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ABSTRACT

Aims. Active galactic nuclei are known to have complex X-ray spectra that depend on both the properties of the accreting
super-massive black hole (e.g. mass, accretion rate) and the distribution of obscuring material in its vicinity (i.e. the “torus”). Often
however, simple and even unphysical models are adopted to represent the X-ray spectra of AGN, which do not capture the complexity
and diversity of the observations. In the case of blank field surveys in particular, this should have an impact on e.g. the determination
of the AGN luminosity function, the inferred accretion history of the Universe and also on our understanding of the relation between
AGN and their host galaxies.
Methods. We develop a Bayesian framework for model comparison and parameter estimation of X-ray spectra. We take into account
uncertainties associated with both the Poisson nature of X-ray data and the determination of source redshift using photometric meth-
ods. We also demonstrate how Bayesian model comparison can be used to select among ten different physically motivated X-ray
spectral models the one that provides a better representation of the observations. This methodology is applied to X-ray AGN in the
4 Ms Chandra Deep Field South.
Results. For the ∼350 AGN in that field, our analysis identifies four components needed to represent the diversity of the observed
X-ray spectra: (1) an intrinsic power law; (2) a cold obscurer which reprocesses the radiation due to photo-electric absorption,
Compton scattering and Fe-K fluorescence; (3) an unabsorbed power law associated with Thomson scattering off ionised clouds;
and (4) Compton reflection, most noticeable from a stronger-than-expected Fe-K line. Simpler models, such as a photo-electrically
absorbed power law with a Thomson scattering component, are ruled out with decisive evidence (B > 100). We also find that ignoring
the Thomson scattering component results in underestimation of the inferred column density, NH, of the obscurer. Regarding the ge-
ometry of the obscurer, there is strong evidence against both a completely closed (e.g. sphere), or entirely open (e.g. blob of material
along the line of sight), toroidal geometry in favour of an intermediate case.
Conclusions. Despite the use of low-count spectra, our methodology is able to draw strong inferences on the geometry of the torus.
Simpler models are ruled out in favour of a geometrically extended structure with significant Compton scattering. We confirm the
presence of a soft component, possibly associated with Thomson scattering off ionised clouds in the opening angle of the torus. The
additional Compton reflection required by data over that predicted by toroidal geometry models, may be a sign of a density gradient
in the torus or reflection off the accretion disk. Finally, we release a catalogue of AGN in the CDFS with estimated parameters such
as the accretion luminosity in the 2−10 keV band and the column density, NH, of the obscurer.

Key words. accretion, accretion disks – methods: data analysis – methods: statistical – galaxies: nuclei – X-rays: galaxies –
galaxies: high-redshift

1. Introduction

Active galactic nuclei (AGN) are thought to represent accretion
events onto super-massive black holes (SMBHs) at the centres of
galaxies. The demographics of this population therefore provide
important insights into the formation history of the black holes
we observe in nearly all massive bulges in the nearby Universe
(Richstone et al. 1998; Shankar et al. 2009). Moreover an in-
creasing body of observational evidence (e.g. Kormendy & Ho
2013, and references therein) as well as theoretical calculations

⋆ Appendices and Figs. 6, 9–11 are available in electronic form at
http://www.aanda.org
⋆⋆ Catalogue and software are only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A125

(e.g. Silk & Rees 1998; Fabian 1999; King 2005, 2010) suggest
that AGN are also important for understanding the formation and
evolution of galaxies. The evidence above motivated efforts to
constrain the cosmological evolution of AGN (e.g. Aird et al.
2010) and determine the statistical properties of their host galax-
ies (e.g. Alexander & Hickox 2012). Despite significant progress
in these fields in the last decade important details are still miss-
ing. There are for example, open questions relating to the contri-
bution of obscured accretion to the black hole mass budget (e.g.
Shankar et al. 2004; Akylas et al. 2012) as well as the overall
impact of the energy released by AGN on their immediate envi-
ronment on kpc and Mpc scales (Kormendy & Ho 2013).

One approach for addressing the points above is via studies
of the population properties of AGN averaged over cosmologi-
cal volumes. The first step in this direction is the characterisation
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of the basic properties of individual AGN in a statistical sample,
e.g. their accretion luminosities, level of line-of-sight obscura-
tion and if possible the basic geometrical properties of the ob-
scuring material in the vicinity of the SMBH. The importance of
X-ray observations for constraining these properties are twofold.
Firstly, selection at high energies yields AGN samples that are
least biased in terms of either line-of-sight obscuration or dilu-
tion by stellar light from the host galaxy (Comastri et al. 2002;
Severgnini et al. 2003; Mushotzky 2004; Georgantopoulos &
Georgakakis 2005). Secondly, because the X-ray flux emitted by
AGN is believed to originate at small scales close to the SMBH,
spectroscopy at high energies is a unique diagnostic of the accre-
tion properties and the geometry of the material in the vicinity
of the central engine.

In this paper we develop a novel framework based on the
Bayesian inference to analyse the X-ray spectra of AGN. This
method is applied to the problem of the characterisation of the
X-ray spectral properties of AGN detected in blank field sur-
veys. Such datasets are extensively used to constrain the statis-
tical properties of AGN and their hosts at moderate and high
redshift (z ≈ 0.5−3), when the bulk of the SMBH we observe
in local spheroids were put in place. This particular application
is challenging because (i) typical deep field X-ray sources only
have a small number of photon counts, well into the Poisson
regime, where the familiar χ2-regression approach is often not
applicable; (ii) a large fraction of the deep field X-ray sources
have redshifts measured via photometric methods (e.g. Salvato
et al. 2009, 2011) and therefore suffer uncertainties that affect
the inferred X-ray spectral parameters; (iii) it is often difficult
for traditional spectral fitting methods to select among differ-
ent physically plausible spectral models the one that provides a
better representation of the observations. A direct result of the
latter point is that deep field X-ray spectra are typically fit with
simple models (but see for example Brightman & Ueda 2012),
because it is unclear whether more complex, but also more real-
istic, model families are justified by the observations.

The methodology presented in this paper overcomes the is-
sues above by propagating into the analysis and the parameter
estimation all the uncertainties related to both Poisson noise and
redshift measurement errors. Bayesian model comparison and
selection is also used to infer from deep survey observations
structural information on the distribution of material close to
the SMBH both for individual sources and for the overall pop-
ulation. The field of choice for the application of this method-
ology is the 4 Ms Chandra Deep Field South (CDFS). This
is motivated by the X-ray depth and the availability of multi-
wavelength data in that field.

We begin in Sect. 2 by reviewing our current understanding
of the structure of AGN and the physical processes relevant to
X-ray emission in the 0.5−10 keV band. In Sect. 3, the modelling
of the spectral components is defined in detail. Section 4 de-
scribes the data used. Section 5 presents our approach for com-
paring models and estimating model parameters. Finally, the re-
sults are presented in Sect. 6 and discussed in Sect. 7.

We adopt a cosmology of H0 = 70.4 km s−1 Mpc−1, ΩM =

0.272, and ΩΛ = 0.728 (Komatsu et al. 2011). Solar abundances
are assumed. The galactic photo-electric absorption along the
line of sight direction to the CDFS is modelled with NH ≈ 8.8 ×
1019 cm−2 (Stark et al. 1992).

2. Spectral components

This section describes the main spectral compoments identified
by both observational data and theoretical work which constitute

Fig. 1. Illustration of the typical shapes of the discussed spectral fea-
tures. Emission lines and absorption edges have been omitted for
simplicity.

the X-ray spectrum of AGN, although not all of them may be
present simultaneously in each source.

X-ray observations show that all AGN share an intrinsic
power law spectrum of the form E−Γ with photon index Γ and a
steep cut-off at higher energies (Zdziarski et al. 2000). Observed
values for the photon index range between 1.4 and 2.8, and its
distribution in local AGN can be approximated by a Gaussian
of mean 1.95 and standard deviation 0.15. (Nandra & Pounds
1994). This spectrum is thought to be the result of thermal
comptonisation of accretion disk UV radiation by a hot electron
corona (Zdziarski et al. 2000; Sunyaev & Titarchuk 1980). A
hotter plasma can up-scatter photons to higher energies, thereby
producing a power law with a lower photon index. Up-scattering
cools the corona which needs to be repopulated with high-
velocity electrons to stay in equilibrium. The ultimate source of
power is accretion onto the black hole, and thus Γ is thought to
be related to physical AGN properties such as the Eddington rate
(see Brightman et al. 2013, for a recent discussion).

The intrinsic power law is often obscured by cold material
in the line of sight (see e.g. Turner et al. 1997; Risaliti et al.
1999; Brightman & Nandra 2011). The most important effects
of this obscuring screen for X-rays are photo-electric absorp-
tion, Compton scattering and Fe K-shell fluorescence. Under the
unification scheme of AGN (Antonucci 1982, 1993; Antonucci
& Miller 1985), which postulates that the viewing angle is the
main cause for the variety of AGN spectra, the simplest common
obscuring geometry is a toroidal structure usually referred to as
“the torus”. X-ray observations do not resolve AGN and spectral
models can not distinguish the scales at which e.g. photo-electric
absorption occurs. However, because the circum-nuclear obscur-
ing material is cold and molecular, it must be distant or self-
shielding (see e.g. Gaskell et al. 2008). This picture is further
motivated by high-resolution optical space-based observations
(Ferrarese et al. 1996; van der Marel & van den Bosch 1998),
which show such a torus-like structures in ∼100−1000 pc scale,
or more recently, mid-infrared interferometry (Burtscher et al.
2013).

In addition to photo-electric absorption, the obscuring ma-
terial in the vicinity of the SMBH can also Compton-scatter
photons in or out of the line of sight (LOS). Compton scatter-
ing, unlike photo-electric absorption, is anisotropic. From a sin-
gle, unresolved viewpoint, the geometry of the obscurer thus
influences the obscured spectrum. For example, compared to
a sphere, a torus geometry with a certain opening angle pro-
duces a smaller Compton reflection hump between ∼10−30 keV
(see Fig. 1), proportional to the solid angle illuminated by the
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Fig. 2. Cartoon illustrations of the geometries associated with each model. The wabs model b) represents an absorbing slab in the line of sight,
and can also be interpreted as the case of a torus with extreme opening angle. While torus d) uses a intermediate opening angle, the sphere c)
represents the other extreme, a vanishing opening angle. The +scattering extension e) of the named models correspond to Thomson scattering
from outside the line of sight, which does not experience any energy-dependent effects. Finally, the reflection component (+pexmon) corresponds
to either disk reflection f) or additional reflection if the torus is not viewed through the same column density as the reflection g), h), i). For the
sphere it should be noted that scattering is not physically possible, as no unabsorbed radiation can escape.

source and the surface area exposed to the observer (Murphy
& Yaqoob 2009; Brightman & Nandra 2011). At neutral hydro-
gen equivalent column densities NH

>∼ 1023 cm−2 Compton scat-
tering becomes important compared to photo-electric absorption
(Compton-regime).

In obscured AGN, it is believed that a fraction of the intrin-
sic radiation leaks through encountering no Compton scattering
or photo-electric absorption (Ueda et al. 2007). Explanations for
this component include Thomson scattering off ionised material
within the torus opening angle, which reflects the intrinsic spec-
trum into the line of sight (Krolik & Kallman 1987; Turner et al.
1997; Guainazzi & Bianchi 2007). This component is referred to
as “scattering” in this work, as opposed to “Compton scattering”
or “reflection” in the cold obscurer.

In unobscured AGN, extrapolating the 2−10 keV power law
to softer energies shows an excess of soft X-rays in some sources
(Turner & Pounds 1989; Gondhalekar et al. 1997). Processes that
have been proposed to explain the soft component include ther-
mal disk emission by the torus at kT ≈ 0.2 keV (Gierliński &
Done 2004), or a relativistically blurred, photo-ionized reflec-
tion spectrum by the accretion disk (Ross & Fabian 1993). In
medium-to-high redshift objects, which constitute the bulk of
the objects of interest in this work, the soft excess component
lies outside the observed energy range and thus we choose to
neglect it.

3. Model definitions

The focus of this work is a study of the AGN population to con-
strain the geometry of the X-ray obscuring material in the vicin-
ity of SMBHs. To identify which physical mechanisms and ge-
ometries produce the observed spectra we identify and compare
10 physically motivated models with different levels of complex-
ity. For the model comparison, we develop a Bayesian method-
ology (discussed in Sect. 5) that propagates the uncertainties
from X-ray observations and redshifts correctly. The data and

extraction method is described in Sect. 4. The spectral compo-
nents considered are defined below.

The simplest model considered is a power law, referred to as
powerlaw. It represents the intrinsic spectrum of AGN without
any obscurer, as shown in Fig. 2a. The high-energy cutoff ob-
served in the energy range 80−300 keV (Perola et al. 2002) lies
well above the energy range used in this work (<10 keV) even at
moderate redshifts. We therefore neglect the cutoff. The param-
eters of powerlaw are the normalisation at 1 keV and the power
law index, Γ.

The most commonly used model to describe obscuration is
to apply photo-electric absorption to the intrinsic power law.
Absorption has the largest cross-section among the interaction
processes, and thus is a good first order approximation for the
X-ray spectra of AGN detected in deep fields. However, at
higher column densities (NH

>∼ 1024 cm−2), matter becomes op-
tically thick to Compton scattering, and re-emission in lines due
toX-ray fluorescence is prevalent. In contrast to photo-electric
absorption, which is opaque at low energies, Compton scat-
tering introduces an energy loss at each interaction, thus low-
energy photons can be received by the observer. Furthermore,
Compton scattering induces a non-uniform scattering angle dis-
tribution making the spectrum dependent on the assumed ge-
ometry. Influenced by the solid angle illuminated by the source
and the surface area exposed to the observer, the contribution
by Compton scattering varies, as radiation is scattered into the
line of sight. For instance, a torus geometry with a certain open-
ing angle produces a smaller Compton reflection hump between
∼10−30 keV (see Fig. 1) than a completely closed, spherical ge-
ometry (Murphy & Yaqoob 2009; Brightman & Nandra 2011).
The opening angle of the torus, and the viewing angle to a mi-
nor degree, thus influences the strength of the reflection hump.
This allows in principle to determine the viewing/opening an-
gle and NH independently, possibly probing the density gradient
of the obscurer. However, because the effects on the spectrum
are small, particularly in the case of low photon count spectra,
this has not yet been successfully applied to discriminate these
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parameters in individual obscured sources. In this work, we also
assume a limited range of geometries (e.g. 45◦ opening angle,
edge-on view) as we do not attempt to constrain the viewing and
opening angle. This geometry-dependence of spectra also makes
modelling challenging. Multiple inter-dependent interactions of
several elements can realistically only be done by X-ray radia-
tive transfer simulations for a fixed geometry (see e.g. Nandra
& George 1994; Murphy & Yaqoob 2009; Brightman & Nandra
2011).

In this work, three obscuration models are considered, wabs,
sphere and torus, which correspond to different geometries:

The “wabs” model applies only photo-electric absorption on
a power law with the cross-sections and polynomial approxima-
tions computed by Morrison & McCammon (1983). This model
does not include any Compton scattering. It can be considered as
an infinitely small blob (see Fig. 2b) in the line of sight (LOS):
no radiation is scattered into the LOS, and all Compton scatter-
ing leaves the LOS. However, the loss of high-energy photons
due to Compton scattering at high column densities is not mod-
elled.

We also consider an absorber with spherical geometry
(sphere) illustrated in Fig. 2c. This model, computed by
Brightman & Nandra (2011), consistently models photoelec-
tric absorption, Compton scattering and K-shell fluorescence of
a power-law spectrum source at the centre of a cold, neutral
medium. Similarly, a toroidal geometry (torus) is used, which
was simulated in the same way as sphere, but with a bi-conical
cut-out. We restrain the torus model, using a 45◦ opening angle
viewed edge on. The physical scenario represented by this model
is shown in Fig. 2d, which indicates that Compton scattering into
the LOS is possible.

The three obscuration models used mark the extreme cases
of torus geometries: wabs for a almost 90◦ half-opening angle,
sphere for a vanishing opening angle and torus represents an
intermediate case where 30% of the incident radiation encoun-
ters the obscurer. Figure 2b-d illustrates these differences. In
comparison to the powerlaw model, wabs, sphere and torus
have the additional parameter NH, the neutral hydrogen equiva-
lent column density in the LOS.

Observations of some obscured AGN show that a frac-
tion of the intrinsic radiation escapes without encountering any
obscuration. This is understood to be Thomson scattering off
ionised material inside the opening of the obscurer, as illus-
trated in Fig. 2e for the torus geometry. We model this com-
ponent, referred to as scattering (+scattering) by adding a
simple, unabsorbed power law component with the same Γ
as the incident radiation. The normalisation of this compo-
nent, fscat, is modelled relative to the intrinsic power-law com-
ponent, and may vary between 10−10 and 10%. In this fash-
ion, torus and wabs are extended to torus+scattering and
wabs+scattering. For the sphere model, it should be noted
that no unabsorbed radiation can escape, and thus adding scatter-
ing is unphysical. However, for completeness, we also consider
sphere+scattering, which mimics the case of a torus with a
very large covering fraction.

The observed NH distribution requires a stronger gradient
than a constant-density torus geometry can provide (see e.g.
Treister et al. 2004). We thus consider an additional density gra-
dient contribution by adding a denser slab outside the LOS inside
the obscurer. The NH – measured largely through photo-electric
absorption – indicates only the “effective” column density along
the LOS, and thus remains unaffected. However, a denser re-
gion outside the LOS can scatter Compton reflection into the
LOS, as illustrated in Fig. 2g–i. Alternatively, reflection off the

Fig. 3. Models considered. For model comparison, we compute the ev-
idence (see Sect. 5.2) for each source and model. We then start by as-
suming a power law (powerlaw) and move along the arrows to more
complex models if model comparison justifies the preference.
The three obscurer models, wabs, sphere and torus, are compared
against each other, as well as the introduction of additional features
(+scattering, +pexmon). See text for details.

accretion disk may also be part of the LOS spectrum entering
the obscurer (Fabian 1989; George & Fabian 1991). This is il-
lustrated in Fig. 2f for wabs. We thus add a Compton reflection
component +pexmon to the obscured spectrum. We assume that
this component passes through the obscuring column, so it is in-
troduced photon-absorbed with the same column density as the
LOS obscuring material. The used model, PEXMON (Nandra et al.
2007) combines Compton reflection off a neutral dense semi-
infinite slab geometry (PEXRAV, Magdziarz & Zdziarski 1995)
consistently with Fe Kα, Fe Kβ and Ni Kα emission lines and the
Fe Kα Compton shoulder (George & Fabian 1991; Matt 2002).
We use the same incident spectrum (photon index Γ and no cut-
off) for the reflection, and follow Nandra et al. (2007) in assum-
ing a fixed inclination of 60◦. The normalisation of this compo-
nent is modelled relative to the wabs component (R parameter),
and may vary between 0.1 and 100. Figure 2 illustrates various
causes for an additional reflection spectrum (f-i). In the case of
wabs model in particular, the +pexmon component can compen-
sate for the lack of forward-scattering inside the obscurer.

To summarise, we consider 10 models identified by
typewriter font style. The statistical method used for
model comparison is described in Sect. 5. Figure 3 illus-
trates the comparisons we are interested in with arrows.
Firstly, obscurer geometries are compared (powerlaw:
no obscurer, Fig. 2a; wabs: bullet-like blob, 2b; sphere:
complete covering of the source, 2c; torus: intermediate
case, 2d). We test for the existence of a soft scattering
component which is represented by wabs+scattering,
sphere+scattering and torus+scattering (Fig. 2e).
Finally, we explore the need for additional Compton reflection
as shown in Fig. 2f,g for wabs+pexmon+scattering,
2i for sphere+pexmon+scattering and 2h for
torus+pexmon+scattering. The following section describes
the data to which we apply our methodology.

4. Observational data

We intend to study the obscuring material in the vicinity of active
SMBHs by analysing X-ray spectra with a variety of physically
motivated models. The typical SMBH grows through active ac-
cretion at redshift 0.5−3 (see e.g. Aird et al. 2010). To obtain
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a sample of such high-redshift AGN, long exposure times are
needed. The deepest X-ray survey to date is the CDFS campaign.
This survey region has been observed extensively providing ex-
cellent multi-wavelength coverage, which we utilise for redshift
estimation.

The CDFS survey consists of 51 observations giving a to-
tal exposure time of 4 Ms on an area of 464.5 arcmin2. Data re-
duction and source detection followed Laird et al. (2009) and
is described in detail in Rangel et al. (2013b,a). Briefly, hot
pixels, cosmic ray afterglows and times of anomalously high
backgrounds were removed to produce clean level-2 event files.
These were then aligned using bright sources and subsequently
merged. Images and exposure maps in four energy bands (0.5–7,
0.5–2, 2–7 and 4–7 keV) were computed. A candidate source list
was created using wavdetect with a low significance thresh-
old (10−4). Source and background counts were extracted on the
found positions using the Chandra point spread function tables
of Laird et al. (2009). The source region is constructed to con-
tain 70% encircled energy fraction (EEF) of the point spread
function (PSF). The background region is a surrounding annulus
between 1.5× 90% EEF PSF and an additional 100 pixel radius.
Other candidate sources are masked from the background ex-
traction region. For each candidate source position, the Poisson
probability that the observed counts are a background fluctua-
tion was computed, and the source accepted if the significance
exceeds 4 × 10−6 (Nandra et al. 2005). This yields a final cata-
logue of 569 sources.

The ACIS EXTRACT (AE) software package (Broos et al.
2010) was used to extract spectra for each source following
Brightman & Ueda (2012). Initially, each source and each point-
ing is dealt with separately. AE simulates the PSFs at each source
position. Regions enclosing 90% PSF at 1.5 keV were used to
extract source spectra. The background regions are constructed
around the sources such that they contain at least 100 counts,
with other sources masked out. AE also constructs local re-
sponse matrix files (RMF) and auxiliary matrix files (ARF) us-
ing ray-tracing. As a final step, AE merges the extracted spectra
so that each source has a single source spectrum, a single local
background spectrum, ARF and RMF. It was possible to extract
567 spectra.

For consistent analysis using Poisson statistics, a model has
to be compared to the observed counts. The background contri-
bution can not be subtracted away because unlike in Gaussian
distributions, the subtraction of two Poisson distributions does
not yield a analytic distribution. It is common practise to use
per-bin background estimates. However, this yields unstable re-
sults in bins with few counts. We thus choose to model the back-
ground in a parametric way using a Gaussian mixture model
(see Appendix A for details). This may not be physical but pro-
vides a good approximation to the background which is very
similar to the On-orbit background measurements in Baganoff
(1999) (compare the left panel of Fig. 2 therein with Fig. A.1).
In particular we model a number of instrumental emission lines
by introducing Gaussians at mean energies of 1.486 (Al Kα),
1.739 (Si Kα), 2.142 (Au Mα, β), 7.478 (Ni Kα), 9.713 (Au Lα;
all in keV, Thompson et al. 2001). We allow the centres of these
lines to vary within 0.1 keV. A feature at ∼8.3 keV (possibly
Ni/Au lines) is described by three additional Gaussians, while
the overall continuum shape is modelled of using a flat contin-
uum level and two Gaussians at softer energies (see Appendix A
for details). All background model parameters (means, widths,
heights) are then fitted to the background spectrum of each
source. The goodness of the fit is evaluated using Q–Q plots (see
Appendix A for details). The found parameters then remained

fixed for the subsequent X-ray spectral analysis of the source
spectrum. In general, there may be cases where simultaneous
analysis of background and source model parameters provides
better results. However, because the larger background region
captures many more background photons than the source region,
the background model is well constrained by the background
data alone.

X-ray spectra extracted from survey data have to be as-
sociated with multi-wavelength data to obtain a measure of
the distance of each source, i.e. redshifts. For identification of
counterparts, the J/K/H-band positions from the CANDELS
(Koekemoer et al. 2011; Grogin et al. 2012) CDFS field (Guo
et al. 2013; Hsieh et al. 2012) are used in combination with mid-
infrared positions from IRAC (Damen et al. 2011; Ashby et al.
2013). A Bayesian method was developed that matches X-ray
positions to mid- and near-infrared counterparts simultaneously
(Budavári & Szalay 2008; Salvato et al. in prep). For 528 sources
optical counterparts have been found (see Hsu et al., in prep).
For 301 sources, reliable spectroscopic redshifts are available
(Hathi et al. in prep.); for 185 of the remaining sources, pho-
tometric redshifts were successfully computed, giving a total of
476 sources.

Optical, IR and UV photometry was used from the TFIT
10-epoch multi-wavelength catalogue (Guo et al. 2013) within
the CANDELS GOODS South Survey, 32-band data from the
MUSYC survey (Cardamone et al. 2010) and Far/Near-UV from
GALEX. Outside the CANDELS region, TENIS J/K band data
(Hsieh et al. 2012) was used. The computation of photometric
redshift by Hsu et al. (in prep.) follows the same SED fitting pro-
cedures described in Salvato et al. (2011), using SED templates
from Ilbert et al. (2009) and Salvato et al. (2009) and software
developed for Arnouts et al. (1999) and Ilbert et al. (2006).

While it is common practise to merely use the best fit red-
shifts, here we marginalise the probabilities to obtain photomet-
ric redshift probability distributions (“photo-z PDFs”). The ben-
efit is that all solutions are considered in subsequent analysis.
The benefits of propagating the uncertainty of the redshift deter-
mination is demonstrated in Appendix B, by comparing to using
a point estimator. By an instructive example, it is demonstrated
there that Maximum Likelihood fitting methods can significantly
underestimate the uncertainty in the derived parameters. A future
improvement could be to incorporate systematic errors into these
PDFs.

Star-burst galaxies can contaminate the sample and skew the
inferences we try to make about AGN, especially with regards
to the soft energy ranges. We adopt the criteria for inclusion of
AGN from Xue et al. (2011): Sources with LX, 2−10 keV < 3 ×
1042, effective power law index Γeff > 1 and log LX/Lopt < −1
are not used. The criterion selects weak X-ray sources that are
much brighter in the optical, and additionally emit mostly soft
X-rays. This selection is designed to exclude sources with non-
negligable host contribution. Thus, AGNs in star-burst galaxies
and low-luminosity AGN are not studied. Furthermore, objects
classified as stars or galaxies (i.e. host-dominated sources in the
X-ray) by Xue et al. (2011) are removed. 346 AGN remain.

Model selection assumes that one model is the correct one
(see Sect. 5.3 below). For determining whether the model could
produce the data at hand, we adaptively bin the spectrum counts
so each bin contains 10 counts. Then we compute the χ2-Statistic
for the best fit model parameters. If χ2/n > 2, where n is the
number of bins, the object is not used for model comparison.
For low count spectrum, this criterion is relaxed further (2.3 if
less than 500 counts, 3 if less than 100 counts, 5 if less than
50 counts) due to the stronger Poisson variance. These limits

A125, page 5 of 25



A&A 564, A125 (2014)

0 1 2 3 4 5 6
z

101

102

103

104

105

co
u

n
ts

 [
0
.5
−8

 k
e
V

]

Fig. 4. The redshift and number of counts in the 0.5−8 keV band of
the AGN sample. For the redshift, the spectral redshift is shown where
available and otherwise the median on the photometric redshift distri-
bution is used.

were obtained by simulating a flat Poisson spectrum across bins,
so that they exclude the true value in fewer than 1% of the
simulations. The 13 affected sources were visually inspected
in the X-ray and optical and at least 5 of them can be clearly
explained by outliers in the photometric redshift due to con-
taminated photometry or incorrect association. With an outlier
fraction of η = 4−6%, the expected number of outliers is ∼20.
334 AGN remain.

It is worth noting that in this work the selection criteria are
of minor importance, as the unification argument is not applied.
Instead of assuming a common torus that is viewed from a va-
riety of angles, we only require that all sources considered are
built using (a subset of) the same physical processes.

5. Statistical analysis methods

5.1. Parameter estimation

In X-ray spectral analysis it is common practice to vary the pa-
rameters of the spectral components until a certain statistic is
optimized with regard to the observed X-ray spectrum.

Because X-ray sources in deep extragalactic surveys are
typically faint, their spectral bins are filled by counts accord-
ing to a Poisson process. A χ2 statistic is not applicable. Re-
binning the data to use a χ2-statistic is a common practise, how-
ever this results in loss of information in the energy resolution.
Additionally, the reliability of the χ2-estimator is unknown if the
incorrect model (χ2

, n) is used, and thus its confidence inter-
vals are problematic.

The maximum likelihood C-statistic C = −2 × lnLPoisson +

const (Cash 1979), based on the Poisson likelihoodLPoisson, does
not suffer from these issues. However it is not useful as a mea-
sure of goodness-of-fit. Both the C-statistic and χ2 denote the
−2 × ln of a likelihood, and the statements made for C are also
applicable to χ2. While C is not χ2-distributed, ∆χ2

C
is, according

to Wilks’ theorem (Cash 1979; Wilks 1938).
For optimising the parameters, one can not simply step

through the parameter space due to the curse of dimensional-
ity. Typically, local optimisation algorithms like the Levenberg-
Marquardt algorithm (Levenberg 1944; Marquardt 1963) are
employed to iteratively explore the space from a starting point.
The final point is taken as the most likely parameter vector. If

there are multiple, separate, adequate solutions, i.e. local proba-
bility maxima, in the parameter space, these algorithms can not
identify them or jump from one local maximum to the other.

For error estimation, there are three commonly used options:
(1) assume independence of parameters and Gaussian errors, and
estimate the error for each parameter in turn by finding the value
where the statistic drops by a level corresponding to 1σ; (2) as-
sume Gaussian errors, estimate the local derivatives and invert
the Fisher matrix; (3) compute contours of some ∆C value mo-
tivated by the χ2 distribution. The last is more computationally
costly than optimisation and can at most be done in 2 dimen-
sions at a time. These three error estimates are approximations
that are only sufficient in the case where the probability distribu-
tions either approach the shape of a single Gaussian, or the inter-
dependency between parameters is negligible. A general maxi-
mum likelihood approach that does not have these shortcomings
is to estimate the error using simulated data to find a confidence
interval (∆C) that contains the used parameter e.g. 95% of the
time. This is the most costly option, as it fits to generated data
many times.

Alternatively, a Bayesian approach can be adopted, e.g.
van Dyk et al. (2001) introduces Bayesian X-ray spectral anal-
ysis in detail. As before, the Poisson likelihood is used to ex-
plore a parameter space. However, there are some important
differences. The space is now weighted or deformed by pri-
ors. The goal in Bayesian parameter estimation is to identify
sub-volumes which constitute the bulk of the probability inte-
gral over the parameter space. This approach does optimisation
and error estimation simultaneously, but requires an integration
and exploration technique that does not suffer from the curse of
dimensionality.

Markov chain Monte Carlo (MCMC) is a commonly em-
ployed integration method for Bayesian parameter estimation.
This algorithm tests a starting point against a new random point
chosen from the prior distribution with a local bias. With a prob-
ability proportional to the ratio of the two points, the algorithm
picks the new point as the new starting point. With each iteration
producing a point, a chain is created with the interesting property
that parameter vectors are represented proportional to their prob-
ability. This full representation of the parameter space can be
marginalized to look separately at each parameters distribution.
Furthermore, error propagation in derived quantities can be done
correctly without assuming a underlying normal distribution.

MCMC has its own share of problems however. First, con-
vergence, i.e. if a chain has become a proper representation of
the parameter space, can not be tested for. Only non-convergence
may be detected. For example, a chain can stagnate for a while
but at a later point suddenly discover a parameter sub-space of
high probability. When or if this would happen however, can not
be determined. As a local algorithm, MCMC has great difficulty
finding and jumping between well-separated maxima. MCMC
is a powerful algorithm also applicable to high dimensionality,
and thus many extensions and variants have been developed for
MCMC to mitigate these issues.

Our approach for circumventing the problems of MCMC in
exploration and integration of parameter spaces is to use a dif-
ferent Monte Carlo algorithm, Nested Sampling (Skilling 2004).
Nested Sampling keeps a set of fixed size of parameter vec-
tors (“live points”) sorted by their likelihood. These points are
always randomly drawn from the prior distribution. The algo-
rithm then removes the least likely point by drawing points until
one is found with a higher likelihood. Effectively, this approach
“scans” the parameter space vertically from the least probable
zones to the most probable. For each removed point, the volume
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this point is representative for is computed, and the according
probability mass added to the integration. When the remaining
parameter volume is negligible, the algorithm terminates. A dif-
ficulty of this algorithm is to avoid the curse of dimensionality
when drawing from the prior distribution to get higher valued
points.

MultiNest (Feroz et al. 2009) solves this problem efficiently
by clustering the live points into multi-dimensional ellipses, and
drawing from these subspaces under the assumption that higher-
valued points can only be found in proximity of already drawn
points. Because of the clustering, MultiNest can follow distinct
local maxima without difficulty. MultiNest is applicable to the
low-dimensional problems of X-ray spectral modelling. It can
compute points of equal weighting akin to a Markov chain, pro-
vide values and error estimates for each local maximum as well
as marginal probability distributions for each parameter. The in-
tegral over the parameter space is computed globally and for
each local maximum.

5.2. Model comparison

For classic model comparison, Wilks’ theorem can be used,
which states that the difference in the best fit C-statistic is χ2-
distributed with the degrees of freedom equal to the difference
in number of parameters (Wilks 1938). This asymptotic result is
only valid for nested models, i.e. M1 is a special case of M2.

Bayesian model comparison is done by comparing the
integrals over parameter space, called the evidence Z =
∫

π(
−→
θ ) exp

[

− 1
2
C(
−→
θ )

]

d
−→
θ , where

−→
θ is the parameter vector and

π(
−→
θ ) represents the weighting or the deformation of the param-

eter space by the prior. Often, the logarithm log Z is computed.
The Bayes factor B12 = Z1/Z2 is then compared to the a priori
expectation. This method does not require models to be nested
nor does it make assumptions about the parameter space or the
data. Without altering the Bayes factor, the used statistic can be
modified by arbitrary constants as long as they are independent
of the parameters.

Alternatively, information criteria can be used. These are
approximations in the limit using certain assumptions, which
compare the difference in the best fit C-statistic between the
models to an over-fitting penalisation term. Typically, the more
complex model is punished by the additional number of param-
eters. Computation is thus very similar to Wilks’ theorem, al-
though the background is very different.

The Bayesian information criterion (BIC, Schwarz 1978) is
an approximation to Bayesian model comparison. Unlike in the
Bayesian evidence integration, only the maximum likelihood is
needed, as the posterior is assumed to be strongly single-peaked,
making the prior negligible. Because the BIC uses the Laplace
integral approximation, its results are in principle unreliable at
the boundaries of the parameter space (e.g. checking whether
a non-negative parameter is zero). The BIC decides, just like
Bayesian model selection, which model is more probable to have
produced the data. The model with the smallest BIC = C − m ×
ln n should be preferred, where n is the number of observations
(data points) and m donates the number of free parameters of the
model.

The Akaike Information Criterion (AIC, Akaike 1974) is
not rooted in Bayesian inference, but information theory. The
AIC measures the information loss by using a specific model.
Thus it can be said to consider the case of having multiple data

sets and predicting the next. Technically, the Kullback-Leibler
divergence, sometimes referred to as the “surprise” or “informa-
tion gain” is minimised. The model with the smallest AIC =
C − 2 × m should be preferred.

5.3. Model verification

Any model comparison, or more generally any inference prob-
lem, assumes that one of the stated hypotheses is the true one.
If no model is correct, the least bad model will be preferred.
However, this assumption also requires examination.

Traditionally, this is quantitatively addressed by Goodness
of Fit (GoF) measures such as the reduced χ2 for normal dis-
tributions, with posterior-based approaches such as posterior
predictive tests recently being developed (see e.g. Bayarri &
Castellanos 2007). No consensus has been reached on these
methods. Asymptotic results make assumptions not applicable
in practice (e.g. the Likelihood-ratio and F-test are invalid at
boundaries, making them unsuitable for feature-detection prob-
lems, see Protassov et al. 2002). Posterior-based approaches
are diverse, and can be overly conservative (see e.g. Sinharay &
Stern 2003). In the strict sense, there is no probabilistic frame-
work available, frequentist or Bayesian, for testing whether the
fitted model is correct.

We can, however, relax the question to ask whether the
model “explains” the data by looking at the range covered in
the observable. Monte Carlo simulations (parametric bootstrap)
can be performed with the best-fit parameters to check whether
the spectrum can actually be produced by the given model.
This can be computationally expensive however. It is easier to
use a measure of “distance” between model and data (e.g. the
Kolmogorov-Smirnov statistic) to discover potentially problem-
atic cases and to visually examine the data.

Q–Q plots (Wilk & Gnanadesikan 1968, see Appendix A)
provide a generic tool to visualise the goodness of fit, and are
independent of the underlying distribution. The quantiles of the
integrated observed counts are plotted against the integrated ex-
pected counts from the model. A good fit shows a straight line
(y = x). This method is shown in Appendix A: The Q–Q plot is
used for model discovery for improved fits, while model compar-
ison using the AIC tests the significance of the model alterations.

5.4. Experiment design and predictions

When a result turns out to be inconclusive, it is often interesting
to find out whether a future observation can improve the dis-
criminatory power, i.e. how well parameters can be constrained
or whether two models can be distinguished. Classically, simula-
tions are employed with a specific setup. A large number of data
sets is generated and fitted. The distribution of best fit values
then shows the uncertainty.

Alternatively, the Bayesian analysis can be employed.
Here we only consider a simple approach, while Bayesian
Experimental Design theory – a theory based on maximising the
information gain – is not covered. Since the diversity of possi-
ble spectra is less interesting than determining the discriminatory
power regarding parameters or models, it is sufficient to generate
and analyse a single spectrum for each problem as the Poisson
likelihood is already informative of the uncertainty. This was
done in Georgakakis et al. (2013) for Athena+/WFI predictions
to detect and measure outflows. For a grid of problems (L, z)
the ability to distinguish a warm absorbers from a cold absorber
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were tested using the same Bayesian spectral analysis method-
ology laid out here, and the uncertainty of parameters recorded.

5.5. Priors

A model definition in the Bayesian framework would be incom-
plete without describing the priors to the models defined above.
These encode an a priori weighting within the parameter space.
Equivalently, a transformation of the unit space to the parame-
ter space is sought. The simplest case is a uniform prior, giving
equal weight in the parameter space. However, a uniform prior
means something different whether the parameter or its loga-
rithm is used. The parameters are very similar across the models
used, so we describe them all together.

In the problem at hand, we assume the prior distributions to
be independent. We use log-uniform priors for scale variables
such as normalisations and NH. The normalisation of spectral
models is allowed to vary between 10−30 and 1. This conser-
vatively contains physically possible photon fluxes. However,
since all considered models contain this parameter, the limits
are irrelevant in practise. The normalisation of individual spec-
tral components is then modelled relative to this model normal-
isation. NH is defined from 1020 to 1026 cm−2. The photon in-
dex Γ is modelled after the local sample analysed in Nandra &
Pounds (1994), as a normal distribution with mean 1.95 and a
standard deviation of 0.15. This encodes the assumption that
distant AGNs behave like local AGNs with regard to their in-
trinsic spectrum. There is a degeneracy between NH and Γ in
that a steeper power law can be flattened by absorption. Hence,
placing a prior on Γ plays an important role in constraining NH.
Nevertheless, we found that our results (e.g. the NH distribution
of the analysed sample) are insensitive to other choices (for in-
stance Γ = 1.68±0.3 from de Rosa et al. 2012), as the data drive
the result in the majority of cases. While redshift and Γ use in-
formed priors, all remaining parameters, unless otherwise stated,
are assumed to be location parameters and thus have a uniform
prior.

Of course we are not interested in our prior beliefs, but
in how the data strengthens or weakens hypotheses and re-
weights parameter space. If the data has no discriminatory
power, there is no information gain and the prior and poste-
rior probability distributions will look the same. The differ-
ence between the prior and posterior can be measured using
the Kullback-Leibler divergence (Kullback & Leibler 1951) as

KL =
∫

posterior(x) log
posterior(x)

prior(x)
dx, essentially a integral dif-

ference across the parameter space. The KL divergence is mea-
sured in ban, a unit of information or entropy. A considerable
information gain is e.g. KL > 0.13 bans which corresponds
to halving the standard error of a Gaussian. We will restrict
ourselves to computing the information gain only for the NH

parameter.

For model comparison, we furthermore need to specify our
a priori preference of models. We consider two approaches: a)
pair-wise comparisons from low to high complexity (e.g. torus
vs. torus+scattering, see Fig. 3), and between models of
the same complexity. We adopt the scale of Jeffreys (1961): a
Bayes factor above 100 is “decisive”, 30 “very strong evidence”,
10−30 “strong evidence”, 3−10 “substantial evidence”. In log Z,
this corresponds to differences of 2, 1.5, 1 and 0.5 respectively.
In case of a Bayes factor below 10 we remain with the sim-
pler model. b) Comparing all models simultaneously to find the
model with the highest evidence. In both cases we consider the
models a priori equally probable.

5.5.1. Implementation

For the spectral analysis in the framework of Bayesian analy-
sis, the MultiNest library was used and two software packages
were created: PyMultiNest is a generic package for connect-
ing Python probability functions with the MultiNest library,
as well as model comparison and parameter estimation analy-
sis of the MultiNest output. BXA is a package that connects
the Sherpa X-ray analysis framework (Freeman et al. 2001)
with our Bayesian methodology. (Py)MultiNest repeatedly
suggests parameters on a unit hypercube which are transformed
by BXA into model parameters using the prior definitions. BXA
then computes a probability using Sherpas C-stat implementa-
tion, which is passed back to (Py)MultiNest. (Py)MultiNest
can then be used to compute Bayes factors, create one or
two-dimensional marginalised posterior probability distributions
(PDFs) and output summarising Gaussian approximations.

BXA and PyMultiNest are publicly available1. In this work,
MultiNest v2.17 is being used by BXA on Sherpa version 4.4v2
with 400 live points and a log-evidence accuracy of 0.1. For
further analyses, we made extensive use of the NumPy/SciPy,
Matplotlib and Cosmolopy packages (Jones et al. 2001; Hunter
20072).

6. Results

The Bayesian methodology of parameter estimation and model
comparison presented in Sect. 5 is applied using the models in-
troduced in Sect. 3 to all sample spectra (see Sect. 4). To demon-
strate the methodology, we first discuss a single source. Then we
apply model comparison across the full sample.

6.1. Source 179

Source 179 (spectroscopic z = 0.605, GOODS-MUSIC 15626)
was detected with 2485 counts in the 0.5−10 keV band at
RA/Dec = (3:32:13.23, –27:42:41.02). This source was chosen
because it illustrates the model selection well, showing several
features, namely the Fe-Kα line, scattering and absorption. In
the next few paragraphs we present the source’s spectrum and
how well different models reproduce them. Figure 5 overlays
different models to the observed data. For brevity, only a subset
of models are included in this presentation, namely powerlaw,
wabs, torus+scattering and wabs+pexmon+scattering.
We then show the results of model-selection for this object in
Table 1, where the log Z-column (normalised to highest) shows
the computed evidence. Finally, the derived posterior parameters
are shown.

A power law model (powerlaw) does not provide a good fit.
This can be seen in the deviations between model and data points
in the upper left panel, and also in the fact that this model has
the lowest evidence of all models Table 1 (Col. 5). Furthermore,
the derived photon index, Γ = 0.8 ± 0.05 is unlikely and would
constitute a 7σ outlier.

Obscuration is expected in some sources, and the wabs
model indeed improves the fit. The model follows the spectrum
much closer (upper right panel in Fig. 5) with a line-of-sight
absorption of NH = 22.5 ± 0.1. The evidence for this model is
significantly higher, and rules out the powerlaw model. Here
we consider a difference of log Z1 − log Z2 > log 10 = 1 as

1 https://github.com/JohannesBuchner/BXA
2 http://roban.github.com/CosmoloPy/
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Fig. 5. Observed (convolved) spectrum of object 179, binned for plotting to 10 counts per bin. Shown are analyses using various models and their
individual components: powerlaw (upper left), wabs (upper right), torus+scattering (lower left) and wabs+pexmon+scattering (lower
right). The posterior of the parameters are used to compute the median and 10%-quantiles of each model component.

Table 1. Model selection results for object 179.

Model L2−10keV Γ NH KL|NH
log Z p(M|D) BIC AIC

(1) (2) (3) (4) (5) (6) (7) (8)

torus+pexmon+scattering 43.35+0.01
−0.01

1.87+0.1
−0.1

22.44+0.05
−0.06

1.43 0.0 40.0% –109.40 –122.59

sphere+pexmon+scattering 43.35+0.01
−0.01

1.88+0.1
−0.1

22.44+0.05
−0.05

1.46 –0.1 30.2% –109.40 –122.59

wabs+pexmon+scattering 43.34+0.01
−0.01

1.88+0.1
−0.1

22.49+0.05
−0.06

1.44 –0.1 29.0% –109.43 –122.62

torus+scattering 43.39+0.01
−0.01

1.76+0.1
−0.1

22.45+0.05
−0.06

1.42 –2.0 0.4% –105.18 –113.97

sphere+scattering 43.39+0.01
−0.01

1.77+0.1
−0.1

22.46+0.05
−0.06

1.45 –2.1 0.3% –105.87 –114.67

wabs+scattering 43.39+0.01
−0.01

1.75+0.1
−0.1

22.51+0.05
−0.06

1.44 –2.7 0.1% –103.08 –111.88

sphere 43.35+0.01
−0.01

1.57+0.1
−0.1

22.23+0.05
−0.04

1.52 –4.7 0.0% –98.07 –102.47

torus 43.35+0.01
−0.01

1.56+0.1
−0.1

22.22+0.05
−0.04

1.54 –4.7 0.0% –97.63 –102.02

wabs 43.35+0.01
−0.01

1.55+0.1
−0.1

22.28+0.04
−0.04

1.58 –5.5 0.0% –95.13 –99.53

powerlaw 43.35+0.01
−0.01

0.80+0.0
−0.0

–27.9 0.0% 0.00 0.00

Notes. Derived luminosity (logarithmic, in erg/s) (2), photon index (3), and column density (4, logarithmic, in cm−2) are shown with 1σ-equivalent
quantile errors (see Fig. 6 for the posterior distributions). The fifth column shows the information gain in column density in ban (see text). The last
four columns show the model comparison results based on log-evidence, posterior assuming all models have same prior probability, BIC and AIC.

a significant preference (see Sect. 5.5). The same is true for
sphere and torus models not shown here.

Comparing the data with the model prediction in the wabs
spectrum, a line is visible at ∼4 keV as well as an ex-
cess of soft energy counts. The former coincides with the
Fe-Kα line, while we expect to model the latter with the

+scattering component. Considering torus+scattering
and wabs+pexmon+scattering (lower panels in Fig. 5), they
both model the observed counts well. However, the Fe-Kα line
is clearly visible in the data. Compared to the simple absorption
models, the addition of +scattering and +pexmon increases
the evidence (see Table 1), hence these models are preferred,
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while the other models, e.g. the widely used wabs+scattering,
are ruled out for this source.

When comparing models, an important aspect is the model-
dependence of derived physical parameters. In Table 1, we show
the intrinsic luminosity, photon index and line-of-sight column
density. These are computed by the posterior values and sum-
marised using 1σ-equivalent quantiles. The marginal posterior
distributions are shown in Fig. 6. Simple absorption model like
wabs try to compensate the soft X-rays by using a flatter spec-
trum with less absorption. Both the +scattering and +pexmon
component increase the photon index. As these additional com-
ponents only take up a fraction of the intrinsic power law compo-
nent, the changes in intrinsic luminosity are small. Despite these
changes, in between obscurer geometries (i.e. wabs, torus,
sphere), the values are consistent.

Furthermore, it is important to check whether the results on
the derived physical parameters are strongly influenced by the
prior. For example, for a weak source with data of no discrimi-
natory power, the posterior of NH would look like the prior (log-
uniform). We use the KL-divergence (see Sect. 5.5), also known
as the information gain or knowledge update, to measures the
“distance” between prior and posterior of NH. For this particular
source, the values are shown in Col. 4 of Table 1. For reference, a
considerable information gain is e.g. KL > 0.13 bans which cor-
responds to halving the standard error of a Gaussian. Because
NH is well-constrained in this source compared to the prior, the
KL|NH

values are high, and the posterior is not dominated by the
prior.

The BIC and AIC values (Cols. 7 and 8 of Table 1, lower val-
ues are preferred) show the same preferences as the Bayesian ev-
idence computations. They are an approximate method of model
selection based on the likelihood ratio and parameter penalisa-
tion. There are however important differences to the Bayesian
model selection (see Sect. 5.2 for details). The evidence and its
approximation, the BIC, can be used to express how much more
probable a model is compared to the others based on the data
(Col. 6). The AIC, in contrast, measures the information loss by
using a specific model. In this single source, the model selection
prefers models with absorption, scattering and an additional re-
flection component (pexmon). However, no preference is found
between the geometries of wabs, torus and sphere. To im-
prove the discriminatory power, we combine the evidence of the
full sample.

6.2. Model selection on the full sample

We present the results for the full sample in two forms. Firstly,
in each source, we perform model comparison between each
pair of models (arrows in Fig. 3). We count for how many
sources a preference was found. This is shown in Fig. 7, where
the two numbers indicate the two directions. For instance, in
powerlaw sources, the (simpler) powerlaw model is preferred
over the torus, while in 170 sources, the torus is preferred. The
size of the arrows visualises the same information. There is clear
preference for absorption, scattering and reflection in ∼170,
∼20 and >5 cases respectively, showing that in a substantial
number of sources these components are required. Between
wabs+pexmon+scattering, torus+pexmon+scattering

and sphere+pexmon+scattering, there is no clear trend,
however the torus geometry is preferred most often. This
indicates some variety in the obscurer geometry between
sources.

Secondly, we show the model comparison across all sources
in Table 2. For each model, the evidence is stacked in Col. 3
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Fig. 7. Model comparison for the three obscuration models. The arrow
size and numbers indicate the number of sources, for which one model
is strongly preferred over the other.

by summing the log Z values. This form of model compari-
son assumes that one common model describes all sources. For
comparison, Col. 2 shows the number of sources for which
the model was ruled out by the other models. As shown with
Source 179 above, individual sources can already have strong
preferences in the model selection. To have a result descriptive of
the sample that is not dominated by outliers, we apply bootstrap-
ping. Sources are drawn with repetition, and the same quantities
(number of rejections, summed log Z values) are computed, and
taking all draws together the mean and root mean square is es-
timated. Additionally, we compute for each draw whether this
model is ruled out (

∑

log Z1 >
∑

log Z2 + 1). If the model is
ruled out in 100% of draws (Col. 6), the result is robust against
bootstrapping and thus there is confidence that this result will
also hold for the parent sample and is not dominated by outliers.

The power law model (powerlaw) has the lowest evidence
and is ruled out by simple absorption models. These in turn
are ruled out by absorption with additional scattering (in Fig. 7,
strongly preferred in 15−23 objects). Then, for 6−23 objects ad-
ditional pexmon reflection is strongly preferred.

The remaining models are thus such that absorption,
scattering and reflection are required. The number of objects
for which a model is rejected remains comparable between
wabs+pexmon+scattering, sphere+pexmon+scattering

and torus+pexmon+scattering, with the latter having the
highest evidence. The results for the full sample have significant
large differences in

∑

log Z. But when bootstrapping the values
show large variation and overlap broadly, showing that the differ-
ence is not robust against bootstrapping, and sample-dependent.
This indicates considerable variation in evidence, i.e. variation
in the models preferred, between sources. We investigate this
by splitting the samples by NH (lower segments of Table 2).
For this, we assign a source to a NH bin if the 10% quantiles
of the posterior values determined from torus+scattering
fall inside. As indicated before, NH is comparable between
absorption models. Figure 9 shows the differences in evidence
between the two best models, wabs+pexmon+scattering and
torus+pexmon+scattering in blue circles.

In the Compton-thick regime (NH
>∼ 1024 cm−2),

torus+pexmon+scattering is consistently strongly pre-
ferred. However, both the table and the figure show only
mild indication that the torus+pexmon+scattering model
is the best across the full sample. Thus some sources
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Table 2. Sample model comparison.

Sample results Bootstrapped results
Model # rej

∑

log Z # rej
∑

log Z ruled out
(1) (2) (3) (4) (5) (6)

All (334 sources)
torus+pexmon+scattering 11 −85.6 10 ± 3.4 −85.4 ± 8.0 9 ± 28%
wabs+pexmon+scattering 8 −93.4 8 ± 2.7 −93.6 ± 7.6 85 ± 35%
sphere+pexmon+scattering 11 −95.3 10 ± 3.3 −95.1 ± 7.8 100 ± 5%
torus+scattering 16 −116.8 16 ± 4.0 −117.3 ± 11.8 100 ± 0%
sphere+scattering 21 −127.3 21 ± 4.6 −127.3 ± 10.3 100 ± 0%
wabs+scattering 37 −167.6 37 ± 5.7 −168.6 ± 14.2 100 ± 0%
torus 39 −188.2 39 ± 5.9 −190.4 ± 20.0 100 ± 0%
sphere 55 −233.1 55 ± 6.8 −235.3 ± 22.3 100 ± 0%
wabs 59 −270.9 59 ± 6.8 −274.1 ± 26.9 100 ± 0%
powerlaw 187 −2657.9 186 ± 9.6 −2704.8 ± 412.6 100 ± 0%

log NH = 20−22 (54 sources)
wabs+pexmon+scattering 2 −24.0 2 ± 1.3 −24.4 ± 5.1 54 ± 50%
sphere+pexmon+scattering 2 −24.4 2 ± 1.3 −24.9 ± 5.3 63 ± 48%
powerlaw 7 −24.9 7 ± 2.7 −25.2 ± 9.4 44 ± 50%

log NH = 22−23 (47 sources)
torus+pexmon+scattering 0 −5.3 0 ± 0.0 −5.2 ± 0.7 0 ± 0%
sphere+pexmon+scattering 0 −6.6 0 ± 0.0 −6.5 ± 0.7 70 ± 46%
wabs+pexmon+scattering 0 −7.5 0 ± 0.0 −7.5 ± 0.7 98 ± 14%
torus+scattering 3 −13.1 2 ± 1.6 −12.6 ± 3.5 98 ± 14%

log NH = 23−24 (51 sources)
wabs+pexmon+scattering 0 −10.1 0 ± 0.0 −10.1 ± 1.1 6 ± 24%
torus+pexmon+scattering 4 −12.6 3 ± 1.8 −12.4 ± 2.2 67 ± 47%

log NH = 24−26 (14 sources)
torus+scattering 0 −1.5 0 ± 0.0 −1.5 ± 0.5 7 ± 26%
torus+pexmon+scattering 0 −1.7 0 ± 0.0 −1.7 ± 0.3 7 ± 26%
torus 3 −9.8 3 ± 2.1 −10.3 ± 7.1 93 ± 26%

log NH = 22−26 (176 sources)
torus+pexmon+scattering 4 −30.2 4 ± 1.9 −30.0 ± 3.1 0 ± 0%
wabs+pexmon+scattering 6 −46.4 6 ± 2.5 −46.6 ± 5.1 99 ± 8%

z > 1 (229 sources)
torus+pexmon+scattering 8 −57.6 8 ± 3.0 −58.9 ± 7.7 11 ± 32%
wabs+pexmon+scattering 5 −64.5 5 ± 2.3 −65.2 ± 7.7 80 ± 40%
torus+scattering 7 −67.7 7 ± 2.5 −68.5 ± 7.7 100 ± 7%

z > 2 (96 sources)
torus+pexmon+scattering 4 −28.4 4 ± 2.0 −28.8 ± 6.1 25 ± 43%
torus+scattering 3 −30.2 2 ± 1.6 −30.8 ± 6.0 75 ± 43%
wabs+pexmon+scattering 2 −30.8 2 ± 1.3 −31.7 ± 5.9 66 ± 47%
sphere+scattering 7 −39.0 7 ± 2.4 −39.9 ± 5.8 99 ± 10%

Notes. Considering each source in turn, the second column shows in how many sources model comparison ruled out the particular model. The
third column shows the total evidence across all sources, relative to the best evidence. The following columns show the same statistics, but
using bootstrapping on the sample, making the computed quantities more robust against outliers. The last column computes how often in the
bootstrapping the model was ruled out based on the total evidence (10 times less likely than other models). In the lower table segments, the
sample is split by log NH, estimated using the 90% quantiles of the torus+scattering model posterior. Models with mean 100% and root mean
square 0% in Col. 6 are not shown in the lower segments.

must favour wabs+pexmon+scattering, while others favour
torus+pexmon+scattering (see Fig. 9).

A further concern might be that low-redshift sources with
many counts dominate the result, ignoring the target population
of our inference. The last two segments of Table 2 shows the
result of selecting only sources with z > 1 and z > 2 respectively.
The inference results in this regime are entirely consistent with
the results for the full sample.

Overall however, torus+pexmon+scattering can be con-
sidered the best model. We release a catalogue of the derived
quantities for each source in the CDFS (Table 3 shows an ex-
cerpt, Table 4 lists all Compton-thick sources; the complete cat-
alogue is available electronically). In particular, we list column

densities, intrinsic power law index, intrinsic luminosity as well
as the relative normalisations of the additional scattering and
reflection components. Full probability distributions are avail-
able on request. The most important parameters for e.g. luminos-
ity function studies are L2−10keV, z and NH, which are visualised
in Fig. 8.

Figure 11 shows a comparison to previously published works
in the CDFS. Without going into detail here (see figure caption),
the found Compton-thick AGN are in agreement with the sam-
ple found by Brightman & Ueda (2012), except that our selec-
tion criterion removes a number of sources whose soft photons
are dominated by stellar processes. One source (ID 186 in their
paper), is not found to be a Compton-thick AGN, as a different
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Fig. 8. Luminosity-redshift plot of the sample. The median of the in-
trinsic luminosity (logarithmic, in erg/s) and redshift posterior proba-
bilities have been used from the torus+pexmon+scattering model.
Sources are classified as Compton-thick (NH > 1024 cm−2), obscured
(1022 cm−2 < NH < 1024 cm−2) or unobscured (NH < 1022 cm−2)
when the majority of the probability posterior of NH lies in the re-
spective range. Because of their heavy absorption, the detection of
Compton-Thick AGN is biased towards higher luminosities, compared
to Compton-thin AGN.

redshift from the improved catalogue (Hsu et al., in prep) was
used.

7. Discussion

Before putting the results into context, we review our
methodology.

7.1. X-ray spectral analysis methodology

We have presented a new framework and method for analysing
X-ray spectra, relying on Bayesian inference using nested sam-
pling. In particular, parameter estimation and model compari-
son are easily possible and overcome considerable limitations of
current methods (see Sect. 5 for a detail discussion of various
methods):

• No binning of data. Low-count and high-count sources are
treated the same way using Poisson statistics, as with C-stat in
the well-established maximum likelihood estimation methods.
No information loss by binning needs to be introduced.
• Background modelling. The background is modelled with

a continuous non-physical model (Gaussian mixture). Unlike
other options (background subtractions, bin-wise background
estimation), this method remains consistent with the used
Poisson statistics.
• Bayesian parameter estimation. The presented Bayesian

framework allows the estimation of parameters where full
probability distributions for each parameter are a natural out-
come. Constraints such as unphysical regions in parame-
ter space, knowledge from local samples, and information
from other studies can be incorporated. For instance, with the
Γ-prior we include the assumption that high-redshift AGN be-
have like local AGN in some regards, and we propagate the
uncertainty of redshifts estimates for each source.

• Model comparison. The comparison of models used here
overcomes the limitations of current methods. Likelihood-
ratio based methods are approximate results in the limit,
which can not compare non-nested models. Unlike approxi-
mations like information criteria, the approach is general so
that it is unproblematic for model comparison at boundaries.

The implementation overcomes the weaknesses of standard
MCMC, namely unknown convergence and multi-modal param-
eter spaces (see the discussion of methodology in Sect. 5, and
also the Appendix B for a specific case). The computational
cost is not higher than classical fitting with error estimation or
MCMC.

Taking the small step from the MLE-based approach
(“C-stat”) to a Bayesian methodology, one might be concerned
that the priors influence the result too much. Similarly, one may
ask why parametric models are used when no physical model is
available? Non-parametric methods would remove the a-priori
assumption of a specific model. Often however, physically mo-
tivated models are available, and the same is true for priors.
Similarly to comparing multiple competing models, multiple
priors can be tried to test the robustness of the results. To address
the concern that prior distributions may dominate the poste-
rior distribution, the Kullback-Leibler divergence (“information
gain”) is a useful characterisation of how strongly the posterior
was influenced by the prior (see Sect. 5).

The presented method performs better in model selection
than likelihood-ratios, which are also problematic for the mod-
els considered here (see Appendix C, and the extensive discus-
sion of methods in Sect. 5). For goodness-of-fit, we use the
Kolmogorov-Smirnov measure to detect potential problems in
background model fits, and visually inspect the deviations using
Q–Q plots (see Appendix A).

7.2. Implications for the geometry of the obscurer
of AGN

AGN are confirmed to have line-of-sight obscuration using our
methodology by ruling out a simple power law in favour of any
of the obscuration models (see Table 1 for decisive evidence on a
single source, and Table 2 for the full sample). The improvement
of the fit by adding photo-electric absorption (wabs) is shown in
Fig. 5 for a single source (ID 179), where the simple power law
clearly does not fit the data. If a significant portion of AGN con-
sisted of powerlaw spectra with a low photon index, this simpler
model would have been preferred in the bootstrapped results of
Table 2. This hypothesis by Hopkins et al. (2009) can clearly be
rejected.

Additionally, a fraction of energy which has not seen any
obscuration is apparent in the soft energies (shown in Fig. 5, up-
per right panel). This component can be attributed to Thomson-
scattering by ionised material within the opening angle of the
torus, scattering the intrinsic spectrum into the line-of-sight.
Models without this component are ruled out, as can be seen
from the large differences in evidence values in Table 1 for
Source 179, and in Table 2 for the full sample. This soft compo-
nent may be confused with other processes such as thermal disk
emission or stellar processes. To remedy this, we removed host-
dominated sources, and further only considered the subsample of
z > 1, where only the >1 keV photons enter the observed band.
As the lower segments of Table 2 show, this component is still
strongly preferred. The detection of the soft scattering compo-
nent is in agreement with Brightman & Ueda (2012), who used
an ad-hoc method for model selection.

A125, page 12 of 25

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322971&pdf_id=8


J. Buchner et al.: Absorption and reflection model comparison of AGN in the CDFS

T
a

b
le

3
.
C

at
al

o
g

u
e

(e
x

ce
rp

t)
.

ID
R

A
D

ec
C

o
u

n
ts

z
L

2
−

1
0

k
eV

N
H

Γ
f s

ca
t

R
K

L
| N

H
N

o
te

s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0

)
(1

1
)

(1
2

)

4
9

3
:3

2
:1

4
.0

1
–

2
7

:5
1

:0
0

.5
3

1
9

9
7

0
.1

2
2

4
1
.6

5
+

0
.0

1
−

0
.0

1
2

2
.1

7
+

0
.0

2
−

0
.0

2
1
.8

0
+

0
.0

5
−

0
.0

5
2
.2
+

0
.4

−
0
.4

%
0
.0

6
+

0
.0

6
−

0
.0

3
1
.4

9
O

,
s

2
4

2
3

:3
1

:5
2

.3
5

–
2

7
:4

7
:5

2
.7

9
7

6
2

1
.8

4
+

0
.0

2
−

0
.0

3
4

3
.0

4
+

0
.0

3
−

0
.0

3
2

1
.6

2
+

0
.3

1
−

0
.4

4
1
.8

7
+

0
.0

5
−

0
.0

5
0
.0
+

0
.0

−
0
.0

%
6
.3

1
+

1
.3

0
−

1
.3

3
0
.3

6
U

,
R

2
1

3
:3

2
:1

2
.9

4
–

2
7

:5
2

:3
6

.5
7

9
5

7
2

.5
6

2
4

4
.1

2
+

0
.0

3
−

0
.0

3
2

3
.2

1
+

0
.0

3
−

0
.0

3
1
.7

6
+

0
.0

6
−

0
.0

4
0
.0
+

0
.0

−
0
.0

%
1
.0

8
+

0
.3

7
−

0
.3

1
1
.3

4
O

,
R

1
3

1
3

:3
2

:2
2

.5
4

–
2

7
:4

6
:0

3
.8

4
5

9
7

1
.7

2
7

4
3
.7

5
+

0
.0

5
−

0
.0

5
2

3
.3

7
+

0
.0

4
−

0
.0

5
1
.8

5
+

0
.0

5
−

0
.0

5
5
.9
+

0
.8

−
0
.8

%
1
.2

5
+

0
.6

6
−

0
.6

8
1
.2

5
O

,
S

1
1

8
3

:3
1

:5
2

.5
3

–
2

7
:4

6
:4

2
.3

0
1

2
9

5
0

.6
7

3
4

2
.6

3
+

0
.0

2
−

0
.0

2
2

1
.7

7
+

0
.0

6
−

0
.0

6
1
.9

0
+

0
.0

7
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
2
.1

8
+

0
.6

4
−

0
.6

1
1
.0

2
U

,
R

3
3

8
3

:3
2

:4
9

.2
0

–
2

7
:4

0
:5

0
.0

1
6

6
7

1
.2

6
+

0
.0

0
−

0
.0

0
4

3
.9

3
+

0
.0

8
−

0
.0

8
2

3
.8

8
+

0
.0

6
−

0
.0

6
1
.9

9
+

0
.0

6
−

0
.0

6
3
.6
+

0
.9

−
0
.7

%
0
.1

4
+

0
.2

5
−

0
.0

8
1
.0

5
O

,
s

1
4

4
3

:3
2

:2
9

.9
8

–
2

7
:4

5
:2

9
.9

6
3

9
6

1
1

.2
1

8
4

3
.8

1
+

0
.0

1
−

0
.0

1
2

0
.5

2
+

0
.1

9
−

0
.1

7
1
.7

5
+

0
.0

2
−

0
.0

2
0
.0
+

0
.0

−
0
.0

%
1
.1

4
+

0
.2

4
−

0
.2

1
0
.7

1
U

,
R

1
0

4
3

:3
2

:0
8

.6
6

–
2

7
:4

7
:3

4
.3

4
2

8
0

1
9

0
.5

4
3

4
3
.8

3
+

0
.0

0
−

0
.0

0
2

0
.8

2
+

0
.0

4
−

0
.0

5
1
.9

5
+

0
.0

1
−

0
.0

1
0
.0
+

0
.0

−
0
.0

%
0
.7

9
+

0
.0

9
−

0
.0

9
1
.2

1
U

,
R

1
9

0
3

:3
2

:2
7

.0
0

–
2

7
:4

1
:0

5
.1

1
3

2
0

9
9

0
.7

3
4

4
4
.2

0
+

0
.0

0
−

0
.0

0
2

0
.0

8
+

0
.0

4
−

0
.0

3
1
.9

7
+

0
.0

1
−

0
.0

1
0
.0
+

0
.0

−
0
.0

%
0
.7

8
+

0
.0

8
−

0
.0

8
1
.3

6
U

,
R

9
2

3
:3

1
:5

8
.1

1
–

2
7

:4
8

:3
3

.9
7

9
1

5
0

.7
3

4
4

2
.5

3
+

0
.0

2
−

0
.0

2
2

1
.2

6
+

0
.1

4
−

0
.1

8
1
.8

4
+

0
.0

7
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
3
.3

9
+

0
.8

4
−

0
.7

2
0
.6

1
U

,
R

1
7

9
3

:3
2

:1
3

.2
3

–
2

7
:4

2
:4

1
.0

2
2

4
8

5
0

.6
0

5
4

3
.1

7
+

0
.0

1
−

0
.0

1
2

2
.4

5
+

0
.0

2
−

0
.0

3
1
.9

0
+

0
.0

5
−

0
.0

4
7
.4
+

0
.8

−
0
.9

%
1
.6

1
+

0
.2

9
−

0
.3

1
1
.4

5
O

,
S

,
R

2
8

7
3

:3
1

:5
5

.4
0

–
2

7
:5

4
:4

7
.2

1
6

1
8

0
.7

3
7

4
3
.7

2
+

0
.0

3
−

0
.0

3
2

3
.0

2
+

0
.0

4
−

0
.0

4
1
.8

9
+

0
.0

7
−

0
.0

6
3
.4
+

0
.6

−
0
.6

%
0
.1

3
+

0
.1

9
−

0
.0

8
1
.3

1
O

,
s

4
3

:3
2

:3
8

.9
0

–
2

7
:5

7
:0

0
.1

7
4

6
8

7
0

.2
9

7
4

3
.0

6
+

0
.0

1
−

0
.0

1
2

2
.5

9
+

0
.0

1
−

0
.0

1
1
.9

1
+

0
.0

4
−

0
.0

4
2
.5
+

0
.2

−
0
.2

%
1
.1

6
+

0
.1

8
−

0
.1

8
1
.7

6
O

,
s,

R

1
3

3
3

:3
2

:3
9

.0
8

–
2

7
:4

6
:0

1
.7

9
1

3
5

5
1

.2
1

6
4

3
.5

6
+

0
.0

2
−

0
.0

2
2

2
.6

0
+

0
.0

3
−

0
.0

4
2
.1

1
+

0
.0

5
−

0
.0

5
9
.4
+

0
.3

−
0
.4

%
0
.8

7
+

0
.4

3
−

0
.4

3
1
.2

6
O

,
S

5
0

3
:3

2
:1

8
.3

4
–

2
7

:5
0

:5
5

.1
3

6
4

7
1

.5
3

6
4

4
.1

8
+

0
.0

4
−

0
.0

5
2

3
.8

0
+

0
.0

3
−

0
.0

3
1
.8

9
+

0
.0

6
−

0
.0

6
1
.0
+

0
.2

−
0
.2

%
0
.1

7
+

0
.2

4
−

0
.1

0
1
.4

6
O

,
s

1
8

1
3

:3
2

:4
7

.8
8

–
2

7
:4

2
:3

2
.7

8
8

7
1

8
0

.9
7

9
4

4
.1

2
+

0
.0

0
−

0
.0

0
2

2
.3

0
+

0
.0

2
−

0
.0

2
1
.8

6
+

0
.0

2
−

0
.0

2
7
.3
+

1
.0

−
1
.1

%
0
.0

5
+

0
.0

4
−

0
.0

2
1
.5

6
O

,
S

1
3

2
3

:3
2

:0
3

.6
6

–
2

7
:4

6
:0

3
.7

4
1

3
8

0
0

.5
7

4
4

3
.0

7
+

0
.0

2
−

0
.0

2
2

2
.7

9
+

0
.0

2
−

0
.0

2
1
.8

8
+

0
.0

6
−

0
.0

5
0
.5
+

0
.4

−
0
.5

%
1
.2

6
+

0
.3

2
−

0
.3

0
1
.5

6
O

,
R

7
3

:3
2

:4
0

.8
2

–
2

7
:5

5
:4

6
.7

6
1

5
5

7
3
.2

5
+

0
.0

1
−

0
.0

1
4

4
.8

6
+

0
.0

4
−

0
.0

4
2

3
.9

1
+

0
.0

2
−

0
.0

2
1
.8

6
+

0
.0

6
−

0
.0

5
3
.6
+

0
.6

−
0
.6

%
0
.0

6
+

0
.0

6
−

0
.0

3
1
.4

9
O

,
s

2
0

0
3

:3
2

:3
4

.3
9

–
2

7
:3

9
:1

3
.5

5
1

8
4

8
1
.5

6
+

0
.0

1
−

0
.0

1
4

4
.4

6
+

0
.0

2
−

0
.0

2
2

3
.0

9
+

0
.0

2
−

0
.0

3
2
.0

1
+

0
.0

4
−

0
.0

5
4
.8
+

0
.7

−
0
.7

%
0
.2

0
+

0
.2

6
−

0
.1

3
1
.4

5
O

,
s

N
o

te
s.

T
h

e
p

ar
am

et
er

s
ar

e
d

er
iv

ed
u

si
n

g
th

e
t
o
r
u
s
+
p
e
x
m
o
n
+
s
c
a
t
t
e
r
i
n
g

m
o

d
el

.
(1

)
X

ID
,

(2
,

3
)

ri
g

h
t

as
ce

n
si

o
n

an
d

d
ec

li
n

at
io

n
(J

D
2

0
0

0
)

in
d

eg
re

es
,

(4
)

p
h

o
to

n
co

u
n

ts
o

b
ta

in
ed

in
th

e
an

al
y

se
d

0
.5
−

8
k
eV

ra
n

g
e.

(5
)

R
ed

sh
if

t
w

it
h

(p
o

st
er

io
r)

u
n

ce
rt

ai
n

ti
es

if
p

h
o

to
m

et
ri

c
(s

h
o

rt
en

ed
to

3
si

g
n

ifi
ca

n
t

d
ig

it
s)

.
(6

)
In

tr
in

si
c

lu
m

in
o

si
ty

(2
−

1
0

k
eV

)
in

er
g
/s

.
(7

)
lo

g
ar

it
h

m
o

f
th

e
co

lu
m

n
d

en
si

ty
N

H

in
cm
−

2
.
(8

)
P

h
o

to
n

in
d

ex
;
th

e
p

ri
o

r
w

as
1
.9

5
±

0
.1

5
,
so

if
n

o
in

fo
rm

at
io

n
w

as
g
ai

n
ed

th
is

v
al

u
e

re
m

ai
n

s.
(9

)
S

ca
tt

er
in

g
n

o
rm

al
iz

at
io

n
re

la
ti

v
e

to
th

e
in

tr
in

si
c

p
o
w

er
la

w
.
(1

0
)

R
efl

ec
ti

o
n

n
o

rm
al

iz
at

io
n

o
f

th
e
p
e
x
m
o
n

co
m

p
o

n
en

t
re

la
ti

v
e

to
th

e
in

tr
in

si
c

p
o
w

er
la

w
.
(1

1
)

In
fo

rm
at

io
n

g
ai

n
m

ea
su

re
d

fr
o

m
th

e
N

H
p

o
st

er
io

r
in

b
an

s.
A

s
a

re
fe

re
n

ce
,
th

e
n

ar
ro

w
in

g
o

f
a

G
au

ss
ia

n
fr

o
m

p
ri

o
r

to
p

o
st

er
io

r
b

y
a

fa
ct

o
r

o
f

2
co

rr
es

p
o

n
d

s
to

0
.1

3
b

an
,

an
d

th
u

s
v
al

u
es

h
ig

h
er

th
an

th
at

co
rr

es
p

o
n

d
to

si
g

n
ifi

ca
n

t
d

is
cr

im
in

at
o

ry
in

fo
rm

at
io

n
in

th
e

d
at

a.
(1

2
)

A
n

n
o

ta
ti

o
n

s;
S

w
h

en
f s

ca
t
>

3
%

,
s

w
h

en
f s

ca
t
>

0
.5

%
w

it
h

≥
9

0
%

p
ro

b
ab

il
it

y
;

R
w

h
en

R
>

0
.3

w
it

h
≥

9
0

%
p

ro
b

ab
il

it
y,

i.
e.

st
ro

n
g

ad
d

it
io

n
al
p
e
x
m
o
n

re
fl

ec
ti

o
n

;
C

o
m

p
to

n
-t

h
ic

k
(C

T
)

if
N

H
>

1
0

2
4

cm
−

2
,

C
o

m
p

to
n

-t
h

in
(O

)
if

1
0

2
2

cm
−

2
<

N
H
<

1
0

2
4

cm
−

2
,

u
n

o
b

sc
u

re
d

(U
),

N
H
<

1
0

2
2

cm
−

2
,

ea
ch

w
it

h
≥

5
0

%
p

ro
b

ab
il

it
y.

O
n

ly
so

u
rc

es
w

it
h

R
,

s
o

r
S

ar
e

sh
o
w

n
h

er
e.

A125, page 13 of 25



A&A 564, A125 (2014)

T
a

b
le

4
.
C

at
al

o
g

u
e

(C
o

m
p

to
n

T
h

ic
k

s
o

n
ly

).

ID
R

A
D

ec
co

u
n

ts
z

L
2
−

1
0

k
eV

N
H

Γ
f s

ca
t

R
K

L
| N

H
N

o
te

s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0

)
(1

1
)

(1
2

)

4
6

0
3

:3
2

:2
3

.4
1

–
2

7
:4

2
:5

5
.8

9
1

9
4

2
.1

4
5

4
3
.8

9
+

0
.1

6
−

0
.1

9
2

4
.3

7
+

0
.1

5
−

0
.1

3
1
.9

4
+

0
.0

7
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
0
.3

2
+

0
.5

6
−

0
.2

3
0
.6

1
C

T

4
2

0
3

:3
2

:2
3

.6
0

–
2

7
:4

6
:0

1
.2

3
4

8
1

.0
3

3
4

3
.1

1
+

0
.1

2
−

0
.1

5
2

4
.3

2
+

0
.0

7
−

0
.0

9
1
.9

3
+

0
.0

8
−

0
.0

7
0
.0
+

0
.0

−
0
.0

%
3
.4

5
+

2
.0

3
−

1
.8

1
0
.9

1
C

T

4
1

2
3

:3
2

:4
2

.8
7

–
2

7
:4

8
:0

9
.4

4
6

7
2
.4

2
+

0
.0

4
−

0
.0

5
4

3
.6

9
+

0
.1

6
−

0
.1

9
2

4
.4

2
+

0
.1

4
−

0
.1

3
1
.9

4
+

0
.0

6
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
0
.2

8
+

0
.5

1
−

0
.2

0
0
.5

9
C

T

4
4

8
3

:3
2

:1
9

.4
1

–
2

7
:4

0
:5

1
.7

6
5

2
8

0
.6

8
2

4
3
.7

1
+

0
.0

7
−

0
.0

9
2

5
.0

7
+

0
.3

3
−

0
.3

2
1
.9

9
+

0
.0

8
−

0
.0

7
0
.3
+

0
.1

−
0
.1

%
0
.5

5
+

1
.0

9
−

0
.4

0
0
.3

7
C

T

4
7

4
3

:3
2

:1
5

.8
1

–
2

7
:4

2
:0

6
.7

8
3

3
9

1
.7

1
+

0
.2

1
−

0
.0

5
4

3
.8

5
+

0
.2

1
−

0
.2

2
2

4
.2

1
+

0
.1

5
−

0
.1

5
1
.9

5
+

0
.0

6
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
0
.1

9
+

0
.3

8
−

0
.1

2
0
.5

5
C

T

2
7

1
3

:3
2

:3
3

.8
6

–
2

7
:4

2
:0

4
.3

0
3

0
6

1
.4

5
+

0
.0

1
−

0
.0

1
4

3
.2

0
+

0
.4

2
−

0
.9

9
2

4
.1

6
+

0
.3

4
−

2
.2

9
1
.9

5
+

0
.0

5
−

0
.0

6
0
.4
+

1
.0

−
0
.4

%
1
.0

3
+

1
.7

1
−

0
.6

9
0
.2

5
C

T

4
7

8
3

:3
2

:1
4

.6
0

–
2

7
:5

2
:5

7
.0

6
1

6
4

1
.2

4
+

0
.0

1
−

0
.0

1
4

3
.7

8
+

0
.0

9
−

0
.1

3
2

4
.8

4
+

0
.2

9
−

0
.2

4
1
.9

5
+

0
.0

6
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
0
.4

1
+

0
.9

1
−

0
.2

7
0
.3

6
C

T

4
6

7
3

:3
2

:0
0

.8
0

–
2

7
:5

3
:3

3
.8

4
5

4
1

1
.6

0
+

0
.0

2
−

0
.0

3
4

3
.5

5
+

0
.1

7
−

0
.1

7
2

4
.1

4
+

0
.0

9
−

0
.0

8
1
.9

1
+

0
.0

6
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
2
.0

5
+

2
.0

1
−

1
.4

0
0
.8

5
C

T

4
3

7
3

:3
2

:3
9

.1
5

–
2

7
:4

8
:3

2
.2

6
5

4
2

.4
7

0
4

3
.6

0
+

0
.1

3
−

0
.1

5
2

4
.2

7
+

0
.1

0
−

0
.0

9
1
.9

4
+

0
.0

6
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
0
.3

6
+

0
.7

2
−

0
.2

6
0
.8

4
C

T

3
4

5
3

:3
2

:2
4

.6
7

–
2

7
:5

4
:4

3
.2

4
2

5
5

0
.1

2
3

4
1
.4

1
+

0
.4

1
−

1
.2

1
2

4
.1

3
+

0
.7

4
−

2
.0

2
1
.9

5
+

0
.0

6
−

0
.0

7
0
.5
+

0
.6

−
0
.2

%
0
.3

7
+

0
.9

6
−

0
.2

8
0
.1

6
C

T

4
5

1
3

:3
2

:3
1

.4
9

–
2

7
:5

0
:2

8
.6

4
3

8
1

.6
1

3
4

2
.9

3
+

0
.4

4
−

0
.9

6
2

4
.3

4
+

0
.4

3
−

0
.5

5
1
.9

5
+

0
.0

7
−

0
.0

7
0
.0
+

0
.1

−
0
.0

%
0
.4

0
+

0
.8

8
−

0
.3

0
0
.1

1
C

T

2
6

6
3

:3
2

:1
4

.9
4

–
2

7
:4

2
:2

4
.8

3
9

7
6

1
.8

1
+

0
.0

2
−

0
.0

2
4

4
.7

5
+

0
.1

4
−

1
.3

8
2

4
.9

5
+

0
.4

6
−

3
.9

4
1
.9

4
+

0
.0

5
−

0
.0

5
2
.0
+

0
.8

−
2
.0

%
1
.9

4
+

3
.6

0
−

1
.6

5
0
.3

5
C

T

4
1

6
3

:3
2

:2
1

.7
7

–
2

7
:4

6
:5

6
.9

9
6

4
1
.3

2
+

0
.0

3
−

0
.0

2
4

3
.3

1
+

0
.1

0
−

0
.1

2
2

4
.0

9
+

0
.0

5
−

0
.0

5
1
.9

4
+

0
.0

6
−

0
.0

7
0
.0
+

0
.0

−
0
.0

%
0
.2

8
+

0
.5

9
−

0
.1

8
1
.0

8
C

T

4
0

6
3

:3
1

:4
5

.1
6

–
2

7
:4

9
:4

8
.7

2
5

7
1

3
.1

5
3

4
4
.4

4
+

0
.1

4
−

0
.2

4
2

4
.7

3
+

0
.1

8
−

0
.1

8
1
.9

1
+

0
.0

7
−

0
.0

5
0
.0
+

0
.0

−
0
.0

%
1
.0

9
+

1
.2

9
−

0
.7

5
0
.4

5
C

T

4
0

0
3

:3
2

:2
5

.1
8

–
2

7
:5

4
:4

9
.7

2
3

4
6

1
.0

9
0

4
4
.3

6
+

0
.0

3
−

0
.0

4
2

5
.2

3
+

0
.2

6
−

0
.3

7
1
.8

8
+

0
.0

5
−

0
.0

4
0
.0
+

0
.0

−
0
.0

%
0
.9

4
+

1
.3

9
−

0
.6

1
0
.4

6
C

T

4
0

4
3

:3
2

:3
6

.1
5

–
2

7
:5

0
:3

6
.9

7
1

0
8

1
.6

0
8

4
3
.6

5
+

0
.1

2
−

0
.1

2
2

4
.0

7
+

0
.0

8
−

0
.0

8
1
.9

6
+

0
.0

7
−

0
.0

7
0
.2
+

0
.4

−
0
.2

%
0
.1

6
+

0
.3

2
−

0
.1

0
0
.9

1
C

T

4
0

1
3

:3
1

:5
0

.4
5

–
2

7
:5

2
:1

1
.4

9
5

9
2

1
.3

7
0

4
4
.4

4
+

0
.0

8
−

0
.2

5
2

5
.1

7
+

0
.2

7
−

0
.4

5
1
.9

5
+

0
.0

7
−

0
.0

7
0
.5
+

0
.2

−
0
.3

%
1
.0

2
+

2
.5

2
−

0
.8

1
0
.2

7
C

T

1
5

8
3

:3
2

:2
2

.5
9

–
2

7
:4

4
:2

5
.9

7
1

2
9

0
.7

3
8

4
3
.3

8
+

0
.1

7
−

0
.2

0
2

4
.2

5
+

0
.1

1
−

0
.1

0
1
.9

5
+

0
.0

6
−

0
.0

6
0
.4
+

0
.3

−
0
.2

%
0
.7

5
+

1
.4

8
−

0
.5

4
0
.7

3
C

T

7
7

3
:3

2
:3

5
.7

1
–

2
7

:4
9

:1
6

.1
8

9
5

2
.5

7
8

4
4
.4

3
+

0
.0

4
−

0
.0

4
2

5
.5

0
+

0
.1

2
−

0
.1

4
1
.9

3
+

0
.0

6
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
0
.8

8
+

1
.4

1
−

0
.6

8
0
.7

5
C

T

4
1

7
3

:3
2

:2
1

.9
7

–
2

7
:4

6
:5

6
.0

0
3

5
0

.6
7

0
4

3
.1

8
+

0
.0

7
−

0
.0

9
2

4
.9

9
+

0
.3

0
−

0
.4

0
1
.9

2
+

0
.0

7
−

0
.0

7
0
.0
+

0
.0

−
0
.0

%
0
.2

6
+

0
.5

0
−

0
.1

9
0
.4

1
C

T

5
7

0
3

:3
3

:0
0

.7
6

–
2

7
:4

8
:5

7
.4

6
4

3
8

1
.6

7
+

0
.0

4
−

0
.0

8
4

3
.7

6
+

0
.1

9
−

0
.1

8
2

4
.3

6
+

0
.1

1
−

0
.1

2
1
.9

3
+

0
.0

7
−

0
.0

6
1
.0
+

1
.3

−
0
.9

%
1
.2

4
+

1
.4

9
−

0
.8

9
0
.6

4
C

T

2
2

6
3

:3
2

:1
4

.4
2

–
2

7
:5

1
:1

0
.4

3
1

4
1

1
.5

4
4

4
3
.6

8
+

0
.1

4
−

0
.1

3
2

4
.1

6
+

0
.0

7
−

0
.0

6
1
.9

6
+

0
.0

7
−

0
.0

7
1
.2
+

0
.7

−
0
.5

%
0
.2

3
+

0
.5

5
−

0
.1

4
0
.9

4
C

T

4
4

1
3

:3
2

:2
2

.7
9

–
2

7
:4

5
:2

8
.5

4
4

6
1
.8

9
+

0
.0

4
−

0
.0

4
4

3
.1

5
+

0
.2

7
−

0
.4

7
2

4
.4

4
+

0
.2

3
−

0
.2

4
1
.9

3
+

0
.0

6
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
0
.4

5
+

1
.0

0
−

0
.3

3
0
.2

6
C

T

4
0

8
3

:3
2

:3
3

.2
2

–
2

7
:4

9
:1

5
.9

2
3

8
3
.5

5
+

0
.0

3
−

0
.0

3
4

3
.6

3
+

0
.3

0
−

0
.2

4
2

4
.2

9
+

0
.5

4
−

0
.2

2
1
.9

5
+

0
.0

7
−

0
.0

6
0
.0
+

0
.0

−
0
.0

%
0
.2

6
+

0
.4

0
−

0
.1

6
0
.4

0
C

T

4
5

9
3

:3
2

:2
9

.4
8

–
2

7
:4

3
:2

2
.2

7
1

4
3

1
.6

0
9

4
4
.0

7
+

0
.0

5
−

0
.0

6
2

5
.0

1
+

0
.1

4
−

0
.1

3
1
.9

0
+

0
.0

6
−

0
.0

5
0
.0
+

0
.0

−
0
.0

%
1
.7

7
+

1
.8

1
−

1
.2

1
0
.6

0
C

T

3
8

4
3

:3
2

:4
2

.0
2

–
2

7
:3

9
:4

9
.9

5
5

0
7

0
.1

5
2

4
2
.2

4
+

0
.4

2
−

1
.7

0
2

4
.4

6
+

0
.5

2
−

2
.6

2
1
.9

2
+

0
.0

6
−

0
.0

6
0
.1
+

0
.2

−
0
.1

%
0
.8

1
+

1
.5

6
−

0
.6

1
0
.2

2
C

T

N
o

te
s.

T
h

e
p

ar
am

et
er

s
ar

e
d

er
iv

ed
u

si
n

g
th

e
t
o
r
u
s
+
p
e
x
m
o
n
+
s
c
a
t
t
e
r
i
n
g

m
o

d
el

.
(1

)
X

ID
,

(2
,3

)
ri

g
h

t
as

ce
n

si
o

n
an

d
d

ec
li

n
at

io
n

(J
D

2
0

0
0

)
in

d
eg

re
es

,
(4

)
p

h
o

to
n

co
u

n
ts

o
b

ta
in

ed
in

th
e

an
al

y
se

d
0
.5
−

8
k
eV

ra
n

g
e.

(5
)

R
ed

sh
if

t
w

it
h

(p
o

st
er

io
r)

u
n

ce
rt

ai
n

ti
es

if
p

h
o

to
m

et
ri

c
(s

h
o

rt
en

ed
to

3
si

g
n

ifi
ca

n
t

d
ig

it
s)

.
(6

)
In

tr
in

si
c

lu
m

in
o

si
ty

(2
-1

0
k
eV

)
in

er
g
/s

.
(7

)
lo

g
ar

it
h

m
o

f
th

e
co

lu
m

n
d

en
si

ty
N

H

in
cm
−

2
.
(8

)
P

h
o

to
n

in
d

ex
;
th

e
p

ri
o

r
w

as
1
.9

5
±

0
.1

5
,
so

if
n

o
in

fo
rm

at
io

n
w

as
g
ai

n
ed

th
is

v
al

u
e

re
m

ai
n

s.
(9

)
S

ca
tt

er
in

g
n

o
rm

al
iz

at
io

n
re

la
ti

v
e

to
th

e
in

tr
in

si
c

p
o
w

er
la

w
.
(1

0
)

R
efl

ec
ti

o
n

n
o

rm
al

iz
at

io
n

o
f

th
e
p
e
x
m
o
n

co
m

p
o

n
en

t
re

la
ti

v
e

to
th

e
in

tr
in

si
c

p
o
w

er
la

w
.
(1

1
)

In
fo

rm
at

io
n

g
ai

n
m

ea
su

re
d

fr
o

m
th

e
N

H
p

o
st

er
io

r
in

b
an

s.
A

s
a

re
fe

re
n

ce
,
th

e
n

ar
ro

w
in

g
o

f
a

G
au

ss
ia

n
fr

o
m

p
ri

o
r

to
p

o
st

er
io

r
b

y
a

fa
ct

o
r

o
f

2
co

rr
es

p
o

n
d

s
to

0
.1

3
b

an
,

an
d

th
u

s
v
al

u
es

h
ig

h
er

th
an

th
at

co
rr

es
p

o
n

d
to

si
g

n
ifi

ca
n

t
d

is
cr

im
in

at
o

ry
in

fo
rm

at
io

n
in

th
e

d
at

a.
(1

2
)

A
n

n
o

ta
ti

o
n

s;
S

w
h

en
f s

ca
t
>

3
%

,
s

w
h

en
f s

ca
t
>

0
.5

%
w

it
h

≥
9

0
%

p
ro

b
ab

il
it

y
;

R
w

h
en

R
>

0
.3

w
it

h
≥

9
0

%
p

ro
b

ab
il

it
y,

i.
e.

st
ro

n
g

ad
d

it
io

n
al
p
e
x
m
o
n

re
fl

ec
ti

o
n

;
C

o
m

p
to

n
-t

h
ic

k
(C

T
)

if
N

H
>

1
0

2
4

cm
−

2
,

C
o

m
p

to
n

-t
h

in
(O

)
if

1
0

2
2

cm
−

2
<

N
H
<

1
0

2
4

cm
−

2
,

u
n

o
b

sc
u

re
d

(U
),

N
H
<

1
0

2
2

cm
−

2
,

ea
ch

w
it

h
≥

5
0

%
p

ro
b

ab
il

it
y.

O
n

ly
C

o
m

p
to

n
-t

h
ic

k
so

u
rc

es
ar

e
sh

o
w

n
h

er
e.

A125, page 14 of 25



J. Buchner et al.: Absorption and reflection model comparison of AGN in the CDFS

We considered three different absorption models, which
differ mainly in the amount of Compton scattering pro-
duced outside the line-of-sight due to volume filling. While
wabs represents a bullet-like blob in the line-of-sight with
no Compton scattering, sphere and torus model a fully
and partially open toroidal absorber respectively. The latter
two models, computed using Monte Carlo simulations on a
constant-density geometry, differ from wabs as they consider
Compton scattering and K-shell fluorescence. For the full sam-
ple, wabs+scattering is ruled out by torus+scattering
(and also sphere+scattering), indicating that these differ-
ences are important, i.e. that forward-scattered, low-energy radi-
ation and the additional reflection are observed. This is a relevant
finding because it means that high-redshift data is significantly
better modelled by a more complex model than commonly used.

Next to absorption and the scattering component, we
find that additional Compton reflection is needed. In Fig. 5,
where the spectrum of torus+scattering is shown in the
lower left panel, this component is clearly visible in the data
through its most prominent feature, the Fe − Kα line. As
torus+scattering already models the Compton scattering
and line emission within the well-constrained line-of-sight ob-
scurer, this component must be of different origin. Radiation
may be scattered into the line of sight from denser regions of
the torus, if a density gradient is assumed. It is worth re-stating
that we photo-electrically absorbed the +pexmon component,
requiring the reflection to occur behind the LOS column den-
sity. Alternatively, the accretion disk may contribute a reflection
spectrum as is known from unobscured objects, which is trans-
mitted through the obscurer. In principle, a higher iron abun-
dance is another hypothesis to increase the yield of the line.
These options are discussed further in Buchner et al. (in prep).

Overall, comparing the absorption models for obscured
sources, torus+pexmon+scattering is the best model for
obscured AGN, especially when considering Compton-thick
AGN. However, the combination of photo-electric absorp-
tion with a Compton scattering and reflection component
(wabs+pexmon+scattering) can emulate the observed spec-
tra almost equally well, especially in the Compton-thin regime
where the diversity does not seem to suggest one common
geometry (see Fig. 9). In this phenomenological model, the
three interaction processes – photo-electric absorption, Compton
scattering and Thomson scattering – are independent and not
physically connected. Figures 2f,g illustrates possible geome-
tries. But the wabs+pexmon+scatteringmodel is ruled out for
Compton-thick AGN (see lower segment of Table 2), in favour
of torus+scattering.

The considered obscurer geometries differ in their covering
factor, and thus in the strength of the Compton reflection hump.
The sphere geometry has the largest reflective area, while wabs
does not have any Compton scattering; torus constitutes an in-
termediate case. The sphere+pexmon+scattering model is
ruled out in favour of torus+pexmon+scattering. As the
geometry is the only difference between the models, we con-
clude that the opening angle of AGN must not be vanishing.
The spherical geometry can thus be excluded not only by the
amount of scattering needed, but independent of that due to the
shape of the reflection hump (obscured sources in Table 2 rule
out the sphere+scattering and wabs+scattering model).
This result also holds when only the Compton-thick AGN are
considered.

Unobscured objects, in contrast, are often well-described by
a simple power law. However, they may show Fe lines originat-
ing from reflection off Compton-thick material outside the line

Fig. 12. Cartoon illustrations of a-posteriori possible geometries (see
text).

of sight, either from the accretion disk or the torus. For this rea-
son, e.g. wabs+pexmon+scattering provides a good fit here.
The torus simulation used may be a good fit as well if torus had
not been constrained to an edge-on view. In the face-on view, the
Compton scattering off the torus is part of the model spectrum
(see Brightman & Nandra 2011).

A number of more complicated variations of the best model,
torus+pexmon+scattering, have been tried, namely (1) link-
ing the opening angle to log NH by decreasing it linearly
from 60◦ to 40◦ from unobscured to Compton-thick sources; (2)
making the opening angle a free parameter for each source; and
(3) freeing both the opening and viewing angle. These models
yield comparable evidence to torus+pexmon+scattering and
thus are not justified by the data.

8. Conclusions

We develop a Bayesian framework for analysing X-ray spec-
tra. We apply this methodology to ∼350 faint, low-count spec-
tra of AGN in the CDFS to infer model parameters. The ap-
proach propagates all uncertainties e.g. the Poisson process of
collecting counts, or errors in photometric redshifts determina-
tion. The novelty of this work however is to apply Bayesian
model comparison.

We consider physically motivated models where various ge-
ometries – no obscurer, bullet-like blob in the LOS, toroidal and
spherical obscurer – are considered. The best model has (1) an
intrinsic power law obscured by (2) a constant-density toroid
where photo-electric absorption, Compton scattering and Fe-K
fluorescence are considered. We detect the presence of (3) an
unabsorbed power law associated with Thomson scattering off
ionised clouds. Additional (4) Compton reflection, most notice-
able through a stronger Fe-Kα line, is also found. We find strong
evidence against a completely closed, or entirely open, toroidal
obscurer geometry.

The geometry of the obscurer in the deepest field to date is
thus, from the point of view of X-ray spectra, compatible with
two simple scenarios illustrated in Fig. 12: (a) Per-source den-
sity variations of a constant-density torus, with an accretion disk
contributing extra reflection in some sources or (b); following
the unification scheme, a torus with a column density gradient
where the LOS obscuration depends on the viewing angle and
the observed additional reflection originates in denser regions of
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the torus. In both scenarios, ionised clouds can scatter intrinsic
radiation past the torus.
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Fig. 6. Marginalised parameters of the wabs (top), wabs+scattering, sphere+pexmon+scattering and wabs+pexmon+scattering model
(bottom) for source 179. The posterior probability density distribution, normalised to the maximum, is shown by grey bars. The blue line indicates
the cumulative posterior distribution. For summary of the error, the median and 10/90% quantiles can be used, or as the blue error bar indicates,
the 1 standard-deviation equivalent probabilities.

Fig. 9. Evidence contribution from each source with secure spectroscopic redshift. The vertical axis shows the Bayes factor between
torus+pexmon+scattering and wabs+pexmon+scattering (red circles), where strong preference for the torus is above log 10 = 1. The same
is shown for sphere+pexmon+scattering and wabs+pexmon+scattering (black squares). In both model comparisons, there are obscured
objects showing significant preference for either model.
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Fig. 10. Histograms of the best parameter values derived using the torus+pexmon+scattering model. The median of the marginal posterior
distribution for each object is histogrammed in black. The thick red line shows the same as a cumulative distribution. To illustrate the uncertainty
in the parameters, the dotted red lines show the cumulative distribution of the 10% and 90% quantiles instead of the median. The dashed gray line
shows the used prior.
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Fig. 11. Comparison of the derived column density (left panels, NH, here in logarithmic) and intrinsic luminosity (right panel, logarithmic, in erg/s
for the 2−10 keV rest frame band) with the analysis of Tozzi et al. (2006). We selected only objects from our sample which have the same redshift
in Tozzi et al. (2006) and this work. We plot the median and 1-sigma equivalent quantiles of the posterior in our analysis against the best fit found
in Tozzi et al. (2006). There are important differences between the works. The Tozzi et al. (2006) analysis is based on only the first 1Ms data, and
thus has much fewer counts. Furthermore, only simple absorption models have been considered in their maximum likelihood fitting.
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Appendix A: Goodness-of-fit

of the background model

We intend to demonstrate that the used background description
is a good model. To this end, we present a goodness of fit (GoF)
methodology for X-ray spectra. We use Q–Q plots for model
discovery and the AIC model comparison method to test for the
significance of model improvements, although any of the model
comparison methods introduced in Sect. 5.2 could be chosen.
We demonstrate the method using a background source spec-
trum and our best fit, comparing it to a simplified model. In our
analysis, every spectrum is fitted individually to accommodate
the diversity of background spectra.

A.1. Background model definition

We present “Model 1”, which is our final Gaussian mixture
model with a constant base continuum:

M1(E)=C ×
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To model the rise in the soft energies two Gaussians (called
“softend” and “softsoftend”) are used of widths ∼0.5 keV and
∼2 keV at centred at ∼0 keV. Another five Gaussian lines de-
scribe the spectral bumps due to e.g. transition lines of the
detector material. These are centred around 1.486 (Al Kα),
1.739 (Si Kα), 2.142 (Au Mα, β), 7.478 (Ni Kα), 9.713 (Au Lα;
all in keV). A feature at ∼8.3 keV possibly composed of Ni/Au
lines is modelled by three further Gaussians at 8.012, 8.265,
8.494 keV. We allow all centres to vary within 0.1 keV. The pa-
rameters start from reasonable guesses and are optimised as long
as the fit statistic (C-Stat) improves.

Figure A.1 shows the comparison between data and model
for a source with the sequential number 318 in the catalogue.
This source has 3380 counts and was chosen because it consti-
tutes an intermediate case between the most high-count spec-
tra with many peculiarities and low-count spectra with almost
no visible features. The final parameter values after fitting are
shown in Table A.1 (middle column).

A.2. Goodness of fit and model discovery

For comparison, we present Model 2 which has several
Gaussians disabled, namely the one centred at 2.1 keV (line 3)
and the three between 8−9 keV (line 5−7). The intent is to
compare methods evaluating whether Model 2 is a good model,
where it deviates from the data, and whether the deviation is
significant.

The classic method is to plot the data, model and the resid-
uals. This is shown in the upper left panel of Fig. A.1 for the
un-binned data and model, with the residuals below. The upper
right panel shows the same, but with adaptive binning requiring
20 counts in each bin. The feature at 2.1 keV is visible immedi-
ately, while the feature at 8−9 keV is less striking.

We present an alternative method of analysing the quality of
a model: the Q–Q plot, shown in the large lower panel. For each
energy E, the model counts predicted and the counts observed
below E are recorded on the plot. Here the counts are shown,
while statisticians typically use quantiles, i.e. the fraction of ob-
servations that lie below a quantity. This does not influence the
main point, namely the shape of the curve. The grey dashed line
is where data and model would perfectly agree. A steeper curve

Table A.1. Background model parameters for two sources.

Source 318 179

C 7.278 × 10−5 23.28 × 10−5

line1.ampl 413 511
line1.fwhm 0.0329 0.0162
line1.pos 1.475 1.49
line2.ampl 0 74.7
line2.fwhm 0.1 0.002
line2.pos 1.84 1.82
line3.ampl 420 581
line3.fwhm 0.1 0.0827
line3.pos 2.16 2.16
line4.ampl 3769 1159
line4.fwhm 0.0257 0.0768
line4.pos 7.48 7.49
line5.ampl 1446 42.9
line5.fwhm 0.002 0.102
line5.pos 8.10 8.07
line6.ampl 97.1 280
line6.fwhm 0.4 0.0793
line6.pos 8.37 8.25
line7.ampl 111.5 6656
line7.fwhm 0.002 0.002
line7.pos 8.47 8.47
line8.ampl 1993 2225
line8.fwhm 0.1 0.0886
line8.pos 9.72 9.71
softend.ampl 21092 21824
softend.fwhm 2.0 2.6
softend.pos 1.0 1.0
softsoftend.ampl 72642 78711
softsoftend.fwhm 0.325 0.638
softsoftend.pos 0.167 0.243

Notes. For the left source, the model is shown in Fig. A.1. Positions and
FWHM are in keV. Amplitudes are unitless, except for the normalisa-
tion C, which is in cts/s/keV/cm−2.

means the model predicts more counts than observed, while a
shallower curve indicates an excess of observed counts.

Model 1 (blue solid top line) follows this line very closely,
and thus can be considered a good model. Model 2 (red solid
bottom line) deviates from the grey dashed line at 2 keV, indi-
cating that a feature in the data is not modelled. Above 2.5 keV,
the line is parallel to Model 1, indicating no further difference.
This means the feature is confined to this energy range. With a
bit of practise one can also see that the difference required to
bring the lines into agreement looks like the cumulative distri-
bution of a Gaussian (a S-shape rather than e.g. a straight line
for a flat distribution). Another, but more subtle, deviation is vis-
ible between 8−9 keV. This is highlighted using the green solid
middle line which does model the 2.1 keV feature.

Having found a good model, and slightly worse, simpler
models, we can now test whether the improvement is signifi-
cant. For instance, it seems doubtful that the minute feature at
8−9 keV justifies modelling with 3 Gaussian components (9 pa-
rameters). For this, we employ the AIC, which punishes the dif-
ference in the likelihood (C-stat) by adding twice the number of
parameters. As ∆AIC = 20.6 > 0 (Model 2 vs. Model 1, red
text), the worsening is significant. But if we only remove the
feature at 8−9 keV, the AIC decreases due to the simplification
of the model (green text). Thus, in this source, the 8−9 keV fea-
ture can be ignored. However, in sources with more counts, it is
required (see Fig. A.2 for one example).
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K-S = 0.015
C-stat = 701.7
651 bins

Model 2:
K-S = 0.024

C-stat = 746.3
651 bins

12 parameters less 
than Model 1
∆AIC = 20.6

Model 1 without feature at 8-9 keV:
K-S = 0.026

C-stat = 716.2
651 bins

9 parameters less 
than Model 1
∆AIC = -3.6

Fig. A.1. Comparison of the background data from Source 318 with background models. The best model is shown in blue, while the red model has
several features removed (see text in Appendix A). In the top two panels, the usual count spectrum is shown with residuals (left unbinned, right
binned to at least 20 counts per bin). In the large, bottom panel we present the corresponding Q–Q (quantile-quantile) plot. For each energy E, the
model counts predicted and the counts observed below E are recorded on the plot. The grey dashed line is where data and model would perfectly
agree. Model 1 (blue solid top line) follows this line very closely, and thus can be considered a good model. Model 2 (red solid bottom line)
deviates from the grey dashed line at 2 keV, indicating that a feature in the data may be missing in the model. The shape and size of the deviation
also indicates the shape of the needed feature. The significance of the feature can be tested using model selection. Here, the AIC shows that the
feature at 2−2.5 keV is necessary ∆AIC > 0, but adding the more complicated feature at 8−9 keV is not (see text in Appendix A for details).

The deviation between model and data can be summarised
using GoF measures. The Kolmogorov-Smirnov measure,
K−S = supE |observed(<E)−predicted(<E)|, records the largest
deviation between the empirical cumulative distribution of ob-
served counts (0 at the lowest energy, 1 at the highest), and the
model cumulative distribution. Other measures, such as the ones

used for the Cramér-von Mises test or the Anderson-Darling test
take all deviations into account, not merely the largest. When
many spectra are analysed in an automated fashion, the highest
values can hint to problematic cases which require further, visual
analysis.
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K-S = 0.031
C-stat = 876.4
651 bins

Model 2:
K-S = 0.036

C-stat = 1107.0
651 bins

12 parameters less 
than Model 1
∆AIC = 206.7

Model 1 without feature at 8-9 keV:
K-S = 0.041

C-stat = 954.1
651 bins

9 parameters less 
than Model 1
∆AIC = 59.7

Fig. A.2. Same as Fig. A.1, but for source 179 (11 802 counts). Contrary to Fig. A.1, the feature between 8−9 keV is required (∆AIC > 0). In
the lower panel, there is a mild, continuous deviation from the grey dashed line indicating that a mild increase in the higher energy counts. This
hints that the model could be improved further. Although perfection in background modelling is a noble quest, the source spectra have 1 order of
magnitude fewer counts, allowing us to be satisfied with this model.
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Appendix B: Propagation of redshift uncertainty

It is common practise to use a redshift point estimator (best fit
redshift) from photometric redshifts and analyse spectra with
this value. In this work, in contrast, the redshift uncertainty from
photometric redshift is propagated into the analysis of X-ray
spectra in the form of a probability distribution on the redshift
parameter. In this section, we discuss the differences between
the approaches.

We consider the source 551 in our catalogue and analyse its
X-ray spectrum using the methodology laid out in this paper
with the torus model. We perform the analysis twice, a) with
the probability distribution from photometric redshifts and b)
with the best fit photo-metric redshift. Figure B.2 demonstrates
how the different input redshifts (upper right panel) influence
the results in the derived column density and intrinsic luminos-
ity parameters (large panel). The Bayesian analysis shows that
the parameter space is broad, and split to two distinct solutions
(see lower left panel in Fig. B.2): a highly obscured solution
and a less obscured solution. The maximum likelihood is in the
less obscured solution for the fixed redshift value, but in the
highly-obscured solution if the redshift distribution is used, be-
cause the likelihood improves when using a slightly lower value
than the best fit redshift. The two solutions are strictly separated,
i.e. an intermediate solution is ruled out. Common Maximum
Likelihood methods, like fitting and error estimation by Fisher
matrix or contour search, will fail to estimate the uncertainty cor-
rectly and hide the respectively other solution. Methods building
on these results can therefore make false conclusions about e.g.
the number of Compton-thick sources. The Bayesian inference
method presented in this work can handle the separated solutions
well and re-weighs them based on the redshift information given.
The various methods are discussed and compared in Sect. 5.

Fig. B.1. Origin of the two distinct solutions in Fig. B.2 is highlighted in
these two cartoons. Given the data shown in the red thick line, one can
either A) consider a bright, highly obscured source (top panel), or B)
a low-luminosity, low-obscuration solution where the hard counts are
due to the background. An intermediate solution is ruled out however.
Depending on the background level and redshift, the two solutions will
have different likelihoods.
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Fig. B.2. Demonstration of parameter estimation results under different redshift inputs. Source 551 in the catalogue is analysed twice with the
methodology laid out in this paper using the torus model. We consider once the case of using only the best fit photometric redshift and once
the case of using the photometric redshift probability distribution (PDZ). Both inputs are shown in the upper right panel as a vertical red line at
z = 3.5444 and with a dotted green line respectively. For brevity, only two resulting parameters are presented, namely the column density NH

(logarithmic, in cm−2) and the derived intrinsic luminosity L in the 0.5−10 keV band (logarithmic, in erg/s). The large, lower left panel shows
the derived intrinsic luminosity and column density parameters by equally probable points, similar to a Markov chain. As each point on the plane
is equally likely to be the true value, denser regions represent more probable parameter values. Here, the red squares represent the fixed redshift
analysis while the black circles show the analysis results using the PDZ. The marginal distributions are shown in the upper left and lower right
panels as probability histograms (red crossed hatching and black striped hatching). Two separated solutions are clearly visible and highlighted
using the labels “A” for the highly obscured solution and “B” for the less obscured solution. The associated spectra are illustrated in Fig. B.1.
The fixed redshift analysis has the highest likelihood at the less obscured solution. When given the freedom to vary the redshift parameter, the
X-ray data have the highest likelihood at the highly obscured solution. Maximum Likelihood analysis methods thus may fail to account for the
uncertainty (see text). The difference in results come from the freedom to move to a lower redshift, as can be seen in the upper right panel, where
the black line shows the redshift posterior probability distribution. These results thus also show that redshift information can be improved using
X-ray data (see Buchner et al., in prep.).
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Appendix C: False discovery rate of model

comparison methods

In this section, we compare the efficiency and error rate of model
comparison methods.

On the one hand we consider methods based on the ratio of
the highest likelihood, where, if the likelihood improves beyond
a certain log-likelihood ratio threshold, the more complex model
is accepted. The threshold may be dependent on the difference
in the number of model parameters. In this general form, Wilks’
theorem, χ2-test, F-test, AIC and BIC methods are covered.

On the other hand, the Bayesian inference based on comput-
ing the evidence Z is considered, where, assuming a-priori equal-
ity, the Bayes factor B12 = Z1/Z2 is used to decide which model
to use. In particular, when B12 is greater than the threshold,
Model 1 is accepted, while if B−1

12
is greater than the threshold,

Model 2 is accepted. An important difference is that Bayesian
inference can conclude there is not enough information to make
a decision.

C.1. Nested problems

We generate 2000 spectra each based on the powerlaw and wabs
input model. We assume a photon index of Γ = 1.9, redshift z =
1.5 and column density NH = 1023/cm2 (for wabs). The normal-
isation of the source power-law at 1 keV in photons/keV/cm2/s
is set to either 10−6 or 10−7 (1000 simulated spectra each). A
fixed, flat background with 10−8 photons/keV/cm2/s is used. We
re-use the exposure time, ARF and RMF of Source 179 to pro-
duce realistic, low-count spectra.

We analyse all simulated X-ray spectra in the 0.5−7 keV
band using the methodology laid out in this paper, once with
the powerlaw and once with the wabs model. We also store
the maximum likelihood (best fit). We apply model selection
(Bayesian and likelihood-ratio-based) between powerlaw and
the more complicated model wabs, and record the number of
false choices (e.g. wabs was preferred, although powerlaw
was used for generating the spectrum). These results shown in
Fig. C.1 using thick red lines. For the Bayesian model selection,
we also record the number of cases where no significant prefer-
ence was found (black lines).

The Bayesian model selection has a false selection rate be-
low 1% at the marked threshold, which can not be achieved
by likelihood-ratio based methods regardless of the threshold
chosen. The Bayesian model selection may decline to decide
due to insufficient discriminatory power of the data (thin black
line). When considering the efficiency only, the likelihood ra-
tio based method yields more correct decisions, as the Bayesian
method declines to choose very often. However, one may also
remain with the simpler model, in which case the results would
be comparable.

C.2. Non-nested problems

We now consider a non-nested model selection problem, apply-
ing the same methodology. We select between the models wabs
and torus – neither is a special case of the other. We apply
likelihood-ratio based methods using wabs as the null hypoth-
esis, and only select torus when the likelihood-ratio threshold
is exceeded. These results are presented in a similar fashion as
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Fig. C.1. Model selection results between powerlaw and wabs.
Likelihood-ratio based methods (left panels) and Bayesian model se-
lection (right panels) show different fractions of false choices deci-
sions (thick red line). The top left plot for example shows the frac-
tion of generated spectra where the likelihood ratio method selected
powerlaw instead of the model used for generating the spectrum, wabs.
The plot below should be considered simultaneously, as it shows the
fraction where powerlaw was selected in spectra generated with wabs.
Results are shown in dependence of the threshold applied. The thresh-
old may be optimised, but typical choices are ∆L = 1 from AIC and
log 10 = 1 for the Bayes factor if the model priors are equal (gray
vertical lines). Considering the sum of thick red lines in panel pairs,
the Bayesian model selection has a false selection rate below 1% at the
marked threshold, which can not be achieved using likelihood-ratios re-
gardless of the threshold chosen. The Bayesian model selection may
decline to decide due to insufficient discriminatory power of the data
(thin black line). This is the case for the faint normalisations (bottom
four panels), where the likelihood-ratio methods remain with the sim-
pler model (yielding an error of ∼50%). In the brighter normalisations
(upper right panels), the Bayesian method beyond a threshold of 5 de-
clines to distinguish when the powerlaw model was used to generate
the data. This is a consequence of the degeneracy between the nested
powerlaw and wabsmodels. Thus for nested models, a lower threshold,
such as ∆ log Z = log 3 = 0.5 can be appropriate. When considering
the efficiency only, the likelihood ratio based method yields more cor-
rect decisions, as the Bayesian method declines to choose very often.
However, one may also remain with the simpler model, in which case
the results would be comparable.

above in Fig. C.2. The panels show higher normalisations, as the
models are more subtle in their differences.

C.3. Conclusion

To summarise the Figs. C.1 and C.2, error rates below 1% can
be achieved using the in the Bayesian model selection, with a
threshold of e.g. log Z > 1 = log 10. It should be clear that a
Bayes factor of 10 is actually a quite conservative choice, and
does not necessarily refer to a false positive rate of 1 in 10, but
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Fig. C.2. Same as Fig. C.1 for the non-nested model selection between
wabs and torus (instead of powerlaw and wabs). As the differences
between the models are subtle, the likelihood-ratio method often re-
mains with the null model (wabs). This yields an overall error rate (red
line) of ∼30−50%. The Bayesian model selection declares the data in-
sufficient for a distinction in such cases. In the upper right panel, the
Bayesian method is able to effectively distinguish between some of the
simulated instances, and makes few mistakes (<1% false selection rate,
considering the total of panel pairs).

a much lower value. This point has been appreciated in the liter-
ature before: Efron et al. 2001 show that the Bayes factor scale
by Jeffreys (1961) is probably overly conservative.

In contrast, methods based on the likelihood-ratio always
have higher error rates than 1% regardless of the chosen thresh-
old. This is due to the procedure remaining with the simpler
model if the data has insufficient discriminatory power. The
Bayesian method has the benefit of recognising these cases and
can decline to decide. It should be stressed again that several
likelihood ratio based methods are not valid for non-nested prob-
lems (Wilks’ theorem, F-test, χ2-test, likelihood-ratio test), al-
though e.g. the AIC is. Furthermore, all likelihood ratio based
methods are not valid at testing against the border of the param-
eter space (e.g. powerlaw is a special case of wabswith minimal
NH). This is discussed further in Sect. 5.2. These results demon-
strate that even if a valid method based on the likelihood ratio
was introduced, it would perform poorly in the shown cases.
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