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Abstract: Using a high-efficiency grating interferometer for hard X

rays (10–30 keV) and a phase-stepping technique, separate radiographs

of the phase and absorption profiles of bulk samples can be obtained

from a single set of measurements. Tomographic reconstruction yields

quantitative three-dimensional maps of the X-ray refractive index, with

a spatial resolution down to a few microns. The method is mechanically

robust, requires little spatial coherence and monochromaticity, and can

be scaled up to large fields of view, with a detector of correspondingly

moderate spatial resolution. These are important prerequisites for use with

laboratory X-ray sources.
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1. Introduction

X-ray radiographic absorption imaging is an invaluable standard tool in medical diagnostics

and is increasingly used in other research areas such as environmental and materials science.

For such important classes of samples as biological tissue, polymers, and fiber composites,

however, the use of conventional X-ray radiography is limited because these objects show only

weak absorption.

However, the cross section for elastic scattering of hard X rays in matter, which causes a

phase shift of the wave passing through the object of interest, is usually much greater than

that for absorption. For example, 17.5-keV X rays that pass through a 50-µm-thick sheet of

biological tissue are attenuated by only a fraction of a percent, while the phase shift is close to

π .

Recording the X-ray phase shift rather than only the absorption thus has the potential of

substantially increased contrast. Consequently, various phase-sensitive X-ray imaging methods

were developed in the past years [1, 2]. They can be classified into interferometric methods

[3, 4, 5], techniques using an analyzer crystal [6, 7, 8], and free-space propagation methods

[9, 10, 11]. These techniques differ vastly in the nature of the signal recorded, the experimental

setup, and the requirements on the illuminating radiation (especially its spatial coherence and

monochromaticity). Although some of them yield excellent results for specific problems, none

is very widely used. In particular, none of them has so far found application in medical diagnos-

tics, where the spatial resolution needed is moderate compared to current technological limits

in synchrotron-based methods, but which requires a large field of view of many centimeters, the

efficient use of broadband (� 1%) radiation as provided by laboratory X-ray generators, and a

reasonably compact setup.

2. Grating interferometer

The use of gratings as optical elements in hard X-ray phase imaging can overcome problems

that so far impair the wider use of phase contrast in X-ray radiography and tomography. First
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Fig. 1. Grating-based hard X-ray interferometer. (a) Principle: the beam splitter grating

(G1) splits the incident beam into essentially two diffraction orders, which form a periodic

interference pattern in the plane of the analyzer grating. A phase object in the incident beam

will cause slight refraction, which results in changes of the locally transmitted intensity

through the analyzer. (b,c) Scanning electron micrographs of cross sections through the

gratings used. The silicon beam-splitter grating (b) has a pitch of 4 µm, i.e., twice that of

the analyzer grating (c), which was made by filling the grooves of a silicon grating with

gold by electroplating.

experiments with X-ray grating interferometers were reported recently [12, 13, 14]. Here we

demonstrate quantitative two- and three-dimensional phase reconstruction with radiation of a

bandwidth up to 5%, using highly efficient gratings.

The interferometer consists of a phase grating G1 (i.e., a grating whose lines show negligible

absorption but substantial phase shift) and an absorption grating G 2 (Fig. 1). The first grating

acts as a beam splitter and divides the incoming beam essentially into the two first diffraction

orders. Since the wavelength λ of the illuminating hard X rays (≈ 10−10 m) is much smaller

than the grating pitch (≈ 10−6 m), the angle between the two diffracted beams is so small that

they overlap almost completely. Downstream of the beam-splitter grating, the diffracted beams

interfere and, when illuminated with a plane or spherical wave, form linear periodic fringe

patterns in planes perpendicular to the optical axis. For a phase grating with a phase shift of π
illuminated by a plane wave, the periodicity g of the fringe pattern equals half the period of G 1

[15]. Neither the period nor the lateral position of these fringes depends on the wavelength of

the radiation used. Perturbations of the incident wave front, such as those induced by refraction

on an object in the beam, lead to local displacement of the fringes (Fig. 1). The fundamental

idea of the method presented here is to detect the positions of the fringes and determine from

these the shape of the wave front. However, since the pitch of the phase grating (and thus the

spacing of the interference fringes) does not exceed a few microns, an area detector placed

in the detection plane will generally not have sufficient resolution to resolve the fringes, let
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Fig. 2. Principle of phase stepping. (a-d) Interferograms of polystyrene spheres (100 and

200 µm diameter), taken at the different relative positions xg = x1, . . . ,x4 of the two in-

terferometer gratings. (e) Intensity oscillation in two different detector pixels i = 1,2 as a

function of xg. For each pixel, the oscillation phase ϕi and the average intensity ai over one

grating period can be determined. (f) Image of the oscillation phase ϕ for all pixels. (g)

Wave-front phase Φ retrieved from ϕ by integration. (h) Image of the averaged intensity a

for all pixels, equivalent to a non-interferometric image. The length of the scale bar is 50

µm.

alone the exact position of their maxima. Therefore, a grating G 2 with absorbing lines and the

same periodicity and orientation as the fringes is placed in the detection plane, immediately

in front of the detector. This analyzer grating acts as a transmission mask for the detector and

transforms local fringe position into signal intensity variation. The detected signal profile thus

contains quantitative information about the phase gradient of the object.

3. Phase stepping

To separate this phase information from other contributions to the signal, such as absorption in

the sample, inhomogeneous illumination or imperfections of the gratings, the phase-stepping

approach used in visible-light interferometry [16] was adapted to this setup. One of the gratings

is scanned along the transverse direction xg (cf. Fig. 1) over one period of the grating, and for

every point of the scan an image is taken, as shown in Fig. 2(a-d). The intensity signal I(x,y)
in each pixel (x,y) in the detector plane oscillates as a function of x g [Fig. 2(e)]. The phases

ϕ(x,y) of the intensity oscillations in each pixel [Fig. 2(f)] are related to the wave-front phase

profile Φ(x,y), the X-ray wavelength λ , the distance d between the two gratings, and the period

g2 of the absorption grating by [17]

ϕ =
λ d

g2

∂Φ

∂x
. (1)
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Fig. 3. Radiographs and tomograms of a reference sample consisting of two polymer fibers

(polyamide, PA, and polybutylene terephthalate, PBT) and a boron fiber with a tungsten

core, acquired with broadband radiation of (17.5 ± 0.5) keV photon energy. (a) Non-

interferometric projection image. (b) Tomographic slice, corresponding to the position in-

dicated by the horizontal line in (a). (c) Reconstructed phase projection. (d) Tomographic

slice through the refractive-index distribution. (e,f) Section profiles through the fiber centers

in, respectively, the non-interferometric tomogram (e) and the phase tomogram (f) (solid:

B/W, dashed: PA, dash-dotted: PBT, dotted: literature values). In (e), the lines for PA and

B/W are displaced along the ordinate axis for clarity.

ϕ contains no other contributions, particularly no absorption contrast. The phase profile of

the object can thus be retrieved from ϕ(x,y) by a simple one-dimensional integration, as shown

in Fig. 2(g). In the general case in which the wave front incident on the object already shows

some distortion, the background phase distribution Φ back(x,y) should be measured (with the

object removed from the beam) and then subtracted. Even where the range of phase values

exceeds 2π , such as in the example in Fig. 2(g), phase unwrapping is generally not necessary

because the measured quantity ϕ , essentially the first derivative of Φ (Eq. 1), will not exceed π
as long as the phase gradients in the sample are not too steep [18].

The minimum number of steps for a phase-stepping scan that allows to extract ϕ is three in

the case of a sinusoidal intensity oscillation; the results shown here were obtained with eight

phase steps per projection. The results indicate that an effect comparable to dose fractionation

[19] in tomography occurs, i. e., even a series of phase-stepping interferograms with poor pixel

statistics in each frame can yield a processed phase-gradient image with sufficient statistics. An

investigation of this effect goes beyond the scope of this paper.

4. Tomographic reconstruction

Tomographic reconstruction of Φ(x,y) taken for a sufficient number of different viewing angles

of the sample yields the three-dimensional distribution of the X-ray refractive index n(x ′,y′,z′)
of the object. Given the small deviation of n from unity, the refractive index is generally ex-

pressed in terms of its decrement δ (x′,y′,z′) = 1−n.

Another quantity contained in the data from a phase-stepping scan is the average signal
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Fig. 4. Three-dimensional density-projection rendering of the reconstructed refractive in-

dex of a small spider, supported by two polyamide fibers. These data were taken at a photon

energy of 14.4 keV with gratings of pitch g1 = 4 µm,g2 = 2 µm, and an intergrating dis-

tance of d = 23.2 mm.

for each pixel over an entire oscillation, a(x,y) [Fig. 2(h)]. It is identical to the transmission

radiography signal that would be measured in a radiograph taken without the interferometer.

It contains the projected absorption coefficient and, depending on experimental geometry and

detector resolution, edge-enhancing Fresnel diffraction contrast. A single phase-stepping scan

thus yields both the phase and the absorption image.

Since the position of the interference fringes formed behind the beam-splitter grating is,

over a wide range of photon energies, independent of wavelength, the interferometer is largely

achromatic and can efficiently be used with polychromatic radiation. Reconstructed phase pro-

jections and tomograms will still be quantitative, showing the distribution of the refractive index

averaged over the photon-energy band.

Figure 3 shows processed absorption and phase projection images a(x,y) and Φ(x,y), as well

as reconstructed tomograms, of a reference sample made of three fibers with almost identical,

very weak absorption (except for the core of the central fiber), but different refractive index.

In the phase tomogram [Fig. 3(d)], the different constituents of the fibers can clearly be dis-

tinguished by their reconstructed refractive indices δ , while the noninterferometric tomogram

[Fig. 3(b)] does not allow discriminating between the materials. Moreover, the values for δ
agree well with the literature [Fig. 3(f)], with the only exception of the tungsten core of one

of the fibers, whose diameter is at the limit of spatial resolution for quantitatively correct re-

construction. For these measurements, radiation with a mean photon energy of 17.5 keV and a

bandwidth of 1 keV was used [20]. This energy width is compatible to that of a set X-ray emis-

sion lines in the spectrum of a laboratory source [21]. Phase reconstruction with most other

methods would be impaired by the polychromaticity.

A more complex object is shown in Fig. 4. This three-dimensional density-projection render-

ing of the refractive-index distribution of a small spider reveals details of the internal structure

of the animal that would be difficult to access with other techniques. Spatial resolution is a few

micrometers.
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5. Design and properties of the interferometer

5.1. Dimensions

The distance d between the two gratings should be chosen to be [17]

dm =

(

m−
1

2

)

g2
1

4λ
, with m = 1,2,3, . . . (2)

(where g1 is the pitch of the beam-splitter grating), because at this distance the contrast of the

interference fringes has a maximum — a phenomenon related to the Talbot self-imaging effect.

Eq. 2 describes the optimum distance for the case of an illuminating plane wave. For a spher-

ical wave coming from a source at distance L from the beam splitter, the distances rescale so

that maximum contrast is achieved at d ′
m = Ldm/(L−dm).

Eq. 1 implies that the sensitivity of the method increases linearly with the inter-grating dis-

tance d. However, the choice of larger d results in a loss of spatial resolution and in larger

required transverse coherence length (both on the order of mg 1). If a large field of view is re-

quired for a given application, then a detector with correspondingly larger pixels can be used.

This is not the case for edge-enhanced non-interferometric imaging, in which the detector must

resolve the Fresnel fringes in the image, even if the image resolution needed is inferior to that

required for resolving the fringes.

The period g1 of the beam-splitter grating affects the optimum intergrating distances d m and

the minimum required transverse coherence length l c, which is (m−0.5)g1. g1 should therefore

be chosen small enough to keep the device compact and operate it efficiently with a source of a

given finite size. The lower limit to the grating periods is given by limits in fabrication technol-

ogy for structures with high aspect ratios (section 5.2) and by the requirements on mechanical

stability (section 5.5).

As mentioned above, the period g2 of the analyzer grating should, for practical purposes,

match the period g of the unperturbed interference fringes. For a plane wave, g 2 = g1/2. For a

spherical wave with radius L, this rescales to g2 = (g1/2)×L/(L−d). But these conditions do

not have to be strictly met. A deviation of g2 from them will result in moiré fringes in the raw

interferograms. If a background phase image is subtracted from the object image, the effects of

the moiré fringes cancel out.

5.2. Efficiency, fabrication of gratings

The efficiency of the setup is determined by the efficiencies of the two gratings. The beam-

splitter grating lines should ideally induce a phase shift of π and have a duty cycle of 0.5,

so that no undiffracted portion, or zeroth order, of the beam is left. In this case, 80% of the

incoming intensity are diffracted into the positive and negative first orders, which are used to

generate the signal. (The remaining 20 percent go into higher orders, inevitable for a box-profile

grating structure.) The absorption contrast of the analyzer grating should be as high as possible.

This requires deep structures for both gratings. For an ideal absorption grating, with a duty

cycle of 0.5 and total absorption in the grating lines, the efficiency in terms of the fraction of

intensity hitting the grating that contributes to the detected signal is 50%.

The gratings shown in Fig. 1(b,c), which largely fulfill these requirements, were made with a

production process involving electron-beam lithography, deep etching into silicon [12] and, for

the absorption grating, subsequent electroplating of gold. The intensity of the zeroth order of the

beam-splitter grating, ideally non-existent, was measured to be less than 5% of the first-order

intensity [12]. The absorption of the analyzer grating (≈ 10 µm of gold) ranges between 75 and

90% for the photon energies used here. The size of the gratings used in the measurements was

a few millimeters in each dimension, but much larger gratings (many cm in each dimension)

can be made using photolithography instead of electron-beam lithography.
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Fig. 5. Left: Contrast transfer for fixed grating periods and intergrating distance as a func-

tion of wavelength λ , for ideal gratings. The half-width Δλ between zero-contrast wave-

lengths λ1,λ2 around the design wavelength λ0 is a measure of the efficient energy range

for a given setup. Right: Measured and simulated efficiency of a grating interferometer,

taking into account variations of grating efficiency with photon energy. Here, a photon en-

ergy of 14.4 keV was used with an interferometer with grating periods of g1 = 4 µm and

g2 = 2 µm, at an intergrating distance of d = 69.7 mm. The simulation was made using the

XWFP computer code [22].

5.3. Limits of achromaticity

It was mentioned in the previous section that the device is largely achromatic. Set aside any

dispersion in the sample, the limits of achromaticity are given by the decrease in efficiency

of the interferometer as the X-ray photon energy deviates from the design energy. This effi-

ciency decrease is influenced by three effects. Firstly, the Talbot condition (Eq. 2) is not met for

wavelengths other than the design wavelength. The Talbot effect makes that contrast C varies

sinusoidally with wavelength, C ∝ sin(πλ d/g2
2). The half-width Δλ = (λ2 − λ1)/2 between

those wavelengths λ1 and λ2 (to either side of the design wavelength λ0) at which contrast goes

through zero can be taken as an effective energy range over which the interferometer operates

efficiently (Fig. 5, left). It can be shown easily from the relationships above and Eq. 2 that

Δλ =
λ0

2m−1
. (3)

Thus, the higher the order m of the Talbot distance used, the stricter the requirements on mono-

chromaticity. Still, even for the 5th-order Talbot distance, the acceptable bandwidth Δλ/λ 0 is

more than 10%.

The other two factors affecting the efficiency as the photon energy deviates from its design

value are the changes in efficiency of the beam splitter and the analyzer grating. A measurement

of all three effects was carried out on a bending-magnet synchrotron beamline by scanning the

photon energy selected by a silicon double-crystal monochromator and measuring the visibility

of moiré fringes. The results were compared with simulation (Fig. 5, right). They agree well

and show an effective bandwidth of 2 keV, for a design energy of 14.4 keV.

5.4. Resolution limit

The spatial resolution of the images obtained with the interferometer is limited (a) as in other

imaging systems, by the resolution of the detector, (b) by the fact that the resolution cannot be

better than two periods g2 of the analyzer grating, and (c) by the lateral shear of the two waves

created by the beam splitter that interfere in the plane of the analyzer grating. The shear is equal
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to the product of the intergrating distance d and the angle between the propagation directions

of the two waves, which is 4λ/g1 if the beam splitter is a phase grating with a phase shift of π
in the lines of the grating. Assuming that d is chosen to be a Talbot distance d m as defined by

Eq. 2, then the resulting lateral shear for a Talbot order m is (m−0.5)g 1 = (2m−1)g2.

5.5. Stability and alignment

The issue of stability, alignment, and precision of movement concerns mostly the relative posi-

tions of the two gratings. These should be mechanically stable with respect to one another down

to lengthscales of approximately one-tenth of the grating period g 2. In the examples shown here,

where g2 = 2 µm, this means that stability to 100 nm is largely sufficient. With dimensions of

a few centimeters for the entire device, this condition is easily fulfilled. The same lengthscale

applies to the precision of the transverse grating motion used in phase stepping, so that a con-

ventional ball-bearing linear stage can be used. Also, thermally-induced or other mechanical

drift is not an issue.

The only relevant angular alignment parameter is the relative angle α of the two gratings

about the optical axis, i. e., the deviation from parallelism of the lines of one grating with

respect to the lines of the other. If this angle is nonzero, the raw interferograms will show moiré

fringes [14], the density of which increases with α . A complete suppression of these fringes

is achieved if |α| < g2/X , where X is the width of the field of view in the direction along the

grating lines. Even if this condition is not met, the effects of moiré fringes in the image will

again cancel out in the subtraction of the background phase image. The alignment of α is thus

not critical.

6. Conclusion

Experimental results and theoretical considerations show that a grating interferometer can be

used for qualitative or quantitative two- and three-dimensional X-ray phase radiography. The

use of phase stepping, in which a small number of raw interferograms for each projection

radiograph is taken, presents a method to separate absorption from phase signal and to easily

retrieve the projected phase, while preserving the resolution of the imaging system.

The moderate requirements on coherence and monochromaticity, the possibility to make

large gratings of high quality and efficiency, and the easy alignment and low sensitivity of the

setup to mechanical drift suggest that hard X-ray phase imaging with grating interferometers

can find application in areas where phase imaging would be desirable, but is currently not

widely used.

In particular, the possibility to combine the instrument with imaging systems of a large field

of view and the efficient use of broadband sources let us envisage applications in such fields as

medical and biological imaging or research on organic materials. Even neutron phase radiogra-

phy with grating interferometers is conceivable. The dimensions of the gratings needed would

be similar to the X-ray case.
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