
Received November 28, 2019, accepted January 9, 2020, date of publication January 15, 2020, date of current version January 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2966919

Xatkit: A Multimodal Low-Code Chatbot
Development Framework

GWENDAL DANIEL 1, JORDI CABOT 2, (Member, IEEE),

LAURENT DERUELLE 3, AND MUSTAPHA DERRAS 3
1IN3, UOC, 08060 Castelldefels, Spain
2ICREA, 08010 Barcelona, Spain
3Berger-Levrault, 54250 Champigneulles, France

Corresponding author: Gwendal Daniel (gdaniel@uoc.edu)

This work was supported in part by the Spanish Government under Project TIN2016-75944-R, and in part by the Electronic Component

Systems for European Leadership Joint Undertaking under Grant 737494.

ABSTRACT Chatbot (and voicebot) applications are increasingly adopted in various domains such as

e-commerce or customer services as a direct communication channel between companies and end-users.

Multiple frameworks have been developed to ease their definition and deployment. While these frameworks

are efficient to design simple chatbot applications, they still require advanced technical knowledge to define

complex interactions and are difficult to evolve along with the company needs (e.g. it is typically impossible

to change the NL engine provider). In addition, the deployment of a chatbot application usually requires a

deep understanding of the targeted platforms, especially back-end connections, increasing the development

and maintenance costs. In this paper, we introduce the Xatkit framework. Xatkit tackles these issues by

providing a set of Domain Specific Languages to define chatbots (and voicebots and bots in general) in a

platform-independent way. Xatkit also comes with a runtime engine that automatically deploys the chatbot

application and manages the defined conversation logic over the platforms of choice. Xatkit’s modular

architecture facilitates the separate evolution of any of its components. Xatkit is open source and fully

available online.

INDEX TERMS Modeling, DSL, chatbot design, chatbot deployment.

I. INTRODUCTION

Instant messaging platforms have been widely adopted as

one of the main technologies to communicate and exchange

information [1], [2]. Nowadays, most of them provide built-in

support for integrating chatbot applications, which are auto-

mated conversational agents capable of interacting with users

of the platform [3]. Chatbots have proven useful in various

contexts to automate tasks and improve the user experience,

such as automated customer services [4], education [5], and

e-commerce [6]. Moreover, existing reports highlight the

large-scale usage of chatbots in social media [7], and empha-

size that chatbot designwill become a key ability in IT hires in

the near future [8]. Additional predictions say that by 2022,

80% of the companies will use chatbots and banks will be

able to automate up to 90% of their customer interaction

with them.1 The global chatbot market is projected to reach

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Nardone .
1https://chatbotsmagazine.com/chatbot-report-2019-global-trends-and-

analysis-a487afec05b

2 billion dollars by 2024, growing at a CAGR (compound

annual growth rate) of 29.7%.2

This widespread interest and demand for chatbot appli-

cations has emphasized the need to be able to quickly

build complex chatbot applications supporting AI-based nat-

ural language processing [9] in order to be able to flu-

ently chat with the user. Moreover, any non-trivial chatbot

requires accessing an orchestration [10] of internal and exter-

nal services in order to perform the requested user actions

(e.g. to check and query the data to be served back to

the user or to actually execute some processes/actions in

response). As such, chatbots are becoming complex soft-

ware artifacts that require a more methodical development

approach to be developed with the proper quality standards.

As such, the definition of chatbots becomes a challenging

task that requires expertise in a variety of technical domains,

ranging from natural language processing to a deep under-

standing of the APIs of the targeted instant messaging plat-

forms and third-party services to be integrated.

2https://www.alliedmarketresearch.com/chatbot-market

15332 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0003-0692-0628
https://orcid.org/0000-0003-2418-2489
https://orcid.org/0000-0001-9912-7949
https://orcid.org/0000-0002-2227-4024
https://orcid.org/0000-0003-4938-9216


G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

So far, chatbot development platforms have mainly

addressed the first challenge, typically by relying on external

intent recognition providers, which are natural language (NL)

processing frameworks providing user-friendly interfaces to

define conversation assets. As a trade-off, chatbot applica-

tions are tightly coupled to their intent recognition providers,

hampering their maintainability, reusability and evolution.

Typically, once the chatbot designer chooses a specific chat-

bot development platform, she ends up in a vendor lock-in

scenario, especially with the NL engine coupled with the

platform. Similarly, current chatbot platforms lack proper

abstraction mechanisms to easily integrate and communi-

cate with other external platforms the company may need to

interact with.

This work aims to tackle all these issues by raising the

level of abstraction at what chatbots are defined. To this

purpose, we introduce Xatkit, a novel model-based chatbot

development framework that aims to address this question

usingModel Driven Engineering (MDE) techniques: domain-

specific languages, platform independent bot definitions, and

runtime interpretation. Indeed, Xatkit embeds a dedicated

chatbot-specific modeling language to specify user inten-

tions, computable actions and callable services, combining

them in rich conversation flows. Conversations can either be

started by a user awakening Xatkit or by an external event

that prompts a reaction from Xatkit (e.g. alerting a user that

some event of interest fired on an external service the bot is

subscribed to).

The resulting chatbot definition3 is independent of the

intent recognition provider (which can be configured as part

of the available Xatkit options) and frees the designer from

the technical complexities of dealing with messaging and

backend platforms as Xatkit can be deployed through the

Xatkit runtime component on them without performing any

additional steps. Xatkit is the result of a collaboration work

between the Open University of Catalonia and the Berger-

Levrault company who is interested in adapting chatbots as

part of its citizen portal service offering.

This paper extends our previous work [11]4 in the follow-

ing directions:

• Ability to define event-based conversations. Now Xatkit

can subscribe to external events that may induce Xatkit

to start a conversation and not just respond to conversa-

tions started by the user

• A significant growth in the tools maturity, both in

the number of platforms and features offered in each

platform.

• A new regex-based NLP parser to be used for testing

purposes or very simple bots (e.g. as a way to check the

Xatkit installation was successfully completed without

requiring to setup as well a connection to a remote NLP

engine).

3In this paper, we use the terms bot, chatbot and voicebot indistinctly as
Xatkit supports all of them via its set of supported platforms

4Xatkit was previously known as Jarvis but we changed the name since
that paper was published

• Better support for the Platforms mechanism and

extended list of platforms, including the support for

voicebots.

• An initial validation as part of an ongoing initiative to

use Xatkit in an education setting

• A specific packaging for a Xatkit Development Toolkit

that lowers the barrier to entry for those potential con-

tributors that want to start tinkering with the code.

• A completely reworked related work section.

• Plus many other minor changes (e.g. refinements on the

concrete syntax) based on the feedback and experience

we got since the first release.

The rest of the paper is structured as follows: Section II

introduces preliminary concepts used through the article.

Section III shows an overview of the Xatkit framework,

while Section IV, V and VI detail its internal components.

Section VII presents the tool support, Section IX compare

our approach with existing chatbot design techniques and

Section VIII a first empirical evaluation. Finally, Section X

summarizes the key points of the paper, draws conclusions,

and present our future work.

II. PRELIMINARIES AND RUNNING EXAMPLE

This section defines the key concepts of a chatbot application

that are reused through this article.

Chatbot design [12] typically relies on parsing techniques,

pattern matching strategies and Natural Language Processing

(NLP) to represent the chatbot knowledge. The latter is the

dominant technique thanks to the popularization of libraries

and cloud-based services such as DialogFlow [13] or IBM

WatsonAssistant [14], which rely onMachine Learning (ML)

techniques to understand the user input (based on a set of

training sentences provided as part of the chatbot definition)

and provide user-friendly interfaces to design the conversa-

tional flow.

However, Pereira and Díaz have recently reported that

chatbot applications can not be reduced to raw language

processing capabilities, and additional dimensions such as

complex system engineering, service integration, and testing

have to be taken into account when designing such appli-

cations [15]. Indeed, the conversational component of the

application is usually the front-end of a larger system that

involves data storage and service execution as part of the

chatbot reaction to the user intent. Thus, we define a chatbot

as an application embedding a recognition engine to extract

intentions from user inputs, and an execution component

performing complex event processing represented as a set of

actions.

Intentions are named entities that can be matched by the

recognition engine. They are defined through a set of training

sentences, which are input examples used by the recogni-

tion engine’s ML/NLP framework to derive a number of

potential ways the user could use to express the intention.5

5In this article we focus on ML/NLP-based chatbots, but the approach
could be extended to alternative recognition techniques

VOLUME 8, 2020 15333



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

Matched intentions usually carry contextual information

computed by additional extraction rules (e.g. a typed attribute

such as a city name, a date, etc) available to the underlying

application. In our approach, Actions are used to represent

simple responses such as sending a message back to the user,

as well as advanced features required by complex chatbots

like database querying or external service calling. Finally,

we define a conversation path as a particular sequence of

received user intentions and associated actions (including

non-messaging actions) that can be executed by the chatbot

application.

In Xatkit, bots can also be triggered by events. They may

subscribe to external events that trigger a reaction on their side

without being prompted by a user starting a conversation with

them. Same as for intents, the chatbot designer can define the

set of actions to be executed in response to an event.

A. RUNNING EXAMPLE

We now present how Xatkit’s concepts are put into prac-

tice through a running example: our case study will be a

multi-platform chatbot aiming to optimize the collaboration

between project owners and end-users of a givenGitHub open

source project.

On the one hand, our chatbot will aim to assist newcomers

in the definition of issues on the Github platform, a reported

concern in the open source community [16]. Instead of

directly interacting with the GitHub repository, users of our

software could use the chatbot to report a new issue they

found. The chatbot helps them to specify the repository to

open the issue in and the relevant error information, and opens

the issue on their behalf. The chatbot is deployed as a Slack

app (i.e. the conversation between the user and the chatbot

takes place on the Slack messaging platform). In particular,

in this example, we will assume that the project in question is

aWordPress plugin and therefore the bot will take care of ask-

ing two crucial questions: what WordPress version the user

is on and what PHP version the host is running. These two

data points are critical for themaintainer to reliably reproduce

the issue and efficiently debug the user error, saving time for

everybody.

On the other hand, this same chatbot can also be useful to

alert the owner every time the status of the GitHub reposi-

tory changes (either because somebody has used the chatbot

as a user or because somebody directly interacted with the

repository’s issue tracker in GitHub). Instead of forcing the

owner to keep an eye on GitHub or subscribe to its complex

notification system, our bot will ping him on her platform

of choice (in this case, we assume that she wants to be

pinged on both, Slack and Discord, since it is there where

she spends most of its online time). Once alerted, she will be

able to respond back to the bot to perform some immediate

reply action like labeling or assigning the opened issue. Note

that in this second scenario it is not the user who starts the

conversation but the bot.

Although this chatbot is obviously a simplification of what

a proper chatbot for GitHub could look like (with more

FIGURE 1. The chatbot collecting user information before opening the
issue.

FIGURE 2. The bot alerting the project owner that a new issue has just
been opened.

complex information flows and richer set of alerts after

updates on the GitHub side), we believe it is representative

enough of the current chatbot landscape, where chatbots usu-

ally need to interact with various input/output platforms and

keep track of contextual information and partial responses in

order to provide richer user experiences.

In the following we show how this chatbot is defined with

the help of the Xatkit modeling language, and we detail how

the runtime component manages its concrete deployment and

execution.

III. XATKIT FRAMEWORK OVERVIEW

Our approach applies Model Driven Engineering (MDE)

principles to the chatbot building domain. As such, chatbot

15334 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

models become the primary artifacts that drive all software

(chatbot) engineering activities [17]. Existing reports have

emphasized the benefits of MDE in terms of productivity

andmaintainability compared to traditional development pro-

cesses [18], making it a suitable candidate to address chatbot

development and deployment, which, as discussed before,

goes much further than simply processing natural language

sentences.

FIGURE 3. Xatkit framework overview.

The following Figure 3 presents an overview of our MDE-

based chatbot approach and its main components. At design

time the chatbot designer specifies the chatbot under con-

struction using two domain-specific languages (DSLs) part

of Xatkit Modeling Infrastructure:

• Intent Package to describe the user intentions using

training sentences, contextual information extraction,

and matching conditions (e.g. the intention to open an

issue or the intention to select a repository, in our run-

ning example)

• Execution Package to bind user intentions to response

actions as part of the chatbot behaviour definition

(e.g. sending a welcome message to the user when he

intents to open a new issue or actually creating the issue

on the GitHub platform once the user has completed

explaining it).

The actions in the Execution part of the bot often involve

a set of orchestrated calls to services provided by the avail-

able Platforms. Platforms are defined by a Platform designer

via a separate Platform Package and, once available, are

enabled for all existing bots. Platforms are organized in a

taxonomy so the chatbot designer can choose generic actions

(e.g. a textual reply, something available in all chat-based

platforms) or more specific ones (e.g. attaching a file to

a message, only available in some specific platforms like

Slack). The resulting platform definition hides all the tech-

nical details of the communication with the platforms.

These models are complemented with a Deployment Con-

figuration file that specifies the Intent Recognition Provider

to use (e.g Google’s DialogFlow [13] or IBM Watson

Assistant [14]), platform specific configuration parameters

(e.g. OAuth credentials), as well as custom execution proper-

ties, which for instance can introduce some limited variability

in the bot behaviour. Note that in the Xatkit infrastructure, all

the intent recognition providers implement a common inter-

face that allows switching from one to another transparently

through configuration properties. Support for new providers

can be easily achieved by implementing this common

interface.

These assets constitute the input of the Xatkit Runtime

component that starts by deploying the created chatbot. This

implies registering the user intents to the selected Intent

Recognition Provider(which involves translating the intents

in the bot definition into the primitives/mechanisms available

in that specific provider), connecting to the InstantMessaging

Platforms, and starting the External Services specified in

the execution model. Then, when a user input is received,

the runtime forwards it to the Intent Recognition Provider,

gets back the recognized intent and performs the required

action associated to that intent based on the chatbot execution

model.

This infrastructure provides three main benefits:

• The Xatkit Modeling Language packages decouple the

different dimensions of a chatbot definition, facilitating

the reuse of each dimension across several chatbots.

• Each sublanguage is totally independent of the concrete

deployment and intent recognition platforms, easing the

maintenance and evolution of the chatbot.

• The Runtime architecture can be easily extended to sup-

port new platform connections and computable actions.

This aspect, coupled with the high modularity of the

language, fosters new contributions and extensions of

the framework.

Next sections cover each of these components and lan-

guages in more detail.

IV. XATKIT MODELING LANGUAGE

In the following we introduce the Xatkit Modeling Language,

composed by a set of interrelated chatbot Domain Specific

Languages (DSL) that provides primitives to design the user

intentions, execution logic, and deployment platforms of the

chatbot under construction (this latter one will be described

in Section VI).

The Xatkit language is defined through two main com-

ponents [19]: (i) an abstract syntax (metamodel) defining

the language concepts and their relationships (generalizing

the primitives provided by the major intent recognition plat-

forms [13], [14], [20]), and (ii) a concrete syntax in the form

of a textual notation to write chatbot descriptions conforming

to the abstract syntax.6 In the following we use the abstract

syntax to describe the DSL packages and primitives, and the

textual to show, via examples based on our running case study,

how those concepts can be used to create bots. A modeling

IDE for the language is also introduced in our tool support.

6A graphical notation sharing the same metamodel is left as further work.
Curiously enough, business users are far more interested in having automatic
importers that could generate the bot definition itself from internal docu-
ments than on having a graphical drag&drop interface. As such, importers
have now higher priority

VOLUME 8, 2020 15335



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

To decouple the definition of the user intentions the chatbot

should recognize from the actions the chatbot should execute

in response to those intents, our language is split up into

two different sublanguages: the Intent and the Execution

packages.

A. INTENT PACKAGE

Figure 4 presents the metamodel of the Intent Package, that

defines a top-level IntentLibrary class containing a collection

of IntentDefinitions. An IntentDefinition is a named entity

representing a user intention. It contains a set of Training

Sentences, which are input examples used to detect the user

intention underlying a textual message. Training Sentences

are split into TrainingSentenceParts representing input text

fragments — typically words — to match.

FIGURE 4. Intent package metamodel.

Each IntentDefinition defines a set of outContexts, that

are named containers used to persist information along the

conversation and customize intent recognition. A Context

embeds a set of ContextParameters which define a mapping

from TrainingSentenceParts to specific EntityDefinitions,

specifying which parts of the TrainingSentences contain

information to extract and store. In the current version of

Xatkit EntityDefinitions can be either BaseEntityDefinitions,

i.e. generic entities that are provided for all the intent recog-

nition platforms such as city or date, or MappingEntityDefi-

nitions that represent user-designed entities represented by a

value and a list of synonyms. Note that a Context also defines

a lifespan representing the number of user inputs that can be

processed before deleting it from the conversation, allowing

to specify information to retain and discard, and customize

the conversation based on user inputs.

IntentDefinitions can also reference inContexts that are

used to specify matching conditions. An IntentDefinition

can only be matched if its referenced inContexts have been

previously set, i.e. if another IntentDefinition defining them

as its outContexts has been matched, and if these Contexts are

active with respect to their lifespans. Finally, the follow asso-

ciation defines IntentDefinition matching precedence, and

can be coupled with inContext conditions to finely describe

complex conversation paths.

LISTING 1. Example intents for the github case study.

Listing 1 shows a (partial) instance of the Intent Package

from the running example introduced in Section II-A. The

model defines the IntentLibrary Example, that contains

four IntentDefinitions and a MappingEntityDefinition. The

three first IntentDefinitions (OpenBug, DescribeBug,

and TellWPVersion) correspond to user-related intents

(i.e. the users of ourWordPress plugin who want to report and

issue). The last IntentDefinition SetLabel and the asso-

ciated MappingEntityDefinition LabelValue correspond

to an issue management intents typically triggered by the

plugin’s maintainer.

OpenBug is a simple IntentDefinition that does not follow

any other intent nor require inContext value, and thus will be

15336 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

the first intent matched in the conversation. It contains several

training sentences specifying alternative inputs used to initi-

ate the conversation. The DescribeBug intent follows the

OpenBug one, and defines one outContext issue, with a

default lifespan of 5,7 and a single parameter title. Finally

TellWPVersion asks for the WordPress version the user

has installed. Note that theContextParameters of these Intent-

Definitions use BaseEntityDefinition for their value extrac-

tion —respectively any and number—, the latter explicitly

looking for a number as a parameter to store in the context.

The LabelValue MappingEntityDefinition represents

the issue labels understood by the bot. For our example we

defined three issue labels: bug, enhancement, and wontfix

as well as their synonyms. This entity is used to extract the

issueLabel parameter value from the SetLabel IntentDefi-

nition’s training sentences.8 This intent is for project owners

triaging open issues after the bot alerts them of the creation

of a new issue.

FIGURE 5. Execution package metamodel.

B. EXECUTION PACKAGE

The Execution Package (Figure 5) is an event-based language

that represents the chatbot execution logic.

An ExecutionModel imports Platforms and IntentLi-

braries, and specifies the ProviderDefinitions used to receive

user inputs and events. The ExecutionRule class is the corner-

stone of the language, which defines the mapping between

received IntentDefinitions/EventDefinitions and Actions to

compute.

The Action class represents the reification of a Platform

ActionDefinition with concrete ParameterValues bound to its

Parameter definitions. These Actions are part of the def-

inition of the Platform, as discussed in the next section.

The value of a ParameterValue is represented as an Expres-

sion instance. Xatkit Execution language currently supports

7the lifespan indicates how many failed intents can happen before the
information collected so far is forgotten and the conversation needs to restart

8Adding such enumeration constraints and synonyms are a good practice
in existing ML-powered NLP tools that may not manage efficiently free text

Literals, Unary and Binary Operations, as well as Vari-

ableAccesses that are read-only operations used to access

ContextParameters.9

An Action can also define an optional returnVariable

that represents the result of its computation, and can be

accessed from other Actions through VariableAccess Expres-

sions, allowing to propagate information between computed

actions. Finally, an Action can also contain onErrorActions,

which are specific Actions that are executed when the base

one errored.

Listing 2 shows the Execution model from our running

example. It imports the Example IntentLibrary and the

Slack and Github Platforms.

LISTING 2. Chatbot execution language example.

The defined ExecutionModel specifies two ProviderDefi-

nitions that will receive user inputs from the Slack Platform

and from GitHub generated events so that the bot is useful to

both users attempting to report a bug and project owners that

want to get an automatic notification once the bug is actually

opened.

Let’s focus first on the sub bot facing the user (Listing 2).

Once the OpenBug IntentDefinition is matched, the bot

replies asking the user to provide more information. Note

that, this bot directly uses the Slack platform but we could

redefine it in a more generic way by using the abstract Chat

Platform if the chatbot designer would like to redeploy the

bot as a web chat window, for instance.Wewould write a very

similar behaviour for the other intents that collect information

about the bug until we have everything we need and are

ready to open the issue reporting the bug in GitHub. This is

simply done by calling the OpenIssue method provided by

the GithubPlatform using as parameters the data stored so far

in the bug context.

9Note that future releases of Xatkit will integrate Xtext’s Xbase language
as its default expression language

VOLUME 8, 2020 15337



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

As we have discussed above, the bot can also react to

events. As shown in Listing 3, when the event Issue_Opened

(one of the events generated by the GitHub platform) arrives,

we can get all the details of the new issue and immediately

alert the project owner in Slack and Discord. Note that the

execution language does not limit the number of platforms to

use in an interaction.

LISTING 3. Chatbot execution language example.

V. XATKIT RUNTIME

The Xatkit Runtime component is an event-based execu-

tion engine that deploys and manages the execution of the

chatbot. Its inputs are the chatbot model (written with the

Xatkit Modeling Language) and a configuration file hold-

ing deployment information and platform credentials. In the

following we detail the structure of this configuration file,

then we present the architecture of the Xatkit Runtime

component. Finally, we introduce a dynamic view of the

framework showing how input messages are handled by its

internal components.

LISTING 4. Chatbot deployment configuration example.

A. XATKIT DEPLOYMENT CONFIGURATION

The Xatkit deployment configuration file provides runtime-

level information to setup and bind the platforms with whom

the chatbot needs to interact either to get user input or to

call as part of an action response. Listing 4 shows a possi-

ble configuration for the example used through this article.

The first part (lines 1-4) specifies DialogFlow as the

concrete IntentRecognitionProvider service used to match

received messages against IntentDefinitions, and provides the

necessary credentials. The second part of the configuration

(lines 5-6) binds the concrete Slack platform (using its

path attribute) to the abstract Chat used in the Execution

model (Listing 2). This runtime-level binding hides platform-

specific details from the Execution model, that can be reused

and deployed over multiple platforms. The last part of the

configuration (lines 7-10) specifies platform credentials.

B. ARCHITECTURE

Figure 6 shows an overview of the Xatkit Runtime internal

structure, including illustrative instances from the running

example (light-grey). The XatkitCore class is the cornerstone

of the framework, which is initialized with the Configu-

ration and ExecutionModel previously defined. This initial

step starts the InputProviders that receive the user messages,

as well as the EventProviders used to extract EventInstances

from received third-party events (e.g. the Issue_Opened event

in our running example), and setups the concrete Inten-

tRecognitionProvider (in our case DialogFlow) employed

to extract RecognizedIntents, which represent concrete

instances of the specified IntentDefinitions.

FIGURE 6. Xatkit runtime engine architecture overview.

The input ExecutionModel is then processed and its

content stored in a set of Registries managing Intent-

Definitions, EventDefinitions, Actions, and Platforms. The

PlatformRegistry contains PlatformInstances, which corre-

spond to concrete Platform implementations (e.g. the Slack

platform from the running example) initialized with the Con-

figuration file. PlatformInstances build ActionInstances, that

contain the execution code associated to the ActionDefini-

tions defined in the Intent language, and are initialized with

Actions from the Executionmodel. These ActionInstances are

finally sent to theActionRunner that manages their execution.

The XatkitCore also manages a set of Sessions, used to

store Context information and ActionInstance return vari-

ables. Each Session defines a unique identifier associated to a

user, allowing to separate Context information from one user

input to another.

Figure 7 shows how these elements collaborate together

by illustrating the sequence of operations that are executed

when the framework receives a user message. To simplify

the presentation, this sequence diagram assumes that all

the internal structures have been initialized and that the

15338 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

FIGURE 7. Runtime engine sequence diagram.

different registries have been populated from the provided

ExecutionModel.

User inputs are received by the framework through the

InputProvider’s newInput method (1), that defines a sin-

gle parameter i containing the raw text sent by the user.

This input is forwarded to the XatkitCore instance (2), that

calls its IntentRecognitionProvider’s extract method (3). The

input is then matched against the specified IntentDefinitions,

and the resulting RecognizedIntent (4) is returned to the

XatkitCore (5).

The XatkitCore instance then performs a lookup in its

ActionRegistry (6) and retrieves the list of Actions associated

to the RecognizedIntent (7). The XatkitCore then iterates

through the returned Actions, and retrieves from its Plat-

formRegistry (8) their associated PlatformInstance (9). The

user’s Session is then retrieved from the XatkitCore’s sessions

list (10). Note that this process relies on both the user input

and the Action to compute, and ensures that a client Session

remains consistent across action executions. Finally, theXatk-

itCore component calls the build method of the PlatformIn-

stance (11), that constructs a new ActionInstance from the

provided Session and Action signature (12) and returns it to

the core component (13). Finally, the XatkitCore component

relies on the execute method of its ActionRunner to compute

the created ActionInstance (14) and stores its result (15),

in the user’s Session (16).

Note that due to the lake of space the presented diagram

does not include the fallback logic that is triggered when the

computation of an ActionInstance returns an error. Additional

information on fallback and on error clauses can be found in

the project repository.

VI. PLATFORM PACKAGE

Xatkit comes with a set of platforms packaged as part of the

release.10 Figure 8 shows a taxonomy of the 13 platforms

10Updated list of platforms available in the project wiki https://github.
com/xatkit-bot-platform/xatkit-releases/wiki

FIGURE 8. Taxonomy of the released platforms.

available so far including their inheritance links. Abstract

classes (e.g. the text ChatPlatform) can be used in place of

the concrete ones when the bot does not require any specific

method only available in the concrete platform, thus facilitat-

ing the reusability of the bot.

Nevertheless, it is often the case that a chatbot designer

requires a new platform (e.g. to talk with the internal ser-

vices in the company). If so, a platform designer (remember

Figure 3)will take care of defining and implementing the plat-

form. This platform designer could be the same person that is

designing the chatbot or somebody else hired to perform this

specific task. One way or the other, once a platform is created,

it can be reused by any past, present or future chatbot.

A. PLATFORM DEFINITION

To this purpose, Xatkit includes a DSL to define the capa-

bilities of a given platform, both in terms of the actions that

can be executed on the platform and the events the platform

can emit, depending on theProviderDefinitions offered by the

platform. These are the capabilities that are explicitly used in

the execution model to interact with the platform.

FIGURE 9. Platform package metamodel.

The Platform Package (Figure 9) defines the modeling

primitives to define platforms. A Platform is defined by

a name, and provides a path attribute that is used by the

Xatkit Runtime component to bind the model to its concrete

implementation. A Platform holds a set of ActionDefinitions,

which are signatures of its supported operations. ActionDef-

initions are identified by a name and define a set of required

Parameters. A Platform can be abstract, meaning that it does

not provide an implementation for its ActionDefinitions but it

VOLUME 8, 2020 15339



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

represents, instead, a family of similar platforms. This feature

allows to define chatbots in a more generic way.

As an example, the Chat Platform in Listing 6 is

an abstract platform that defines three ActionDefinitions:

PostMessage, PostFile, and Reply. The first two

ActionDefinitions require two parameters (the message/-

file and the channel to post it), and the third one defines

a single parameter with the content of the reply. The

Github Platform (Listing 7) defines a single ActionDef-

inition OpenIssue with the parameters repository,

title, and content. Note that these are the actions that

we have used to implement the bot described in the previous

sections.

LISTING 6. Chat platform example.

LISTING 7. Github platform example (only showing the actions and
events used in the running example).

A Platform can extend another one, and inherit its Action-

Definitions. This mechanism is used to define specific

implementations of abstract Platforms. As an example, the

concrete Slack and Discord Platforms extend the Chat

one and implement its ActionDefinitions for the Slack and

Discord messaging applications, respectively.

Finally, ProviderDefinitions are named entities represent-

ing either message processing capabilities that can be used

as inputs for the chatbot under design (InputProviderDefini-

tion), or dedicated event receiver that will trigger execution

rules when specific events are received (EventProviderDef-

inition).As an example, Listing 7 shows the definition of

the GithubEventProvider, that describes an EventDefinition

that is generated when a new issue is created on the GitHub

repository. Note that similarly to IntentDefinitions, EventDef-

initions contains Context defining the information extracted

from the received event.

B. PLATFORM IMPLEMENTATION

Xatkit platforms are implemented as standalone Java projects

implementing the Xatkit Platform Interface. This interface is

used internally by the Xatkit Runtime component to dynam-

ically load platforms, create action instances, and run them

when an execution rule is matched.

A Xatkit platform consist of a main class holding platform-

specific data accessible to all the actions (e.g. OAuth token

for our GitHub platform), and a collection of classes repre-

senting the Action that can be called on the platform (e.g. the

GitHub platform contains an OpenIssue class that contains

the code to actually open an issue on GitHub). In addition,

optional classes can be defined to add ProviderDefinitions to

the platform, and containing the code responsible of pars-

ing received inputs/events into Xatkit IntentDefinition and

EventDefinition instances.

To implement these classes, platform developers can rely

on the generic architecture of the framework as well as a set of

utility classes provided by Xatkit to perform REST requests,

parse events (typically JSON payloads), and integrate their

code in Xatkit’s internal life-cycle with minimum efforts.

C. VOICE SUPPORT

Among all the predefined platforms, voice platforms are of

special interest and deserve additional explanation.

Right now, Xatkit supports Alexa11 while Google

Assistant12 is currently under development.

In both cases, the implementation strategy has been the

same: rely on the speech-to-text functionality of platform

to translate any voice input into plain text. As an example,

we defined a generic Alexa skill accepting any kind of voice

command and delegating the processing of the extracted text

to a preset Xatkit server. The whole process is wrapped in a

regular InputProvider, that can be imported the same way as

standard messaging platform such as Slack.

With this approach, defining a voicebot does not require

additional voice-specific techniques (nor more technical

knowledge) than defining standard chatbots with Xatkit. As a

side benefit, our approach makes Xatkit bots multimodal,

since translating an existing chatbot to a voicebot can be done

easily by switching from one InputProvider to another.

VII. TOOL SUPPORT

The Xatkit framework is open source and released under the

Eclipse Public License v2.13 The source code of the project

and the Eclipse update site are available on the Xatkit GitHub

organization.14

As part of this organization, we provide the differ-

ent releases of the framework, the runtime component

and the repositories for the several platform components

and connectors. There is also a wiki (linked from the

11https://developer.amazon.com/en-US/alexa/alexa-voice-service
12https://assistant.google.com/
13https://www.eclipse.org/legal/epl-2.0/
14https://github.com/xatkit-bot-platform

15340 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

FIGURE 10. The xatkit editor.

GitHub organization) and an external website15 that provide

additional documentation, installation instructions and news

around the project.

To facilitate the specification of the chatbots we provide

and Eclipse editor that supports auto-completion, syntactic

and semantic validation, and can be installed from the Xatkit

Eclipse update site. The concrete syntaxes of the Xatkit mod-

eling languages are implemented with Xtext [21], an EBNF-

based language used to specify grammars and generate the

associated toolkit containing a meta-model of the language,

a parser, and textual editors.

The execution of the chatbots mainly relies on the Xatkit

Runtime engine. At its core, the engine is a Java library that

implements all the execution logic available in the chatbot

languages. In addition, Xatkit provides a full implementa-

tion of the IntentRecognitionProvider interface for Google’s

DialogFlow engine [13], as well as the concrete PlatformIn-

stance implementations for the Slack, Discord, and Github

platforms used in the running example (and a few others as

mentioned in the previous section). The runtime component

can be downloaded and deployed on a server as a stan-

dalone application, or integrated in an existing application

using a dedicatedMaven dependency. Additional integrations

(in particular with nlp.js16 to enable a local NL analysis)

are underway. Note that all these new integrations become

immediately available to all existing bots due to the clean and

modular architecture of Xatkit.

Xatkit also embeds amonitoring component that stores and

computes metrics to evaluate the quality of the underlying

IntentRecognitionProvider. These metrics can be accessed

using a dedicated REST API provided by the Xatkit server,17

and describe:

• The average number of intents matched per user session

• The average number inputs that have not been matched

per user session

15https://xatkit.com/
16https://github.com/axa-group/nlp.js
17Presenting this data in a more user-friendly way (e.g. via a dedicated

dashboard) is left for future work.

• The distribution of matched intents (to help design-

ers understand which conversation flows are the most

followed)

• The list of unmatched inputs to help designers integrate

them in their existing intents when relevant

• The average recognition confidence level per user ses-

sion, as well as per intent, in order to ease the detection

of intents that should be improved

• The average user session time

Note that for now the computed metrics focus on the

quality of the intent recognition, but we are currently working

on it to cover other aspects of running Xatkit bots such as

performance measurements, or user engagement.

Overall, the Xatkit organization in GitHub is composed of:

• 27 code repositories

• 1154 commits

• 13 supported platforms

We would like to highlight that Xatkit has already four

external contributors that are developing additional plat-

forms for the organization. To attract even more contributors,

we have created a specific Xatkit Development Toolkit that

facilitates the experimentation with the platform code.

VIII. VALIDATION

Xatkis is used internally by several colleagues that have

adopted some of the examples18 we have created. Several

pilot projects are under evaluation at the moment to apply

Xatkit in Student Support, eHealth and Public Administration

scenarios. All these preliminary use cases have provided

useful feedback that has been key to improve Xatkit.

Moreover, as part of our teaching initiative that aims to

bring Xatkit to the classroom19 as a tool to teach students

concepts like DSLs, NLP, bots,... we are also starting joint

teaching initiatives with several institutions.

Precisely, in this section, we would like to focus on the

first completed experience that allowed us to conduct an

initial validation of the usefulness and benefits of Xatkit with

the students of a master seminar on model-driven engineer-

ing taught at the university ‘‘Universidad de la República’’

(Uruguay). Using students as participants remains a valid

simplification of reality needed in laboratory contexts [22].

A. EMPIRICAL SETTING

The seminar lasted three days and was taught by Robert Clar-

isó (a member of our research group, but not a co-author of

Xatkit). The first two days focused on teaching core modeling

principles while the last one included a remote presentation

by Gwendal Daniel introducing Xatkit as an example of the

use of model-based solution to build advanced software sys-

tems. After the three teaching days, the students were asked to

spend a minimum of 30 additional hours of work developing

a model-based solution around Xatkit. This could either be:

18https://xatkit.com/chatbot-examples/
19https://modeling-languages.com/building-chatbots-use-case-modeling-

course/

VOLUME 8, 2020 15341



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

• A bot reusing existing Xatkit platforms

• An implementation of a new platform that extended

Xatkit to a new domain

The first assignment was considered feasible for everybody

while the second one was targeting students that could have

a special interest in the chatbots domain and wanted to go

deeper in their exploration of Xatkit.

The seminar was taken by 22 students, out of which

20 went for the first option and two chose the second

one. Bots developed on top of existing Xatkit platforms

included extensions of our GitHub bot with more complex

conversation paths gathering additional information from the

user, use of additional events (e.g. comments on issues and

pull requests) to create advanced bots, and integration of

additional actions to automatically close issues or reply to

comments. The students who chose to implement a new plat-

form developed an initial Twitter support for Xatkit allowing

to retrieve trending tweets, check the user’s direct message

inbox, and post new tweets on behalf of the user.20 At the end

of the term, all solutions were collected and marked together

with the local responsible of the course (Dr. Daniel Caligari).

Additionally, all students were asked to complete an online

survey explaining their perception of Xatkit. The survey

asked a few questions about their past experience with chat-

bots (only one had ever created a chatbot in the past even if

75% of them were already working as software developers,

at least part-time ) and then they were asked to evaluate Xatkit

from several perspectives. Finally, they were provided with

open text areas to explain what they liked the most and the

least about Xatkit, what was missing, and any other general

comment theywanted to discuss. The surveywas optional and

anonymous. Out of the 22 students enrolled in the seminar,

17 students completed it. Next section discusses some of the

survey results.

B. SURVEY RESULTS

The following figures show that Xatkit was evaluated very

positively in a number of categories, ranging from the overall

experience with Xatkit (Figure 11), the usability of Xatkit’s

modeling language (Figure 12), the power of the platform

abstraction mechanism (Figure 13), the benefits of defin-

ing chatbots at a higher-abstraction level (Figure 14), how

this helps to the portability between messaging platforms

(Figure 15) and the quality of the Xatkit IDE (Figure 16).

Regarding the improvement suggestions, most were

around adding new platforms to Xatkit, especially input plat-

forms such as Facebook and WhatsApp that would have

allowed them to build chatbots for those platforms as part

of their assignment. Two students also asked for support for

other Intent Recognition Providers beyond DialogFlow. Also,

more entry-level tutorials were requested.

Among the most appreciated elements of Xatkit, the DSLs

themselves, the separation of concerns (between intent,

20Their collaboration with us continued after the seminar and their initial
proposal has become the official Twitter platform in Xatkit

FIGURE 11. Overall experience with xatkit.

FIGURE 12. Is the xatkit language easy to use?.

FIGURE 13. Does the platform definition DSL facilitate the definition of
bots targeting that platform?.

execution and platform models) and the easy integration with

external platforms were the most commented. Overall, they

also said they saw a lot of potential in the platform and

appreciated the fact that it was open-source.

IX. RELATED WORK

Our chatbot modeling approach reuses concepts from agent-

oriented software engineering [23] and event-based system

modeling [24] and adapts them to the chatbot/conversational

domain. As far as we know, Xatkit is the first attempt to

provide a fully modular and extensible platform-independent

chatbot modeling language.

15342 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

FIGURE 14. Does the separation between the chatbot specification and
its implementation ease the development?.

FIGURE 15. Is it easy to translate a chatbot from one messaging platform
to another?.

FIGURE 16. Rate the usefulness of the editor features (code completion,
syntax highlighting,...)?.

In what follows we aim to compare in more detail Xatkit

with the plethora of other chatbot development platforms.

Note that most of the links are to software platforms and not

to research works. Even if a few of the platforms derive from

sound research results, most are recent initiatives showing

that the chatbot market is still in its infancy21 and needs

consolidation and maturity.

A. NATURAL LANGUAGE UNDERSTANDING TOOLKITS

Some tools focus on the parsing/matching of user utterances

(i.e. given the user text, understanding the intention the user

is trying to express).

21Indeed, the first chatbot [25] was created more than 40 years ago but its
real emergence is happening right now

Neural networks are typically used to attempt to clas-

sify the user utterance in one of the predefined intents in

the chatbot definition. The neural network is trained with

the example sentences provided together with the intents

definition, often augmented with the use of synonyms and

stemming procedures. Stemming reduces the derivations of a

word to its root to improve the accuracy of the classification

process. Well-known examples of these tools (many times

provided as part of a cloud service) are Dialog Flow22, IBM

Watson,23 Amazon Lex,24 Microsoft LUIS 25 or nlp.js.26

Others, like Stanford Core NLP27 use a more traditional

parsing approach.

A few of the above tools do offer a user interface to

completely define a chatbot within the platform but with

limited capabilities. In short, any complex chatbot response

(beyond purely giving a text-based answer) requires manual

coding and API management, making them unfit for non-

professional developers. This is exactly one of the core design

principles behind Xatkit.

As such, these tools are not competitors to Xatkit. On the

contrary, Xatkit relies on them for the NL part of Xatkit’s

runtime engine. Still, to avoid vendor lock-in, Xatkit imposes

a common interface that facilitates switching from one NLU

provider to another (e.g. a company may want to change

due to cost issues or due to a better support for non-English

languages).

B. CHATBOT DEVELOPMENT PLATFORMS

There are dozens of chatbot platforms. We first start by fil-

tering out popular companies like HelloMyBot,28 Inbenta,29

BotCore,30 1MilionBot31 or Imperson32 that offer bot con-

sulting services but not a public tool to build the bot

yourself.

Other proposals are more of building blocks for more

advanced development platforms. E.g bot frameworks like

Microsoft Bot Framework,33 BotKit34 or Hubot35 provide

a set of programming libraries/scripts to facilitate the cod-

ing and deployment of chatbot applications. They usually

help you to integrate intent recognition engines and some

messaging platforms (a specific solution for this would be

Smooch36 as well, even if this is not really their focus, but

22https://dialogflow.com/
23https://www.ibm.com/watson/services/natural-language-

understanding/
24https://aws.amazon.com/lex/
25https://www.luis.ai/
26https://github.com/axa-group/nlp.js
27https://stanfordnlp.github.io/CoreNLP/
28https://hellomybot.io/
29https://www.inbenta.com/en/
30https://botcore.ai/
31https://1millionbot.com/en/
32https://imperson.com/
33https://dev.botframework.com/
34https://botkit.ai/
35https://hubot.github.com/
36https://smooch.io/

VOLUME 8, 2020 15343



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

they require manual work to complete the process and to

perform more advanced connections with external services.

Also, they hardly ever provide any specific domain-specific

language and mostly rely on JavaScript or some other pro-

gramming language for the bot development.

More similar to Xatkit, we have full-fledged chatbot

development platforms that users can execute on their own.

They all provide a textual/graphical interface that allows to

specify the user intentions, the conversation path, and the

contextual information to be maintained through the con-

versation, and offer excellent natural language processing

capabilities. For the latter, many of them rely on the NLU

engines from the previous section (as Xatkit does) while

others have their own proprietary engine. We believe this

latter option has some important drawbacks (e.g. duplication

of coding efforts) but it offers a larger control on the engine

itself.

Relevant examples of this family of tools are Octane.ai37

FlowXO,38 Oracle Digital Assistant,39 Botsify,40 Many-

Chat,41 Engati,42 Chatfuel,43 PandoraBots,44 Rasa45 or

Hubtype.46

To begin with, most of these tools are closed source.47

Moreover, while each of them supports a different number

of input messaging platforms, they do not typically offer

any extension capabilities. Therefore, they are only a good

fit as long as your needs are in the scope of the platforms

supported by the tool, hampering the evolution of your bot

if the requirements change later on. This is especially worri-

some regarding the plugging of external services. Most tools

just offer an API to query the results of the intent recogni-

tion status and ask you to program yourself the integration

with the third-party service. Instead, in Xatkit, the Platform

DSL, its modular architecture and the possibility of work-

ing with abstract platforms are aimed to solve this issue.

Finally, the possibility of creating chatbots that combine

proactive and reactive behaviour (i.e. that can be activated

by the user starting a conversation or by an external event

relevant for the bot) is practically nonexistent in the above

platforms.

All in all, Xatkit proposes a higher-abstraction solution to

the chatbot domain that combines the benefit of platform-

independent chatbot definition, including non-trivial chatbot

actions and side effects, together with an easy deployment.

37https://octaneai.com/
38https://flowxo.com/
39https://www.oracle.com/application-development/cloud-

services/digital-assistant/
40https://botsify.com/
41https://manychat.com/
42https://www.engati.com/
43https://chatfuel.com/
44https://home.pandorabots.com/home.html
45https://rasa.com/
46https://www.hubtype.com/
47We cannot report here all the tools we have analyzed but out of the over

40 tools we explored, only 8 had an open source version

Moreover, the extensibility of our modular design facilitates

the integration of any external API/services as input/output

source of the chatbot. These integrations can be shared and

reused in future projects, which is when the benefits of mod-

eling and abstraction are maximized [26]

C. CHATBOT COMPONENTS IN LOW-CODE SOLUTIONS

Given the model-based and low-code approach followed in

Xatkit, we could also combine Xatkit with other low-code

solutions (like Mendix,48 OutSystems49 or Genexus50) in

order to generate complete software systems that need to

integrate a chatbot as part of its user interface. Right now,

low-code platforms are just starting to study the integration

of chatbot components and could benefit from adopting a

specific solution such as Xatkit.

And this intersection between bots and modeling can

bring other additional advantages [27], like the use of chat-

bots to build the models themselves. This has explored in

[28] and [29] and we are now collaborating with both teams

to use Xatkit as core chatbot engine for their modeling

efforts.

X. CONCLUSION

In this paper we introduced Xatkit, a multi-channel andmulti-

platform chatbot modeling framework. Xatkit proposes a

set of domain-specific languages to decouple the chatbot

definition from the technical details of the platform-specific

aspects where the bot is going to be deployed. This increases

the reusability of the chatbot and facilitates its redeployment

when the needs of the company change, including the pos-

sibility of evolving the NLU engine used during the text

analysis phase.

Moreover, the runtime component can be easily extended

to support additional platform-specific actions and events

beyond those already shipped with the current version of

Xatkit. For instance, some platforms like Alexa or Trello

have been recently added by external contributors to the core

Xatkit team.

Xatkit is ready to be used in real-case scenarios. But it has

still plenty of room for improvements. At the language level

we plan to improve the variability of the bot specification,

moving towards a product-line approach that enables com-

panies to create and quickly update several versions of the

same bot (e.g. to create localized versions of the bot for each

branch of the company). At the framework level, we plan to

work on the integration of chatbot generators, able to create

partial bot specifications from existing data sources within

the company (e.g. FAQs or user guides). We also plan to

study the combination of sentiment analysis and behavioural

design patterns [30] to create more likeable and effective

chatbots [31]. Finally, security and access-control is another

48https://www.mendix.com/
49https://www.outsystems.com/
50https://www.genexus.com/en/

15344 VOLUME 8, 2020



G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

important aspect of any chatbot design as we may want to

allow users to query (or not) certain aspects of our data

depending on their profile.

ACKNOWLEDGMENT

The authors would like to thank L. Baruffini, H. Ed-douibi,

N. Erlichman, and F. Fernàndez Cecchetto for extending

Xatkit with support for additional platforms and to Robert

Clarisó and Daniel Caligari for his help during the empirical

evaluation.

REFERENCES

[1] B. Nardi, S. Whittaker, and E. Bradner, ‘‘Interaction and outerac-

tion: Instant messaging in action,’’ in Proc. 3rd CSCW Conf., 2000,

pp. 79–88.

[2] R. Grinter and L. Palen, ‘‘Instant messaging in teen life,’’ in Proc. 5th

CSCW Conf., 2002, pp. 21–30.

[3] L. C. Klopfenstein, S. Delpriori, S. Malatini, and A. Bogliolo, ‘‘The

rise of bots: A survey of conversational interfaces, patterns, and

paradigms,’’ in Proc. Conf. Designing Interact. Syst. (DIS), 2017,

pp. 555–565.

[4] A. Xu, Z. Liu, Y. Guo, V. Sinha, and R. Akkiraju, ‘‘A new chatbot for

customer service on social media,’’ in Proc. CHI Conf. Human Factors

Comput. Syst. (CHI), 2017, pp. 3506–3510.

[5] A. Kerly, P. Hall, and S. Bull, ‘‘Bringing chatbots into education: Towards

natural language negotiation of open learner models,’’ Knowl.-Based Syst.,

vol. 20, no. 2, pp. 177–185, Mar. 2007.

[6] N. T. Thomas, ‘‘An e-business chatbot using AIML and LSA,’’ in Proc.

Int. Conf. Adv. Computing, Commun. Informat. (ICACCI), Sep. 2016,

pp. 2740–2742.

[7] V. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman,

L. Zhu, E. Ferrara, A. Flammini, and F. Menczer, ‘‘The DARPA Twitter

bot challenge,’’ Computer, vol. 49, no. 6, pp. 38–46, Jun. 2016.

[8] G. Inc, The Road to Enterprise AI. Pune,Maharashtra: RAGEFrameworks,

2017.

[9] P. Jackson and I. Moulinier, Natural Language Processing for Online

Applications: Text Retrieval, Extraction and Categorization, vol. 5.

Amsterdam, The Netherlands: John Benjamins, 2007,

[10] M. Brambilla, M. Dosmi, and P. Fraternali, ‘‘Model-driven engineering of

service orchestrations,’’ in Proc. IEEE Congr. Services, Los Angeles, CA,

USA, Jul. 2009, pp. 562–569, doi: 10.1109/SERVICES-I.2009.94.

[11] G. Daniel, J. Cabot, L. Deruelle, and M. Derras, ‘‘Multi-platform chat-

bot modeling and deployment with the jarvis framework,’’ in Advanced

Information Systems Engineering (Lecture Notes in Computer Science),

vol. 11483, P. Giorgini and B. Weber, Eds. Rome, Italy: Springer,

Jun. 2019, pp. 177–193, doi: 10.1007/978-3-030-21290-2_12.

[12] J. Masche and N.-T. Le, ‘‘A review of technologies for conversational

systems,’’ in Proc. 5th ICCSAMA Conf. Springer, 2017, pp. 212–225.

[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-

61911-8_19

[13] (2018). DialogFlow Website.[Online]. Available: https://dialogflow.com/

[14] (2018). Watson Assistant Website. [Online]. Available: https://www.ibm.

com/watson/ai-assistant/

[15] J. Pereira and O. Díaz, ‘‘Chatbot dimensions that matter: Lessons from

the trenches,’’ in Proc. 18th ICWE Conf. Springer, 2018, pp. 129–135.

[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-

91662-0_9

[16] D. Kavaler, S. Sirovica, V. Hellendoorn, R. Aranovich, and V. Filkov,

‘‘Perceived language complexity in GitHub issue discussions and their

effect on issue resolution,’’ in Proc. 32nd IEEE/ACM Int. Conf. Automated

Softw. Eng. (ASE), Oct. 2017, pp. 72–83.

[17] M. Brambilla, J. Cabot, and M. Wimmer, ‘‘Model-driven software engi-

neering in practice,’’ Synth. Lectures Softw. Eng., vol. 1, no. 1, pp. 1–182,

Sep. 2012.

[18] J. Hutchinson, J. Whittle, andM. Rouncefield, ‘‘Model-driven engineering

practices in industry: Social, organizational and managerial factors that

lead to success or failure,’’ Sci. Comput. Program., vol. 89, pp. 144–161,

Sep. 2014.

[19] A. Kleppe, Software Language Engineering: Creating Domain-Specific

Language Using Metamodels. London, U.K.: Pearson, 2008.

[20] Amazon. (2018). Amazon Lex Website. [Online]. Available: https://aws

.amazon.com/lex/

[21] L. Bettini, Implementing Domain-Specific Language with Xtext Xtend.

Birmingham, U.K.: Packt, 2013.

[22] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,

and M. Oivo, ‘‘Empirical software engineering experts on the use of

students and professionals in experiments,’’ Empir Softw. Eng, vol. 23,

no. 1, pp. 452–489, Feb. 2018, doi: 10.1007/s10664-017-9523-3.

[23] N. Jennings and M. Wooldridge, ‘‘Agent-oriented software engineer-

ing,’’ Handbook Agent Technology, vol. 18. 2001. [Online]. Available:

https://link.springer.com/book/10.1007/978-3-642-54432-3

[24] S. Rozsnyai, J. Schiefer, and A. Schatten, ‘‘Concepts andmodels for typing

events for event-based systems,’’ in Proc. Inaugural Int. Conf. Distrib.

Event-Based Syst. (DEBS), 2007, pp. 62–70.

[25] J. Weizenbaum, ‘‘ELIZA – a computer program for the study of

natural language communication between man and machine,’’ Com-

mun. ACM, vol. 26, no. 1, pp. 23–28, Jan. 1983, doi: 10.1145/357980.

357991.

[26] O. Diaz and F. M. Villoria, ‘‘Generating blogs out of product catalogues:

An MDE approach,’’ J. Syst. Softw., vol. 83, no. 10, pp. 1970–1982,

Oct. 2010, doi: 10.1016/j.jss.2010.05.075.

[27] J. Cabot, R. Clarisó, M. Brambilla, and S. Gérard, ‘‘Cognifying

model-driven software engineering,’’ in Software Technologies: Appli-

cations and Foundations, Marburg, Germany, Jul. 2017, pp. 154–160,

doi: 10.1007/978-3-319-74730-9_13.

[28] S. Perez-Soler, E. Guerra, and J. De Lara, ‘‘Collaborative modeling and

group decision making using chatbots in social networks,’’ IEEE Softw.,

vol. 35, no. 6, pp. 48–54, Nov. 2018, doi: 10.1109/ms.2018.290101511.

[29] A. López, J. Sànchez-Ferreres, J. Carmona, and L. Padró, ‘‘From process

models to chatbots,’’ in Advanced Information Systems Engineering (Lec-

ture Notes in Computer Science), vol. 11483, P. Giorgini and B. Weber,

Eds. Rome, Italy: Springer, Jun. 2019, pp. 383–398, doi: 10.1007/978-3-

030-21290-2_24.

[30] B. J. Fogg, Persuasive Technology: Using Computers to Change What

We Think and Do. New York, NY, USA: Ubiquity, Dec. 2002. [Online].

Available: https://www.amazon.com/Persuasive-Technology-Computers-

Interactive-Technologies/dp/1558606432, doi: 10.1145/764008.763957.

[31] R. Ren, J. W. Castro, S. T. Acu na, and J. de Lara, ‘‘Usability of chatbots:

A systematic mapping study,’’ in Proc. 31st Int. Conf. Softw. Eng. Knowl.

Eng. (SEKE), Lisbon, Portugal, Jul. 2019, pp. 479–484, doi: 10.18293

/SEKE2019-029.

[32] O. López-Pintado, M. Dumas, L. García-Bañuelos, and I. Weber,

‘‘Dynamic role binding in blockchain-based collaborative business pro-

cesses,’’ in Advanced Information Systems Engineering (Lecture Notes in

Computer Science), vol. 11483, P. Giorgini and B. Weber, Eds. Rome,

Italy: Springer, Jun. 2019, doi: 10.1007/978-3-030-21290-2_25.

GWENDAL DANIEL received the Ph.D. degree

with the AtlanMod Team, Ecole des Mines de

Nantes, France, in 2017. He is currently a Postdoc-

toral Fellow with the SOM Research Lab, Inter-

net Interdisciplinary Institute (IN3), a Research

Center, Universitat Oberta de Catalunya (UOC).

He also funded by the MegaM@rt2 ECSEL-JU

project. His research interests include model

driven engineering, model persistence, query,

and transformation techniques, domain specific

languages, and applying model-based techniques for large-scale data

applications. He received the Best Thesis Award from the GDR-GPL and

the INFORSID Association, in 2018.

VOLUME 8, 2020 15345

http://dx.doi.org/10.1109/SERVICES-I.2009.94
http://dx.doi.org/10.1007/978-3-030-21290-2_12
http://dx.doi.org/10.1007/s10664-017-9523-3
http://dx.doi.org/10.1145/357980.357991
http://dx.doi.org/10.1145/357980.357991
http://dx.doi.org/10.1016/j.jss.2010.05.075
http://dx.doi.org/10.1007/978-3-319-74730-9_13
http://dx.doi.org/10.1109/ms.2018.290101511
http://dx.doi.org/10.1007/978-3-030-21290-2_24
http://dx.doi.org/10.1007/978-3-030-21290-2_24
http://dx.doi.org/10.1145/764008.763957
http://dx.doi.org/10.18293/SEKE2019-029
http://dx.doi.org/10.18293/SEKE2019-029
http://dx.doi.org/10.1007/978-3-030-21290-2_25


G. Daniel et al.: Xatkit: Multimodal Low-Code Chatbot Development Framework

JORDI CABOT (Member, IEEE) received the

B.Sc. and Ph.D. degrees in computer science from

the Technical University of Catalonia.

He was a Leader of the INRIA and LINA

Research Group, Ecole des Mines de Nantes,

France, a Postdoctoral Fellow with the Univer-

sity of Toronto, a Senior Lecturer with the Open

University of Catalonia, and a Visiting Scholar

with the Politecnico di Milano. He is currently

an ICREA Research Professor with the Internet

Interdisciplinary Institute. His research interests include software and sys-

tems modeling, formal verification, and the role AI can play in software

development (and vice versa). He has published over 150 peer-reviewed

conference and journal articles on these topics. Apart from his scientific

publications, he writes and blogs about all these topics in several sites. He is

a member of the ACM.

LAURENT DERUELLE is currently a Research

Manager with Berger-Levrault. He is also an in

charge of managing collaborative projects with

universities and research labs all the way towards

the product industrialization. He actively partici-

pates in foundamental and applied research activ-

ities in the fields of big data/big analytics, cloud

computing, distributed artificial intelligence and

mulitagent systems, UI, and the IoT.

MUSTAPHA DERRAS is currently the R&D

and Innovation Executive Director of Berger-

Levrault. He has accomplished executive experi-

ence in management of technology and solutions

realizations with more than 30 years of profes-

sional background working for major companies,

such as General Electric, Cadence Design Sys-

tems, or Berger-Levrault. With extensive capabil-

ity in leading teams of all sizes (10–500 persons)

in software development, product marketing,

research and innovation, he is also a decisive decision maker on many

occasions in fields like organization, negotiation (M&A and alliances), and

strategy. He also involving in business management, innovation funding, and

activities leading.

15346 VOLUME 8, 2020


	INTRODUCTION
	PRELIMINARIES AND RUNNING EXAMPLE
	RUNNING EXAMPLE

	XATKIT FRAMEWORK OVERVIEW
	XATKIT MODELING LANGUAGE
	INTENT PACKAGE
	EXECUTION PACKAGE

	XATKIT RUNTIME
	XATKIT DEPLOYMENT CONFIGURATION
	ARCHITECTURE

	PLATFORM PACKAGE
	PLATFORM DEFINITION
	PLATFORM IMPLEMENTATION
	VOICE SUPPORT

	TOOL SUPPORT
	VALIDATION
	EMPIRICAL SETTING
	SURVEY RESULTS

	RELATED WORK
	NATURAL LANGUAGE UNDERSTANDING TOOLKITS
	CHATBOT DEVELOPMENT PLATFORMS
	CHATBOT COMPONENTS IN LOW-CODE SOLUTIONS 

	CONCLUSION
	REFERENCES
	Biographies
	GWENDAL DANIEL
	JORDI CABOT
	LAURENT DERUELLE
	MUSTAPHA DERRAS


