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Abstract

Modern Internet systems often combine different ap-

plications (e.g., DNS, web, and database), span differ-

ent administrative domains, and function in the context

of network mechanisms like tunnels, VPNs, NATs, and

overlays. Diagnosing these complex systems is a daunt-

ing challenge. Although many diagnostic tools exist, they

are typically designed for a specific layer (e.g., tracer-

oute) or application, and there is currently no tool for

reconstructing a comprehensive view of service behav-

ior. In this paper we propose X-Trace, a tracing frame-

work that provides such a comprehensive view for sys-

tems that adopt it. We have implemented X-Trace in sev-

eral protocols and software systems, and we discuss how

it works in three deployed scenarios: DNS resolution,

a three-tiered photo-hosting website, and a service ac-

cessed through an overlay network.

1 Introduction

Internet services are built out of distributed components

(e.g., load balancer, web server, backend database), make

use of sophisticated network mechanisms (e.g., VPNs,

NATs, overlays, tunnels), and can span multiple admin-

istrative domains (e.g., the client’s web proxy and the

server’s load balancer). When these complex systems

misbehave, it is often quite difficult to diagnose the

source of the problem.

As an example, consider the infrastructure serving

Wikipedia [27]. As of June 2006, they had servers spread

across 3 sites, comprising 33 web caches chosen via

DNS round-robin assignments, 4 load balancers, 105

web servers, and 14 database servers. A user’s request

transits a cache server, and may also transit a load bal-

ancer, a web server, and a database. Caching is done at

each of these levels. Now suppose a user updates a page

on Wikipedia, and fails to see her updates upon reloading

the page. It is difficult to identify which cache, at which

level, is returning stale data. Even if logs are kept, there

is no common mechanism to determine which logs to ex-

amine, or to correlate entries across multiple logs. It may

also not be possible for administrators to reproduce the

problem, since their requests would most likely take a

different path through the system.

Diagnostic tools do exist, but many of them are lim-

ited to a particular protocol. For instance, traceroute

is useful for locating IP connectivity problems, but can’t

reveal proxy or DNS failures. Similarly, there are numer-

ous alarm and monitoring suites for HTTP, but they can-

not diagnose routing problems. While these tools are un-

doubtedly useful, they are also typically unable to diag-

nose subtle interactions between protocols or provide a

comprehensive view of the system’s behavior.

To this end, we have developed an integrated tracing

framework called X-Trace. A user or operator invokes

X-Trace when initiating an application task (e.g., a web

request), by inserting X-Trace metadata with a task iden-

tifier in the resulting request. This metadata is then prop-

agated down to lower layers through protocol interfaces

(which may need to be modified to carry X-Trace meta-

data), and also along all recursive requests that result

from the original task. This is what makes X-Trace com-

prehensive; it tags all network operations resulting from

a particular task with the same task identifier. We call the

set of network operations connected with an initial task

the resulting task tree.

Constructing the task tree requires understanding the

causal paths in network protocols. While in general this

may be difficult, in most of the situations we have consid-

ered so far this is relatively straightforward: for example,

a recursive DNS query is clearly causally linked to the

incoming request. X-Trace requires that network proto-

cols be modified to propagate the X-Trace metadata into

all actions causally related to the original task. This in-

volves both understanding calls to lower-level protocols

(e.g., HTTP invoking TCP) and initiating forwarded or

recursive requests.

X-Trace-enabled devices log the relevant information

connected with each tagged network operation, which

can then be reported back. The trace information associ-

ated with a task tree gives the user or operator a compre-

hensive view of what network operations were executed

as part of a task. To illustrate, Figure 1 shows an exam-

ple of the task tree involved in a simple HTTP request
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Figure 1: A proxied HTTP request and the logical causal

relations among network elements visited.

through a proxy, showing the causal relations between

operations in the HTTP, TCP, and IP layers. X-Trace task

trees are runtime traces of a task execution, and so long

as individual components are integrated into the frame-

work, there is no need for prior configuration of their de-

pendencies.

Diagnosing problems often requires tracing a task

across different administrative domains (which we will

call ADs). ADs may not wish to reveal internal informa-

tion to each other, or to end users. Accordingly, X-Trace

incorporates a clean separation between the client (user

or operator) that invokes X-Trace, and the recipient of

the trace information. For instance, when an end user no-

tices a problem and invokes X-Trace, the trace informa-

tion from her home network is delivered to her locally,

the trace information from her ISP is delivered to the ISP

support center, and the trace information from the web

site she was accessing is sent to the web site operator.

Each of these parties can then deal with the information

as they see fit; sharing it with others, keeping it private, or

even not collecting it at all. The fact that X-Trace gives

them a common identifier for the task enables them to

cooperate effectively if they so choose.

Realistically, we know all layers in the stack and dif-

ferent ADs will not deploy X-Trace-enabled protocols

and devices simultaneously. However, individual proto-

cols, applications, or ADs can benefit immediately from

X-Trace if they support it. If a particular protocol or

application gets instrumented alone, one gets horizontal

slices of the task tree, which are useful for developers and

users. If an AD alone deploys it on multiple layers within

its network, it gets to internally visualize the portion of

the task tree that happened inside of its domain. In ad-

dition, there is a “network effect” for adoption: as more

protocols and networks integrate into the framework, X-

Trace offers a common framework for their sharing of

this information, increasing the value for all parties.

There has been much prior work on the study of appli-

cation behavior, network monitoring, and request track-

ing. We discuss this related work in detail in Section

7 and only note here that the main differentiating as-

pect of X-Trace is its focus on tracing multiple applica-

tions, at different network layers, and across administra-

tive boundaries. Section 4 highlights these features in the

context of three specific examples. However, X-Trace is

applicable to a wide variety of other protocols, such as

SIP, RPC, and email.

While we feel that X-Trace provides a valuable ser-

vice, it certainly has significant limitations. They are dis-

cussed in detail in Section 6, but we note them briefly

here. First, implementing X-Trace requires modifications

to clients, servers, and network devices; protocols that

can’t already do so must be altered to carry X-Trace

metadata, and their implementations must log the rele-

vant trace information. While these changes are concep-

tually simple, in practice retrofitting X-Trace into exist-

ing applications is a process of varying difficulty; our

experiences in this regard ranged from trivial to quite

challenging. Second, when X-Trace is only partially de-

ployed, the ability to trace those parts of the network

is impaired, sometimes entirely. Third, lost trace reports

can limit reconstruction of the request tree and can lead

to false positives in diagnosing faults (i.e., the lack of

trace data may be interpreted as a failure). Fourth, our

enforcing a tree structure on the set of network oper-

ations related to a particular task means that there are

some request topologies that we cannot capture. For ex-

ample, X-Trace is not able to naturally capture requests

that rendezvous at a node where they are merged into a

single request. It isn’t clear, for instance, what should be

considered causally-related in a routing protocol.

Because X-Trace only records paths that were taken, it

is not a tool to assert global invariants about all possible

paths. There are many problems for which X-Trace will

not determine the cause, but will rather show the effect.

While not an introspective debugger, it will point out the

components involved in the operation, guiding the use of

other tools to verify the cause. Examples of these cases

are state corruptions that would cause a router to mis-

route packets, or an overloaded CPU that would cause a

message to be dropped.

The rest of the paper is structured as follows. In Sec-

tion 2, we describe the model and architecture of X-

Trace. In Section 3, we describe our implementation of

the X-Trace architecture. Section 4 describes three de-

ployments of X-Trace and pinpoint six network error

conditions. Section 5 discusses other uses of the sys-

tem. In Section 6, we discuss the limitations of and se-

curity considerations raised by X-Trace. In Section 7, we

discuss at length how X-Trace relates to previous work.

Lastly, we conclude in Section 8.

2 Design Principles and Architecture

2.1 Design Principles

A key function of X-Trace is to reconstruct the task tree

of all sub-operations making up the task. We now con-

sider three principles that guided our design:
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Figure 2: Propagation of X-Trace metadata in the example in Figure 1. Causal edges in the task tree are captured by

the ParentID, OpID, and EdgeType fields. The TaskID remains the same for all the operations that comprise the task.

1. The trace request should be sent in-band, rather than

in a separate probe message.

The first principle highlights our desire to probe what

happens on the actual datapath we want to diagnose. Out-

of-band probes might not end up following the same path

as the original datapath. It follows that we need to add

metadata to the same datapath that we want to trace. In

X-Trace this metadata contains an identifier common to

all operations in a task tree, which is added to messages

and propagated by devices along the entire path.

2. The collected trace data should be sent out-of-band,

decoupled from the original datapath.

This principle relates to gathering of trace informa-

tion. If we appended trace information to the metadata

encoded in the datapath, then we might lose this infor-

mation in the event of network failure. Also, this would

increase the overhead of messages. Obtaining trace data

during periods of failure is especially important to this

work. It follows that we need an out-of-band, orthogonal

mechanism to record and collect trace data. Addition-

ally, by decoupling trace reporting from the datapath, we

lessen the impact of X-Trace on the datapath’s latency.

3. The entity that requests tracing is decoupled from

the entity that receives the trace reports.

As we discuss in §2.3 below, separating the user who

inserts the X-Trace metadata in the datapath from the

destination of the trace reports generated by components

along the path allows for flexible disclosure policies of

the trace information for each AD. Each AD keeps con-

trol of the information, while the common identifier al-

lows them to cooperate in solving problems if necessary.

X-Trace places the minimal necessary mechanism

within the network, while still providing enough infor-

mation to reconstruct the path. The data itself is not

kept in the network path, but rather reported to specific

places determined by ADs. The X-Trace metadata con-

tains enough information for ADs to communicate trace

information back to the user if it so chooses.

2.2 X-Trace Metadata

In the following section, we describe the format and

structure of the tracing metadata introduced by our sys-

tem, as well as the way that metadata is propagated

through applications.

Format and structure X-Trace metadata is the infor-

mation placed into each layer to support the X-Trace

framework. It is inserted into a network task by the client,

if it is X-Trace capable. For legacy clients, devices in the

network can add them. Network operators can insert X-

Trace metadata for operations traversing their AD.

Within that metadata is a task identifier, which

uniquely identifies each network task. This identifier

should be unique among all of the reports accessed by

an X-Trace user. X-Trace metadata is carried by the ex-

tension, option, or annotation fields within each network

protocol. Examples of such fields are IP options, TCP

options, and HTTP headers. It is replicated across layers,

ensuring that devices on the path can access it without

having to violate layering.

The metadata contains an optional field, TreeInfo, used

by nodes to record causal relations between operations.

It consists of a three-tuple: (ParentID, OpID, EdgeType).

ParentID and OpID encode edges in the task tree. The

EdgeType field indicates the type of that edge: either con-

necting two adjacent nodes at the same layer, or between

a node at one layer with a node at a lower layer. The Par-

entID and OpID fields should be unique with respect to

one task identifier. We describe how network devices ma-

nipulate these fields below. An optional destination field
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is used to send trace data to interested parties. This is de-

scribed in detail in below, and its security implications

are addressed in Section 6.

Figure 2 shows in full detail the contents and the prop-

agation of X-Trace metadata (described in the next sec-

tion) in part of the task tree from Figure 1. In particu-

lar, the successive values of the ParentID, OpID, and Ed-

geType fields allow the complete task tree to be recon-

structed for this TaskID.

Propagation: pushDown() and pushNext() De-

vices and network elements on the path are respon-

sible for propagating the X-Trace metadata along the

path using two simple primitives: pushDown() and

pushNext(). These primitives have the goal of ensur-

ing that X-Trace metadata stays with the datapath. They

manipulate the TreeInfo field of the X-Trace metadata, as

shown in Table 1, recording the causal relations between

operations in the path. The table shows how the fields in

the current X-Trace metadata are mapped into the next

metadata, for both primitives. The unique() function

returns an identifier that is unique in the context of one

TaskID.

The pushDown() primitive is responsible for copy-

ing X-Trace metadata from one layer to the layer be-

low it. In Figure 2, all of the vertical arrows represent

pushDown() operations. In this case, the HTTP proxy

has to call pushDown() to copy the metadata into the

newly generated TCP 2 connection. Likewise, the TCP

process in the proxy has to call pushDown() to copy

this metadata down to the new IP path. Note that we do

not make any a priori assumptions as to the number or or-

dering of layers in a protocol exchange: pushDown()

works recursively, with each layer only naturally inter-

acting with the layer immediately below.

pushNext() is a primitive used by nodes on the

datapath to propagate X-Trace metadata to the next

hop in the same layer. In Figure 2, the HTTP proxy

creates a new HTTP connection to the server. It calls

pushNext(), which copies the metadata into the head-

ers of that new connection, and captures the causal link

between the two. All horizontal edges in the figure are

pushNext() operations at their respective layers.

Since the X-Trace metadata is embedded into the mes-

sages at each layer, propagation happens at the same time

as the messages are sent. In particular, if messages are

stored for later forwarding, as is the case with email mes-

sages [10], the causal relations will still be preserved and

recorded properly.

2.3 Task Tree Reconstruction

Collecting trace data with reports When a node sees

X-Trace metadata in a message at its particular layer,

it generates a report, which is later used to reconstruct

TreeInfo operations

pushNext()

next.parentID⇐ current.opID

next.opID⇐ unique()

next.type⇐ NEXT

pushDown()

next.parentID⇐ current.opID

next.opID⇐ unique()

next.type⇐ DOWN

Table 1: Effect of both propagation primitives map-

ping a current X-Trace metadata to a next metadata.

unique() returns an ID unique within one task.

the datapath. This report generation operation is separate

from propagating X-Trace metadata, and is specific to the

tree reconstruction aspect of our application.

Reports contain a local timestamp, the TaskID they re-

fer to, and information that is specific to the node sending

the report. Devices only report information accessible at

their own network layer. For example, an HTTP cache

may report on the URI and cookie of the request, and

the action taken upon receiving the request. It can also

add systems information such as the server load at the

time. IP routers, on the other hand, report information

contained in the IP headers of packets, such as source and

destination addresses, and can add other relevant perfor-

mance information such as current queue lengths.

The reports generated by devices within one AD are

kept under the control of that AD, according to its pol-

icy. That policy could be to store all the reports in local

storage, such as a database. The AD can use this store of

reports to diagnose and analyze flows transiting its net-

work. Section 4.2 shows how a web hosting site uses lo-

cally generated and stored reports to diagnose faults in

its components.

The X-Trace metadata has an optional Destination

field. If present, this field signals that a user (located

at that destination) is interested in receiving the trace

data as well. This user might be the client, or it could

be any delegated report server. This indirection is use-

ful for users behind NATs, since they are not addressable

from the Internet. The AD uses its policy to respond to

this request. The simplest policy is for each device to just

send reports directly to the indicated destination, which

would collect them and reconstruct the task tree. This

may not be desirable, though, because AD’s in general

will want to control who has access to what granular-

ity of data. One possible mechanism that uses indirec-

tion works as follows. The AD still collects all reports

locally in a private database. It then sends a special re-

port to the user, containing a pointer to the report data.

The pointer could be the URL of a page containing the

trace data. This gives each AD control of the visibility

of the trace information, by requiring users authenticate
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cally, and send pointers to R so that the client can later

request the detailed reports.

themselves when they fetch the data. The AD can make

use of this authentication information when choosing the

level of detail of the report information returned to the

user. We describe this usage in more detail in Section 3.

Note that all the information needed to get a report to a

user is kept in the X-Trace metadata, meaning that nodes

in the network do not need to keep any per-flow state to

issue reports.

Figure 3 shows a sender S who sets the destination

for reports as being the report server R. ADs A and B

send pointer reports to R, and either the client or R itself

fetches these reports later. A special case is when the user

of X-Trace is in the same AD as the devices generating

reports, such as network operators performing internal

troubleshooting. X-Trace metadata gets added at the AD

ingress points. The network operators go directly to the

local report databases, and there is no need to use the

destination field in the metadata.

Offline reconstruction of the task tree Task tree re-

construction is an offline process performed by the user

that reconstructs the request path of the data connection.

After the user collects reports from the reporting infras-

tructure, they examine them to reconstitute the request

tree. Each of the reports is treated as a directed edge, ei-

ther a “down” edge or a “next” edge, corresponding to

pushDown() and pushNext() operation. After re-

constructing the tree, the client can examine the nodes

and paths that the request took. For transitory errors, this

tree serves as a permanent record of the conditions that

existed at the time of the connection. Additionally, any

performance data included by the devices in the reports

can be used to correlate failures in the datapath with de-

vices that may be under-performing due to overload.

The reconstructed tree is the end product of the tracing

process, and can be stored, associated with trouble ticket

systems, or used by operators as a record of individual
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failure events for reliability engineering programs.

3 Implementation

In this section we describe how we implemented the ar-

chitecture described above. We discuss the representa-

tion of the X-Trace metadata and its propagation, a lo-

cal reporting infrastructure, and a prototype for inter-AD

reporting, as well as a simple procedure to reconstruct a

task tree from a series of reports. We present some micro-

benchmarks, and close the section with a discussion of

issues that arise when integrating X-Trace into new and

existing protocols and applications.

3.1 Identifier format and semantics

Figure 4 shows the format with which we encode the X-

Trace metadata. It consists of two required fields, and

three optional ones:

Flags: The flags field contains bits that specify which

of the three optional components of the X-Trace meta-

data are present: TreeInfo, Destination, and Options.

TaskID: Our design supports 4, 8, 12, or 20 byte in-

teger fields to represent the TaskID. The TaskID must be

unique within 1) a window of time, and 2) a reporting do-

main. The window of time must be long enough so that

no two tasks that overlap in time share the same ID.

TreeInfo: (Optional) The TreeInfo field holds three

subfields: ParentID, OpID, and EdgeType. ParentID and

OpID are each 4 bytes long. These IDs must be unique

within the context of a single task ID. We implement the

unique() function as a random number generator. The

EdgeType field is implemented as one byte, with only

two values currently encoded: NEXT and DOWN.

Destination: (Optional) X-Trace metadata can option-

ally contain a destination, which is a network address that

X-Trace reports should be sent to, as described in Sec-

tion 2.3. The Destination field consists of two portions,

a type, and an address. Currently implemented types are

shown in Table 2.

Options: (Optional) To accommodate future exten-

sions to the X-Trace identifier format, we include an op-

tions mechanism. The Options block, if present, consists
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Type Protocol Destination

Explicit

UDP IPv4:port

TCP IPv4:port

I3 I3 id

XMLRPC OpenDHT key

Implicit
Local Configured

Proxy Configured

Table 2: Types of X-Trace report destinations.

Application 1

libxtrreport XTR Report

Daemon

udp

tcp

i3

local

openDHT

Application 2

libxtrreport

xtrd proxy

Wide-area

X-Trace aware node

Neighbor XTR

Report Daemon

X-Trace ID embedded report destination

Administrator configured report destination

Figure 5: X-Trace reporting architecture.

of one or more individual options. Each consists of a

type, a length, and then a variable length payload.

3.2 Reporting infrastructure

Report format A report is an ASCII message consist-

ing of a header section followed by a body section. The

first line of the header identifies the layer issuing the re-

port. The rest of the headers are specified as key-value

pairs, similar to headers in RFC 822 [10]. The body of

the report is free-form, and the content is set by the de-

vice issuing the report and other operator policy.

Reporting libraries and agents Included with X-

Trace is libxtrreport, a reference implementation

of a client library that can be linked into applications for

issuing reports. This library is very thin, and simply re-

lays reports to a locally running daemon process.

The report daemon (see Figure 5) uses a UDP socket

to listen for reports from the libxtrreport library.

A thread listens for these reports, and places them on a

queue. Another thread pulls reports off this queue, and

sends them to the appropriate handler module. These

modules, which run in separate threads, can forward the

report to another report server, send it to a service like

OpenDHT [21], or send it to any of the other destina-

tions listed in Table 2. For local destinations, we make

use of a Postgres SQL database for report storage.

We also implemented a packet sniffing application that

can send reports on behalf of services and applications

that cannot be modified to include libxtrreport.

This application snoops network traffic using the

libpcap library, sending reports for any protocols that

it supports. Currently, this application supports the IP and

TCP protocols. Network switches can make use of port

mirroring to mirror traffic to this agent.

Inter-AS reporting We implemented a special case of

Inter-AS reporting in the web hosting scenario described

in Section 4.2. The front end webservers included two

HTTP headers in the response sent back to the client.

The first contains a URL for collecting trace informa-

tion about the request. The second is the X-Trace task

identifier associated with the network operation. This is

included to simplify handling at the client, as well as for

environments in which the X-Trace metadata was added

by the frontend webservers. We wrote a Firefox exten-

sion that reads these HTTP headers, and provides the

user with a visual indicator that the page they are vis-

iting is “X-Trace enabled”, as well as a button they can

click to fetch the trace data from the provided URL.

3.3 Offline tree reconstruction

Our implementation of the task tree reconstruction is

quite simple, and can serve as the foundation for other,

more complex, visualizations. We initially start by build-

ing a graph, G, consisting of the node represented by

the first report. For each additional report we receive,

we look for its parent (given by its IDparent field) in the

tree. If this new node’s edge type is NEXT, we attach the

node on the same level as the parent. If the node type is

DOWN, we attach the node at the level below the parent.

3.4 Performance

We tested the performance of the metadata propagation

and the reporting aspects of our reference implementa-

tion of X-Trace. For the propagation, we measured the la-

tency of pushNext(). This operation is blocking, and

if implemented in a router, would have to be performed

on a per-packet basis on the forwarding path.

We implemented pushNext() in the C language and

tested it on a 64-bit Intel Pentium 4 CPU running at 3.2

GHz. We applied pushNext() to 576-byte packets,

and found the average time required to be 0.71µs. Taken

in isolation, this processor could apply the operation to

over 1.4 million packets per second. In fact, hardware

implementations could be much faster.

To test the performance of the reporting infrastruc-

ture, we used the Apache web benchmarking tool, ab,

against two otherwise identical Apache websites: one

with reporting turned on and one without. The report

store in this test was a separate Postgres database. Of the

10,000 requests we issued to the site, none of the reports

were dropped by the reporting infrastructure. The regular
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server sustained 764 requests/sec, with a mean latency of

1.309 ms. The X-Trace enabled server sustained 647 re-

quests/sec, with mean latency of 1.544 ms, which shows

a 15% decrease in total system throughput.

3.5 Providing Support for X-Trace

Adding X-Trace support to protocols and applications in-

volves three steps: (i) adding X-Trace metadata to mes-

sages exchanged, (ii) adding logic to propagate the X-

Trace metadata within the implementation, following

causal paths, and (iii) optionally adding calls to gener-

ate reports at interesting points of the message flow.

(i) Metadata To support X-Trace, a layer or applica-

tion must embed X-Trace metadata in the messages it

exchanges with peers. The difficulty of this for existing

protocols depends on their specification. For example, it

is simple for HTTP, because its specification [11] allows

for extension headers, and dictates that unknown exten-

sions be forwarded unmodified to next hops by proxies.

Other protocols like SIP [22], e-mail [10], IP, TCP, and I3

share this characteristic. For protocols without an exten-

sion mechanism, one has to resort to either changing the

protocol or overloading some existing functionality. In

the implementation of Chord that comes with I3 we had

to create a new type of message. Table 3 gives details on

adding metadata to these and some other protocols.

(ii) Propagation Applications must support two as-

pects of X-Trace identifier propagation: (a) carry-

ing X-Trace metadata between incoming and outgo-

ing messages, and (b) manipulating the metadata with

pushDown() and pushNext() operations to cor-

rectly record the causal relations. We implemented sup-

port in C/C++, Java, and PHP for easily manipulating X-

Trace metadata, including performing the pushDown()

and pushNext(), such that few lines of code need to

be added to perform (b), once (a) is in place.

In our experience, we found that capturing the causal

connections within the application presented the high-

est variability in difficulty, as it requires understanding

how received messages relate to outgoing messages, and

may require following long chains of calls within the

implementation. If the implementation associates a con-

text data structure with the processing of a message, it

may be easy to add X-Trace metadata to the data type,

which gets carried with the processing flow automati-

cally. Apache and I3 fall into this category. Other imple-

mentation structures require more work, as in the case of

Chord: we had to create a parallel path of functions with

an extra X-Trace metadata parameter following the call

path from receiving the message until sending it. Instru-

menting concurrency libraries and runtime environments

may ease or automate this propagation [9, 20, 8]. We are

currently adding X-Trace support for libasync [17].

Original Forwarding Code

forwardMessage(msg)

dest = nextHop(msg)

lowerLayer.send(msg,dest)

With added X-Trace Propagation

forwardMessage(msg)

dest = nextHop(msg)

xtr = msg.getXTraceMetadata()
/* Propagate to the next hop */

msg.setXTraceMetadata(xtr.pushNext())
/* Propagate to the lower layer */

lowerLayer.setXTraceMetadata(xtr.pushDown())

lowerLayer.send(msg,dest)

Figure 6: Pseudo-code highlighting changes for captur-

ing causal relations with X-Trace

The pseudo-code shown in Figure 6 shows a typical

example of the calls that are needed for full identifier

propagation in the forwarding function of an application.

We assume that the message abstract data type provides

methods for getting and setting X-Trace metadata in the

message, and that the lower layer also provides an API to

set the X-Trace metadata for its messages. This example

is patterned on the code we implemented in the applica-

tions and protocols we modified.

(iii) Integrating Reporting The remaining task is to

get network elements – devices, protocol stacks, and ap-

plications – to issue reports of interesting events. For

hardware devices like routers and appliances, one needs

to modify the software running on the control processor.

However, using the feature of port mirroring in switches,

a network administrator can insert nodes that would re-

port on traffic seen without slowing down the data path.

The routers would still have to do the propagation, but

not bother to call reporting functions. For software im-

plementations, it is straightforward to integrate the re-

porting library, which is similar to adding a logging sub-

system to the application.

4 X-Trace Usage Scenarios

In this section, we describe several scenarios where X-

Trace could be used to help identify faults. We discuss

three examples in detail–a simple web request and ac-

companying recursive DNS queries, a web hosting site,

and an overlay network. We deployed these examples

within one AD, and thus do not make use of the wide-

area reporting mechanism. We follow these examples

with a description of other scenarios.
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Table 3: Support for adding metadata to some protocols. We have implementations for the protocols in italics.
Protocol Metadata Comment

HTTP, SIP, Email Extension Header Out-of-the box support for propagation. The only change is for causal relations.

IP IP Option Automatic propagation. Dropped by some ASs, wide-area support varies [12].

TCP TCP Option One-hop protocol, no next hop propagation. Linux kernel changes are needed.

I3 I3 Option Support for options, but had to add handling code.

Chorda No support Mirrored augmented call path for new X-Trace data message.

DNS EDNS0 OPT-RR The EDNS0 [26] extension to DNS allows metadata to be added to messages.

SQL SQL Comment Possible to encode X-Trace metatada within a SQL comment.

UDP, Ethernet No support Must change protocol or use shim layer.

aThe Chord implementation bundled with the I3 distribution.

Browser
10.0.62.14343

00000000.C4C28B4F.next
URL: www.cs.berkeley.xtrace

/index.html

Browser
10.0.62.143

C4C28B4F.E8269F38.down
Lookup: www.cs.berkeley.xtrace

DNS Authoritative
10.0.62.223

8CFECDB5.A6BE651A.next
Delegate: xtrace.

Browser
10.0.62.143

C4C28B4F.00EDB8D3.down
HTTP-get: http://10.0.132.232

/index.html

DNS Recursor
10.0.62.222

E8269F38.8CFECDB5.next
Query: www.cs.berkeley.xtrace.

DNS Authoritative
10.0.62.224

8CFECDB5.0CD2FD05.next
Delegate: berkeley.xtrace.

DNS Authoritative
10.0.62.225

8CFECDB5.0481D249.next
Delegate:cs.berkeley.xtrace.

DNS Authoritative
10.0.62.226

8CFECDB5.F8655C76.next
Answer: 10.0.132.232

Apache
www.cs.berkeley.xtrace

00EDB8D3.B2852391.next
URL: /index.html

Figure 7: The complete HTTP and recursive DNS tree

recovered by the X-Trace tool

4.1 Web request and recursive DNS queries

Overview The first scenario that we consider is that

of requesting a web page from a server. Figure 7 shows

the tree corresponding to a simple web request. The user

starts by typing a URL into her browser, in this case

http://www.cs.berkeley.xtrace/index.html. The browser’s

host first looks up the provided hostname using a nearby

DNS resolver, which returns the IP address of that host

(10.0.132.232). If the resolver does not have the re-

quested address in its cache, it will recursively contact

other DNS servers until a match is found. It can then is-

sue the HTTP request to the resolved IP address.

Tracing each of these “subtasks” is a challenge: HTTP

requests could be forwarded through proxies or caches,

masking their ultimate destination. DNS requests are re-

cursive in nature, are cached at intermediate servers, and

span different administrative domains. This can easily

lead to misconfigurations and inconsistent views.

X-Trace support We added support for X-Trace to

the DNS protocol by using the EDNS0 [26] extension

mechanism. This backwards-compatible mechanism al-

lows metadata to be associated with DNS messages, and

is increasingly supported in the wide area. We modified

a DNS client library, an authoritative DNS server, as well

as a recursive DNS resolver to support X-Trace metadata

propagation and reporting.

We deployed this software in our local testbed, and

created a parallel top-level domain (.xtrace). Figure 7

shows the final tree. In this example, the task has

two subtasks, indicated by pushDown(): resolving

the name, and fetching the page. A Java-based web

browser issues the query to the DNS client library,

which encapsulates the X-Trace metadata (after calling

pushNext()) in an EDNS0 field of the query. This

query is forwarded to the resolver on 10.0.62.222, which

recursively looks up the address in other, authoritative

nameservers, after calling pushNext() at each step

of the recursion. Lastly, each of our authoritative name-

servers issues reports when they receive queries with X-

Trace/EDNS0 records in them. When the name resolu-

tion is complete, the browser issues an X-Trace enabled

HTTP query (after calling pushNext()).

Fault isolation An X-Trace enabled DNS might un-

cover several faults that are difficult to diagnose today.

At each step of the recursive resolution described above,

servers cache entries to reduce load on the top-level

servers. A misconfigured or buggy nameserver might

cache these entries longer than it should. If a server’s

IP address changes, these out-of-date servers might re-

turn erroneous results. A trace like that in Figure 7 would

pinpoint the server responsible for the faulty data.

Faults could occur in the HTTP portion of the task as

well. We describe the application of X-Trace to web traf-

fic in the following section.

4.2 A web hosting site

Overview The second scenario that we consider is a

web hosting service that allows users to post and share

photographs. We deployed an open-source photo appli-

cation in our network on an IBM Bladecenter. The front-

end webserver host Apache and PHP. The photos, meta-

data, and comments are stored in a Postgres database.

Also included are a cache and load-balancer. The photo

site has attracted approximately 200 visitors a day for a

period of two months.

For this site to support X-Trace, we implemented a re-

porting module for Apache, and one for Postgres. To sup-

port legacy web clients, we implemented an “X-Trace

headers” module that inserted X-Trace headers into re-
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quests from the legacy clients.

X-Trace can be invoked by either end users or by the

operator. End users can invoke X-Trace in two ways: by

using an X-Trace-enabled web browser, or an X-Trace-

equipped web page. We implemented an X-Trace toolbar

for the Firefox web browser that puts X-Trace metadata

in requests. We also implemented a Javascript/PHP li-

brary that added a feature to selected webpages in the

site that let the user report problems via an HTML form.

These reports were internally coupled with the X-Trace

metadata of the user’s request, enabling the network op-

erator to match their complaint with a trace of their ses-

sion. This is a powerful mechanism to detect semantic

faults that would appear normal from the web site’s per-

spective, such as stale pages or logic errors in a well

formed response. This is not necessary for all faults,

since many requests might generate anomalous task trees

that can be analyzed with methods such as Pinpoint [9].

Tracing a request through the scenario The client

application (i.e., Firefox with our X-Trace extension) cre-

ates a new X-Trace metadata and initializes its TreeInfo

fields. It issues an annotated request to the front-end

cache. This cache issues a report based on fields in the re-

quest and the X-Trace metadata. It calls pushNext()

on the metadata, and forwards it on, possibly to other

middleboxes such as load balancers that might also be

on the path. When the Apache process on the front-end

tier receives the request, it issues a report that includes

the URL, status code, and time of the request.

The PHP-based photo software creates SQL state-

ments to retrieve images and metadata from the back-

end database. We modified this code to retrieve the X-

Trace metadata from the array of HTTP headers and call

pushNext() on it. The new metadata is propagated to

the database by enclosing it in a SQL comment (i.e., /*
X-Trace:023A2E... */). The query is sent to the

database, which looks for embedded X-Trace metadata.

It calls xtr report()with the query as the payload of

the report. When the webserver sends the response back

to the client, it adds two headers to the response: one has

the X-Trace metadata (in case it was generated by the

webserver), and the other has a URL that the client can

access to examine the trace of the request.

If any additional requests are generated because of that

response (e.g., for images), the Firefox extension will use

the same TaskID. For clients that don’t support X-Trace,

then each request (including images) will be considered

independent.

Using X-Trace In this section we introduce several

faults into the photo hosting site. These are based on first-

hand experience that we had with our deployed system.

The first fault we consider is that of a malfunction-

ing PHP script on the front-end web servers. From the

Apache
xtrace.cs.berkeley.edu

04E9E92A.C1B25697.next
2006-09-26 13:23:42.801007

URL: /faults/query.php

Apache
web1

C1B25697.72CBD74A.next
2006-09-26 13:23:42.8085

URL: /faults/query.php

notifyProblem.cgi

C1B25697.72CBD74A.next
2006-09-26 13:23:46.82021

<Problem Report>

Figure 8: A request fault, annotated with user input

Chord Ring

I3 Overlay Network

IP Network

Sender

Middlebox

Receiver

Figure 9: X-Trace on an I3 overlay scenario. A client and

a server communicate over I3. Shown are the Chord net-

work on top of which the I3 servers communicate, and

the underlying IP network.

user’s point of view, this could either be a fault in the

PHP script, or a fault in the database. Examining Figure 8

shows immediately that the fault is the former–there are

no reports from the database, pinpointing the problem to

the PHP script. Figure 8 shows a square node that rep-

resents a problem report issued by the user, using the

PHP/Javascript web problem reporting tool. In addition

to triggering an alarm for the operator, the report node

indicates which page caused the problem, in this case,

/faults/query.php, located on web1.

Next, based on the Wikipedia example, we imple-

mented a web cache that inadvertently returns stale im-

ages from its cache. Diagnosis in this case is simple. The

request trace will include nodes up to and including the

cache, but will not include the origin server.

The last fault we consider in this scenario is that of

a malfunctioning web load balancer, which sends traffic

to a server that doesn’t contain the appropriate content.

When users request pages from the site, they will some-

times get the pages they wanted, while other times they

will get 404 File Not Found errors. In both cases,

the load balancer issues a report with the request URL.

Successful requests also include reports from the work-

ing web server and backend database, while unsuccessful

requests only include a report from the web server.

4.3 An overlay network

The third scenario we look at in some detail is an over-

lay network. Overlay networks are routing infrastruc-

tures that create communication paths by stitching to-
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gether more than one end-to-end path on top of the un-

derlying IP network. Overlays have been built to provide

multicast [13], reliability [2], telephony [22], and data

storage [25] services. It is difficult to understand the be-

havior and diagnose faults in these systems, as there are

no tools or common frameworks to allow tracing of data

connections through them.

In our example, we use the I3 overlay network [24].

For our purposes, it suffices to say that I3 provides a

clean way to implement service composition, by inter-

posing middleboxes on the communication path. The im-

plementation of I3 we used runs on top of the Chord

DHT [25], which provides efficient routing to flat identi-

fiers and is an overlay network on its own.

We added X-Trace metadata to the I3 and Chord

protocols, code to perform the pushNext() and

pushDown() propagation operations, as well as calls

to the X-Trace reporting library. The scenario topology

is shown in Figure 9, and consists, at the highest layer,

of a very simple protocol involving a sender, a receiver,

and a middlebox interposed in the path by the sender.

We used a toy protocol we called SNP – Simple Number

Protocol – that is simply sending a number to the other

party. The middlebox adds 10000 to any number it re-

ceives and forwards the request on, but it could also be,

say, an HTTP proxy or a video transcoder. SNP also car-

ries X-Trace metadata in its header. Each segment of the

path in the SNP layer corresponds to a complete I3 path.

Each I3 path, in turn, is formed by a combination of IP

and Chord paths. Finally, each Chord path is formed by

a combination of IP paths.

Tracing a message through the scenario In Fig-

ure 10(a) we show the reconstructed tree of operations

given by X-Trace in a sample run of the scenario. This

tree was generated from X-Trace reports by the visual-

ization tool we developed. We deployed an I3 network

consisting of 3 machines, each of which was also Chord

node. The SNP client, receiver, and middlebox are on

separate machines. We omit the IP report messages: all

IP paths are one hop, since the machines were all on a

switched LAN.

The SNP client sends a message to the the SNP re-

ceiver (see Figure 10), and it interposes the SNP middle-

box on the path. The following is a detailed look at the

transmission of a message in this scenario.

The SNP client creates a message, chooses a TaskID

and includes X-Trace metadata in the SNP header. It

chooses the I3 identifier stack (IDmiddlebox, IDserver) as

the destination (an identifier stack is simply a source-

routed path in I3). The client calls pushDown(),

copying the metadata into the I3 layer. Two more

pushDown() operations copy it into the Chord and

IP layers. The message is sent to the first I3 server, in

this case at address 10.0.62.222. That server receives

the message, and as it goes up the network stack, each

layer generates and sends a report. The I3 server routes

a message to the middlebox’s I3 identifier, stored in the

server 10.0.62.223. The I3 layer has a mapping between

IDmiddlebox and the IP address 10.0.62.225. This message

is delivered over IP to the I3 Client Library on that node,

and then to the SNP Middlebox process.

The middlebox receives the message and processes

it, sending a report from each of its layers. It removes

its I3 address from the identifier stack, leaving only the

address of the server, IDserver. Like the client, it calls

pushNext() on the identifier, and then pushDown()

twice to propagate that ID to the Chord and IP layers.

The next Chord node in the path, 10.0.62.223, receives

the message and calls pushNext(). It sends a report,

and then since there is no I3 layer, it simply forwards the

message on. This process continues for the next I3 server,

and finally the message is received by the receiver. At the

receiver, we see a report from the I3 client library, and

from the SNP application.

Using X-Trace In Figures 10(b), (c), and (d) we in-

jected different types of faults and show how the result-

ing X-Trace tree detected them. We failed different com-

ponents of the system that prevented the receiver from

receiving the message. Normally it would be difficult or

impossible for the sender to differentiate between these

faults.

Fault 1: The receiver host fails In Figure 10(b) we

simulated a crash in the receiver. I3 expires the pointer to

the receiver machine after a timeout, and the result is that

the message gets to the last I3 server before the receiver,

but there is no report from either the SNP Receiver or I3

Client library at the receiver machine.

Fault 2: The middlebox process fails In Figure 10(c)

we simulated a bug in the middlebox that made it crash

upon receiving a specific payload and prevented it from

forwarding the message. We see here that there is a report

from the I3 Client library in the third I3 report node, but

no report from the SNP middlebox or from any part of the

tree after that. This indicates that the node was function-

ing at the time the message arrived. However, the lack

of a report from the middlebox, coupled with no reports

thereafter, points to the middlebox as the failure.

Fault 3: The middlebox host fails Finally, in Fig-

ure 10(d), we completely crashed the middlebox process.

I3 expired the pointer to the machine, and we see the

message stop at the last I3 server before the middlebox.

The lack of any reports from the middlebox node, as well

as no reports after the tree indicate that the entire node

has failed.
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SNP Client

00000000.3CDD5536

.down

SNP Middlebox

3CDD5536.1BBCF8DD

.next

I3 Server

10.0.62.222

3CDD5536.9012FF3D

.down

SNP Receiver

1BBCF8DD.E78090F9

.next

I3 Server

10.0.62.222

1BBCF8DD.8B18C00D

.down

I3 Server

10.0.62.229

8B18C00D.29705F29

.next

I3 Client Lib

10.0.62.230

29705F29.0B709044

.next

Chord

10.0.62.222

9012FF3D.7F8FA730

.down

I3 Server

10.0.62.223

9012FF3D.23DB72B3

.next

Chord

10.0.62.223

7F8FA730.BEF6D392

.next

I3 Client Lib

10.0.62.225

23DB72B3.67230725

.next

Chord

10.0.62.229

7068868C.9BCD68AB

.next

Chord

10.0.62.223

F85AC7BF.7068868C

.next

Chord

10.0.62.222

8B18C00D.F85AC7BF

.down

(a) Tree for normal operation

SNP Client SNP Middlebox

I3 Server I3 Server I3 Server

Chord

I3 Server

Chord

I3 Client Lib

ChordChordChord

(b) Fault 1: The receiver host fails

SNP Client

I3 Server

Chord

I3 Server

Chord

I3 Client Lib

(c) Fault 2: Middlebox process

crash

SNP Client

I3 Server

Chord

I3 Server

Chord

(d) Fault 3: The mid-

dlebox host fails

Figure 10: (a)X-Trace tree corresponding to the i3 example scenario with a sender, a receiver, and a sender-imposed

middlebox. (b), (c) and (d) correspond respectively to faults: a receiver crash, a middlebox process crash, and a crash

of the entire middlebox machine.

5 Additional X-Trace Uses

Here we describe, in much briefer form, other scenarios

where X-Trace could be used. This list isn’t meant to be

exhaustive, merely illustrative.

Tunnels: IPv6 and VPNs A tunnel is a network mech-

anism in which one data connection is sent in the payload

of another connection. Two common uses are IPv6 and

Virtual Private Networks (VPNs). Typically, it is not pos-

sible to trace a data path while it is in a tunnel. However,

with X-Trace, the tunnel can be considered simply an ad-

ditional layer. By calling pushDown(), the tunnel itself

will contain the X-Trace identifier needed to send trace

data about the tunnel to the sender.

ISP Connectivity Troubleshooting For consumers

connecting to the Internet via an ISP, diagnosing connec-

tivity problems can be quite challenging. ISP technical

support staff members have to spend time trying to de-

termine the location of faults that prevent the user from

successfully connecting. Complicating this process is the

myriad of protocols necessary to bring the user online:

DHCP, PPPoE, DNS, firewalls, NATs, and higher layer

applications such as E-mail and web caches.

By including X-Trace software in the client, as well

as X-Trace support in the equipment at the premises, the

ISP can determine the extent to which the user’s traffic

entered the ISP. This can help quickly identify the loca-

tion of the problem, and thus reduce support costs.

Link layer tracing An enterprise network might want

to trace the link layer, especially if there are highly lossy

links such as a wireless access network. The effect of

faults in these networks can have a profound effect on

higher layer protocols, especially TCP [5]. Retrofitting

X-Trace into Ethernet is not possible, due to its lack of

extensibility. However, X-Trace metadata can easily be

stored in a shim layer above Ethernet, but below other

protocols. Since all of the hosts on a LAN make use of

the same LAN protocol, it would be possible to deploy

X-Trace enabled network devices within one enterprise

without requiring higher level changes.

Development Tracing tasks is needed at one point or

another in the development of distributed applications

and protocols for debugging and verification. Like with

standard logging subsystems, developers can integrate

X-Trace into their applications. It is actually being used

by the team developing DONA [16], a content-based

routing scheme for the Internet.

6 Discussion

While X-Trace has many uses, it also has limitations. We

discuss those here, as well as other interesting aspects.

Evaluation The examples and usage scenarios we im-

plemented and described provide an indication of the

usefulness of X-Trace in diagnosing and debugging dis-

tributed systems. However, the ultimate measure of suc-

cess for X-Trace is when it can measurably help users

and system administrators find problems faster than us-

ing ordinary tools, or problems that they wouldn’t be able

to find otherwise. We are working on moving in this di-

rection, but such an analysis was beyond our means for

this paper.
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Report loss If the reporting infrastructure loses any re-

ports, the effect to the graph will be the deletion of nodes

and edges represented by that report. This might make it

impossible to reconstruct the causal connections. In these

cases, the reports sharing a common task identifier could

be ordered temporally. Although not as descriptive, this

linear graph might still pinpoint certain faults.

Managing report traffic The structure and complex-

ity of an application’s task trees have a strong bearing on

the amount of report traffic generated by X-Trace nodes.

We mention three mechanisms that can limit the volume

of this traffic. Sampling can limit the number of requests

that are tagged with X-Trace metadata to a rate speci-

fied by policy. A low sampling rate is ideal for “always-

on” tracing used to get a picture of the behavior of the

network. Differently from independent sampling at each

node, using X-Trace, each “sample” is a complete task

tree. Since X-Trace reports are delivered out-of-band,

they can be batched and compressed before transmission.

Within our network we have observed a 10x compression

factor for X-Trace generated reports. Finally, scoping can

be used to limit report generation to certain network lay-

ers, devices, or parts of the network. Layers such as IP

generate many reports per request, since reports are gen-

erated on a per-packet basis. By limiting the scope of

reports to those layers above IP, a smaller volume of re-

ports is generated. Of course, if a fault is suspected at the

network layer, the scope of reports could be widened to

include IP packets of interest (say, from a client or subnet

experiencing the observed problem). Currently, support

for scoping is statically configured into the reporting in-

frastructure. Improving this support is considered future

work.

Non-tree request structures The X-Trace metadata

described in this work assumes that requests follow a tree

structure. For the protocols and environments we con-

sidered, this assumption generally holds. However, other

types of requests may not be captured. Examples are quo-

rum protocols, or a controller which sends jobs to many

working nodes and waits for all to complete. We are cur-

rently looking at extending the TreeInfo field to accom-

modate this.

Partial deployment Thus far, our discussion has fo-

cused on a comprehensive deployment of X-Trace

throughout the network. However, even when X-Trace

is partially deployed within one particular application or

network layer, it still provides useful tracing benefits. For

example, by integrating X-Trace into the I3 and Chord

overlay networks, users of those system can track the

mapping of I3 messages to Chord nodes. Alternatively,

the developer of a middleware system could use X-Trace

to follow requests from one node to another. In this spirit,

researchers developing the DONA [16] project are mak-

ing use of X-Trace to aid in the development of their new

routing protocol.

Secondly, specific ADs can deploy X-Trace within

their networks without requiring any cooperation or sup-

port from other ADs. For example, a service provider

could deploy X-Trace at strategic points within their dat-

acenter. This provides the service provider with the task

tree within their network. We see the adoption of X-Trace

following this partial deployment strategy.

Security Considerations It is important to discuss the

potential for attacking the X-Trace infrastructure, as well

as using that infrastructure to attack others.

First, one could mount an attack against an infrastruc-

ture that implements X-Trace by sending an inordinate

amount of traffic with X-Trace metadata requesting re-

ports. We argue that propagating metadata on its own is

unlikely to become a bottleneck in this situation. Gener-

ating reports, however, could become a significant source

of load. A simple defense is for each device to rate-limit

the generation of reports. Still, malicious clients could

get more than their fair share of the reporting bandwidth.

If this becomes a problem, and filtering specific sources

of reports becomes an issue, providers might start requir-

ing capabilities in the options part of X-Trace metadata

to issue reports.

Another possible attack with the reporting infrastruc-

ture is for a malicious user to send packets with X-

Trace metadata, with the destination for reports set as

another user. In the worst case, many network devices

and hosts would send reports towards the attacked user.

While this attack is possible, it will not have an exponen-

tial growth effect on the attacker’s power, as legitimate

reporting nodes will not place X-Trace metadata into X-

Trace reports. Most important, however, is that we do

not expect a large traffic of wide-area reports: as we de-

scribe in Section 2.3, we expect ADs to generate very

few wire-area reports with pointers to detailed, indepen-

dent stores for local reports within each AD. Lastly, this

problem is more prevalent when the destination for re-

ports are IP addresses. Using wire-area destinations like

I3 or OpenDHT leverages these systems’ denial of ser-

vice prevention features. X-Trace keeps control of report

generation rate and visibility with each report provider,

which allows for defense mechanisms to be put in place.

7 Related Work

A number of tools focus on monitoring network sta-

tus, aggregating data from many devices and layers. X-

Trace differs from these tools in that it traces, across de-

vices and layers, the actual paths taken by data messages,

rather than trying to get snapshots of the network in-

frastructure as a whole. One such tool is traceroute,

which traces IP network paths. SNMP [7] is a protocol
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that lets operators inspect instrumentation data from net-

work devices such as packet counts and error conditions.

HP Openview is an example of an enterprise-wide net-

work management tool that makes use of SNMP data.

Openview can coordinate views at different granulari-

ties, as well as coordinate network policy changes. Cisco

Systems’ Netflows [18] also provides device instrumen-

tation, although at a finer granularity than SNMP.

Splunk [23] is a commercial solution that collects and

indexes all logs of an IT installation, allowing adminis-

trators to interactively search these logs in a flexible way.

With knowledge of common log formats it is usually pos-

sible to follow tasks through the logs with hints such as

IP addresses, user names, and timestamps. However, this

approach is unlikely to work across organizations, and is

not guaranteed to have the relevant causal connections.

Properly propagated X-Trace metadata added to logs can

greatly enhance the search power of such a tool.

Hussain et al. [14] present a system for performing

high-speed network traces at a large scale. The purpose

of their work is to collect the data, process it accord-

ing to anonymization policies, and make it available for

multiple users. That work focuses on traffic in the net-

work, and not on capturing causal connections between

requests at different layers. Kompella et al. [15] present

a service for collecting “cross-layer information”. The

focus of that work is on collecting control path state at

different layers. Using the information their system col-

lects, one could identify how failures at one layer impact

other layers. X-Trace differs from that work in that we

require widening the APIs at each layer, and focus on the

datapath, rather than the control path.

The Application Response Measurement (ARM) [3]

project annotates transactional protocols in corporate en-

terprises with identifiers. Devices in that system record

start and end times for transactions, which can be rec-

onciled offline. ARM targets the application layer, and

its focus is to diagnose performance problems in nested

transactions.

Pinpoint [9] detects faults in large, distributed sys-

tems. The authors modified J2EE middleware to cap-

ture the paths that component-based Java systems took

through that middleware. They can mine collections of

these paths to infer which components are responsible for

causing faults. Our work focuses on recovering the task

trees associated with multi-layer protocols, rather than

the analysis of those recovered paths.

Aguilera et al., in [1], find anomalous behavior in dis-

tributed systems by treating each component as a black

box, and inferring the operation paths by only looking

at message traces. They present heuristics to recover

the path given the timing relations among messages. A

follow-up work, Pip [20] is an infrastructure for com-

paring actual and expected behavior of distributed sys-

tems by reasoning about paths through the application.

They record paths by propagating path identifiers be-

tween components, and can specify recognizers for paths

that deal with system communication structure, timing,

resource consumption. Pip is targeted at a single dis-

tributed application, under the same AD, and does not

capture cross-layer correlations. X-Trace is complemen-

tary to Pip in this sense. We believe that some of Pip’s

analysis can be performed on X-Trace’s task trees.

Magpie [6] is a toolchain that works with events gen-

erated by operating system, middleware, and application

instrumentation, correlates them, and produces represen-

tations of paths through a system by inferring causal re-

lations from a total ordering of events. Instead of unique

identifiers, Magpie relies on experts with deep knowl-

edge about the system to construct a schema of how to

correlate events in different components. Like X-Trace,

they correlate lower level events with a higher level task,

but focus mostly on a single system or on distributed sys-

tems that are highly instrumented in a compatible way.

The recent work in the AND and Constellation

projects [4], defines the Leslie Graph as the graph rep-

resenting the dependencies a distributed system’s com-

ponents. They use inference techniques to unobtrusively

find correlations in traffic entering and leaving each node

or service, and combine these findings in a network-wide

graph. This graph is similar to, but different from our task

trees: X-Trace produces deterministic traces of individ-

ual task executions, that are useful for examining their

individual characteristics. In our ongoing work, we are

looking into aggregating several task trees to determine

aggregate behavior and dependencies.

Finally, Causeway [8] and SDI [19] provide mecha-

nisms for automating metadata propagation within op-

erating system and application structures, and could be

used in some scenarios to ease X-Trace metadaa propa-

gation.

8 Conclusions

Internet applications are becoming increasingly dis-

tributed and complex, taking advantage of new protocol

layers and middlebox functionality. Current network di-

agnostic tools only focus on one particular protocol layer,

and the insights they provide on the application cannot be

shared between the user, service, and network operators.

We propose X-Trace, a cross-layer, cross-application

tracing framework designed to reconstruct the user’s task

tree. This framework enables X-Trace enabled nodes to

encode causal connections necessary for rebuilding this

tree. The trace data generated by X-Trace is published to

a reporting infrastructure, ensuring that different parties

can access it in a way that respects the visibility require-

ments of network and service operators.
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We deployed and evaluated X-Trace in two concrete

scenarios: a web hosting site and an overlay network. We

found that with X-Trace, we were able to quickly iden-

tify the location of six injected faults. These faults were

chosen because they are difficult to detect using current

diagnostic tools.

The data generated by X-Trace instrumented sys-

tems can serve as the basis for more sophisticated anal-

ysis than the simple visualization and fault detection

shown here. Using this data for new and existing algo-

rithms [9, 20] is the object of our ongoing work. Given

that the provider of reports ultimately controls how much

data is generated, we are also investigating strategies to

push filters on what to report as close to the sources of

data as possible. For example, an AD could push a filter

to all of its reporting daemons to not send reports on the

IP layer.
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