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ABSTRACT 

X-Ray Tomographic Reconstruction. BONNIE SCHMITTBERGER (Bryn Mawr 

College, Bryn Mawr, PA, 19010) DR. SAMUEL WEBB (Stanford Synchrotron 

Radiation Laboratory at SLAC National Acceleratory Laboratory, Menlo Park, CA 

94025)  

 

Tomographic scans have revolutionized imaging techniques used in medical and 

biological research by resolving individual sample slices instead of several superimposed 

images that are obtained from regular x-ray scans. X-Ray fluorescence computed 

tomography, a more specific tomography technique, bombards the sample with 

synchrotron x-rays and detects the fluorescent photons emitted from the sample. 

However, since x-rays are attenuated as they pass through the sample, tomographic scans 

often produce images with erroneous low densities in areas where the x-rays have already 

passed through most of the sample. To correct for this and correctly reconstruct the data 

in order to obtain the most accurate images, a program employing iterative methods 

based on the inverse Radon transform was written. Applying this reconstruction method 

to a tomographic image recovered some of the lost densities, providing a more accurate 

image from which element concentrations and internal structure can be determined. 
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1. INTRODUCTION 

X-Ray fluorescence computed tomography (XFCT) is a synchrotron-based 

imaging technique used for mapping the distribution of elements within a sample. In 

XFCT, a sample is bombarded with x-rays that excite k-shell electrons. When these 

atoms return to their stable state, they emit fluorescent x-rays at energies characteristic of 

the element. These photons are collected by a solid state silicon detector that records 

multiple energies simultaneously. The total number of photons recorded is a function of 

the sum of the various element concentrations along the line of the incident beam. By 

rotating the object and compiling horizontal scans, it is possible to obtain a complete 

tomographic reconstruction of the distribution of the elements within a sample. 

Since the incident beam is attenuated through the sample and part of the emission 

is absorbed by the sample, attenuation correction is necessary in order to obtain accurate 

results. If reconstruction techniques are not employed, the image of the center of the 

sample is blurred, and its density, as recorded by the scan, is much lower than its true 

density. Previous reconstruction techniques required a known attenuation at each 

fluorescence energy, which necessitated the time-consuming process of rescanning the 

sample at all the relevant energies [1]. Tomographic reconstruction is also possible by a 

series of mathematical corrections based on the inverse Radon transform, which is a 

faster and simpler method. 

These reconstruction techniques have attracted numerous scientific disciplines to 

XFCT. In particular, the high sensitivity and sub-micrometer resolution of this method is 

useful in medicine [2]. The presence of metals and other trace elements drastically affect 

intracellular processes in any organism [3]. XFCT is the only sub-micrometer technique 
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that can map these elements within cells and search for abnormal quantities and 

distributions accompanying the development of certain diseases [3]. 

 

2. MATERIALS AND METHODS 

i. Data Collection 

Once the code was completed, data was collected at the Stanford Synchrotron 

Radiation Lightsource. X-Rays obtained from the synchrotron are sent through an ion 

chamber to measure the energy of the incident beam. The x-rays are then directed into a 

helium-purged chamber where they are focused down to a 2 µm diameter by two 

elliptical mirrors. This focused beam is then sent out to the sample, which is scanned by 

moving completely across the incident beam, then rotating by a certain small angle, 

typically 1 to 3 degrees, and repeating until 180 degrees are covered. This is called a full 

translation, half rotation tomographic scan. If the scan were to cover a full rotation, the 

amount of attenuation correction would be minimized because the image would only 

contain artifacts towards the center of the sample, but that process doubles the scanning 

time, generally requiring three to four extra hours. 

 The detector is placed behind the sample to collect the transmitted x-rays, and 

another is placed at 90 degrees to the incident beam to collect the fluorescent photons, as 

depicted in Figure 1. A uniform fluorescence around the sample is assumed, so that one 

fluorescent photon detector is sufficient. Because elements have signature fluorescence 

energies, a fluorescent photon detector that can distinguish different photon energy levels 

is used. This detector counts the number of photons that it receives at each energy level, 

so the concentrations of different elements in the sample can be determined. 
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ii. Basic Reconstruction Technique 

The data from a tomographic scan is formatted into a two-dimensional matrix 

composed of pixel intensities. Assuming uniform attenuation throughout the sample, a 

simple reconstruction method employs the inverse Radon transform. 

 The inverse Radon transform is the fundamental method for image reconstruction 

because the Radon Transform acts as a continuous mathematical model for exponentially 

decreasing density based on a coefficient. A line integral represents the total attenuation 

of an x-ray as it travels in a straight line through the sample. A tomographic image can be 

defined by f (x,y) , and the attenuation is therefore represented by 

P" (t) = f (x,y)ds
(" ,t )
# , (1) 

where (",t) are the line integral parameters. This can be rewritten as 

       P" (t) = f (x,y)#(x cos" + y sin" $ t)dxdy
$%

%

&
$%

%

& , (2) 

which is the definition of the Radon transform [4]. 

To understand the effects of attenuation in XFCT, a Radon transform can be 

applied to simulated data to create an approximate attenuated image. Figure 2(a) shows a 

simulated sample of iron without correction for attenuation. Applying an inverse Radon 

transform with the proper attenuation coefficient produces Figure 2(b), the reconstructed 

image. Figure 2(c) and 2(d) are analogous images of a calcium sample. The calcium 

sample is originally more attenuated than the iron sample because the fluorescent photon 

energies of calcium are lower than those of iron, which makes it harder for them to 

escape the sample. 

A simple reconstruction method takes the inverse Radon transform of the data, 

and creates a second matrix that defines the shape of the sample, having a “1” wherever 
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the object is, and a “0” everywhere else. The absorption effect can be estimated by taking 

the Radon Transform of the shape, which is analogous to the survival probability of a 

photon reaching a point in the sample. Defining this transform as ),,( usf ! , it can then 

be estimated that 

!
!
"

#
$
$
%

&
''(= )

*(

u

udususf ),(exp),,( µ+ ,  (3) 

where µ is the attenuation coefficient, and ),( us  is a point in the matrix as shown in 

Figure 3, where the s and u axes are parallel to the translation direction and the beam, 

respectively [5]. The exponential in Equation 1 is therefore the absorption effect. 

Dividing the initial data by the absorption effect will give the corrected data, and taking 

the inverse Radon transform of that will give the final corrected image. 

 This method is useful for ideal samples with uniform attenuation. Otherwise, this 

technique only works for very small attenuation coefficients on the order of µ = 0.01. For 

realistic situations, a much more comprehensive method is needed. It must be able to 

integrate over varying densities with different attenuation coefficients. A successful 

technique is described in Part II; it employs iterative methods for image reconstruction. 

iii. Algorithm Theory 

The number of emitted photons detected from a given point in the sample can be 

defined as 

! =•
==

tx
W dxxfxWtftd

"
### )(),(),(),( R ,  (4) 

where t and !  are parameters defining the line, " = (cos#,sin#) [6]. The first integrated 

function,  
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! +"+"=
2

1

),(exp[)],(exp[),(
#

#
##$µ%$&$ dxxxW DD ],  (5) 

accounts for the different fluorescence energies of elements and gives more weight to 

elements whose fluorescence energies are lower [6]. The limits of integration refer to the 

angle range ],[ 21 !!  at each emission point [6]. The operator D  is the divergent beam 

transform defined by 

!
"

#+=
0

)(),( dqqxx $µ%µD ,  (6) 

where µ is the estimated fluorescence attenuation coefficient and !  is the known 

transmission coefficient [6]. When 0== !µ , 
W

R  is the general Radon transform [6]. 

Therefore, similar to the method used in Part I, the attenuation problem can be solved by 

inverting the operator 
W

R  [6]. 

When µ = 0, the density of a sample can be approximated as 

{ }
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where 
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"
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2
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1
)( dxWxa   (8) 

is the correction factor [6]. Miqueles and De Pierro [4] discovered that this general 

formula is actually the first iteration of an iterative method, where each iteration consists 

of an inverse Radon Transform 1!
R . They define the sequence 

)()()1( k

k

kk eff !+=
+ ,  (9) 

where 
k

!  is the positive relaxation factor and )(k
e  is defined as 

a
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 [6].  (10) 
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Therefore the complete reconstruction algorithm by iteration is 
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W
B  is the attenuated backprojection operator, defined as 

! "=
#

$$%$
2

0
),(),()( dxdxWxd

W
B ,  (13) 

and it can be shown that it is the adjoint operator of 
W

R  [6]. 

This method was translated into a code that processes images from tomographic 

scans. The matrix data was corrected so that each pixel was given a size of 1. This 

method was then applied, treating each element of the matrix as a point in space. 

 In order to translate this into a working code, the algorithm from Equation 9 was 

applied to every point in the tomographic image for both a beam attenuation correction, 

which accounts for any attenuation from the source to a point in the sample, and for a 

fluorescence attenuation correction, which accounts for any attenuation from that point in 

the sample to the detector. From both sets of attenuation, a matrix of absorption 

corrections was constructed. A filter was applied to the initial data, which distinguished 

the areas where the most attenuation occurred and where the least attenuation occurred. 

In order to get the final image, the filtered image was divided by the absorption 

corrections at each pixel. 
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3. RESULTS 

This method was applied to a tomographic scan of a stem of the plant Arabidopsis 

thaliana with an estimated attenuation coefficient of 0.08. The initial scan is shown in 

Figure 4a, and its inverse Radon transform is shown in Figure 4b. The tomographic 

image with the applied reconstruction is shown in Figure 4c, and while the elimination of 

attenuation artifacts is not immediately noticed, data analysis showed an improvement. 

In order to quantitatively measure the effect of the reconstruction program, the 

original data was subtracted from the corrected data, providing a matrix of absorption 

corrections that had been made. The maximum attenuation occurred in the back of the 

sample, opposite from the incident x-rays, which is expected from a half rotation, full 

translation scan. The pixels in the back of the sample had lost at least 16% of their 

original density, which was added back during the reconstruction. 

Because there are still attenuation artifacts present in the corrected image, the 

inputted attenuation coefficient was not high enough. Inputting coefficients that are too 

low barely affect the attenuated data, and inputting coefficients that are too high add too 

much density back to the image and results in a loss of real data. A solution to this 

problem is discussed further in Section 4i. 

 

4. DISCUSSION 

i. Method Discussion 

The proposed method yields accurate images that provide more detailed 

information about the sample. Although running the program requires approximately an 
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hour, changing with the size of the sample, it is much faster than the time that would need 

to be allotted to take a full translation, full rotation scan. 

 A potential disadvantage of the method is the required estimation for the 

minimum and maximum attenuation coefficients. An ideal attenuation coefficient input is 

a matrix of varying attenuation coefficients that can be constructed from the density map 

of the sample obtained from the transmission photon detector. Once an estimated matrix 

is entered, the iterative method from Equation 11 can be applied to adjust the coefficients 

until an ideal image is obtained. Miqueles and De Pierro [4] found that using several 

iterations will limit the attenuation coefficients and further improve the data. 

 The reconstruction code is given as an appendix. The filtering functions and the 

mean correlated matrix function perform the reconstruction and create a two-dimensional 

array of self-absorption corrections. These functions can be added to any module that 

processes tomographic scans. Dividing the inverse Radon transform of the original scan 

by this matrix will produce the corrected tomographic image; a simple version of this is 

given in the fluorescent matrix function, but most modules already include an inverse 

Radon transform code. 

ii. Sample Discussion 

 The sample used was brought to SSRL by Tracy Punshon from Dartmouth 

College. The plant Arabidopsis thaliana is of interest because it is the first plant to have 

its entire genome sequenced, thus being a model organism for understanding plant 

biology and plant traits. This sample was the wild type Arabidopsis, and other 

measurements consisted of plants that had a gene removed for iron transport; the 

intention was to study how the distribution of iron changes without the gene for iron 
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transport. 

This is significant for the current interest in trying to figure out ways to encourage 

iron transport in other plants, such as rice.  If the process can be encouraged, rice could 

be infused with iron, which could potentially solve the growing iron deficiency problems 

in developing countries. 

 

5. CONCLUSION 

 XFCT has the potential to provide incredibly informative images once a 

reconstruction has been applied to the data. An effective reconstruction technique 

employs the inverse Radon transform and accounts for changing attenuation coefficients 

and the variance of fluorescence energies. The attenuation coefficient map is the key 

input for a successful reconstruction, and its creation can be perfected by using iterative 

methods. Using a reconstruction method can provide accurate results despite the large 

attenuation effects accumulated from a half rotation scan. By correcting for the 

attenuation effects, the inaccuracies associated with XFCT become nearly irrelevant, 

which makes it very attractive, especially to the biological and medical communities. 

This method has become vital for the analysis and mapping of elemental content in cells 

and tissues. 
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Figure 1: Schematic of experimental setup. 
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Figure 2: Simulated iron and calcium distributions. (a) Iron without correction for 

attenuation. (b) Iron with correction for attenuation. (c) Calcium without correction for 

attenuation. (d) Calcium with correction for attenuation. [1]
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Figure 3: Diagram of fluorescence tomography [5]. 
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(a) 

 

 

 
(b) 

 

 

 
(c) 

 

Figure 4: Tomographic scan and reconstruction of Arabidopsis thaliana. (a) The initial 

scan. (b) The inverse Radon transform of the scan, producing the tomographic image. 

(c) The fluorescence corrected image. 
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APPENDIX 

 

Copy of Reconstruction Code: 

 

from math import * 

from numpy import * 

 

class Mkcorralgo: 

    def __init__(self, x, y, Dim, Dim2, PhiMin, PhiMax, PhiStep, DetPos, DetPixelNum, 

DetArea, data_file, AttLowVal, AttHiVal, AttLowSize, AttHiSize, CorrMatrixSize, 

Alpha, SLeft, SRight, Scan): 

        self.x = x # used as spatial x-coordinate of the pixel 

        self.y = y # used as spatial y-coordinate of the pixel 

        self.xIdx = 0 

        self.yIdx = 0 

        self.Dim = Dim # Number of pixels across one sample axis, assuming square sample 

        self.Dim2 = Dim2 # Number of angles covered by sample rotation 

        self.PhiMin = PhiMin*pi/180. 

        self.PhiMax = PhiMax*pi/180. 

        self.PhiStep = PhiStep # Angle Incrementation 

        self.DetPos = DetPos # Distance from center of sample to detector 

        self.DetPixelNum = DetPixelNum # Number of pixels across one sample axis 

        self.DetArea = DetArea # Area of detector 

        self.DetLen = 2*math.sqrt(DetArea/pi) 

        self.DetPixelSize = self.DetLen/self.DetPixelNum 

        self.data = data_file 

        self.FluorAbsorptionArray = zeros((self.Dim), float) 

                # Integrals of the absorption coefficient at fluorescence energy 

        self.AttLow = zeros((self.Dim,self.Dim),float) 

        self.AttLow = AttLowVal # Matrix of absorption coefficients at fluorescent energy 

        self.AttLowSize = AttLowSize # Physical size of sample along one axis 

        self.AttLowDim = self.Dim 

        self.AttHi = zeros((self.Dim, self.Dim),float) 

        self.AttHi = AttHiVal # Matrix of absorption coefficients at beam energy 

        self.AttHiSize = AttHiSize # Physical size of sample along one axis 

        self.AttHiDim = self.Dim 

        self.maxDim = self.Dim 

        self.SLeft = SLeft # Parameter of self.Proj 

        self.SRight = SRight # Paramter of self.Proj 

        self.Scan = Scan # Parameter of self.Proj 

        self.ProjNum = int((self.PhiMax - self.PhiMin) / self.PhiStep) + 1 

        self.ProjSize = self.SRight - self.SLeft # for self.Proj 

        self.ScanNum = int(self.ProjSize/Scan) # for self.Proj 

        self.CorrMatrixDim = Dim 

        self.CorrMatrixSize = CorrMatrixSize 

        self.FluorMatrixDim = Dim 
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        self.FluorMatrixSize = self.CorrMatrixSixe*self.Dim 

        self.Rho2 = 0 # Distance from the fluorescence point to detector points 

        self.FilteredProj = zeros((self.ScanNum, self.ProjNum), float) 

        self.MeanCorrMatrix = zeros((self.Dim, self.Dim), float) 

        self.FluorMatrix = zeros((self.Dim, self.Dim), float) # Fluor Reconstruction Image 

        self.Filter = zeros(self.ScanNum, float) # Filter for backprojection 

        self.alpha = Alpha 

        self.FluorAbs = 0 

            # Orthogonal distance from the fluorescence point to the detector 

 

    def idxToCoord(self, Idx, Dim, Size): 

        # Converts an array index to a spatial coordinate. 

        return (float(Idx)/float(Dim))*Size 

 

    def coordToAngle(self, x, y): 

        # Finds the polar angle of a point (x, y). 

        r = sqrt(x*x + y*y) 

        if r <= x: 

            return 0 

        Phi = acos(x/r) 

        if y < 0: 

            Phi = 2*pi - Phi 

            return Phi 

        else: 

            return Phi 

 

    def fluorAttenuation(self, x, y, Phi): 

        # Attenuation of the fluorescent photons from point (x, y) to the detector. 

        xDet0 = self.DetPos*cos(Phi) # Coordinates of detector center. 

        yDet0 = self.DetPos*sin(Phi) 

        self.FluorToDetDist = self.DetPos - self.x*cos(Phi) - self.y*sin(Phi) 

 

        #The detector surface is sampled. 

        xDet = xDet0 

        yDet = yDet0 

        x1 = xDet - x 

        y1 = yDet - y 

        self.Rho2 = x1*x1 + y1*y1 # Square distance from (x, y) to the pixel. 

        Gamma = self.coordToAngle(x1, y1) # Polar angle from (x, y) to the pixel. 

        integ = ArrayIntegral(x, y, Gamma, self.AttLow, 0, 0, 

self.AttLowSize/self.AttLowDim, self.AttLowDim, self.AttLowDim, self.maxDim) 

            # Integral of the absorption coefficient at fluorescence energy \\ 

            # from (x, y) to the pixel. 

        self.FluorAbs = integ.integral() 

        return self.planeAttenuation() 
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    def planeAttenuation(self): 

        self.Attenuation = 0 

        # Integrates the attenuation from (x, y) to the detector surface in the \\ 

        # angular range covered by the detector. 

        for i in range(self.DetPixelNum): 

            DetIdx = i 

            DGamma = self.DetPixelSize*self.FluorToDetDist/self.Rho2 

            self.Attenuation += exp(-self.FluorAbs)*DGamma 

 

    def beamAttenuation(self, x, y, Phi): 

        # Finds the attenuation of the x-ray beam from the source to (x, y). 

         

        PhiBeam = Phi - pi/2 

        integ = ArrayIntegral(x, y, PhiBeam, self.AttHi, 0, 0, self.AttHiSize/self.AttHiDim, 

self.AttHiDim, self.AttHiDim, self.maxDim) 

        temp = integ.integral() 

        self.beam = exp(-temp) 

 

    def makeCorrMatrix(self): 

        # Evaluates and stores 2-D array of self absorption corrections. 

        for i in range(int(self.ProjNum)): 

            for j in range(int(self.CorrMatrixDim)): 

                for k in range(int(self.CorrMatrixDim)): 

                    print i, j, k 

                    AngleIdx = i 

                    xIdx = j 

                    yIdx = k 

                    if AngleIdx == 0: 

                        self.MeanCorrMatrix[xIdx, yIdx] = 0 

                    x = self.idxToCoord(xIdx, self.CorrMatrixDim, self.CorrMatrixSize) 

                    y = self.idxToCoord(yIdx, self.CorrMatrixDim, self.CorrMatrixSize) 

                    Phi = self.PhiMin + AngleIdx*self.PhiStep 

                    self.beamAttenuation(x, y, Phi) 

                    self.fluorAttenuation(x, y, Phi) 

                    self.CorrElem = self.beam*self.Attenuation 

                    self.MeanCorrMatrix[xIdx, yIdx] = self.CorrElem/self.ProjNum 

 

    def makeFluorMatrix(self): 

        self.makeCorrMatrix() 

        self.tomoFilter(self.data, 1) 

 

        # Evaluates fluorescence image through backprojection algorithm using 

        # self absorption corrections data. 

        Delta = pi/self.ProjNum 

        for i in range(self.FluorMatrixDim): 

            for j in range(self.FluorMatrixDim): 
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                xIdx = i # xIdx, yIdx are indices of a pixel of the Fluorescence Image 

                yIdx = j 

                # xIdx, yIdx are indices of a pixel of the Fluorescence Image 

                x = self.idxToCoord(xIdx, self.FluorMatrixDim, self.FluorMatrixSize) 

                y = self.idxToCoord(yIdx, self.FluorMatrixDim, self.FluorMatrixSize) 

                    # spatial coordinates of the pixel 

                BeamSum = 0 

                for k in range(self.ProjNum): 

                    AngleIdx = k 

                    # finds all the rays that pass through (x, y) 

                    Phi = self.PhiMin + AngleIdx*self.PhiStep 

                    s = x*cos(Phi) + y*sin(Phi) 

                    sIdx = int((s - self.SLeft) / self.Scan) - 1 

                    print AngleIdx, sIdx 

                    BeamSum += Delta*self.FilteredProj[AngleIdx, sIdx] 

                        # All such rays are summed 

                BeamSum = max(BeamSum, 0) 

                self.FluorMatrix[xIdx, yIdx] = BeamSum/self.MeanCorrMatrix[xIdx, yIdx] 

                # the pixel content is divded by the absorption correction factor 

 

    def SLFilter(self, x, d): 

        # if self.alpha == 0, the Shepp-Logan filter is used 

        Filter=(pi**2)*d*(1-4*(x**2)) 

        for i in range(len(Filter) - 1): 

            if abs(Filter[i]) < 1e-6: 

                Filter[i] = 0.001 

        return 2/Filter 

 

    def RLFilter(self, x, d): 

        # if self.alpha > 0, the Ram-Lak Filter calculated and then the GH Filter is used 

        q = x 

        y = -(sin(x*pi/2))**2/((pi**2)*(q**2)*d) 

        for i in range(len(q)): 

            if (x[i] - int(d/2)) == 0: 

                y[i] = 1/(4.*d) 

        return y 

 

    def GHFilter(self, x, d): 

        # the General Hamming Filter 

        return self.alpha*self.RLFilter(x, d) + 0.5*(1 - self.alpha)*(self.RLFilter(x-1, d) + 

self.RLFilter(x+1, d)) 

 

    def tomoFilter(self, image, d, filter_size=0): 

        dims = shape(image) 

        if not filter_size: 

            filter_size=int(dims[0]/4.) 
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        nfilter = 2*filter_size + 1 

        x = arange(nfilter, typecode = Float) - filter_size 

        if self.alpha == 0: 

            filter = self.SLFilter(x, d) 

        else: 

            filter = self.GHFilter(x, d) 

        print filter 

        (ncols,nrows) = shape(image) 

        self.FilteredProj = image 

        temp = zeros(ncols+2*nfilter, Float) 

        for i in range(nrows): 

            #pad with data from first and last columns 

            temp[0 : nfilter-1] = image[0, i] 

            temp[nfilter+ncols-1 : ncols+2*nfilter-1] = image[ncols-1, i] 

            temp[nfilter : nfilter+ncols] = image[:, i] 

            temp = convolve(temp, filter, mode=1) 

            self.FilteredProj[:,i] = temp[nfilter : nfilter+ncols] 

 

 

class ArrayIntegral: 

    def __init__(self, X, Y, Phi, Array, XRect, YRect, PixelSize, Nx, Ny, MAXNY): 

        self.XRect = XRect # x-component of corner of the rectangle 

        self.YRect = YRect # y-component of corner of the rectangle 

        self.Nx = Nx # width of the rectangle*PixelSize 

        self.Ny = Ny # height of the rectangle*PixelSize 

        self.array = Array # the two-dimensional distribution 

        self.PixelSize = PixelSize # ...pretty self-explanatory 

        self.maxNy = MAXNY # maximum height of the rectangle 

        self.Dx = 1 # incrementation in x-direction 

        self.Dy = 1 # incrementation in y-direction 

        self.Phi = Phi # angle from x-axis to point (x, y) 

        self.x = (X - XRect)/PixelSize # reduced x-coordinate 

        self.y = (Y - YRect)/PixelSize # reduced y-coordinate 

        self.IncX = {} 

        self.IncY = {} 

        self.IncX[0] = self.Dx 

        self.IncX[1] = self.Dx 

        self.IncY[0] = self.Dy 

        self.IncY[1] = self.Dy 

        self.length = 0 

        self.Integral = 0 

        self.finalIntegral = 0 

 

    def xMatrixCheck(self): 

        # Checks if the starting point (x, y) is outside the rectangle. 

        if self.x < 0: 
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            # If x < 0, finds the intersection of the ray with the x = 0 axis. 

            if self.x + cos(self.Phi) != self.x: 

                xAlpha = self.y - self.x*sin(self.Phi)/cos(self.Phi) 

                if xAlpha >= 0 and xAlpha <= self.Ny: 

                    # If the intersection lies on the rectangle edge,it is taken 

                    # as a new starting point for the integral. 

                    self.x = 0 

                    self.y = xAlpha 

        elif self.x > self.Nx: 

            # If x > Nx, finds the intersection of the ray with the x = Nx axis. 

            xDelta = self.Nx - self.x 

            if xDelta + cos(self.Phi) != xDelta: 

                xAlpha = self.y + xDelta*sin(self.Phi)/cos(self.Phi) 

                if xAlpha >= 0 and xAlpha <= self.Ny: 

                    self.x = self.Nx 

                    self.y = xAlpha 

        else: 

            # The x-coordinate is in the rectangle 

            self.x = self.x 

 

    def yMatrixCheck(self): 

        if self.y < 0: 

            # If y < 0, finds the intersection of the ray with the y = 0 axis. 

            if self.y + sin(self.Phi) != self.y: 

                yAlpha = self.x - self.y*cos(self.Phi)/sin(self.Phi) 

                if yAlpha >= 0 and yAlpha <= self.Nx: 

                    self.y = 0 

                    self.x = yAlpha 

        elif self.y > self.Ny: 

            # If y > Ny, finds the intersection of the ray with the y = Ny axis. 

            yDelta = self.Ny - self.y 

            if yDelta + sin(self.Phi) != yDelta: 

                yAlpha = yDelta*cos(self.Phi)/sin(self.Phi) 

                if yAlpha >= 0 and yAlpha <= self.Nx: 

                    self.y = self.Ny 

                    self.x = yAlpha 

        else: 

            # The y-coord is in the rectangle 

            self.y = self.y 

 

    def integral(self): 

         

        self.xMatrixCheck 

        self.yMatrixCheck 

 

        self.ix = int(self.x) # integral part of x 
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        self.iy = int(self.y) # integral part of y 

        self.tx = self.x - self.ix # fractional part of x 

        self.ty = self.y - self.iy # fractional part of y 

        if self.ix == self.Nx: 

            self.ix = self.ix - 1 

            self.tx = 1 

        if self.iy == self.Ny: 

            self.iy = self.iy - 1 

            self.ty = 1 

 

        # Angle Restriction       

        # Used to reduce the problem to the case of 0 < Phi < pi/4. 

        if self.Phi < 0: #makes Phi element of [0, 2pi] 

            while self.Phi < 0: 

                self.Phi = self.Phi + 2*pi 

        if self.Phi > pi: #makes Phi element of [0, pi] 

            self.Phi = 2*pi - self.Phi 

            self.Dy = -1 

            self.ty = 1 - self.ty 

        if self.Phi > pi/2: #makes Phi element of [0, pi/2) 

            self.Phi = pi - self.Phi 

            self.Dx = -1 

            self.tx = 1- self.tx 

 

# When the line integral crosses from one pixel to another, only one of the 

        #   two indices, ix or iy, must be changed, depending on which axis, 

        #   y or x, is intersected. The indices 0, 1 of the variables IncX, IncY 

        #   refer to the x, y axes, respectively. 

 

        if self.Phi > pi/4: 

            self.Phi = pi/2 - self.Phi 

            self.IncX[1] = 0 

            self.IncY[0] = 0 

            self.swap(self.tx, self.ty) 

        else: 

            self.IncX[0] = 0 

            self.IncY[1] = 0 

 

# Calculates the integral over the first pixel. 

 

        self.ux = 1 - self.tx 

        self.uy = 1 - self.ty 

        self.t = self.ux*tan(self.Phi) 

         

        if self.t <= self.uy: 

            self.t += self.ty 
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            self.axis = 1 

            self.length = self.ux*(1/cos(self.Phi)) 

        else: 

            self.t = self.tx + self.uy/tan(self.Phi) 

            self.axis = 0 

            self.length = self.uy/sin(self.Phi) 

 

        self.array = ravel(self.array) 

        self.Integral = self.length*self.array[self.ix*self.maxNy + self.iy] 

        self.L = self.length 

 

        self.ix += self.IncX[self.axis] 

        self.iy += self.IncY[self.axis] 

 

        while self.ix >= 0 and self.ix < self.Nx and self.iy >= 0 and self.iy < self.Ny: 

            # Finds all pixels of the rectangle that are intersected by the ray. 

            self.integralStep(tan(self.Phi), 1/cos(self.Phi)) 

            self.length += self.L 

            self.Integral += self.L*self.array[self.ix*self.maxNy + self.iy] 

            self.ix += self.IncX[self.axis] 

            self.iy += self.IncY[self.axis] 

        self.length = self.length*self.PixelSize 

        self.Integral = self.Integral*self.PixelSize 

        return self.Integral 

 

    def integralStep(self, TgPhi, SecPhi): 

        # Finds the length of the intersection of the ray with a single pixel. 

        self.u = 1 - self.t 

        if self.axis == 0: 

            self.axis = 1 

            self.t = self.u*TgPhi 

            self.L = self.u*SecPhi 

        else: 

            if self.t < (1 - TgPhi): 

                self.t += TgPhi 

                self.L = SecPhi 

            else: 

                self.axis = 0 

                self.t = self.u/TgPhi 

                self.L = self.t*SecPhi 

 

    def swap(self, a, b): 

        temp = b 

        b = a 

        a = temp 

        return a, b 




