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Abstract

The natural plant alkaloids caffeine and theophylline were the first adenosine receptor (AR)
antagonists described in the literature. They exhibit micromolar affinities and are non-selective. A
large number of derivatives and analogs have subsequently been synthesized and evaluated as AR
antagonists. Very potent antagonists have thus been developed with selectivity for each of the four
AR subtypes.
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1. Caffeine and theophylline - historical aspects and early structural

modification

1.1. Naturally occuring xanthines

The earliest adenosine receptor (AR) antagonists identified were the naturally-occurring
alkylxanthines, most notably among these being caffeine (1,3,7-trimethylxanthine, 1) and
theophylline (1,3-dimethylxanthine, 2) (see Fig. 1) (Daly 1982; Fredholm 1999; Stefanovich
1989). Another simple natural xanthine, theobromine (3) was shown to have only weak
activity as AR antagonist (Müller et al. 1993a). The major caffeine metabolites in humans,
paraxanthine (4) and 1-methylxanthine (5) (Krämer and Testa 2008), the latter being also the
major metabolite of theophylline, are similarly potent as caffeine and theophylline and may
contribute their activity (Daly et al. 1986a; Müller et al. 1993b). These simple
alkylxanthines are of micromolar affinity, at best, at the ARs, and variation of affinity
between species has been documented (see table 1). This affinity range was later shown to
apply generally to all human AR subtypes, A1, A2A, A2B and A3, but only to three of the AR
subtypes of the rat (A1, A2A, and A2B). At the rat A3AR, the simple alkylxanthines were
shown to have much higher Ki values of ~ 10−4 M or higher (Fredholm et al. 1994; van
Galen et al. 1994).
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1.1. Early modification of 8-unsubstituted xanthine derivatives

The first xanthine analogues with enhanced affinity at the ARs were modified from caffeine
and theophylline (Daly 2000; Dlay 2007; Müller et al. 1993a; Fredholm et al. 2009). In the
early 1980s, one particular type of modification of the xanthine structure proved to be
especially useful in enhancing affinity: the elongation of the 1,3-dimethyl groups to propyl
or larger alkyl groups (Bruns 1981; Ukena et al. 1986b). For example, substitution of the
1,3-dimethyl groups with 1,3-dipropyl groups in 16 increased affinity at the rat A1AR by ~
20-fold (table 1). Substitutions at the 1-, 3-, or 7-positions, particularly small hydrophobic
groups, were generally much better tolerated in AR binding than substitution at the 9-
position (Daly 1982; Müller et al. 1993a). Evaluation of a series of mono-substituted
xanthines (5–14) showed that substitution at N1 was most important for all AR subtypes
(Müller et al., 1993b). While a 1-propyl residue was best for A2B and A3 receptors, a 1-
benzyl residue was optimal for the A1 and A2A AR subtypes (see table 1). 1-Propylxanthine
(6) shows the highest affinity of the small, simple xanthine derivatives for the human A2B
receptor (Ki 360 nM) along with some selectivity (at least 7-fold vs. the other subtypes)
(Kim et al. 2002), while 3-propylxanthine (enprofylline, 10) is less potent (Ki human A2B
4,730 nM), but even more selective (at least 14-fold).

3,7-Dimethyl-1-propargylxanthine (DMPX, 20) was the first A2-selective AR antagonist
described in the literature (Ukena et al. 1986b; Seale et al. 1988). It is similarly potent at
A2A and A2B receptors, but the degree of selectivity versus A1 receptors is low (Jacobson et
al. 1992a). A comparison with the 7-unmethylated derivative 3-methyl-1-propargylxanthine
(18) indicated that a 7-methyl group led to a large decrease in A1 affinity and thus increased
selectivity for A2A or A2B (Müller et al. 1993b; Kim et al. 2002). The theophylline
derivative doxofylline 15 bearing a 1,3-dioxolan-2-ylmethyl residue in the 7-position is
virtually inactive at A1 and A2AAR and is believed to exert its antiasthmatic activity via
inhibition of phosphodiesterases (Cirillo et al. 1988; Shukla et al. 2009).

The branched analogue IBMX 17 shows potency as a phosphodiesterase (PDE) inhibitor in
the same concentration range as is required to block ARs (Ukena et al. 1993).

1,3-Dibutylxanthine-7-ribosides (21,22) were found to bind effectively at A3 receptors
indicating that the ribose group – as in adenosine – can act as a secondary anchor or
recognition moiety in the receptor binding site (van Galen et al. 1994; Kim et al. 1994b;
Park et al. 1998). This series of xanthine-7-ribosides also provided an early indication of
modes of ligand binding at ARs, i.e. the overlay of receptor-bound positions of xanthine and
adenine moieties. The 5′-uronamide modification of the CH2OH group of the ribose moiety
greatly enhanced A3AR affinity as was shown for adenosine agonists, such that DBXRM
was 143-fold selective (Kim et al. 1994b). DBXRM (22) was found to be a full agonist at
the A3AR, unlike other xanthine derivatives. It is proposed that the ribose moiety contains
the essential structure and required flexibility to effect the conformational change of the
receptor needed for activation (Gao et al. 2002).

1.2. Progression to xanthines with subtype selectivity

In addition to substitution of the 1,3-dimethyl groups with larger 1,3-dialkyl groups, a means
of increasing affinity at the rat A1AR was found to be the introduction of 8-aryl substituents
(fig. 2 and table 2) (Bruns 1981; Daly et al. 1986b; Jacobson et al. 1988; Jacobson et al.
1992a; Müller et al. 1996). For example, placement of a phenyl group at the 8-position,
generally increased A1AR affinity by at least an order of magnitude (table 2). The first
analogue having both 1,3-dialkyl and 8-phenyl modifications to be studied in detail was 1,3-
diethyl-8-phenylxanthine (DPX, 25), which diplayed a Ki value of 44 nM at the rat A1AR
and was beginning to show selectivity for that subtype (Bruns et al. 1987a). [3H]DPX was
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demonstrated as the first AR antagonist radioligand, but its hydrophobicity limited its use
(Bruns et al. 1980). Homologation to the 1,3-propyl groups in the 8-aryl analogue 26
provided a desired boost in affinity, however, the unintended consequence of rapidly
diminishing aqueous solubility made this series unable to be used in typical pharmacological
studies (Ukena et al. 1986b; Bruns and Fergus 1989). The 8-p-hydroxyphenyl-substituted
derivative 33 (NPC-205) was slightly more potent than 26 (Shamim et al. 1988). The low
aqueous solubility, which is both a function of lipophilic groups present on the xanthine and
the tendency of 8-arylxanthine derivatives to form highly stable crystal lattices, resulted in
low bioavailability of 26 and similar compounds (Müller et al. 1996; Frédérick et al. 2005).

Several approaches were taken to increase the water solubility. A sulfonate group was
introduced at the p-position of the 8-phenyl ring, which greatly increased solubility (Daly et
al. 1985; Shamim et al. 1989). However, this modification tended to decrease both affinity
and selectivity, in comparison to the uncharged 8-phenyl analogues. Thus, SPT (27) and
DPSPX (28), the latter of which is somewhat more potent, were both useful in
pharmacological experiments where a blockade of all AR subtypes is required. It has to be
kept in mind that these compounds do not block rat A3 receptors but are active at other
species like human and sheep (table 2). SPT (27) was shown not to penetrate into the brain
due to its high polarity (Baumgold et al. 1992).

2. Adenosine A1 receptor antagonists

2.1. 8-Aryl- and 8-arylalkyl-substituted xanthines

An alternative approach to the introduction of charged groups for increasing water solubility
resulted in the synthesis of the 8-aryl derivatives in which the charged group was separated
from the phenyl ring by a spacer group. Various substitutions of an 8-phenyl ring indicated
that an electron-donating group provided a favorable AR affinity (Jacobson et al. 1985b;
Shamim et al. 1988). Thus, a methoxy substituent was elaborated into a carboxymethyloxy
group resulting in carboxylic congener XCC 36 and amine congener 8-[4-[[[[(2-
aminoethyl)amino]carbonyl]methyl]oxy]phenyl]-l,3-dipropylxanthine (XAC, 30) (fig. 2 and
table 2) (Jacobson et al. 1985b; Jacobson et al. 1999). By placing the charged group at a
distance from the 8-aryl ring, it was possible to maintain and even enhance the high affinity
seen with neutral, but poorly soluble analogues. Thus, XAC was found to have a Ki value of
1.2 nM at the rat A1AR and ~50-fold selectivity in comparison to the rat A2AR. The initial
measure of A2AR affinity used in Jacobson et al. (1985b) was the inhibition of cyclic AMP
accumulation in rat brain slices, which corresponds more closely to the A2BAR, rather than
the A2AAR. However, subsequent tests at the rat A2AAR confirmed that there was still a
margin of selectivity of XAC in binding to the A1AR in rat (Ukena et al, 1986c). The
substitution of the 1,3-dipropyl groups of XAC with 1,3-diethyl increased affinity at the
A2AAR while decreasing it at the A1AR (Jacobson et al. 1987a). The aqueous solubility of
XAC was found to be 25 μM, which was an improvement over the uncharged 8-aryl
derivatives. Therefore, XAC was suitable for use in pharmacological experiments as a
general AR antagonist and was the first such antagonist to display moderate A1AR
selectivity at least in rat.

Given the promise of a relatively water-soluble and somewhat selective xanthine derivative,
this amine-functionalized derivative of 1,3-dipropyl-8-phenylxanthine was specifically
radiolabeled on the 1,3-dipropyl groups by catalytic reduction of a 1,3-diallyl precursor. The
resulting [3H]XAC was useful as a radiotracer in binding experiments at rat cerebral cortical
A1ARs with a KD value of ~ 1 nM, and was thus the first generally useful antagonist
radioligand for study of this receptor (Jacobson et al. 1986a). [3H]XCC 36 was also
introduced as a high affinity radioligand for the A1AR (Jarvis et al. 1987).
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Another rationale for the design of XAC with a primary amino group was the
“functionalized congener approach” to drug design (Jacobson et al. 1986b; Jacobson 2009).
By this approach, a chemically functionalized chain is incorporated at an insensitive site on
the xanthine pharmacophore and can be extended to enable a conjugation strategy. Such
high affinity conjugates are useful for AR characterization and can be coupled to radioactive
or spectroscopic reporter groups without losing the ability to bind to the receptor (Jacobson
et al. 1987b). XAC was also used as an immobilized high-affinity ligand for the purpose of
affinity chromatography leading to the isolation of both A1 and A2A receptors and their
purification to homogeneity (Olah et al. 1989; Weiss and Grisshammer 2002). While in
XAC the polar, basic residue was connected to the 8-phenyl ring via ether and amide
linkages, in another series sulphonamide-linked derivatives were investigated (31,32, fig. 2).
Compound 31 and its congeners were potent A1 antagonists, but showed only a moderate
degree of selectivity (table 2) (Bruns et al. 1986; Bruns et al. 1987a).

Besides 8-phenylxanthine derivatives 8-benzyl- (62) and 8-phenylethyl-substituted
xanthines (59–61) have also been investigated and optimized with respect to A1 affinity
(Peet et al. 1993). Among 8-(arylalkyl)-xanthine derivatives, 3-[2-(4-aminophenyl)ethyl]-8-
benzyl-7-{2-ethyl(2-hydroxyethyl)amino]ethyl}-1-propyl-3,7-dihydropurine-2,6-dione
(L-97-1, 62) is weaker in binding than typical 8-arylxanthine probes, but is a water soluble
A1 AR antagonist bearing a basic substituent at N7 that has been proposed for the treatment
of asthma (Obiefuna et al., 2005). 1,3-Dipropyl-8-phenylethyl-xanthine derivatives with a
methyl (59–60) or ethyl (61) substituent at the α-carbon atom adjacent to the xanthine C8-
position showed particularly high affinity and selectivity for A1AR with a configurational
preference for the (R)- over the (S)-enantiomer (Peet et al. 1993).

2.2. 8-Cycloalkylxanthines

The introduction of 8-cycloalkyl groups instead of 8-aryl groups proved to be beneficial for
affinity at the A1AR, and also allowed sufficient aqueous solubility for broad
pharmacological application (fig. 3 and table 3). The 8-cycloalkylxanthine derivative that is
most widely used as a pharmacological tool is DPCPX (65, also known as CPX), which is
~500-fold selective for rat A1AR in comparison to the A2AAR (Bruns et al. 1987a). Among
the human ARs, the A1AR selectivity is less than in the rat (table 3). The corresponding
cyclohexyl analogue is similar in its pharmacological profile (Shamim et al. 1989).
Curiously, DPCPX was in clinical trials for the treatment of cystic fibrosis through a non-
AR related mechanism. It was found to act on the CFTR (cystic fibrosis-related chloride
transporter) to enhance chloride in cells systems, an action that is unrelated to its AR
antagonism (Cohen et al. 1997; Sorbera et al. 2000).

More bulky cycloalkyl substituents in the xanthine 8-position, such as 3-noradamantyl (e.g.
rolofylline (KW3902, 69) and 77), (substituted) norbornyl (naxifylline (BG-9719, CVT124,
80), and the lactone 81), dicyclopropylmethyl (MPDX, 83, and KF15372, 84) and
bicyclo[2.2.2]octyl (toponafylline (BG-9928, 82)) yielded very potent and selective A1
antagonists (fig. 3 and table 3).

The 2-thio analog of DPCPX (65), 2-thio-DPCPX (66) was similarly potent and selective as
65 showing that in the 2-position a hydrogen bond acceptor (like a keto group) was not
required (Jacobson et al. 1989b)). Replacement of the 3-propyl residue in DPCPX by a
phenyl (73), benzyl (72), or a chiral methylbenzyl residue (70,71) was well tolerated
(Weyler et al. 2006). However, the affinity for the human A3AR was increased by the
lipophilic, aromatic residues, and the compounds lost A1-selectivity vs. A3. The introduction
of polar hydroxy groups in the 3-position was well tolerated by the A1, but not by the A3AR
leading to very potent and highly selective A1 antagonists (74,75,77–79) (Weyler et al.
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2006; Massip et al. 2006). In fact, 1-butyl-3-(3-hydroxypropyl)8-(3-noradamantyl)xanthine
(PSB-36, 77) is one of the most potent A1 antagonists described to date showing Ki values
of 0.124 nM (rat), and 700 nM (human), respectively. The hydroxylated DPCPX derivative
74 (PSB-16) was converted to its phosphoric acid ester disodium salt, yielding a highly
water-soluble A1 antagonist prodrug suitable for parenteral application without the need for
detergents and organic solvents (Weyler et al. 2006).

Several other polar derivatives and analogs of DPCPX were developed in order to further
improve water-solubility and bioavailability. Apaxifylline (67) with a keto group at C3 of
the cyclopentyl ring was clinically evaluated as a memory-enhancing drug for the treatment
of dementias (Schingnitz et al. 1991). An amino-substituted DPCPX derivative,
midaxifylline (68) has also been investigated (Ceccarelli et al. 1995). A promising second-
generation compound currently undergoing clinical trials for the treatment of chronic heart
failure is toponafylline (82), which contains a carboxylate function (Doggrell, 2005).
Rolofylline (69), an A1 antagonist of the first generation, had shown promising results in a
pilot phase III study in patients with acute heart failure, but in a recently published larger
phase III study (PROTECT) it did not exhibit significant improvement over placebo
(Slawsky et al. 2009). Further potential applications for A1AR antagonists include
hypertension and renal diseases due to their diuretic and kidney-protective effects. The
feasibility of designing kidney-selective prodrugs of an A1AR antagonist has been
demonstrated (Barone et al. 1989). Yet other applications are cardiac arrhythmia, asthma
and other respiratory disorders, and the prevention of organ damage, e.g. resulting from
transplantation (Jacobson et al. 1992a; Müller et al. 1996; Müller 1997; Jacobson et al. 2006;
Moro et al. 2006; Givertz 2009).

2.3. Species differences

Among the human ARs, the A1AR affinity and selectivity (vs. A2A and A2BAR) of 8-
cycloalkyl and 8-aryl derivatives is typically less than in the rat (see table 2 and 3). Several
groups have studied the species dependence of the AR affinity of xanthine derivatives (see
Ukena et al. 1986b; Klotz et al. 1991; Müller et al. 1993; Müller 1997; Kull et al. 1999;
Fozard et al. 2003; Auchampach 2009). An early conclusion was that the affinity of typical
8-substituted analogues (both aryl and cycloalkyl) was greatest at the bovine A1AR,
intermediate at the rat A1AR, and lowest at the porcine A1AR. Later, it was found that the
human A1AR most closely resembled the porcine A1AR, in that respect. At the A2A and the
A2BAR the opposite is true although differences are moderate: 8-substituted xanthines, such
as XAC and DPCPX, are more potent at the human receptor than at the rat ortholog. The
largest species differences are observed for the A3 receptor: 8-phenyl- and 8-
cyclopentylxanthines are typically much more potent at the human than at the rat A3
receptor (Linden 1994; Ji et al 1994; Jacobson 1998; Müller 2001; Müller 2003).

2.4. Deaza- and azaxanthines

Analogs of xanthine derivatives, such as caffeine, theophylline, and 1,3-dialkyl-8-
phenylxanthine have been synthesized which are lacking either the N7 (“7-deazaxanthines”)
or the N9 nitrogen atom (“9-deazaxanthines”) in the imidazole partial structure (compounds
109–116, fig. 5 and table 5). It was found that the nitrogen atom in the 9-position was not
required for high receptor affinity, the 9-deazaxanthines being even slightly more potent at
A1AR in comparison with the corresponding xanthine derivatives (Grahner et al., 1994). To
the contrary, 7-deazaxanthines were much less potent proving that the xanthines will bind as
7H-rather than 9H-tautomers to the receptors (Grahner et al., 1994). The addition of another
nitrogen atom into the 8-position of xanthines was less successful: 8-azaxanthines (123–126,
fig. 5 and table 5) showed only moderate affinity for the receptors (Franchetti et al. 1994)
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which can be explained by the lacking of the N7-H atom that is required as a hydrogen bond
donor for high-affinity binding.

2.5. Tricyclic xanthine derivatives

Several different types of tricyclic xanthine derivatives have been prepared and investigated
(fig. 6 and table 6). Cycloalkyl-substituted dihydro-imidazo[2,1-i]purinones (127,128)
showed high A1 affinity and selectivity combined with improved water-solubility due to the
presence of a basic nitrogen atom that can be protonated (Suzuki et al. 1992; Vu et al. 2006).
A new class of heterotricyclic xanthine derivatives in which the 3-alkyl-substituent is
tethered to the N9 atom – pyrimido[1,2,3-cd]purinediones (151–153) - was synthesized and
investigated (fig. 6) (Weyler et al. 2006). Interestingly, the cyclopentyl-substituted
derivative 151, an analog of DPCPX, was only weakly active probably due to the lacking of
the N7-H atom. In contrast, the 3-noradamantyl-substituted analogs (152,153) showed
relatively high A1 affinity. While propyl derivative 152 (PSB-63) was very selective versus
the other AR subtypes, butyl derivative 153 was also quite potent at human A3AR (table 6).
Another novel tricyclic analog of DPCPX, the oxazolo[3,2-a]purinone derivative 154,
showed only weak affinity for AR (table 6) (Müller 1994). In a series of tricyclic
pyrimido[2,1-f]purinediones the N,N-dipropyl-substituted derivative 139 (fig. 6) bearing a
m-chlorobenzyl residue attached to the additional ring was a relatively potent A1 antagonist
with some selectivity (table 6) (Drabczynska et al. 2007a).

3. Adenosine A2A receptor antagonists

A2AAR selective antagonists of both xanthine and nonxanthine classes have been developed
and some have entered clinical trials for Parkinson’s disease, based on the opposing action
of adenosine and dopamine in the striatal pathways in the brain (Richardson et al. 1997;
Schapira et al 2006; Schwarzschild et al. 2006; Müller et al. 2007; Baraldi et al. 2008). The
cellular mechanisms of the motor and neuroprotective effects of A2AAR antagonists have
been explored (Yu et al. 2008). Recently, ameliorating effects of A2A antagonists including
xanthine derivatives on animal models of Alzheimer’s disease and cognitive dysfunction
have been reported (Dall’Igna et al. 2007; Cunha et al. 2008; Takahashi et al. 2008). Since
the early 1990s, there has been a major medicinal chemical effort to increase the A2AAR
selectivity of simple xanthines by structural modification.

Prior to the synthesis of truly A2AAR selective antagonists, certain high affinity xanthines
were used in a nonselective fashion as probes of the A2AAR. For example, [3H]XAC (30)
was useful as a radiotracer in binding experiments at the A2AAR in human platelets and was
therefore the first antagonist radioligand with high affinity at the A2AAR (Ukena et al.
1986a). PD115,199 32 was prepared in tritiated form and shown to bind with high affinity to
the rat A2AAR (Bruns et al. 1987b).

The first “selective” A2A receptor antagonist described in the literature was the caffeine
analog 3,7-dimethyl-1-propargylxanthine (DMPX, 20, fig. 1 and table 1) (Ukena et al.
1986b). Like caffeine, the compound possesses low A2A receptor affinity and moderate
selectivity versus A1 receptors. Nevertheless, this compound has been widely used in in vivo
studies because of its good water solubility and bioavailability (Seale et al. 1988; Thorsell et
al. 2007). Later on it was found that DMPX is equally potent at A2B as at A2A receptors.
The species dependence of affinity at the A2A receptor of 1,3,7- and 1,3,8-trisubstituted
xanthines has been reported (Stone et al. 1988).

An early example of a caffeine analogue that displayed selectivity for the A2A receptor was
8-trifluoromethylcaffeine, but the affinity was still low with at Ki value in binding at the rat
A2AAR of 29 μM (Jacobson et al. 1993b). This effect of the 8-trifluoromethyl group was not
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observed in the corresponding (inactive) theophylline derivative. A 8-(trans-2-carboxyvinyl)
derivative of caffeine also proved to be similarly selective for the A2A receptor.

3.1. 8-Styrylxanthines

The observation that N7-methylation in 8-substituted xanthine derivatives was better
tolerated by the A2A than the A1 receptor (Shamim et al. 1989), and that the 8-substituent
had to be coplanar for achieving high A2A receptor affinity (Erickson et al. 1991) led to the
first highly potent and selective A2A receptor antagonists: the 1,3,7-alkyl-substituted 8-
styrylxanthine derivatives 87–95 and 99 (table 4).

A small alkyl group at N1 (methyl, ethyl, propyl, propargyl) proved to be optimal for high
A1 affinity and selectivity, while methylation is required in the 7-position (Jacobson et al.
1993a; Nonaka et al. 1994a; Shimada et al. 1997; Müller et al. 1998a; Müller et al. 2000;
Kase 2003). The 8-styryl residue has to be (E)-configured, and meta-chloro or –methoxy
substitution improved affinity and selectivity. The m-position of the 8-styryl ring can be
substituted with elongated chains with retention of A2A receptor selectivity and
enhancement of water solubility (Jacobson et al. 1993a). The phenyl ring in the 8-styryl
residue can be substituted by heterocyclic rings, such as a 3-thienyl ring (102) (Del Giudice
et al. 1996).

The most common substitutents at N3 in A2A receptor-selective xanthine derivatives have
been small alkyl residues, such as methyl, propyl, and 3-hydroxypropyl (reviewed Müller
2000; Cacciari et al. 2003; Vu 2005; Yuzlenko et al. 2006; Müller et al. 2007; Cristalli et al.
2007; Cristalli et al. 2009). Recently, the develoment of a new synthetic approach allowed
the preparation of a series of xanthine derivatives with more variations in the 3-position
(Massip et al. 2006). It was found that the A2A receptor tolerated bulky, functionalized
substituents in the 3-position. For instance, N3-phenoxypropyl-substituted 8-
(methoxystyryl)xanthine derivatives (e.g. 103) are potent and selective A2A antagonists
(Massip et al. 2006).

Some of the best A2A antagonists were istradefylline (KW6002, 87), m-chlorostyrylcaffeine
(CSC, 89), m-bromostyryl-DMPX (93), and MSX-2 (99). (E)-8-(3-chlorostyryl)caffeine (89)
is not only a potent A2A antagonist (Ki rA2A 54 nM), but in addition, it has been reported to
be a potent inhibitor of monoamineoxidase B (baboon MAO-B, Ki 80.6 nM), an enzyme
which metabolizes dopamine (van den Berg et al. 2007; Petzer et al. 2009). This activity
may contribute to the potency of CSC in in vivo studies, e.g. in animal models of
Parkinson’s disease. All other styrylxanthine derivatives investigated so far, including 8-
styrylcaffeine (88) and istradefylline (87), are considerably less potent as MAO-B inhibitors
than CSC. Recently, a chain-extended homolog of CSC, 8-(m-
chlorophenylbutadienyl)caffeine (108) has been described to show similar dual activity as
A2A antagonist and MAO-B inhibitor (Pretorius et al. 2008).

Istradefylline (KW-6002, 87) has been intensively studied in vitro and in a number of animal
models. Until recently (Fernandez et al. 2010), it was in Phase IIIb clinical trials for
Parkinson’s disease. In phase II clinical trials istradefylline reduced motoric dysfunction
without producing dyskinesias (reviewed by Knutsen et al. 2001). An 11C-labelled version
of istradefylline has been prepared and used for positron emission tomography (PET) studies
in healthy human brain (Hirani et al. 2001).

A major drawback of styrylxanthine derivatives, however, is their high lipophilicity and low
water-solubility. Introduction of a polar sulfonate group into 8-styryl-DMPX resulting in
compound 98 led to an almost 10-fold reduction in A2A affinity, but increased water-
solubility (Müller et al. 1998b). A more successful approach has been the preparation of
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water-soluble prodrugs, particulary of the 3-(3-hydroxypropyl)-substituted 1-propargyl-8-
styrylxanthine derivative MSX-2 (99) (Müller 2009). MSX-3 (100) is a water-soluble
phosphate prodrug of MSX-2, which is cleaved in vivo by ubiquitous phosphatases to
release the A2A receptor antagonist MSX-2 (Sauer et al. 2000). MSX-3 has proven useful for
animal studies and is widely used for studying the in vivo effects of A2A antagonists
(Hauber et al. 1998; Strömberg et al. 2000; Hauber et al. 2001; Ferré et al. 2001; Nagel et al.
2003; Blum et al. 2003; Schindler et al. 2004; Schindler et al. 2005; Antoniou et al. 2005;
Karcz-Kubich et al. 2003a; Karcz-Kubicha et al. 2003b; Filip et al. 2006; Fuxe et al. 2007;
Ishiwari et al. 2007; Farrar et al. 2007; Carriba et al. 2007; Salamone et al. 2008; Marcellino
et al. 2008; Ferré et al. 2008; Mott et al. 2009; Worden et al. 2009). Due to its very high
water-solubility at physiologic pH of 7.4 (9 mg/mL) it can be directly injected into specific
brain areas, but is also an effective A2A antagonist after systemic application. Recently, an
amino acid ester prodrug of MSX-2, MSX-4 (101) has been synthesized, which was found
to be well soluble in water, highly stable in artificial gastric fluid, but readily cleaved by
esterases and may be a suitable prodrug for peroral administration (Vollmann et al. 2008).

Care has to be taken when using the (E)-configurated styrylxanthines since they easily
undergo light-induced isomerization in dilute solutions yielding mixtures of (E)- and (Z)-
isomers, the (Z)-isomers being only weakly active or inactive (Nonaka et al. 1993; Müller et
al. 1998b). This isomerisation does not occur in concentrated solution, e.g. during synthesis
of the compounds, or when the compounds are applied as solid dosage forms. However,
styrylxanthines can also undergo light-induced dimerization ([2+2]-cycloaddition reaction)
in the solid state, and therefore have to be rigorously stored under exclusion of light
(Hockemeyer et al. 2004).

3.2. Configurationally stable analogs of 8-styrylxanthines

To overcome the problem of the photoisomerization, the styryl moiety has been replaced
with different more stable bioisosteric groups (e.g. replacement of the double bond for a
cyclopropyl ring in 104, a 2-naphthyl residue in 105, a triple bond in 107) (Müller et al.
1997c), or a tricyclic constrained structure (133–143) (Kiec-Kononowicz et al. 2001;
Drabczynska et al. 2003; Fhid et al. 2003; Drabczynska et al. 2004; Drabczynska et al. 2006;
Drabczynska et al. 2007). In most cases a significant loss of affinity was observed by such
modifications. The most promising compounds were the pyrimido[2,1-f]purinedione
derivative 141 (Ki hA2A 630 nM, rA2A 230 nM) and 8-phenylethynyl-DMPX (107, Ki A2A
314 nM, rA2A 300 nM), both endowed with high selectivity. The latter class of compounds
has been optimized towards increased A2A affinity and the obtained highly potent and
selective A2A antagonists have been described in a recent patent (Müller et al. 2008).
Furthermore, a substitution of the ethenyl group with a diazo structure has been performed.
The obtained compounds retained selectivity but showed only moderate affinity (Müller et
al. 1997b).

3.3. A2A-selective radiolabelled xanthine derivatives

The tritiated derivative of the 8-styrylxanthine KF17837S (the equilibrium mixture of (E)-
and (Z)- KF17837 isomers) was shown to bind to rat striatal membranes in a saturable and
reversible way, with KD values at low nanomolar concentration (Nonaka et al. 1994b).
Another A2A antagonist radioligand was prepared, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-
methoxystyryl)-1-propargylxanthine ([3H]MSX-2). This molecule showed high affinity (KD
=8.0 nM) for rat and human A2A AR, with saturable and reversible binding, and also a
selectivity of at least two orders of magnitude versus all other AR subtypes (Müller et al.
2000).
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3.4. Heterocyclic compounds related to xanthines

A tricyclic styryl-substituted imidazo[2,1-i]purin-5-one derivative (132, fig. 6 and table 6)
showed enhanced water-solubility but reduced A2AR affinity and moderate selectivity
(Müller et al. 2002a).

4. Adenosine A2B receptor antagonists

4.1. Aryl-substituted 1,3-dialkylxanthines

From the initial studies of Daly and coworkers using cAMP studies in the brain slice, it was
recognized that 1,3,7- and 1,3,8-trisubstituted xanthines have considerable affinity at the
A2BAR. Also, the simple xanthine enprofylline 10 was discovered to have slight selectivity
for the A2BAR, which was proposed to be responsible for its antiasthmatic action in the
clinic (Stefanovich 1989; Daly 2000; Daly 2007). Screening efforts by Bruns (1981)
followed by more detailed studies by Müller, Daly and Jacobson showed that 1-
monosubstituted xanthine derivatives, such as 1-propylxanthine (6) and 1-butylxanthine (7)
were about 10-fold more potent than enprofylline at A2BAR and equally selective (Müller et
al. 1993b; Kim et al. 2002).

In fact, the unintended interaction at the A2BAR of widely used xanthine antagonists of the
ARs has proven to be a complication in pharmacological studies.

Many known xanthines were screened at the A2BAR to identify leads for the design of novel
A2BAR antagonists. The first successful efforts to enhance the activity of 1,3,8-trisubstituted
xanthines at the A2BAR by Jacobson and colleagues resulted in one compound of
intermediate selectivity at the human, but not rat A2BAR, MRS1595 (41), which is a
hydrazide derivative of XCC (fig. 2 and table 2) (Kim et al. 2000). Then, further probing of
SAR culminated in the introduction of MRS1754 (37), which was the first selective A2BAR
antagonist with nanomolar affinity at the human receptor (Kim et al. 2000). The degree of
selectivity for the human A2BAR was >120 fold, but selectivity for the rat A2BAR was
considerably less (fig. 2 and table 2). Thus, it remained a challenge to design a rat A2BAR-
selective xanthine antagonist. Another drawback in the series of anilide derivatives of XCC
is the low aqueous solubility, which is partly remedied in related antagonists such as
MRS1706 (38). Nevertheless, [3H]MRS1754 has found application as a useful radioligand
of the A2BAR (Ji et al. 2001). Structurally related 8-phenylxanthine derivatives include
CVT-5440 (40), in which additional aromatic rings were attached by an ether linkage, and
42 with a modified 3-substituent (3-methoxypropyl), have been developed as potent and
selective A2B antagonists (Kim et al. 2000; Nieto et al. 2009). Newer derivatives in this
series, which have two pyridine rings linked by an amide group, include the highly selective
A2BAR antagonists ATL-802 (57) and ATL-852 (58). [3H]ATL-852 has been reported as a
high affinity radioligand at this receptor (Cagnina et al. 2009).

8-Pyrazolyl-substituted xanthines that have been developed as selective human A2BAR
antagonists include MRE-2029-F20 (56), which was also reported as a high affinity
radioligand (Baraldi et al. 2004). A different series of isomeric 8-pyrazolyl-xanthines
yielded the highly potent A2B antagonists 53–55 (CVT-6694, CVT-7124 and CVT-6883)
(Kalla et al. 2008; Elzein et al. 2008; Kalla et al. 2009). High selectivity at human receptors
has been reported for all of these pyrazolylxanthines, but no data for rodent receptors has
been reported. CVT-6883 (55) is a promising candidate for the treatment of diabetes or
asthma and has entered phase I clinical trials. Pain treatment is another potential area under
consideration for A2BAR antagonists (Abo-Salem et al. 2004; Akkari et al. 2006; Bilkei-
Gorzo et al. 2008; Michael et al. 2010).
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4.2. 1,8-Disubstituted xanthines

The observation that 1-monosubstituted and 1,8-disubstituted xanthine derivatives showed
high affinity and increased selectivity for A2BAR led to the development of a series of 1-
alkyl-8-phenylxanthine derivatives (43–52) (Hayallah et al. 2002; Yan et al. 2004; Yan et al.
2006; Borrmann et al. 2009). These compounds also appeared to show reduced affinity at
the rat A1 receptor and therefore increased A2B selectivity in rat. 1-Propyl-8-p-
sulfophenylxanthine (PSB-1115, 43) was developed as a water-soluble A2B antagonist,
useful as a pharmacological tool for in vivo studies (Müller et al. 1993b; Kirfel et al. 1997;
Abo-Salem et al. 2004; Bilkei-Gorzo et al. 2008). 1-Butyl-8-(p-carboxyphenyl)xanthine
(PSB-53, 45) showed similar affinity and selectivity. The 1-propargyl-8-p-
bromophenylxanthine (PSB-50, 44) was more potent, but somewhat less selective and much
less water-soluble. The 8-phenylxanthine derivatives PSB-55 (46), a benzylpiperazine
derivative, and PSB-298 (47), a hydroxyethylamide, were synthesized to obtain more polar
compounds with high A2B affinity. PSB-298 was obtained in tritiated form and was found to
have a low degree of non-specific binding (Bertarelli et al. 2006). However, its affinity and
selectivity was not satisfactory.

Starting from the sulfonate PSB-1115 (43), sulfonic acid esters (e.g. 48) and sulphonamides
(e.g. 49–52) were obtained (Yan et al. 2004; Yan et al. 2006). Compound 48 can be
envisaged as a lipophilic prodrug of the highly polar sulfonate 43, which may show peroral
bioavailability and release of 43 after absorption (Yan et al. 2004). However, 48 has high
A2B affinity itself and is therefore a co-drug rather than a prodrug, although without
selectivity versus A1AR (fig. 2 and table 2). The most potent and selective A2B antagonists
described to date are the sulphonamide derivatives 50–52, whose development was based on
PSB-601 (49) an already very potent and selective A2B antagonist (Ki 3.6 nM). Compounds
50–52 show subnanomolar affinity for A2B receptors and very high selectivity in humans
and in rodents. [3H]PSB-603 was prepared as a selective, high-affinity A2B antagonist
radioligand with Kd values of 0.403 nM at human and 0.351 nM at mouse A2BAR
(Borrmann et al. 2009).

4.3. 9-Deazaxanthines

Several series of 9-deazaxanthine derivatives (115, 117–121) were developed as A2B
antagonists, which were structurally related to the 8-phenylxanthine derivatives described
above (fig. 5 and table 5). A number of compounds with low nanomolar affinity were
obtained, and some were selective for the human A2B receptor (Carotti et al. 2006; Esteve et
al. 2006; Stefanachi et al. 2008).

4.4. 8-Furylmethyl-substituted xanthines

8-(2-Furyl)methyl-substituted xanthined derivatives, e.g. 63, have been developed as A2B
antagonists (fig. 2 and table 2). Some of them showed high A2B affinity but only moderate
selectivity (Balo et al. 2009).

5. Adenosine A3 receptor antagonists

In the search for A3AR antagonists, alkylxanthines were initially rejected as a suitable lead
in favor of nonxanthine chemically diverse heterocycles, because of the exceptionally low
affinity of alkylxanthines at the rat A3AR. For example, the classical adenosine antagonists
caffeine and theophylline have Ki values of >100 μM at the rat A3AR (table 1). Initial SAR
studies at the rat A3AR were conducted using multiply substituted xanthines, many of which
retained selectivity for the A3AR (van Galen et al. 1994). Only slight A3AR selectivity was
observed for analogues containing 8-alkyl and 2-thio substitutions (Kim et al. 1994b).
However, when other species orthologues of the A3AR were cloned and studied
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pharmacologically, such as sheep, and human A3AR, many xanthines were found to display
good affinity for those A3 receptors (Linden 1994). Thus, attention returned to the xanthines
as a source for A3AR antagonist leads.

One of the earliest approaches to enhancing the affinity of xanthines at the A3AR was to
attach a ribose group at the 7-position (21,22). The 5′-uronamide derivative N-methyl-1,3-
dibutylxanthine-7-β-D-ribofuronamide (DBXRM, 22) is 140-fold selective for the A3AR,
but the presence of the uronamide function increases the efficacy such that it is an agonist at
this receptor (van Galen et al. 1994; Kim et al. 1994b; Bridson et al. 1998).

5.1. 8-Aryl-substituted xanthine derivatives

8-Phenylxanthine derivatives bearing a carboxylate group attached to the phenyl ring via an
ethylene (35) or an oxymethylene spacer (34) were initially found to be potent antagonists at
the human A3AR, but both compounds are also very potent A1 and A2B antagonists (fig. 2
and table 2). [125I]I-ABOPX (BW-A522, 34) has been used as a radioligand for labelling the
A1AR as well as human A3 and human A2BARs (Patel et al. 1988; Salvatore et al. 1993;
Linden et al. 1999). The corresponding p-azido derivative was previously used for
photoaffinity labeling of the A1AR. The xanthine derivative 34 is characterized by a p-
amino-m-iodobenzyl residue at N3 of the xanthine core (fig. 2) and is therefore quite
lipophilic. As observed for other xanthine antagonists, 34 is much less potent (65-fold) at rat
as compared to human A3 receptors.

5.2. Tricyclic xanthine and deazaxanthine derivatives

Cyclized derivatives of xanthines, such as (8R)-8-ethyl-4-methyl-2-phenyl-4,5,7,8-
tetrahydro-1H-imidazo[2.1-i]purin-5-one (PSB-11, 130), its trichloro-phenyl-substituted
derivative PSB-10 (129), and the 8-unsubstituted 8-bromophenyl derivative 131 are very
potent A3-selective antagonists (fig. 6 and table 6) (Müller et al. 2002a; Saki et al. 2002;
Ozola et al. 2003). PSB-11 (KD 4.9 nM) was prepared as a radioligand by catalytic
hydrogenation from the polychlorinated precursor PSB-10 (Müller et al. 2002b; Burbiel et
al. 2003). Due to its increased polarity and solubility in comparison to xanthines
[3H]PSB-11 shows only low non-specific binding. Further tricyclic xanthine derivatives, in
which an additional ring was attached to the imidazole rather than the pyrimidine ring of the
xanthine core structure (pyrido-, imidazo-, pyrrolo- and triazolo-purinediones, 144–150),
were developed as A3-selective antagonists (Priego et al. 2002; Baraldi et al. 2005; Pastorin
et al. 2005; Priego et al. 2008). An aromatic residue (mostly benzyl) attached to the N3
(xanthine numbering) increases A3 affinity in xanthine derivatives including the tricyclic
ones.

Besides tricyclic xanthine derivatives, tricyclic deazaxanthines have also been obtained
(Ishiyama et al. 2009). Compound 122 (fig. 5 and table 5) was one of the most potent and
selective compounds in this series.

6. Xanthine derivatives used as molecular probes

6.1. Irreversible ligand probes

The amine congener XAC (30) was coupled to a variety of bifunctional crosslinking
reagents to form products containing a single chemically reactive group (fig. 7 and table 7).
For example, 1,3- and 1,4-phenylene diisothiocyanates were conjugated to XAC to form the
A1 AR-selective antagonists m-DITC-XAC 164 and p-DITC-XAC 165, which were
demonstrated to bind irreversibly at submicromolar concentrations to the A1AR to act as
covalent affinity labels. Similarly, prosthetic reagents designed for radiolabeling and
photoaffinity labeling could be coupled to XAC and similar amine congeners (Stiles et al.
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1988; Jacobson et al. 1989a). The conjugate with the p-aminophenylacetyl moiety was
readily iodinated to form the radioligand 172, which could then be converted to the
photoactivatable p-azide (Stiles and Jacobson 1987). This azide then served to crosslink a
radiolabeled AR antagonist suitable to the A1AR protein, which could be visualized by gel
electrophoresis. The sulfonyl fluoride group present in 158 was also means of crosslinking a
xanthine derivative to the A1AR (Scammels et al. 1994; van Muijlswijk-Koezen et al. 2001).

6.2. Spectroscopic probes: spin labeled and fluorescent probes

Other types of reporter groups could be similarly incorporated into xanthine functionalized
congeners with retention of moderate AR affinity, for example, chelating groups capable of
complexing radioactive metal ions; spin labels for electron spin resonance (ESR)
spectroscopy, e.g., 167; a perfluorinated acyl prosthetic group, as in 170, intended for use in
fluorine-NMR spectroscopy, and fluorescent dyes, e.g., 173 and 174 (Jacobson et al. 1987b).
The fluorescent conjugate 174 of XAC and BODIPY (6-(((4,4-difluoro-5-(2-thienyl)-4-
bora-3a,4a-diaza-s-indacene-3-yl)styryloxy)acetic acid), with an intermediate ε-
aminocaproyl spacer, has proven useful in fluorescence correlation spectroscopy to
characterize ligand complexes of the A1AR (Briddon et al. 2004).

Spin-labeled probes that retained high A1 affinity were obtained by inserting the spin-label
into the molecule as part of the pharmacophore. The most potent and A1-selective
compounds were the DPCPX analogs 155 (replacement of the 3-substituent by a spin label)
and 156 (substitution of the cyclopentyl ring by a structurally related spin label). Both
compounds showed affinity for A1AR in the low nanomolar range combined with high
selectivity versus the other receptor subtypes (Ilas et al. 2005). The 1-propyl-8-phenyl
derivative 157, in which the spin label was integrated into the 8-substituent, showed good
affinity for A1 as well as A2B receptors (fig. 7 and table 7).

6.3. Specialized radioligand probes based on conjugation

Trifunctional probes derived from XAC were synthesized for the purpose of crosslinking to
both a reporter group and the receptor (Boring et al. 1991). By this means, the xanthine
would deliver a radioactive or spectroscopic prosthetic group to the receptor, to which it
would react irreversibly by virtue of an electrophilic group such as an isothiocyante. This
approach was illustrated with a series of analogues of m-DITC-XAC containing a third
substituent in the phenyl isothiocyanate ring. For example, in 166 the third substituent
contained a 3-(4-hydroxy-phenyl)propionate moiety for radioiodination (Jacobson et al
1992b). This antagonist derivative effectively radiolabeled the bovine A1 AR in a covalent
manner. Similar trifunctional xanthine probes for covalent labeling of ARs that furthermore
contained a cleavable disulfide linkage within the chain linked to the xanthine moiety were
reported (Jacobson et al. 1995). The intended strategy was to be able to remove the label
after isolation of the modified receptor in order to regenerate the binding ability of the
receptor.

6.4. Xanthine radioligand probes for positron emission tomography

There is a need for the development of imaging agents based on high affinity ligands for
ARs. For example, ligands for in vivo positron emission tomographic (PET) imaging of A1,
A2A, and A3 ARs have been developed. The high affinity A1AR antagonist DPCPX gave
rise to the high affinity analogue in which a terminal hydrogen of the 3-propyl group has
been substitued with radiofluorine: [18F]CPFPX (8-cyclopentyl-1-propyl-3-(3-
fluoropropyl)-xanthine, 159), similar in structure to DPCPX). This tracer is being developed
for PET imaging of the A1AR in the brain (Holschbach et al. 2002; Bauer et al. 2009).
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PET ligands for the A2A AR in the 8-styrylxanthine series that are structurally related to
KW6002, have been developed: for example, [7-methyl-11C]-(E)-8-(3,4,5-
trimethoxystyryl)-1,3,7-trimethylxanthine ([11C]TMSX) (Ishiwata et al. 2000a). This
compound was alternately named [11C]KF18446 ([7-methyl-11C]-(E)-8-(3,4,5-
trimethoxystyryl)-1,3,7-trimethylxanthine, (Ishiwata et al. 2000b; Ishiwata et al. 2002;
Ishiwata et al. 2003a; Ishiwata et al. 2003b). Ex vivo autoradiography for this molecule
showed a high striatal uptake and a high uptake ratio of the striatum in comparison to other
brain regions; [11C]KF18446 was therefore proposed as a suitable radioligand for mapping
A2AAR of the brain by PET (Mishina et al. 2007). In 2001 the synthesis and the testing of
the 8-styrylxanthine derivative [11C]KW-6002 as a PET ligand was reported. This molecule
showed high retention in the striatum but it bound also to extra-striatal regions, so its
potential as a PET ligand appeared to require further investigation (Hirani et al. 2001;
Brooks et al. 2008).

In an earlier study, 11C-labeled (E)-KF17837 was synthesised and tested, and it was
proposed as a potential positron emission tomography (PET) radioligand for mapping the
A2AAR in the heart and the brain (Ishiwata et al. 1996; Ishiwata et al. 1997). Further studies
on radiolabeled xanthine derivatives as A2AAR radioligands were carried out by preparing
and testing an 11C-labeled selective antagonist, (E)-8-(3-chlorostyryl)-1,3-dimethyl-7-
[11C]methylxanthine [11C]CSC). This molecule was shown to accumulate in the striatum,
and PET studies on rabbits showed a fast brain uptake of [11C]CSC, reaching a maximum in
less than 2 min (Marian et al. 1999). Few years later, iodinated and brominated
styrylxanthine derivatives labeled with 11C were tested as in vivo probes (Ishiwata et al.
2000c). [7-Methyl-11C]-(E)-3,7-dimethyl-8-(3-iodostyryl)-1-propargylxanthine ([11C]IS-
DMPX) and [7-methyl-11C]-(E)-8-(3-bromostyryl)-3,7-dimethyl-1-propargylxanthine
([11C]BS-DMPX) showed Ki affinities of 8.9 and 7.7 nM respectively, and high A2A/A1
selectivity values. Unfortunately, biological studies proved that the two ligands were only
slightly concentrated in the striatum, and that they were not suitable as in vivo ligands
because of low selectivity for the striatal A2A receptors and a high nonspecific binding
(Ishiwata et al. 2000c).

6.5. Conjugated ligand probes and bivalent ligands

Three biotin conjugates 161–163 of 1,3-dipropyl-8-phenylxanthine (fig 7) were reported as
being able to bind competitively to the rat A1 AR, but in the case of 161 and 162 only in the
absence of avidin. This was in contrast to similar conjugates of functionalized nucleoside
agonists, which more readily bound simultaneously to both avidin and the A1 AR. Results
were interpreted in terms of the possible reorientation of the ligands at the receptor binding
site (Jacobson et al. 1985a; Jacobson 1990).

Two different pharmacophores, one being a xanthine AR antagonist, have been tethered
with the intention to create a dual selectivity in a single functional unit. For example, XAC
was coupled covalently through an L-Lys linker to a segment derived from the
neurotransmitter peptide substance P (SP) to form a binary drug 169 (Jacobson et al. 1987c).
The Lys linker served to increase aqueous solubility and to preserve A1 AR by virtue of a
free amino group in the spacer chain. Thus, conjugate 169 bound to the rat A1 receptor with
a Ki value of 35 nM and to the NK1 (neurokinin type 1) receptor with a Ki value of 300 nM.
Similarly, XAC was coupled to functionalized agonist ligands for opioid receptors, e.g., 175,
and for D2 dopamine receptors, e.g., 176 (fig. 7 and table 7) (Jacobson 2009; Soriano et al.
2009). Each of these conjugates bound effectively to both relevant receptors.
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7. Conclusions

The pharmacological activity of the natural xanthines currently used in therapy, namely
theophylline (as an antiasthmatic) and caffeine (as CNS stimulant, for the treatment of
apnoea in newborn babies, and as analgesic in combination therapy e.g. for the treatment of
headaches) is mainly mediated by a (non-selective) inhibition of AR subtypes. AR subtype-
selective xanthine derivatives with high potency have been developed and are evaluated in
animal models and clinical trials.

Abbreviations

AR(s) Adenosine receptor(s)

c calf or cow

d dog

CHO Chinese hamster ovary

gp guinea pig

h human

m mouse

MAO monoaminoxidase

MAO-B monoaminoxidase type B

mk monkey

nd not determined

p pig

r rat

rb rabbit

s sheep

X xanthine(s)
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Fig. 1.
8-Unsubstituted xanthine derivatives
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Fig. 2.
8-Phenyl- and 8-phenylalkyl-substituted xanthines and heteroaromatically substituted
derivatives
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Fig. 3.
8-Cycloalkylxanthines
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Fig. 4.
8-Styrylxanthines and configurationally stable analogs
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Fig. 5.
Deazaxanthines and azaxanthines
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Fig. 6.
Tricyclic xanthine derivatives
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Fig. 7.
Functionalized xanthines as molecular probes
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