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Abstract— This paper introduces the Extensible Agent Behavior
Specification Language (XABSL) as a pragmatic tool for engineer-
ing the behavior of autonomous agents in complex and dynamic
environments. It is based on hierarchies of finite state machines
(FSM) for action selection and supports the design of long-
term and deliberative decision processes as well as of short-term
and reactive behaviors. A platform-independent execution engine
makes the language applicable on any robotic platform and to-
gether with a variety of visualization, editing and debugging tools,
XABSL is a convenient and powerful system for the development
of complex behaviors. The complete source code can be freely
downloaded from the XABSL website (http://www.informatik.hu-
berlin.de/ki/XABSL/). The language has been successfully applied
on many robotic platforms, mainly in the domain of RoboCup
robot soccer. It gave the GermanTeam the crucial advantage over
other teams to become the 2004 and 2005 world champion in
the Four-Legged League and helped the team CoPS Stuttgart to
become third in the Middle Size League in 2004.

I. INTRODUCTION

Engineering behaviors of (multiple) autonomous agents in

complex and highly dynamic environments is still a chal-

lenging problem in robotics and Artificial Intelligence. For

many years, approaches from classical symbolic and know-

ledge based AI [23] have been dominant in these areas of

research. Generating appropriate actions or “planning” was

reduced to problem solving (as for example in [14]), by

that requiring symbolic representations of the world and its

static and dynamic constraints as well as of the impact of

actions on the environment. Despite general problems with

grounding meaningful and stable representations in the agent’s

environment (see [24] for a review), it is a difficult task to cope

with the complexity of the system by means of logic when

agents have to deal with noisy sensor readings, unpredictable

dynamics of the world, and uncertainty of actions. As Gat [11]

remarked: “Elevator doors and oncoming trucks wait for no

theorem prover.”

Expressing scepticism towards traditional AI research in

“block world” domains, researchers came up with the behavior

based paradigm [7], [2]. In these biologically inspired ap-

proaches direct sensor-actuator couplings control the overall

behavior of an agent. To obtain more complex behaviors,

several of such behavior units or modules are combined

continuously [1], competitively [19], in layers [5], or state

based. Although impressive behaviors have been realized with

such approaches, it still needs to be shown how to scale up

these systems.

Many researchers in the field of autonomous agents try to

minimize the role of the designer. Some of them propose gen-

eral action selection mechanisms that “automatically” choose

between different options. For example, alternative behaviors

could provide an activation level based on their utility in

the current state of the environment. An automated selec-

tion mechanism could choose the behavior with the highest

activation. Other researchers build systems that are able to

learn complex hierarchical interactions with the environment

by specifying the learning problem (as for example in [3]).

These approaches are definitely in the right direction to-

wards true machine intelligence, but there are several problems

when applying the current state of the art in more complex ap-

plications such as for example robotic soccer. First of all, scal-

ability and extensibility are key issues: adding new behaviors

to existing ones is often difficult as behaviors influence each

other and the utility estimations of all other behaviors have to

be adapted in order to integrate a new behavior. Additionally,

it is often not enough that the agents exhibit meaningful and

versatile behaviors – developers sometimes just want to specify

explicitly what the agents shall do in certain situations. This

can be done by a time-consuming tuning of utility measures

or by adapting the learning problem. The problem with that

is that explicit instructions what to do in particular situations

are hidden implicitly in the specification of the environment,

in the action selection algorithm, or in the reward function

of a learning algorithm. Due to such difficulties developers

often do not use any of these approaches when they program

autonomous agents to perform specific tasks – instead they

hand-code the behaviors in native programming languages.

In this paper we propose the Extensible Agent Behavior

Specification Language (XABSL) as a pragmatic and formal

approach to the design of agent behavior. Hierarchies of

finite state machines make the system modular and ensure

the reusability of behaviors in different contexts as well as

the extensibility of implementations. Section II introduces

the architecture behind XABSL, section III describes the

language and the runtime system, and section IV shows how

XABSL has been applied in different domains. Due to space

limitations, this paper can only serve as an introduction –
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technical details, a language reference, and an XABSL demo

containing the complete source code can be found on the

XABSL website [15].

II. HIERARCHIES OF FINITE STATE MACHINES

XABSL is a language to describe a set of finite state

machines that are organized in a hierarchy. The current state

of the whole set of state machines is defined by the current

states of a subset of single state machines which can be defined

as a directed path. The starting node of this path is given by

the current state of the distinguished root state machine in

the hierarchy. Each state machine is called an option and the

current states of the subset of options along this path the option

activation path. The set of options is called option graph.

This section describes how options are connected among

each other and arranged in a hierarchy, how the option

activation path is updated, and how actions are derived from

the current option activation path. A ball grabbing behavior

developed by the GermanTeam (cf. sect. IV) for robotic soccer

with Aibo robots serves as an example.

A. How the State Machines Interact with the Environment

An XABSL behavior implementation is always a part of a

more complex agent program. The surrounding software has

to process the sensor readings, build up (if necessary) a world

model, manage the communication with other agents, control

the actuators, and so on. At some point in such a sense-think-

act cycle (usually when new data is available from the main

sensor), the program passes the control to the XABSL system

to update the option activation path. To access the information

about the world that is needed for decision making, symbolic

representations are used. Therefore, the world model of the

agent system is divided into simple, typed, and non-structured

information items, called input symbols.

There are two ways to control the actions of the robot:

output symbols and basic behaviors. Output symbols are

boolean, enumerated, or decimal values. Each single state of

the option activation path can modify a subset or all of the

output symbols. States closer to the end of the path can re-

modify symbols that have already been modified by preceding

states. Basic behaviors are parameterized actions that can be

activated by the last state of the option activation path (a state

that has no subsequent option). Usually the main actions (like

locomotion) of the agent are controlled by the basic behaviors.

Output symbols can be used to control perception processes

or additional actuators.

B. How Options are Organized in a Hierarchy

An XABSL behavior consists of a set of behavior modules

called options. Each option is a finite state machine (cf. fig.

1). In each option, exactly one state is marked as the initial

state. An arbitrary number of states can be declared as target

states in order to indicate that a behavior is finished. Each

state of such a state machine is associated with at most one

subsequent option or basic behavior. Note that more than one
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Fig. 1. An option’s internal state machine. Circles denote states, the circle
with the two horizontal lines denotes the initial state, the double circle denotes
a target state. An edge between two states indicates that there is at least one
transition from one state to the other. The dashed edges show which other
option or basic behavior becomes activated when the state is active.

state can be connected to the same subsequent option or basic

behavior.

This association of the states of an option with subsequent

options allows to create complex behaviors that are composed

from simpler ones. Thus options can use a set of other

subordinated options to realize a certain behavior. For example

in figure 2, the option “handle-ball-at-opponent-border” is

composed of the option “approach-and-turn-and-kick” and the

option “turn-around-ball-and-kick”.

Each option can be used from more than one other option.

This allows for reusing the same behaviors in different con-

texts. E.g. in figure 2 the option “approach-ball” is used by

“grab-ball-with-head” and “approach-and-turn”. This helps

behavior developers to modularize their agent’s behaviors. In

the example, only one behavior for ball approaching was

developed and fine-tuned and then used by various other

different options.

The option hierarchy can be seen as a rooted directed

acyclic graph, called the option graph. There is only one

source (vertex with no incoming edges) in the option graph

- the vertex that represents the root option. The sinks of the

graph are the vertices that represent the options that have no

subsequent options.

C. How Options are Activated and Actions are Generated

The current state of the option graph is defined by the option

activation path. The starting vertex of this path represents the
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Fig. 2. An example option graph. Boxes denote options, ellipses denote
basic behaviors. The edges show which other option or basic behavior can
be activated from within an option. The thick edges mark one of the many
possible option activation paths. The internal state machine of option “grab-

ball-with-head” (dashed rectangle) is shown in figure 1.

current state of the root option. The last state may activate a

basic behavior.

To define the possible transitions between the states each

state has a decision tree, which selects a transition to either

another or the same state. For the decisions, parameters passed

by higher options, and input symbols such as the world state,

other sensory information, and messages from other agents

can be used. As timing is often important, the durations that

the state and the option have already been active are provided.

In addition, it can be queried whether the subsequent option

has reached one of its target states. As each state has its own

decision tree, the state transitions are not only dependent on

the representation of the environment’s state but also on the

decisions that were made in the past. When the active state

is taken into account, hysteresis functions between states are

possible. Thus, behaviors can be preferred once they have been

selected in order to avoid oscillations.

The update of the current option activation path of the option

graph starts from the root option. The decision tree of the

current state of the root option is executed to determine the

new current state (which can of course be the same as before).

This state is the first state in the option activation path. If the

Fig. 3. Example XABSL source code for the option “grab-ball-with-head”.
It starts with the definition of a common decision tree (a decision tree that
applies to all states of the option) and then continues with the implementation
of the state “approach-ball”. Here the source code is shown in the editor of
Microsoft Visual Studio, for which an XABSL syntax highlighting and code
completion plugin exists.

subsequent option associated with the current state was not

active in the last step, the current state of this subsequent

option is set to its initial state. Then the decision tree of the

current state of the subsequent option is executed leading to

a new current state, which is added to the option activation

path. This process is repeated until the subsequent behavior

of a new current state has no subsequent option. Each time

a decision tree activates another or the same state, the newly

activated state sets the parameters of the subsequent option or

associated basic behavior and the state’s output symbols.

III. THE EXTENSIBLE AGENT BEHAVIOR SPECIFICATION

LANGUAGE (XABSL)

This section gives a brief overview over the language

XABSL, the runtime system XabslEngine, and some of the

tools that were developed in conjunction with the language.

These issues are discussed in more detail in [16] and a

complete language reference and API documentation can be

found at [15].

A. Behavior Specification in XABSL

Agent behaviors based on the architecture described in the

previous section can be described with XABSL. Figure 3

shows an example. There is an XABSL-compiler compiler

written in Ruby that can generate four different types of

documents from an XABSL document: an intermediate code

for the runtime system, debug symbols to be used in debugging

tools, symbol files for code completion and syntax highlighting



for a variety of editors, and an XML representation XABSL

specifications. The XML representation can easily be parsed

by supporting tools e.g. an XSLT processor can be used to

generate an extensive HTML documentation containing SVG

(Scalable Vector Graphics) charts for the option graph, each

option, and each state. Note that the figures 1 and 2 were

generated automatically from XABSL sources.

There are language elements for options, their states, and

their decision trees. Boolean logic (||, &&, !, ==, ! =, <,

<=, >, and >=), simple arithmetic operators (+, −, ∗, /, and

%), enumerations, and conditional expressions (a ? b : c) can

be used for the specification of decision trees, parameters of

subsequent behaviors, and values of output symbols. Custom

arithmetic functions (e.g. “distance-to(x,y)”) that are not part

of the language can be easily defined and used in instance

documents.

Symbols are defined in XABSL instance documents to

formalize the interaction with the software environment. In-

teraction means access to input functions and variables (e.g.

from the world model) and to output functions (e.g. to set

requests for other parts of the information processing). For

each variable or function that one wants to use in certain

conditions, a symbol has to be defined. This makes the XABSL

framework independent from specific software environments

and platforms. The developer may decide whether to express

complex conditions in XABSL by combining different input

symbols with boolean and decimal operators or by imple-

menting the condition as an analyzer function in C++ and

referencing the function via a single input symbol.

An XABSL agent behavior implementation is distributed

over many source files, which helps the behavior developers

to keep an overview over larger agents and to work in parallel.

B. Runtime System

The class library XabslEngine is the XABSL runtime sys-

tem. It is written in plain ANSI C++ and it is platform

and application independent. To run the engine in a specific

software environment, only mechanisms for file access and

error handling have to be adapted to the target platform. The

engine parses and executes the intermediate code that was

generated from XABSL documents. It links the symbols from

the XABSL specification that are used in the options and states

to the variables and functions of the agent platform. Therefore,

for each used symbol an entity in the software environment

is registered to the engine. Basic behaviors are written in

C++ and also registered to the engine at startup. The class

library provides extensive debugging interfaces for monitoring

and manipulating nearly all internal states of the engine. A

complete API documentation is available at the XABSL web

site [15].

Based on the engine’s debugging interfaces it is easy to

develop a tool which can display the option activation path,

the parameters and execution times of options, states, and basic

behaviors, as well as the values of input and output symbols.

Vice versa, single options or basic behaviors can be selected

and parameterized manually for execution. Figure 4 shows

Fig. 4. An example for a XABSL monitoring tool using the debugging inter-
faces of the XabslEngine (inside the GermanTeam’s RobotControl application.

such a tool. Additionally, the Xabsl Profiler can be used to

analyze behaviors over time. For that, log files containing the

option activation path are recorded and visualized in such a

way as to show the length of time states and options were

active. This helps to detect state oscillations or unused states.

C. Discussion

The main difference between XABSL and other behavior

programming and planning languages as for example the

Behavior Language [6], COLBERT [13], the Configuration

Description Language (CDL) [18], or PDDL [20] is the way

how it is integrated into the target platform. XABSL is much

more lightweight than these as it does not impose any con-

straints on the agent architecture or the software design of the

robotic system. Instead, programmers can easily replace their

existing planning and control programs by the XabslEngine

run-time system and start implementing their behaviors in

XABSL.

The fact that XABSL does not model a complete agent

system including sensing and acting but only provides an

action selection mechanism means that the XABSL system



Fig. 5. A soccer game in the RoboCup Four-Legged League.

can not be exclusively labeled as reactive or deliberative. It is

possible to design completely reactive agents that do not have a

persistent world model and it is also possible to use complex

symbolic world models as an input to a highly deliberative

XABSL agent.

XABSL is not in opposition to the approaches mentioned

in the introduction. It is possible (and has often been done)

to use behavior-based techniques in basic behaviors, to learn

parameters of options or basic behaviors, to learn conditions

for state transitions, to coordinate multiple agents, or to use

abstract planning algorithms and provide the results to XABSL

options by input symbols.

It is the choice of hierarchical FSM that makes XABSL

more scalable and easier to extend. Adding an option to

an XABSL behavior specification never has side-effects on

existing behaviors. Once a new behavior (both a composite

option and an atomic basic behavior) has been tested and fine-

tuned, it can be easily integrated in different other options,

without being dependent on the different contexts of these

behaviors. This is because in each of these options the decision

when to activate the new subordinated behavior only depends

on their state and purpose.

The next section shows how XABSL was applied in various

different agent architectures.

IV. APPLICATIONS

So far, XABSL is mostly applied in the RoboCup [12] robot

soccer domain, a common testbed and benchmark problem for

research in many fields of artificial intelligence and robotics.

First versions of the system [17] were developed in 2001 by

the GermanTeam [22], a group of several German researchers

competing in the RoboCup Four-Legged League (cf. fig. 5).

In this league, teams of four Sony’s four legged Aibo robots

[9] play soccer against each other. The main characteristic of

this league is the complexity of physical actions that have

to be employed both for interaction and perception. As the

opening angle of the 208×160 pixels camera is only 45

degrees wide and thus the robot only perceives small portions

of the field, the obtained world model is very unreliable and

Fig. 6. Team CoPS in the RoboCup Middle Size League.

noisy. Additionally, walking and ball handling with four legs

results in high uncertainty of actions.

The GermanTeam developed a rich set of basic behaviors

for obstacle avoidance, navigation, and ball handling. Based

on that, more and more complex behaviors were composed

from simpler ones. In general, the lower behaviors in the

option hierarchy such as ball handling or navigation tend to

be more short-term and reactive as they have to react instantly

on changes in the environment. The more high-level behaviors

such as waiting for a pass, positioning, or role changes try to

avoid frequent state changes and make more deliberative and

long-term decisions. A successful behavior in the Four-Legged

League usually consists of about 50 - 80 options. An example

can be found at [15].

Another domain of application is the RoboCup Middle

Size League (cf. fig. 6). In that league, custom-made wheel-

based robots are usually equipped with omni-vision cameras

and laser range finders and therefore have rather precise

world models. For example the team Cooperative Soccer

Playing Robots Stuttgart (CoPS) [8] easily encapsulated their

existing behaviors for navigation and dribbling in XABSL

basic behaviors and used the language itself mainly for very

high level behaviors such as role assignments or game flow.

Additionally, they developed a Petri Net based modelling tool

that generates XABSL source code for specifying cooperation

between robots.

In parallel to AI and robotics research and without much

reciprocal recognition, the computer game community faces

similar problems with similar approaches when designing the

behavior of virtual creatures [10], [21]. Since 2004, several

game programmers started using XABSL for their develop-

ments.

To support behavior engineers when employing XABSL

on their own agent platform, an example XABSL behavior

implementation was made for the ASCII Soccer simulator [4].

In this very simple soccer simulation the field, two teams of

four players each, and the ball are displayed on a text terminal

(cf. fig. 7). The players are able to access a nearly complete

world model and the action set of the agents is very limited:

They can either move to one of the eight neighboring places

or kick. The simplicity of this environment made it possible

to develop a competitive XABSL example agent team with

dynamic role assignments, supporter positioning, passing, and



Fig. 7. A scene from an ASCII Soccer game.

dribbling in a short time. This implementation also shows that

the XABSL language, the tools and the executing engine are

really independent from the developments made for the robot

soccer environments.

The ASCII Soccer XABSL example implementation can be

downloaded together with the complete source code and tools

from the XABSL web site [15].

V. CONCLUSIONS

This paper introduced the Extensible Agent Behavior Spec-

ification Language for the convenient developing of the be-

havior of autonomous agents. State based techniques allow

for dealing with uncertainty in highly dynamic environments.

Composing state machine based options in hierarchies makes

behaviors reusable in different contexts and by that enables

behavior designers to develop scalable and complex behaviors.

Although XABSL was initially developed for robotic soccer,

it is not a soccer programming language – there are no

language elements of concepts that are specific for soccer ap-

plications. The language and the run-time system XabslEngine

are application and platform independent and can be relatively

easily employed in any agent system.

The modular nature of XABSL supports the development

of behaviors in a team (for example more than 20 team

members of the GermanTeam were involved in the developing

and tuning of their behaviors). New options can be easily

added to existing ones without having negative side effects.

With the debugging interfaces of the XabslEngine new options

can be tested separately before they are used by higher-

level options. Improved versions of existing options can be

developed in parallel and are easy to compare with previous

ones. A constantly extending library of well tuned low-level

behaviors can be reused in different contexts for the creation

of new options.

XABSL becomes increasingly wide spread. By now, it is

used by more than 25% of the teams in the RoboCup Four-

Legged League, but it is also applied on other robots in the

RoboCup Middle Size and Humanoid League. It helped the

GermanTeam to become the 2004 and 2005 world champion in

the Four-Legged League. Although this success was of course

also based on many other achievements, we believe that the

ability of the team to develop an adopt very complex and

efficient behaviors – even during the ongoing competition –

played a key role in winning these titles.
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