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METHOD Open Access

xCell: digitally portraying the tissue cellular
heterogeneity landscape
Dvir Aran*, Zicheng Hu and Atul J. Butte*

Abstract

Tissues are complex milieus consisting of numerous cell types. Several recent methods have attempted to enumerate

cell subsets from transcriptomes. However, the available methods have used limited sources for training and give only

a partial portrayal of the full cellular landscape. Here we present xCell, a novel gene signature-based method, and use it

to infer 64 immune and stromal cell types. We harmonized 1822 pure human cell type transcriptomes from various

sources and employed a curve fitting approach for linear comparison of cell types and introduced a novel spillover

compensation technique for separating them. Using extensive in silico analyses and comparison to cytometry

immunophenotyping, we show that xCell outperforms other methods. xCell is available at http://xCell.ucsf.edu/.

Background
In addition to malignant proliferating cells, tumors are

also composed of numerous distinct non-cancerous cell

types and activation states of those cell types. Together

these are termed the tumor microenvironment, which

has been in the research spotlight in recent years and is

being further explored by novel techniques. The most

studied set of non-cancerous cell types are the tumor-

infiltrating lymphocytes (TILs). However, TILs are only

part of a variety of innate and adaptive immune cells,

stromal cells, and many other cell types that are found

in the tumor and interact with the malignant cells. This

complex and dynamic microenvironment is now recog-

nized to be important both in promoting and inhibiting

tumor growth, invasion, and metastasis [1, 2]. Under-

standing the cellular heterogeneity composing the tumor

microenvironment is key for improving existing treat-

ments, the discovery of predictive biomarkers, and

development of novel therapeutic strategies.

Traditional approaches for dissecting the cellular het-

erogeneity in liquid tissues are difficult to apply in solid

tumors [3]. Therefore, in the past decade, several

methods have been published for digitally dissecting the

tumor microenvironment using gene expression profiles

[4–7] (reviewed in [8]). Recently, a multitude of studies

have been published applying published and novel

techniques on publicly available tumor sample resources,

such as The Cancer Genome Atlas (TCGA) [6, 9–13].

Two general types of techniques are used: deconvolving

the complete cellular composition and assessing enrich-

ments of individual cell types.

At least seven major issues raise concerns that the in

silico methods could be prone to errors and cannot

reliably portray the cellular heterogeneity of the tumor

microenvironment. First, current techniques depend on

the expression profiles of purified cell types to identify

reference genes and therefore rely heavily on the data

source from which the references are inferred and could

this be inclined to overfit these data. Second, current

methods focus on only a very narrow range of the tumor

microenvironment, usually a subset of immune cell

types, and thus do not account for the further richness

of cell types in the microenvironment, including blood

vessels and other different forms of cell subsets [14, 15].

A third problem is the ability of cancer cells to “imitate”

other cell types by expressing immune-specific genes,

such as a macrophage-like expression pattern in tumors

with parainflammation [16]; only a few of the methods

take this into account. Fourth, the ability of existing

methods to estimate cell abundance has not yet been

comprehensively validated in mixed samples. Cytometry

is a common method for counting cell types in a

mixture and, when performed in combination with gene

expression profiling, can allow validation of the estima-

tions. However, in most studies that included cytometry

validation, these analyses were performed on only a very
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limited number of cell types and a limited number of

samples [7, 13].

A fifth challenge is that deconvolution approaches are

prone to many different biases because of the strict de-

pendencies among all cell types that are inferred. This

could highly affect reliability when analyzing tumor

samples, which are prone to form non-conventional ex-

pression profiles. A sixth problem comes with inferring

an increasing number of closely related cell types [10].

Finally, deconvolution analysis heavily relies on the

structure of the reference matrix, which limits its appli-

cation to the resource used to develop the matrix. One

such deconvolution approach is CIBESORT, the most

comprehensive study to date, which allows the enumer-

ation of 22 immune subsets [7]. Newman et al. [7] per-

formed adequate evaluation across data sources and

validated the estimations using cytometry immunophe-

notyping. However, the shortcomings of deconvolution

approaches are apparent in CIBERSORT, which is

limited to Affymetrix microarray studies.

On the other hand, gene set enrichment analysis

(GSEA) is a simple technique which can be easily ap-

plied across data types and can be quickly applied for

cancer studies. In GSEA each gene signature is used

independently of all other signatures and it is thus pro-

tected from the limitations of deconvolution approaches.

However, because of this independence, it is many times

hard to differentiate between closely related cell types.

In addition, gene signature-based methods only provide

enrichment scores and thus do not allow comparison

across cell types and cannot provide insights into the

abundance of cell types in the mixture.

Here, we present xCell, a novel method that integrates

the advantages of gene set enrichment with deconvolution

approaches. We present a compendium of newly gener-

ated gene signatures for 64 cell types, spanning multiple

adaptive and innate immunity cells, hematopoietic

progenitors, epithelial cells, and extracellular matrix cells

derived from thousands of expression profiles. Using in

silico mixtures, we transform the enrichment scores to a

linear scale, and using a spillover compensation technique

we reduce dependencies between closely related cell types.

We evaluate these adjusted scores in RNA-seq and micro-

array data from primary cell type samples from various

independent sources. We examine their ability to digitally

dissect the tumor microenvironment by in silico analyses,

and perform the most comprehensive comparison to date

with cytometry immunophenotyping. We compare our in-

ferences with available methods and show that scores

from xCell are more reliable for digital dissection of mixed

tissues. Finally, we apply our method on TCGA tumor

samples to portray a full tumor microenvironment land-

scape across thousands of samples. We provide these esti-

mations to the community and hope that this resource

will allow researchers to gain a better perspective of the

complex cellular heterogeneity in tumor tissues.

Results
Generating a gene signature compendium of cell types

To generate our compendium of gene signatures for cell

types, we collected gene expression profiles from six

sources: the FANTOM5 project, from which we anno-

tated 719 samples from 39 cell types analyzed by the

Cap Analysis Gene Expression (CAGE) technique [17];

the ENCODE project, from which we annotated 115

samples from 17 cell types analyzed by RNA-seq [18];

the Blueprint project, from which we annotated 144

samples from 28 cell types analyzed by RNA-seq [19];

the IRIS project, from which we annotated 95 samples

from 13 cell types analyzed by Affymetrix microarrays

[20]; the Novershtern et al. [21] study, from which we

annotated 180 samples from 24 cell types analyzed by

Affymetrix microarrays; and the Human Primary Cells

Atlas (HPCA), a collection of Affymetrix microarrays

composed of many different Gene Expression Omnibus

(GEO) datasets, from which we annotated 569 samples

from 41 cell types [22] (Fig. 1a). Altogether we collected

and curated gene expression profiles from 1822 samples

of pure cell types, annotated to 64 distinct cell types and

cell subsets (Fig. 1b; Additional file 1). Of those, 54 cell

types were found in at least two of these data sources. For

cell types with five or more samples in a data source, we

left one sample out for testing. All together, 97 samples

were left out, and all of the model training described

below was performed on the remaining 1725 samples.

Our strategy for selecting reliable cell type gene signa-

tures is shown in Fig. 1c (see Additional file 2: Figure S1

and “Methods” for a full description and technical

details). For each data source independently we identi-

fied genes that are overexpressed in one cell type com-

pared to all other cell types. We applied different

thresholds for choosing sets of genes to represent the

cell type gene signatures; hence, from each source, we

generated dozens of signatures per cell type. This

scheme yielded 6573 gene signatures corresponding to

64 cell types. Importantly, since our primary aim is to

develop a tool for studying the cellular heterogeneity in

the tumor microenvironment, we applied a methodology

we previously developed [16] to filter out genes that tend

to be overexpressed in a set of 634 carcinoma cell lines

from the Cancer Cell Line Encyclopedia (CCLE) [23].

Next, we used single-sample GSEA (ssGSEA) to score

each sample based on all signatures. ssGSEA is a well-

known method for determining a single, aggregate score

of the enrichment of a set of genes in the top of a

ranked gene expression profile [24]. To choose the most

reliable signatures we tested their performance in identi-

fying the corresponding cell type in each of the data
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Fig. 1 (See legend on next page.)
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sources. To prevent overfitting, each signature learned

from one data source was tested in other sources, but not

in the data source from which it was originally inferred.

To reduce biases resulting from a small number of genes

and from the analysis of different platforms, instead of

one signature per cell type, the top three ranked signatures

from each data source were chosen. Altogether we gener-

ated 489 gene signatures corresponding to 64 cell types

spanning multiple adaptive and innate immunity cells,

hematopoietic progenitors, epithelial cells, and extracellu-

lar matrix cells (Additional file 3). Observing the scores in

the 97 test primary cell type samples affirmed their ability

to identify the corresponding cell type compared to other

cell types across data sources (Additional file 2: Figure S2).

We defined the raw enrichment score per cell type to be

the average ssGSEA score from all the cell types’ corre-

sponding signatures.

Spillover compensation between closely related cell types

Our primary objective is to accurately identify enrich-

ment of cell types in mixtures. To imitate such ad-

mixtures, we performed an array of simulations of

gene expression combinations for different cell types

to assess the accuracy and sensitivity of our gene sig-

natures. We generated such in silico expression pro-

files using different data sources and different sets of

cell types in mixtures and by choosing randomly one

sample per cell type from all available samples in the

data source. The simulations revealed that our raw

scores reliably predict even small changes in the pro-

portions of cell types, distinguish between most cell

types, and are reliable in different transcriptomic ana-

lysis platforms (Additional file 2: Figure S3). However,

the simulations also revealed that raw scores of RNA-

seq samples are not linearly associated with the abun-

dance and that they do not allow comparisons across

cell types (Additional file 2: Figure S4). Thus, using the

training samples we generated synthetic expression pro-

files by mixing the cell type of interest with other, non-

related cell types. We then fit a formula that transforms

the raw scores to cell type abundances. We found that the

transformed scores showed resemblance to the known

fractions of the cell types in simulations, thus enabling

comparison of scores across cell types, and not just across

samples (Additional file 2: Figure S5).

The simulations also revealed another limitation of the

raw scores: closely related cell types tend to have correl-

ating scores (Additional file 2: Figure S5). That is, scores

may show enrichment for a cell type due to a “spillover

effect” between closely related cell types. This problem

mimics the spillover problem in flow cytometry, in

which fluorescent signals correlate with each other due

to spectrum overlaps. Inspired by the compensation

method used in flow cytometry studies [25], we lever-

aged our simulations to generate a spillover matrix that

allows correcting for correlations between cell types. To

better compensate for low abundances in mixtures, we

created a simulated dataset where each sample contains

25% of the cell type of interest with the rest from a non-

related cell type and produced a spillover matrix, a

representation of the dependencies of scores between

different cell types.

Applying the spillover correction procedure on the

pure cell types (Fig. 2a) and simulated expression pro-

files (Fig. 2b, c; Additional file 2: Figures S5 and S6)

showed that this method was able to successfully reduce

associations between closely related cell types. For ex-

ample, we generated simulated mixtures using an inde-

pendent data source of multiple cell types that was not

used for the development of the method (GSE60424)

[26], and used our method to infer the underlying

abundances. We observed decent performance in recap-

itulating the cell type distributions. However, before cor-

recting for spillovers, there were false associations

between CD4+ and CD8+ T cells, as well as between

monocytes and neutrophils. The spillover correction was

able to reduce these associations significantly without

harming the correlations on the diagonal (Fig. 2b). In

addition, we generated simulated mixtures using the train-

ing samples (Additional file 2: Figure S5) and the test

samples (Additional file 2: Figure S6). In the 18 simu-

lated mixtures using the test samples, we observed an

overall average decrease of 17.1% in significant correla-

tions off the diagonal (Fig. 2c; Additional file 2: Figure S5).

Unexpectedly, following the spillover compensation we

observed slightly improved associations on the diagonal

between the scores and the underlying abundances (1.4%

average improvement).

Finally, many of the cell types we estimate are not ex-

pected to be in a given mixture; however, the pipeline

(See figure on previous page.)

Fig. 1 xCell study design. a A summary of the data sources used in the study to generate the gene signatures, showing the number of pure cell

types and number of samples curated from them. b Our compendium of 64 human cell type gene signatures grouped into five cell type families.

c The xCell pipeline. Using the data sources and based on different thresholds, we derived gene signatures for 64 cell types. Of this collection of

6573 signatures, we chose the 489 most reliable cell types, three for each cell type from each data source where available. The raw score is then

the average single-sample GSEA (ssGSEA) score of all signatures corresponding to the cell type. Using simulations of gene expression for each cell

type, we derived a function to transform the non-linear association between the scores to a linear scale. Using the simulations we also derive the

dependencies between cell type scores and apply a spillover compensation method to adjust the scores
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we described will often produce non-zero scores. In the

18 test simulated mixtures, 56.4% of the scores for cell

types that are not part of the mixture were non-

negligible (> 0.001). To overcome this inadequacy, we

introduce a statistical significance test of whether a pro-

duced enrichment score is not random—whether the

cell type of interest is in the mixture. Using the reference

training data sets, for each cell type we generated ran-

dom mixtures of all cell types except the corresponding

cell type, and calculated the cell type-adjusted scores.

We then fit a beta distribution for each of the cell types

and used these distributions to calculate the probability

that the score of the corresponding cell type is present

in the mixture by random (Additional file 2: Figure S7).

Applying this procedure to the test simulated mixtures en-

abled detection of about half of the non-expected non-

negligible scores as non-significant (46.9% change—from

56.4% non-negligible scores to 28.8% with p value > 0.2),

while detecting as non-significant only 15.3% of non-

negligible scores for cell types used for generating the

mixture (from 88.6% non-negligible scores to 75.1%)

(Additional file 4).

This pipeline for generating adjusted cell type enrich-

ment scores from gene expression profiles, which we

named xCell, is available as an R package and a simple

web tool (http://xCell.ucsf.edu/).

Validation of enrichment scores in simulated expression

profiles

We next compared the ability of xCell scores to infer the

underlying cell type enrichments in simulated mixtures

with a set of 53 previously published signatures corre-

sponding to 26 cell types [6, 12, 27, 28] (Additional file 5).

Our analyses showed that xCell outperformed the previ-

ously published signatures in recapitulating the underlying

abundances, in mixtures generated using the training sam-

ples (Additional file 2: Figure S5) and the test samples

(Additional file 2: Figure S6) and an independent data

source (GSE60424 [26]) (Fig. 2b), in the vast majority of

the comparable cell types (51 of 53 comparisons of

mixtures generated using training samples, 46 of 49 using

test samples, and 17 of 18 using GSE60424) (Fig. 2c). xCell

showed overall better performance with all data sources

used, proving its versatility across platforms. Importantly,

our compensation technique was able to completely re-

move associations between cell types, while previously

published signatures showed considerate dependencies

between closely related cell types, such as between CD8+

T cells and NK cells (Additional file 2: Figure S8).

In addition, we also compared xCell’s performance on

test mixtures with that of CIBERSORT, a prominent

deconvolution-based method [7]. Unlike signature-based

methods, which output independent enrichment scores

per cell type, the output from deconvolution-based

methods is the inferred proportions of the cell types in

the mixture. Similar to the performance comparisons

using signatures, xCell also outperformed CIBERSORT

in all comparable cell types, across all data sources

(Fig. 2b, c; Additional file 2: Figures S5 and S6).

Validation of enrichment scores with cytometry

immunoprofiling

In addition to the simulated mixture analysis, we com-

pared our estimates for cell type enrichments from gene

expression profiles with mass spectrometry (CyTOF)

immunophenotyping. We utilized independent publicly

available studies in which a total of 165 individuals were

studied for both gene expression from whole blood and

FACS across 18 cell subsets from peripheral blood

mononuclear cells (PBMCs; available from ImmPort,

studies SDY311 and SDY420) [29]. We calculated xCell

scores for each of the signatures using the studies’ ex-

pression profiles and correlated the scores with the

FACS fractions of the cell subsets. Of the 14 cell types

with at least 1% abundance, xCell was able to signifi-

cantly recover 10 and 12 cell subsets in SDY311 and

SDY420, respectively (Pearson correlation between cal-

culated and actual cell counts p value < 0.05; Fig. 3).

Comparing the performance of xCell to previously

published signatures and CIBERSORT revealed that no

(See figure on previous page.)

Fig. 2 Evaluation of the performance of xCell using simulated mixtures. a An overview of adjusted scores for 43 cell types in 259 purified cell

type samples from the Blueprint and ENCODE data sources (other data sources are in Additional file 2: Figure S4). Most signatures clearly

distinguish the corresponding cell type from all other cell types. b A simulation analysis using GSE60424 as the data source [26], which was not

used in the development of xCell. This data source contains 114 RNA-seq samples from six major immune cell types. Left: Pearson correlation

coefficients using our method before spillover adjustment and after the adjustment. Dependencies between CD4+ T cells, CD8+ T cells, and NK

cells were greatly reduced; spillover from monocytes to neutrophils was also removed. Right: Comparison of the correlation coefficients across

the different methods. The first column corresponds to xCell’s predictions of the underlying abundances of the cell types in the simulations

(both color and pie chart correspond to average Pearson coefficients). Bindea, Charoentong, Palmer, Rooney, and Tirosh represent sets of signatures for

cell types from the corresponding manuscripts. Newman refers to the inferences produced using CIBERSORT on the simulations. xCell outperformed the

other methods in 17 of 18 comparisons. c Comparison of the correlation coefficients across the different methods based on 18 simulations generated

using the left-out testing samples. Here rows correspond to methods and columns show the average Pearson coefficient for the corresponding cell

type across the simulations. Independent simulations are available in Additional file 2: Figure S6. xCell outperformed the other methods in 64 of

67 comparisons
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other method was able to recover cell types that our

method was not able to recover in both data sets (Fig. 3).

In general, previous methods were able to recover signal

only from major cell types, including B cells, CD4+ and

CD8+ T cells, and monocytes, suggesting that their per-

formance was not reliable in more specialized cell sub-

sets. While our method also struggled in these cell

subsets, it still showed significant correlations with most

of the cell subsets, including effector memory CD8+ T

cells, naïve CD4+ T cells, and naïve B cells. In addition,

xCell was more reliable in CD4+ T cells and monocytes

and equally reliable in B cells (Fig. 3). In CD8+ T cells

xCell was outperformed by methods depending solely on

CD8A expression, which may not serve as a reliable bio-

marker in cancer settings (Additional file 2: Figure S9).

Despite the generally improved ability of xCell to esti-

mate cell populations, we do note that in some cases the

correlations we observed were relatively low, emphasiz-

ing the difficulty of estimating cell subsets in mixed sam-

ples, and the need for cautious examination and further

validation of findings.

Cell type enrichment in tumor samples

We next applied our methodology to 9947 primary tumor

samples across 37 cancer types from the TCGA and

TARGET projects [30] (Additional file 2: Figure S10).

Average scores of cell types in each cancer type affirmed

prior knowledge of expected enriched cell types, validating

the power of our method for identifying the cell type of

origin of different cancer types. For example, epithelial

cells were enriched in carcinomas, keratinocytes in

squamous cell carcinomas, mesangial cells in kidney can-

cers, chondrocytes in sarcoma, neurons in brain tumors,

hepatocytes in hepatocellular carcinoma, melanocytes in

melanomas, B cells in B-cell lymphoma, T cells in

thymoma, myeloid cells in acute myeloid leukemia, and

lymphocytes in acute lymphocytic leukemia (Fig. 4a).

While these results are expected, it is reassuring that xCell

can be applied to human cancers.

Most of the cell types we infer are part of the com-

plex cellular heterogeneity of the tumor microenviron-

ment. We hypothesized that an additive combination of

all cell types’ scores would be negatively correlated with

tumor purity. Thus, we generated a microenvironment

score as the sum of all immune and stromal cell types.

We then correlated this microenvironment score with

our previously generated purity estimations, which are

based on copy number variations, gene expression,

DNA methylation, and H&E slides [31]. Our analysis

showed highly significant negative correlations in all

Fig. 3 Comparison of digital dissection methods with flow cytometry counts. Left: Scatter plots of CyTOF fractions in PBMCs vs. cell type scores

from whole blood of 61 samples from SDY311 (top) and 104 samples from SDY420 (bottom). Only the top correlating cell types in each study are

shown. Right: Correlation coefficients produced by our method compared to other methods. Only cell types with abundance of at least 1% on

average, as measured by CyTOF, are shown. Non-significant correlations (p value < 0.05) are marked with a gray “x”

Aran et al. Genome Biology  (2017) 18:220 Page 7 of 14



cancer types, suggesting this score as a novel mea-

surement for tumor microenvironment abundance

(Additional file 2: Figure S11).

Finally, to provide insight into the potential of xCell to

portray the tumor microenvironment, we plotted all tumor

samples based on their cell type scores. Using different sets

a

b

Fig. 4 Cell type enrichment analysis in tumors. a Average scores for nine cell types across 24 cancer types from TCGA (The Cancger Genome

Atlas). Scores were normalized across rows. Signatures were chosen such that they are the cell of origin of a cancer type or the most significant

signature of the cancer type compared to all others. b t-SNE (t-Distributed Stochastic Neighbor Embedding) plot of 8875 primary cancer samples from

TCGA (The Cancger Genome Atlas) and TARGET colored by cancer type. The t-SNE plot was generated using the enrichment scores of 48

non-epithelial, non-stem cell, and non-cell type-specific scores. Many of the cancer types create distinct clusters, emphasizing the important role of

the tumor microenvironment in characterizing tumors

Aran et al. Genome Biology  (2017) 18:220 Page 8 of 14



of cell type inferences, we applied the t-Distributed

Stochastic Neighbor Embedding (t-SNE) dimensionality

reduction technique [32] (Additional file 2: Figure S12).

Interestingly, the analysis revealed that unique microenvir-

onment compositions characterize different cancer indica-

tions. For example, prostate cancers form a unique cluster

based on their immune cell type composition, while head

and neck tumors are distinguished by their stromal com-

position. Remarkably, only when performing the analysis

with all immune and stromal cell types did clear clusters

form distinguishing between most of the cancer types

(Fig. 4b), demonstrating the unique composition of the

tumor microenvironment, which differs between cancer

types. This notion emphasizes the importance of portraying

the full cellular heterogeneity of the tumor microenviron-

ment for the study of cancer. To this end, we calculated the

enrichment scores for 64 cell types across the TCGA

spectrum, and provide these data with the hope that they

will serve the research community as a resource to further

explore novel associations of cell type enrichment in hu-

man tumors (Additional file 6).

Discussion

Recently, many studies have shown different methodologies

for the digital dissection of cancer samples [3, 6, 9–13].

These studies have provided novel insights into cancer

research and related to therapy efficacy. However, it is

important to remember that the methods that have been

applied for portraying the tumor microenvironment have

only attained limited validation, and it is unclear how

reliable their estimations are. In this study, we took a step

back and focused on generating cell type gene scores that

could reliably estimate enrichment of cell types. Our

method, which is gene signature-based, is more reliable

due to its reliance on a group of signatures for each cell

type, learned from multiple data sources, which increases

the ability to distinguish the signal from the noise. Our

method also integrates a novel approach to remove

dependencies between cell types, which allows better

reliability when studying closely related cell types.

To develop xCell, we collected the most comprehen-

sive resource to date of primary cell types, spanning the

largest set of human cell types. We then performed an

extensive validation of the predicted cell type inferences

in mixed samples. Our method for choosing a set of sig-

natures that are reliable across several data sources has

proven to be beneficial, as our scores robustly outper-

formed all available methods in predicting the abun-

dance of cell types in in silico mixtures and blood

samples. Based on our evaluation, xCell provides the

most accurate and sensitive way to identify enrichment

of many cell types in an admixture, allowing the

detection of subtle differences in the enrichment of a

particular cell type in the tumor microenvironment with

high confidence.

It is important to note that xCell, as all other methods,

performed significantly better in simulated mixtures

than in real mixtures. Several technical reasons account

for this discrepancy. First, the cytometry analyses were

performed on PBMCs, while the gene expression profiles

were generated from whole blood. Second, not all genes

required by xCell were present; in fact, in SDY420 only

54.5% of the genes required by xCell were available.

However, other explanations for the lower success when

inferring abundances in real samples are possible—it

may well be possible that the expression patterns of

marker genes in mixtures are different to those in

purified cells. Recent technologies such as single-cell

RNA-sequencing may be able to clarify how much this

may perturb the analyses.

We chose to apply a gene signature enrichment ap-

proach over deconvolution methods because of several

advantages that the former provides. First, gene signa-

tures are rank-based and are therefore suitable for cross-

platform transcriptome measurements. We showed here

that our scores reliably predict enrichment when using

different RNA-seq techniques and different microarray

platforms. They are agnostic to normalization methods

or concerns related to batch effects, making them robust

to both technical and biological noise. Second, there is

no decline in performance with increasing numbers of

cell types. The tumor microenvironment is a rich milieu

of cell types, and our analyses show enrichment of many

cells derived from mesenchyme in tumors. A partial por-

trayal of the tumor microenvironment may result in

misleading findings. Finally, gene signatures are simple

and can easily be adjusted.

The main disadvantage of gene signatures is that they

do not discriminate between closely related cell types

well, though it is not clear how well other methods dis-

tinguish between such cell types [10]. Our method takes

this into account and uses a novel technique, inspired by

flow cytometry analyses, to remove such dependencies

between closely related cell types. It is important to note

that, until this step, the cell type scores are independent

of each other, and a false inference of one cell type will

not harm all other cell types. However, the spillover cor-

rection adjustment removes this strict independence be-

tween cell type inferences, as in deconvolution methods.

Yet, the compensation is very limited, and between most

cell types there is no compensation at all; thus, most of

the inferences are still independent.

Despite the utility of our signatures for characterizing

the tumor microenvironment, several issues require fur-

ther investigation. While our signatures outperformed

previous methods, it is important to note that our corre-

lations with direct measurements were still far from
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perfect. More expression data from pure cell types, espe-

cially cell types with limited samples, and more expression

data coupled with cytometry counts from various tissue

types will allow more precise definition of signatures and,

in turn, better reliability. Meanwhile, it is necessary to

refer to inferences made by our method or other methods

with caution. Discoveries made using digital dissection

methods must be rigorously validated using other tech-

nologies to avoid hasty conclusions.

Another limitation of our method is that the inferences

are strictly enrichment scores, and cannot be interpreted

as proportions. This is due to the inability to translate the

minimum and maximum scores produced by ssGSEA to

clear proportions. Thus, while our method attempts to

calibrate the scores to resemble proportions, these cannot

be reliably used as such. This limitation also does not pro-

vide statistical significance for the inferences, by calculating

an empirical p value as suggested by Newman et al. [7].

Conclusions

Tissue dissection methods are an emerging tool for

large-scale characterization of tumor cellular heterogen-

eity. These approaches do not rely on tissue dissociation,

as opposed to single-cell techniques, and therefore pro-

vide an effective tool for dissecting solid tumors. The

great availability of public gene expression profiles al-

lows these methods to be efficiently performed on hun-

dreds of historical cohorts spanning thousands of

patients, and to associate them with clinical outcomes.

Here we present the most comprehensive collection of

gene expression enrichment scores for cell types. Our

methodology for generating cell type enrichment scores

and adjusting them to cell type proportions allowed us

to create a powerful tool that is the most reliable and ro-

bust tool currently available for identifying cell types

across data sources. We provide a simple web tool, xCell

(http://xCell.ucsf.edu/), to the community and hope that

further studies will utilize it for the discovery of novel

predictive and prognostic biomarkers, and new thera-

peutic targets.

Methods

Data sources

Signature data sources

RNA-seq and cap analysis gene expression (CAGE)

normalized FPKM values were downloaded from the

FANTOM5 [33], ENCODE [34], and Blueprint data portals

[19]. Raw Affymetrix microarray CEL files were down-

loaded from the Gene Expression Omnibus (GEO), acces-

sions GSE22886 (IRIS) [35], GSE24759 (Novershtern) [36],

and GSE49910 (HPCA) [37], and analyzed using the Ro-

bust Multi-array Average (RMA) procedure on probe-level

data using Matlab functions. The analysis was performed

using custom CDF files downloaded from Brainarray [38].

All samples were manually annotated to 64 cell types

(Additional file 1).

Other expression data sources

RNA-seq normalized counts were downloaded from the

GEO, accession GSE60424 [39]. Illumina HumanHT-

12 V4.0 Beadchip data of PBMC samples and the

accompanying CyTOF data were downloaded from

ImmPort accession SDY311 [40] and quantile normalized

using Matlab functions. Similarly, Agilent Whole Human

Genome 4 × 44 K slide data of PBMC samples and the

accompanying CyTOF data were downloaded from

ImmPort accession SDY420 [41] and quantile normalized

using Matlab functions. Multiple probes per gene were

collapsed using averages. RNA-seq data from the Cancer

Cell Line Encyclopedia (CCLE) was obtained using the

PharmacoGx R package [42]. RSEM levels for 9947 pri-

mary tumor samples from TCGA and TARGET were

downloaded from https://toil.xenahubs.net. Published sig-

natures were collected from their corresponding papers

[6, 12, 27, 28] (Additional file 5).

In silico simulated mixtures

We generated several types of simulated mixtures, but

all are based on the same pipeline:

1) Given a data source of pure cell types, choose n cell

types available in the data and choose a random

fraction for each cell type (the fractions sum to 1).

We denote this vector of fraction f.

2) Generate an expression matrix of pure cell types, M,

with n columns. The generation of the expression

matrix varied between the experiments we

performed: a) Synthetic mixtures for learning the

power coefficient and spillover matrix were

generated using the median expression profile of

each cell type, creating a homogenous and noiseless

mixture. b) Training mixtures were generated by

randomly choosing one of the multiple available

samples for each of the cell types chosen to be

included in the mixture. This random selection

introduces significant noise into the mixture, and

between mixtures in the mixture set, which reflects

the variation we observe in real datasets.

c) Test mixtures, where only one sample per cell

type was available, were generated by adding a

random noise for each gene of up to 20% of the

expression level. Cell types included in a mixture

were chosen randomly, by avoiding cell types that

cannot be distinguished (e.g., CD4+ T cells and

CD4+ memory T cells).

3) To generate a simulated expression profile we use the

formula M × f, which returns one simulated mixed

gene expression profile based on additive expression
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of the expression profiles of the cell types. This

process is then repeated 500 times with different f and

different M (as explained in 2b and 2c, M is recreated

for each simulation by adding random noise (in b) or

choosing a random sample), generating distinct

mixtures using the same set of cell types.

The xCell development pipeline

A workflow of the xCell development pipeline can be found

in Additional file 2: Figure S1, and is described in detail below.

Filtering cancer genes

In a previous study [16] we calculated using CCLE the

number of cell lines that over-express each gene (twofold

more than the peak of expression distribution). For gener-

ating the signatures we only use genes that have an over-

expression rate of less than 5% (less than 32 cell lines of

the 634 carcinoma cell lines). We use this stringent

threshold to eliminate genes that tend to be overexpressed

in tumors, regardless of the cellular composition. Of

18,988 genes analyzed, 9506 were identified as not being

overexpressed in tumors. For signatures of cell types that

may be the cell of origin of solid tumors, including epithe-

lial cells, sebocytes, keratinocytes, hepatocytes, melano-

cytes, astrocytes, and neurons, we used all genes.

Generating gene signatures

Expression profiles were reduced to 10,808 genes that

are shared across all six data sources. Gene expression

was converted to log scale by adding 3 to restrict inclu-

sion of small changes and followed by log2 conversion.

In each group of samples corresponding to a cell type

we calculated 10th, 25th, 33.3th, and 50th percentiles of

low expression (Q1q), and 90th, 75th, 66.6th, and 50th

quantiles of high expression (Q21-q). For cell type A we

calculated the difference for each gene between Q1q(A)

and max(Q21-q(all other cell types)). We repeated this

also for second and third largest Q21-q(all other cell

types). The signature of cell type A consists of all genes

that pass a threshold. We used different thresholds here:

0, 0.1, log2(1.5), log(2), 3, 4, and 5. We repeated this pro-

cedure for each of the six data sources independently.

Only gene sets of at least eight genes and no more than

200 genes were reserved. This scheme yielded 6573 gene

signatures corresponding to 64 cell types. We calculated

single-sample gene set enrichment analysis (ssGSEA) for

each of those signatures to score each sample in each of

the data sources using the GSVA R package [43].

Choosing the “best” signature

For each signature we computed the t-statistic between

the scores of the corresponding cell type compared to all

other samples, omitting samples from parental or des-

cendant cell types (i. e. CD4+ naïve T cells the general

CD4+ T cells were not used in the calculations). The

procedure was performed for each data source where

the corresponding cell type was available, except the

data source from which the signature was learned. Thus,

a signature was only chosen if it is reliable in a data

source it was not trained upon. If the cell type was avail-

able in only one data source, the signature was tested in

that data source. From each data source the top three

signatures were chosen. All together we chose 489 signa-

tures corresponding to 64 cell types (across the six data

sources we have 163 cell types; Additional file 3). The

raw score for a cell type is the average of all correspond-

ing signatures, after shifting scores of each signature to

have a minimal score of 0 across all samples.

Learning parameters for raw score transformation

For each cell type we created a synthetic mixture using

the median expression profile of the cell type (cell X) and

an additional “control” cell type. For the control in

sequencing-based data sources we used multipotent pro-

genitor (MPP) cell samples or endothelial cell samples, be-

cause both are found in all the sequencing-based data sets.

In microarray-based data sources we used erythrocytes

and monocytes. We generated such mixtures using in-

creasing levels of the corresponding cell type (0.8% of cell

X and 99.2% control, 1.6% cell X and 98.4% control, etc.).

We noticed two problems with the raw scores: ssGSEA

scores have different distributions between different signa-

tures and a score from signatures cannot thus be com-

pared with a score from another signature. In addition, in

sequencing-based data, the association between the under-

lying levels of the cell type was not linearly associated with

the score. We thus designed a transformation pipeline for

the scores (which is applied to both sequencing and

microarray-based datasets separately)—for each cell type,

using the synthetic mixtures, we first shifted the scores to

0 using the minimal score (which corresponded to mix-

tures containing 0.8% of the cell type) and divided by

5000. We then fit a power function to the scores corre-

sponding to abundances of 0.8 to 25.6%. We used this

range because we are mostly interested in identifying cell

types with low abundance, and above that the function ex-

ponential increase may interfere with precise fitting. The

power coefficient was then averaged across the data

sources were the cell type is available (we denote this vec-

tor as P). After adjusting the score using the learned

power coefficient, we fit a linear curve, and used the

learned slope as a calibration parameter for the adjusted

scores (denoted as V1).

Learning the spillover compensation reference matrix

Another limitation that was observed in the mixtures is

the dependencies between closely related cell types:

scores that predict enrichment of one cell type also
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predict enrichment of another cell type, which might

not even be in the mixture. To overcome this problem

we created a reference matrix of “spillovers” between cell

types. Below we focus on the generation of the

sequencing-based spillover matrix but an equivalent

process was performed to generate the microarray-based

spillover matrix. We first generated a synthetic mixture

set, where each mixture contains 25% of each of the cell

types (median expression) and 75% of a “control” cell

type, as in the previous section. We then calculated raw

cell type scores and transformed them using the

learned coefficients as explained above. We combined

all sequencing-based data sources together by using the

average scores, and completed the matrix to be 64 × 64

by adding columns from cell types that are not present

in any of the sequencing-based data using the micro-

array reference matrix. We then normalized each row

of cell type scores by dividing it by the diagonal (de-

noted as K; in the spillover matrix rows are cell type

scores and columns are cell type samples). The diag-

onal, before the normalization, is also used for cali-

bration (denoted as V2). The “spillover” between a

cell type score (x) and another cell type (y) is the ra-

tio between x and y. Finally, we cleaned the spillover

matrix to not compensate between parent and des-

cendent cell types by compensating parent cell types

only with other parent cell types (CD4+ T cells are

compensated against CD8+ T cells, but not CD8+

Tem), and compensating child cell types only com-

pared to other child cell types from the same parent

and all other parents, but not child cell types from

other parents. Some of the compensations were too

strong, removing correlations between cell types and

their corresponding signatures; thus, we limited the

compensation levels, off the diagonal, to 0.5. The

spillover matrix, power, and calibration coefficients

are available in Additional file 7.

Calculating scores for a mixture

The input comprises a gene expression data set normal-

ized to gene length (such as FPKM or TPM), where rows

are genes and columns are samples (N is the number of

samples). Duplicate gene names are combined to-

gether. xCell uses a set of 10,808 genes for the scor-

ing. It is recommended to use data sets that contain

at least the majority of these genes. Missing values in

a sample are treated as missing genes (the xCell web

tool requires intersection of at least 5000 genes). It is

also recommended to use as many samples as pos-

sible, with highly expected variation in cell type frac-

tions. (1) ssGSEA scores are calculated for each of

the 489 gene signatures. (2) Scores of all signatures

corresponding to a cell type are averaged. The result

is a matrix (A) with 64 rows and N columns. (3) Each

element in the scores matrix (Aij) is transformed

using the following formula:

T ij ¼
Aij−min Aið Þð Þ=5000

�

Pi

,

ðV1i⋅V2iÞ

The output is matrix T of transformed scores. Different

P, V1, and V2 are used for sequencing-based and

microarray-based datasets. (4) Spillover compensation is

then performed for each row using linear least squares

that minimizes the following (as performed in flow cytom-

etry analyses and explained in Bagwell and Adams [25]):

K ⋅x−T ik k; such thatx≥0

All x values are then combined to create the final xCell

scores. The compensation may result in deteriorating

real associations; thus, we provide a scaling parameter

(alpha) to multiply all off-diagonal cells in matrix K. In

all experiments in this study we used alpha = 0.5. Differ-

ent K matrices are used for sequencing-based and array-

based data.

Significance assessment

We provide a statistical significance assessment for the

presence of a cell type in the mixture by learning scores

distributions for cell types in random mixtures. For each

cell type X, we generate a random matrix as follows: In

each reference data set we find all cell types correspond-

ing to samples, except X and its parent or descendants

(if X is CD8+ Tem cells, then we also exclude CD8+ T

cells; if X is CD8+ T cells, we exclude all CD8+ cell

types). We then use the same procedure we used for

generating training samples, but adding an additional 5%

random noise. The main difference here is that we

randomly mix in all cell types (except X) and not just a

small subset. We then run the xCell pipeline for these

random mixtures. In most cell types the produced scores

show similarity to a beta distribution; thus, using the

fitdistr function from the MASS package, we fit such a

distribution for each of the mixtures we generated (e.g.,

for a mixture excluding cell type X we fit a beta distribu-

tion for cell type X). In five of the cell types the scores

from the random mixtures consistently produced 0;

thus, we define those distributions as constant 0.001

(Additional file 2: Figure S7). Given an input data set, we

can now calculate a p value for each xCell score with the

null hypothesis that the cell type is not present in the mix-

ture. The actual distributions we use to calculate the p

values are combinations of those learned from FAN-

TOM5, Blueprint, and ENCODE for sequencing-based

input, and IRIS, HPCA, and Novershtern for microarray-

based input. The p value for a score of a cell type in a sam-

ple is the chance of the region in the distribution of the
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corresponding cell type to exceed the score. In the testing

samples we used a threshold of 20% to define a non-

significant score. We used this threshold to have a trade-

off between detecting the non-negligible scores of cell

types not in the mixture and not detecting scores of cell

type in the mixture, thus affecting the power of estimating

the underlying cell type fractions (Additional file 4).

Cytometry analyses

Gene expression and cytometry data were downloaded

from ImmPort (SDY311 [40] and SDY420 [41]). The

gene expression data were quantile normalized using

Matlab functions, and multiple probes per gene were

collapsed using averages. The cytometry data counts

were divided by the viable/singlet counts. In the SDY311

dataset, ten patients had two replicates of expression

profiles, and those were averaged. Two outlier samples

in the cytometry data set were removed from further

analyses (SUB134240, SUB134283).

Other tools

The CIBERSORT web tool was used for inferring pro-

portions using the expression profile (https://cibersort.

stanford.edu). CIBERSORT results for activated and

resting cell types were combined; B cell and CD4+ T

cell percentages are the combination of all their sub-

types. t-SNE plots were produced using the Rtsne R

package. Purity measurements were obtained from our

previous publication [31]. Correlation plots were gener-

ated using the corrplot R package.
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