
 Open access Report DOI:10.2172/992933

X-Ray Tomographic Reconstruction — Source link

Bonnie Schmittberger

Published on: 25 Aug 2010

Topics: Tomographic reconstruction, Tomography and Industrial computed tomography

Related papers:

 Reconstruction method of a computed tomographic image from a few X-ray projections

An experimental method for ripple minimization in transmission data for industrial X-ray computed tomography imaging
system

 Computed tomographic reconstruction based on x-ray refraction contrast

 Tomographic reconstruction of three-dimensional objects from hard X-ray differential phase contrast projection images

 A Convex Reconstruction Model for X-Ray Tomographic Imaging With Uncertain Flat-Fields

Share this paper:

View more about this paper here: https://typeset.io/papers/x-ray-tomographic-reconstruction-
4m0wtp78lt

https://typeset.io/
https://www.doi.org/10.2172/992933
https://typeset.io/papers/x-ray-tomographic-reconstruction-4m0wtp78lt
https://typeset.io/authors/bonnie-schmittberger-yuxp1e9ymi
https://typeset.io/topics/tomographic-reconstruction-3f8gs4jm
https://typeset.io/topics/tomography-1rhh70ar
https://typeset.io/topics/industrial-computed-tomography-2zshafes
https://typeset.io/papers/reconstruction-method-of-a-computed-tomographic-image-from-a-3ylsuhc4c0
https://typeset.io/papers/an-experimental-method-for-ripple-minimization-in-3fe4vk8gsx
https://typeset.io/papers/computed-tomographic-reconstruction-based-on-x-ray-1qs56acuc7
https://typeset.io/papers/tomographic-reconstruction-of-three-dimensional-objects-from-2v65sj4civ
https://typeset.io/papers/a-convex-reconstruction-model-for-x-ray-tomographic-imaging-15x0bbrl9j
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/x-ray-tomographic-reconstruction-4m0wtp78lt
https://twitter.com/intent/tweet?text=X-Ray%20Tomographic%20Reconstruction&url=https://typeset.io/papers/x-ray-tomographic-reconstruction-4m0wtp78lt
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/x-ray-tomographic-reconstruction-4m0wtp78lt
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/x-ray-tomographic-reconstruction-4m0wtp78lt
https://typeset.io/papers/x-ray-tomographic-reconstruction-4m0wtp78lt

Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

X-Ray Tomographic Reconstruction

Bonnie Schmittberger

Science Undergraduate Laboratory Internship Program

Bryn Mawr College

SLAC National Accelerator Laboratory

Menlo Park, California

August 14, 2009

Prepared in partial fulfillment of the requirement of the Department of Energy's Science

Undergraduate Laboratory Internship program under the direction of Samuel Webb at the

Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory.

Participant: _______________________________

 Signature

Project Advisor: ______________________________

 Signature

SLAC-TN-10-015

 2

Table of Contents

Abstract……………………………………………………………………………………3

Introduction………………………………………………………………………………..4

Materials and Methods……………………………………………………………………5

Results……………………………………………………………………………………10

Discussion…………………………………………………………………………….….10

Conclusion……………………………..………………………………………………...12

Acknowledgments………………………………………………………………………..12

References………………………………………………………………………………..13

Figure 1: Schematic of Detector Setup…………………………………………………..14

Figure 2: Calcium and Iron Tomographic Scans……………………………………...…15

Figure 3: Schematic of Axis Setup………………………………………………………16

Figure 4: Tomographic Scan and Reconstruction of Arabidopsis Thaliana………….….17

Appendix: Copy of Reconstruction Code…………………...……………...……………18

 3

ABSTRACT

X-Ray Tomographic Reconstruction. BONNIE SCHMITTBERGER (Bryn Mawr

College, Bryn Mawr, PA, 19010) DR. SAMUEL WEBB (Stanford Synchrotron

Radiation Laboratory at SLAC National Acceleratory Laboratory, Menlo Park, CA

94025)

Tomographic scans have revolutionized imaging techniques used in medical and

biological research by resolving individual sample slices instead of several superimposed

images that are obtained from regular x-ray scans. X-Ray fluorescence computed

tomography, a more specific tomography technique, bombards the sample with

synchrotron x-rays and detects the fluorescent photons emitted from the sample.

However, since x-rays are attenuated as they pass through the sample, tomographic scans

often produce images with erroneous low densities in areas where the x-rays have already

passed through most of the sample. To correct for this and correctly reconstruct the data

in order to obtain the most accurate images, a program employing iterative methods

based on the inverse Radon transform was written. Applying this reconstruction method

to a tomographic image recovered some of the lost densities, providing a more accurate

image from which element concentrations and internal structure can be determined.

 4

1. INTRODUCTION

X-Ray fluorescence computed tomography (XFCT) is a synchrotron-based

imaging technique used for mapping the distribution of elements within a sample. In

XFCT, a sample is bombarded with x-rays that excite k-shell electrons. When these

atoms return to their stable state, they emit fluorescent x-rays at energies characteristic of

the element. These photons are collected by a solid state silicon detector that records

multiple energies simultaneously. The total number of photons recorded is a function of

the sum of the various element concentrations along the line of the incident beam. By

rotating the object and compiling horizontal scans, it is possible to obtain a complete

tomographic reconstruction of the distribution of the elements within a sample.

Since the incident beam is attenuated through the sample and part of the emission

is absorbed by the sample, attenuation correction is necessary in order to obtain accurate

results. If reconstruction techniques are not employed, the image of the center of the

sample is blurred, and its density, as recorded by the scan, is much lower than its true

density. Previous reconstruction techniques required a known attenuation at each

fluorescence energy, which necessitated the time-consuming process of rescanning the

sample at all the relevant energies [1]. Tomographic reconstruction is also possible by a

series of mathematical corrections based on the inverse Radon transform, which is a

faster and simpler method.

These reconstruction techniques have attracted numerous scientific disciplines to

XFCT. In particular, the high sensitivity and sub-micrometer resolution of this method is

useful in medicine [2]. The presence of metals and other trace elements drastically affect

intracellular processes in any organism [3]. XFCT is the only sub-micrometer technique

 5

that can map these elements within cells and search for abnormal quantities and

distributions accompanying the development of certain diseases [3].

2. MATERIALS AND METHODS

i. Data Collection

Once the code was completed, data was collected at the Stanford Synchrotron

Radiation Lightsource. X-Rays obtained from the synchrotron are sent through an ion

chamber to measure the energy of the incident beam. The x-rays are then directed into a

helium-purged chamber where they are focused down to a 2 µm diameter by two

elliptical mirrors. This focused beam is then sent out to the sample, which is scanned by

moving completely across the incident beam, then rotating by a certain small angle,

typically 1 to 3 degrees, and repeating until 180 degrees are covered. This is called a full

translation, half rotation tomographic scan. If the scan were to cover a full rotation, the

amount of attenuation correction would be minimized because the image would only

contain artifacts towards the center of the sample, but that process doubles the scanning

time, generally requiring three to four extra hours.

 The detector is placed behind the sample to collect the transmitted x-rays, and

another is placed at 90 degrees to the incident beam to collect the fluorescent photons, as

depicted in Figure 1. A uniform fluorescence around the sample is assumed, so that one

fluorescent photon detector is sufficient. Because elements have signature fluorescence

energies, a fluorescent photon detector that can distinguish different photon energy levels

is used. This detector counts the number of photons that it receives at each energy level,

so the concentrations of different elements in the sample can be determined.

 6

ii. Basic Reconstruction Technique

The data from a tomographic scan is formatted into a two-dimensional matrix

composed of pixel intensities. Assuming uniform attenuation throughout the sample, a

simple reconstruction method employs the inverse Radon transform.

 The inverse Radon transform is the fundamental method for image reconstruction

because the Radon Transform acts as a continuous mathematical model for exponentially

decreasing density based on a coefficient. A line integral represents the total attenuation

of an x-ray as it travels in a straight line through the sample. A tomographic image can be

defined by f (x,y) , and the attenuation is therefore represented by

P" (t) = f (x,y)ds
(" ,t)
, (1)

where (",t) are the line integral parameters. This can be rewritten as

 P" (t) = f (x,y)#(x cos" + y sin" $ t)dxdy
$%

%

&
$%

%

& , (2)

which is the definition of the Radon transform [4].

To understand the effects of attenuation in XFCT, a Radon transform can be

applied to simulated data to create an approximate attenuated image. Figure 2(a) shows a

simulated sample of iron without correction for attenuation. Applying an inverse Radon

transform with the proper attenuation coefficient produces Figure 2(b), the reconstructed

image. Figure 2(c) and 2(d) are analogous images of a calcium sample. The calcium

sample is originally more attenuated than the iron sample because the fluorescent photon

energies of calcium are lower than those of iron, which makes it harder for them to

escape the sample.

A simple reconstruction method takes the inverse Radon transform of the data,

and creates a second matrix that defines the shape of the sample, having a “1” wherever

 7

the object is, and a “0” everywhere else. The absorption effect can be estimated by taking

the Radon Transform of the shape, which is analogous to the survival probability of a

photon reaching a point in the sample. Defining this transform as),,(usf ! , it can then

be estimated that

!
!
"

#
$
$
%

&
''(=)

*(

u

udususf),(exp),,(µ+ , (3)

where µ is the attenuation coefficient, and),(us is a point in the matrix as shown in

Figure 3, where the s and u axes are parallel to the translation direction and the beam,

respectively [5]. The exponential in Equation 1 is therefore the absorption effect.

Dividing the initial data by the absorption effect will give the corrected data, and taking

the inverse Radon transform of that will give the final corrected image.

 This method is useful for ideal samples with uniform attenuation. Otherwise, this

technique only works for very small attenuation coefficients on the order of µ = 0.01. For

realistic situations, a much more comprehensive method is needed. It must be able to

integrate over varying densities with different attenuation coefficients. A successful

technique is described in Part II; it employs iterative methods for image reconstruction.

iii. Algorithm Theory

The number of emitted photons detected from a given point in the sample can be

defined as

! =•
==

tx
W dxxfxWtftd

"
)(),(),(),(R , (4)

where t and ! are parameters defining the line, " = (cos#,sin#) [6]. The first integrated

function,

 8

! +"+"=
2

1

),(exp[)],(exp[),(
#

#
##$µ%$&$ dxxxW DD], (5)

accounts for the different fluorescence energies of elements and gives more weight to

elements whose fluorescence energies are lower [6]. The limits of integration refer to the

angle range],[21 !! at each emission point [6]. The operator D is the divergent beam

transform defined by

!
"

#+=
0

)(),(dqqxx $µ%µD , (6)

where µ is the estimated fluorescence attenuation coefficient and ! is the known

transmission coefficient [6]. When 0== !µ ,
W

R is the general Radon transform [6].

Therefore, similar to the method used in Part I, the attenuation problem can be solved by

inverting the operator
W

R [6].

When µ = 0, the density of a sample can be approximated as

{ }
)(

)(

2

1
)(

1

xa

xd
xf c

!

=
R

"
, (7)

where

!=
"

##
"

2

0
),(

2

1
)(dxWxa (8)

is the correction factor [6]. Miqueles and De Pierro [4] discovered that this general

formula is actually the first iteration of an iterative method, where each iteration consists

of an inverse Radon Transform 1!
R . They define the sequence

)()()1(k

k

kk eff !+=
+ , (9)

where
k

! is the positive relaxation factor and)(k
e is defined as

a

fd
e

k

Wk)()(1
RR !

=

!

 [6]. (10)

 9

Therefore the complete reconstruction algorithm by iteration is

)(

)(
)()(

)(
)()1(

xe

xd
xfxf

W

k

Wkk

B

B
=

+ (11)

where 1),(=!te , and

),(

),(
),(

)(

)(

!

!
!

tf

td
td

k

W

k

R
= [4]. (12)

W
B is the attenuated backprojection operator, defined as

! "=
#

$$%$
2

0
),(),()(dxdxWxd

W
B , (13)

and it can be shown that it is the adjoint operator of
W

R [6].

This method was translated into a code that processes images from tomographic

scans. The matrix data was corrected so that each pixel was given a size of 1. This

method was then applied, treating each element of the matrix as a point in space.

 In order to translate this into a working code, the algorithm from Equation 9 was

applied to every point in the tomographic image for both a beam attenuation correction,

which accounts for any attenuation from the source to a point in the sample, and for a

fluorescence attenuation correction, which accounts for any attenuation from that point in

the sample to the detector. From both sets of attenuation, a matrix of absorption

corrections was constructed. A filter was applied to the initial data, which distinguished

the areas where the most attenuation occurred and where the least attenuation occurred.

In order to get the final image, the filtered image was divided by the absorption

corrections at each pixel.

 10

3. RESULTS

This method was applied to a tomographic scan of a stem of the plant Arabidopsis

thaliana with an estimated attenuation coefficient of 0.08. The initial scan is shown in

Figure 4a, and its inverse Radon transform is shown in Figure 4b. The tomographic

image with the applied reconstruction is shown in Figure 4c, and while the elimination of

attenuation artifacts is not immediately noticed, data analysis showed an improvement.

In order to quantitatively measure the effect of the reconstruction program, the

original data was subtracted from the corrected data, providing a matrix of absorption

corrections that had been made. The maximum attenuation occurred in the back of the

sample, opposite from the incident x-rays, which is expected from a half rotation, full

translation scan. The pixels in the back of the sample had lost at least 16% of their

original density, which was added back during the reconstruction.

Because there are still attenuation artifacts present in the corrected image, the

inputted attenuation coefficient was not high enough. Inputting coefficients that are too

low barely affect the attenuated data, and inputting coefficients that are too high add too

much density back to the image and results in a loss of real data. A solution to this

problem is discussed further in Section 4i.

4. DISCUSSION

i. Method Discussion

The proposed method yields accurate images that provide more detailed

information about the sample. Although running the program requires approximately an

 11

hour, changing with the size of the sample, it is much faster than the time that would need

to be allotted to take a full translation, full rotation scan.

 A potential disadvantage of the method is the required estimation for the

minimum and maximum attenuation coefficients. An ideal attenuation coefficient input is

a matrix of varying attenuation coefficients that can be constructed from the density map

of the sample obtained from the transmission photon detector. Once an estimated matrix

is entered, the iterative method from Equation 11 can be applied to adjust the coefficients

until an ideal image is obtained. Miqueles and De Pierro [4] found that using several

iterations will limit the attenuation coefficients and further improve the data.

 The reconstruction code is given as an appendix. The filtering functions and the

mean correlated matrix function perform the reconstruction and create a two-dimensional

array of self-absorption corrections. These functions can be added to any module that

processes tomographic scans. Dividing the inverse Radon transform of the original scan

by this matrix will produce the corrected tomographic image; a simple version of this is

given in the fluorescent matrix function, but most modules already include an inverse

Radon transform code.

ii. Sample Discussion

 The sample used was brought to SSRL by Tracy Punshon from Dartmouth

College. The plant Arabidopsis thaliana is of interest because it is the first plant to have

its entire genome sequenced, thus being a model organism for understanding plant

biology and plant traits. This sample was the wild type Arabidopsis, and other

measurements consisted of plants that had a gene removed for iron transport; the

intention was to study how the distribution of iron changes without the gene for iron

 12

transport.

This is significant for the current interest in trying to figure out ways to encourage

iron transport in other plants, such as rice. If the process can be encouraged, rice could

be infused with iron, which could potentially solve the growing iron deficiency problems

in developing countries.

5. CONCLUSION

 XFCT has the potential to provide incredibly informative images once a

reconstruction has been applied to the data. An effective reconstruction technique

employs the inverse Radon transform and accounts for changing attenuation coefficients

and the variance of fluorescence energies. The attenuation coefficient map is the key

input for a successful reconstruction, and its creation can be perfected by using iterative

methods. Using a reconstruction method can provide accurate results despite the large

attenuation effects accumulated from a half rotation scan. By correcting for the

attenuation effects, the inaccuracies associated with XFCT become nearly irrelevant,

which makes it very attractive, especially to the biological and medical communities.

This method has become vital for the analysis and mapping of elemental content in cells

and tissues.

6. ACKNOWLEDGEMENTS

This data was obtained at the Stanford Synchrotron Radiation Lightsource at

SLAC National Accelerator Laboratory. I would like to thank my mentor, Samuel Webb,

for his help and guidance, as well as his persistent positive encouragement throughout

 13

this program. I would like to thank Tracy Punshon for providing interesting samples, and

Apurva Mehta for all his feedback. I would also like to thank Stephen Rock, SueVon

Gee, Elizabeth Smith, and Vivian Lee for their support of the SULI Program. Finally, I

would like to thank the Department of Energy and Stanford University for the

opportunity to participate in this internship.

7. REFERENCES

[1] P. La Rivière, D. Billmire, P. Vargas, M. Rivers, S. Sutton, Penalized-likelihood

image reconstruction x-ray fluorescence computed tomography, Optical Engineering,

Vol. 45(7). (2006)

[2] C. Schroer, Reconstructing x-ray fluorescence microtomograms, Applied Physics

Letters, Vol. 79, Number 12. (2001)

[3] T. Paunesku, S. Vogt, J. Maser, B. Lai, G. Woloschak, X-Ray Fluorescence

Microprobe Imaging in Biology and Medicine, Journal of Cellular Biochemistry 99,

1489-1502. (2006)

[4] A. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, Society for

Industrial and Applied Mathematics, IEEE Press, New York. (2001)

[5] A. Brunetti, B. Golosio, Software for X-Ray fluorescence and scattering tomographic

reconstruction, Computer Physics Communications 141, 412-425. (2001)

[6] E. Miqueles, A. De Pierro, Fluorescence Tomography: Reconstruction By Iterative

Methods, Applied Mathematics Department, State University of Campinas, Brazil. (2008)

 14

FIGURES

Figure 1: Schematic of experimental setup.

Transmitted

Photon

Detector

Fluorescent

Photon

Detector

Ion

Chamber

 15

Figure 2: Simulated iron and calcium distributions. (a) Iron without correction for

attenuation. (b) Iron with correction for attenuation. (c) Calcium without correction for

attenuation. (d) Calcium with correction for attenuation. [1]

 16

Figure 3: Diagram of fluorescence tomography [5].

 17

(a)

(b)

(c)

Figure 4: Tomographic scan and reconstruction of Arabidopsis thaliana. (a) The initial

scan. (b) The inverse Radon transform of the scan, producing the tomographic image.

(c) The fluorescence corrected image.

 18

APPENDIX

Copy of Reconstruction Code:

from math import *

from numpy import *

class Mkcorralgo:

 def __init__(self, x, y, Dim, Dim2, PhiMin, PhiMax, PhiStep, DetPos, DetPixelNum,

DetArea, data_file, AttLowVal, AttHiVal, AttLowSize, AttHiSize, CorrMatrixSize,

Alpha, SLeft, SRight, Scan):

 self.x = x # used as spatial x-coordinate of the pixel

 self.y = y # used as spatial y-coordinate of the pixel

 self.xIdx = 0

 self.yIdx = 0

 self.Dim = Dim # Number of pixels across one sample axis, assuming square sample

 self.Dim2 = Dim2 # Number of angles covered by sample rotation

 self.PhiMin = PhiMin*pi/180.

 self.PhiMax = PhiMax*pi/180.

 self.PhiStep = PhiStep # Angle Incrementation

 self.DetPos = DetPos # Distance from center of sample to detector

 self.DetPixelNum = DetPixelNum # Number of pixels across one sample axis

 self.DetArea = DetArea # Area of detector

 self.DetLen = 2*math.sqrt(DetArea/pi)

 self.DetPixelSize = self.DetLen/self.DetPixelNum

 self.data = data_file

 self.FluorAbsorptionArray = zeros((self.Dim), float)

 # Integrals of the absorption coefficient at fluorescence energy

 self.AttLow = zeros((self.Dim,self.Dim),float)

 self.AttLow = AttLowVal # Matrix of absorption coefficients at fluorescent energy

 self.AttLowSize = AttLowSize # Physical size of sample along one axis

 self.AttLowDim = self.Dim

 self.AttHi = zeros((self.Dim, self.Dim),float)

 self.AttHi = AttHiVal # Matrix of absorption coefficients at beam energy

 self.AttHiSize = AttHiSize # Physical size of sample along one axis

 self.AttHiDim = self.Dim

 self.maxDim = self.Dim

 self.SLeft = SLeft # Parameter of self.Proj

 self.SRight = SRight # Paramter of self.Proj

 self.Scan = Scan # Parameter of self.Proj

 self.ProjNum = int((self.PhiMax - self.PhiMin) / self.PhiStep) + 1

 self.ProjSize = self.SRight - self.SLeft # for self.Proj

 self.ScanNum = int(self.ProjSize/Scan) # for self.Proj

 self.CorrMatrixDim = Dim

 self.CorrMatrixSize = CorrMatrixSize

 self.FluorMatrixDim = Dim

 19

 self.FluorMatrixSize = self.CorrMatrixSixe*self.Dim

 self.Rho2 = 0 # Distance from the fluorescence point to detector points

 self.FilteredProj = zeros((self.ScanNum, self.ProjNum), float)

 self.MeanCorrMatrix = zeros((self.Dim, self.Dim), float)

 self.FluorMatrix = zeros((self.Dim, self.Dim), float) # Fluor Reconstruction Image

 self.Filter = zeros(self.ScanNum, float) # Filter for backprojection

 self.alpha = Alpha

 self.FluorAbs = 0

 # Orthogonal distance from the fluorescence point to the detector

 def idxToCoord(self, Idx, Dim, Size):

 # Converts an array index to a spatial coordinate.

 return (float(Idx)/float(Dim))*Size

 def coordToAngle(self, x, y):

 # Finds the polar angle of a point (x, y).

 r = sqrt(x*x + y*y)

 if r <= x:

 return 0

 Phi = acos(x/r)

 if y < 0:

 Phi = 2*pi - Phi

 return Phi

 else:

 return Phi

 def fluorAttenuation(self, x, y, Phi):

 # Attenuation of the fluorescent photons from point (x, y) to the detector.

 xDet0 = self.DetPos*cos(Phi) # Coordinates of detector center.

 yDet0 = self.DetPos*sin(Phi)

 self.FluorToDetDist = self.DetPos - self.x*cos(Phi) - self.y*sin(Phi)

 #The detector surface is sampled.

 xDet = xDet0

 yDet = yDet0

 x1 = xDet - x

 y1 = yDet - y

 self.Rho2 = x1*x1 + y1*y1 # Square distance from (x, y) to the pixel.

 Gamma = self.coordToAngle(x1, y1) # Polar angle from (x, y) to the pixel.

 integ = ArrayIntegral(x, y, Gamma, self.AttLow, 0, 0,

self.AttLowSize/self.AttLowDim, self.AttLowDim, self.AttLowDim, self.maxDim)

 # Integral of the absorption coefficient at fluorescence energy \\

 # from (x, y) to the pixel.

 self.FluorAbs = integ.integral()

 return self.planeAttenuation()

 20

 def planeAttenuation(self):

 self.Attenuation = 0

 # Integrates the attenuation from (x, y) to the detector surface in the \\

 # angular range covered by the detector.

 for i in range(self.DetPixelNum):

 DetIdx = i

 DGamma = self.DetPixelSize*self.FluorToDetDist/self.Rho2

 self.Attenuation += exp(-self.FluorAbs)*DGamma

 def beamAttenuation(self, x, y, Phi):

 # Finds the attenuation of the x-ray beam from the source to (x, y).

 PhiBeam = Phi - pi/2

 integ = ArrayIntegral(x, y, PhiBeam, self.AttHi, 0, 0, self.AttHiSize/self.AttHiDim,

self.AttHiDim, self.AttHiDim, self.maxDim)

 temp = integ.integral()

 self.beam = exp(-temp)

 def makeCorrMatrix(self):

 # Evaluates and stores 2-D array of self absorption corrections.

 for i in range(int(self.ProjNum)):

 for j in range(int(self.CorrMatrixDim)):

 for k in range(int(self.CorrMatrixDim)):

 print i, j, k

 AngleIdx = i

 xIdx = j

 yIdx = k

 if AngleIdx == 0:

 self.MeanCorrMatrix[xIdx, yIdx] = 0

 x = self.idxToCoord(xIdx, self.CorrMatrixDim, self.CorrMatrixSize)

 y = self.idxToCoord(yIdx, self.CorrMatrixDim, self.CorrMatrixSize)

 Phi = self.PhiMin + AngleIdx*self.PhiStep

 self.beamAttenuation(x, y, Phi)

 self.fluorAttenuation(x, y, Phi)

 self.CorrElem = self.beam*self.Attenuation

 self.MeanCorrMatrix[xIdx, yIdx] = self.CorrElem/self.ProjNum

 def makeFluorMatrix(self):

 self.makeCorrMatrix()

 self.tomoFilter(self.data, 1)

 # Evaluates fluorescence image through backprojection algorithm using

 # self absorption corrections data.

 Delta = pi/self.ProjNum

 for i in range(self.FluorMatrixDim):

 for j in range(self.FluorMatrixDim):

 21

 xIdx = i # xIdx, yIdx are indices of a pixel of the Fluorescence Image

 yIdx = j

 # xIdx, yIdx are indices of a pixel of the Fluorescence Image

 x = self.idxToCoord(xIdx, self.FluorMatrixDim, self.FluorMatrixSize)

 y = self.idxToCoord(yIdx, self.FluorMatrixDim, self.FluorMatrixSize)

 # spatial coordinates of the pixel

 BeamSum = 0

 for k in range(self.ProjNum):

 AngleIdx = k

 # finds all the rays that pass through (x, y)

 Phi = self.PhiMin + AngleIdx*self.PhiStep

 s = x*cos(Phi) + y*sin(Phi)

 sIdx = int((s - self.SLeft) / self.Scan) - 1

 print AngleIdx, sIdx

 BeamSum += Delta*self.FilteredProj[AngleIdx, sIdx]

 # All such rays are summed

 BeamSum = max(BeamSum, 0)

 self.FluorMatrix[xIdx, yIdx] = BeamSum/self.MeanCorrMatrix[xIdx, yIdx]

 # the pixel content is divded by the absorption correction factor

 def SLFilter(self, x, d):

 # if self.alpha == 0, the Shepp-Logan filter is used

 Filter=(pi**2)*d*(1-4*(x**2))

 for i in range(len(Filter) - 1):

 if abs(Filter[i]) < 1e-6:

 Filter[i] = 0.001

 return 2/Filter

 def RLFilter(self, x, d):

 # if self.alpha > 0, the Ram-Lak Filter calculated and then the GH Filter is used

 q = x

 y = -(sin(x*pi/2))**2/((pi**2)*(q**2)*d)

 for i in range(len(q)):

 if (x[i] - int(d/2)) == 0:

 y[i] = 1/(4.*d)

 return y

 def GHFilter(self, x, d):

 # the General Hamming Filter

 return self.alpha*self.RLFilter(x, d) + 0.5*(1 - self.alpha)*(self.RLFilter(x-1, d) +

self.RLFilter(x+1, d))

 def tomoFilter(self, image, d, filter_size=0):

 dims = shape(image)

 if not filter_size:

 filter_size=int(dims[0]/4.)

 22

 nfilter = 2*filter_size + 1

 x = arange(nfilter, typecode = Float) - filter_size

 if self.alpha == 0:

 filter = self.SLFilter(x, d)

 else:

 filter = self.GHFilter(x, d)

 print filter

 (ncols,nrows) = shape(image)

 self.FilteredProj = image

 temp = zeros(ncols+2*nfilter, Float)

 for i in range(nrows):

 #pad with data from first and last columns

 temp[0 : nfilter-1] = image[0, i]

 temp[nfilter+ncols-1 : ncols+2*nfilter-1] = image[ncols-1, i]

 temp[nfilter : nfilter+ncols] = image[:, i]

 temp = convolve(temp, filter, mode=1)

 self.FilteredProj[:,i] = temp[nfilter : nfilter+ncols]

class ArrayIntegral:

 def __init__(self, X, Y, Phi, Array, XRect, YRect, PixelSize, Nx, Ny, MAXNY):

 self.XRect = XRect # x-component of corner of the rectangle

 self.YRect = YRect # y-component of corner of the rectangle

 self.Nx = Nx # width of the rectangle*PixelSize

 self.Ny = Ny # height of the rectangle*PixelSize

 self.array = Array # the two-dimensional distribution

 self.PixelSize = PixelSize # ...pretty self-explanatory

 self.maxNy = MAXNY # maximum height of the rectangle

 self.Dx = 1 # incrementation in x-direction

 self.Dy = 1 # incrementation in y-direction

 self.Phi = Phi # angle from x-axis to point (x, y)

 self.x = (X - XRect)/PixelSize # reduced x-coordinate

 self.y = (Y - YRect)/PixelSize # reduced y-coordinate

 self.IncX = {}

 self.IncY = {}

 self.IncX[0] = self.Dx

 self.IncX[1] = self.Dx

 self.IncY[0] = self.Dy

 self.IncY[1] = self.Dy

 self.length = 0

 self.Integral = 0

 self.finalIntegral = 0

 def xMatrixCheck(self):

 # Checks if the starting point (x, y) is outside the rectangle.

 if self.x < 0:

 23

 # If x < 0, finds the intersection of the ray with the x = 0 axis.

 if self.x + cos(self.Phi) != self.x:

 xAlpha = self.y - self.x*sin(self.Phi)/cos(self.Phi)

 if xAlpha >= 0 and xAlpha <= self.Ny:

 # If the intersection lies on the rectangle edge,it is taken

 # as a new starting point for the integral.

 self.x = 0

 self.y = xAlpha

 elif self.x > self.Nx:

 # If x > Nx, finds the intersection of the ray with the x = Nx axis.

 xDelta = self.Nx - self.x

 if xDelta + cos(self.Phi) != xDelta:

 xAlpha = self.y + xDelta*sin(self.Phi)/cos(self.Phi)

 if xAlpha >= 0 and xAlpha <= self.Ny:

 self.x = self.Nx

 self.y = xAlpha

 else:

 # The x-coordinate is in the rectangle

 self.x = self.x

 def yMatrixCheck(self):

 if self.y < 0:

 # If y < 0, finds the intersection of the ray with the y = 0 axis.

 if self.y + sin(self.Phi) != self.y:

 yAlpha = self.x - self.y*cos(self.Phi)/sin(self.Phi)

 if yAlpha >= 0 and yAlpha <= self.Nx:

 self.y = 0

 self.x = yAlpha

 elif self.y > self.Ny:

 # If y > Ny, finds the intersection of the ray with the y = Ny axis.

 yDelta = self.Ny - self.y

 if yDelta + sin(self.Phi) != yDelta:

 yAlpha = yDelta*cos(self.Phi)/sin(self.Phi)

 if yAlpha >= 0 and yAlpha <= self.Nx:

 self.y = self.Ny

 self.x = yAlpha

 else:

 # The y-coord is in the rectangle

 self.y = self.y

 def integral(self):

 self.xMatrixCheck

 self.yMatrixCheck

 self.ix = int(self.x) # integral part of x

 24

 self.iy = int(self.y) # integral part of y

 self.tx = self.x - self.ix # fractional part of x

 self.ty = self.y - self.iy # fractional part of y

 if self.ix == self.Nx:

 self.ix = self.ix - 1

 self.tx = 1

 if self.iy == self.Ny:

 self.iy = self.iy - 1

 self.ty = 1

 # Angle Restriction

 # Used to reduce the problem to the case of 0 < Phi < pi/4.

 if self.Phi < 0: #makes Phi element of [0, 2pi]

 while self.Phi < 0:

 self.Phi = self.Phi + 2*pi

 if self.Phi > pi: #makes Phi element of [0, pi]

 self.Phi = 2*pi - self.Phi

 self.Dy = -1

 self.ty = 1 - self.ty

 if self.Phi > pi/2: #makes Phi element of [0, pi/2)

 self.Phi = pi - self.Phi

 self.Dx = -1

 self.tx = 1- self.tx

When the line integral crosses from one pixel to another, only one of the

 # two indices, ix or iy, must be changed, depending on which axis,

 # y or x, is intersected. The indices 0, 1 of the variables IncX, IncY

 # refer to the x, y axes, respectively.

 if self.Phi > pi/4:

 self.Phi = pi/2 - self.Phi

 self.IncX[1] = 0

 self.IncY[0] = 0

 self.swap(self.tx, self.ty)

 else:

 self.IncX[0] = 0

 self.IncY[1] = 0

Calculates the integral over the first pixel.

 self.ux = 1 - self.tx

 self.uy = 1 - self.ty

 self.t = self.ux*tan(self.Phi)

 if self.t <= self.uy:

 self.t += self.ty

 25

 self.axis = 1

 self.length = self.ux*(1/cos(self.Phi))

 else:

 self.t = self.tx + self.uy/tan(self.Phi)

 self.axis = 0

 self.length = self.uy/sin(self.Phi)

 self.array = ravel(self.array)

 self.Integral = self.length*self.array[self.ix*self.maxNy + self.iy]

 self.L = self.length

 self.ix += self.IncX[self.axis]

 self.iy += self.IncY[self.axis]

 while self.ix >= 0 and self.ix < self.Nx and self.iy >= 0 and self.iy < self.Ny:

 # Finds all pixels of the rectangle that are intersected by the ray.

 self.integralStep(tan(self.Phi), 1/cos(self.Phi))

 self.length += self.L

 self.Integral += self.L*self.array[self.ix*self.maxNy + self.iy]

 self.ix += self.IncX[self.axis]

 self.iy += self.IncY[self.axis]

 self.length = self.length*self.PixelSize

 self.Integral = self.Integral*self.PixelSize

 return self.Integral

 def integralStep(self, TgPhi, SecPhi):

 # Finds the length of the intersection of the ray with a single pixel.

 self.u = 1 - self.t

 if self.axis == 0:

 self.axis = 1

 self.t = self.u*TgPhi

 self.L = self.u*SecPhi

 else:

 if self.t < (1 - TgPhi):

 self.t += TgPhi

 self.L = SecPhi

 else:

 self.axis = 0

 self.t = self.u/TgPhi

 self.L = self.t*SecPhi

 def swap(self, a, b):

 temp = b

 b = a

 a = temp

 return a, b

