius of the core orbitals is deduced from the effective nuclear charge: rc = 3

2
a0

Zeff
[80,81]. B0 has been fixed to 2 × 104 T (1.2 eV),

which is two orders of magnitude larger than the exchange splitting observed for the Fe K edge. The Coulomb potential is V = −Zeffe

4πǫ0rc
, and the

core-state energy Ei is evaluated in a planetary model, Ei = −Zeffe
2

8πǫ0rc
.

Edge

L1 L2 K

Order of Magnitude I Fe Gd Bi O Fe

Energy (keV) 5.19 0.72 7.898 15.71 0.53 7.11

Zeff 39.067 22.089 29.8527 39.2335 7.6579 25.381

TQ (A7) krc/2 2.7 × 10−2 6.6 × 10−3 5.3 × 10−2 8.1 × 10−2 1.4 × 10−2 5.7 × 10−2

TSP (A12) h̄ω/4mc2 2.6 × 10−3 3.5 × 10−4 3.9 × 10−3 7.7 × 10−3 2.6 × 10−4 3.5 × 10−3

TA0 (A9) ekrcB0/4mω 6.0 × 10−6 1.1 × 10−5 7.8 × 10−6 6.0 × 10−6 3.0 × 10−5 9.2 × 10−6

T e (A17) (Ei − eV )/4mc2 6.7 × 10−3 2.2 × 10−3 3.9 × 10−3 6.8 × 10−3 2.6 × 10−4 2.8 × 10−3

When expanding the square modulus of the matrix elements
in Eq. (A16), we keep the terms with contributions higher
than 10−3 compared to the dominant electric dipole term. We
also neglect the term T e: as V (r) is almost spherical at the
core state radius, it concerns transitions to the same orbitals as

the electric dipole term. It does not contain a spin operator, so
that, even in XMCD, it yields only a negligible correction to
the electric dipole contribution. Therefore, we are left with the
four significant terms, D-D, Q-Q, D-Q, and D-SP, discussed in
Sec. II.
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