
XCLAIM: Trustless, Interoperable,
Cryptocurrency-Backed Assets

Alexei Zamyatin†‡, Dominik Harz†, Joshua Lind†, Panayiotis Panayiotou†, Arthur Gervais†, William Knottenbelt†
† Imperial College London ‡ SBA Research

Abstract—Building trustless cross-blockchain trading protocols
is challenging. Centralized exchanges thus remain the preferred
route to execute transfers across blockchains. However, these
services require trust and therefore undermine the very nature
of the blockchains on which they operate. To overcome this,
several decentralized exchanges have recently emerged which
offer support for atomic cross-chain swaps (ACCS). ACCS enable
the trustless exchange of cryptocurrencies across blockchains,
and are the only known mechanism to do so. However, ACCS
suffer significant limitations; they are slow, inefficient and costly,
meaning that they are rarely used in practice.

We present XCLAIM: the first generic framework for achieving
trustless and efficient cross-chain exchanges using cryptocurrency-
backed assets (CBAs). XCLAIM offers protocols for issuing,
transferring, swapping and redeeming CBAs securely in a
non-interactive manner on existing blockchains. We instanti-
ate XCLAIM between Bitcoin and Ethereum and evaluate our
implementation; it costs less than USD 0.50 to issue an arbi-
trary amount of Bitcoin-backed tokens on Ethereum. We show
XCLAIM is not only faster, but also significantly cheaper than
atomic cross-chain swaps. Finally, XCLAIM is compatible with
the majority of existing blockchains without modification, and
enables several novel cryptocurrency applications, such as cross-
chain payment channels and efficient multi-party swaps.

Index Terms—blockchain, interoperability, CBA, Bitcoin,
Ethereum

I. INTRODUCTION

Blockchain-based cryptocurrencies enable secure and trust-

less transactions between parties. As a result, they have gained

widespread adoption and popularity in recent years; there are

currently over 2 000 different cryptocurrencies in operation,

with a total market cap of USD 135bn [48]. However, despite

a growing and thriving ecosystem, cryptocurrencies continue

to operate in complete isolation from one another: blockchain

protocols provide no means by which to communicate or

exchange data with external systems. Hence, achieving inter-

operability between blockchains remains an open challenge.

Centralized exchanges thus remain the preferred route to

execute fund transfers and exchanges across blockchains.

However, these services require trust and therefore undermine

the very nature of the cryptocurrencies on which they operate,

making them vulnerable to attacks [32], [35], [89], [95]. To

overcome this, decentralized exchanges [1], [2], [13], [16],

[18] (DEXs) have recently emerged, removing the need to trust

centralized intermediaries for blockchain transfers. However,

the vast majority of DEXs only enable the exchange of

cryptocurrency-assets within a single blockchain, i.e., they do

not operate across blockchains (cross-chain). As such, it is

only a handful of platforms [17], [30] that actually support

cross-chain exchanges through the use of atomic cross-chain

swaps (ACCS) [4], [33], [69], [105].

ACCS enable secure cross-chain exchanges, e.g. using

hashed timelock contracts (HTLCs) [5], [47]. At present,

they are the only mechanism to do this without necessitating

trust. Unfortunately, they require several strong assumptions

to maintain security, thus limiting their practicality: they are

interactive, requiring all parties to be online and actively

monitor all involved blockchains during execution; they re-

quire synchronizing clocks between blockchains and rely on

pre-established secure out-of-band communication channels.

In addition, they also incur long waiting periods between

transfers and suffer the limitation that for every cross-chain

swap, four transactions need to occur, two on each blockchain.

This makes them expensive, slow and inefficient.

We therefore present XCLAIM (pronounced cross-claim):

the first generic framework for achieving trustless cross-chain

exchanges using cryptocurrency-backed assets. In XCLAIM,

blockchain-based assets can be securely constructed and one-

to-one backed by other cryptocurrencies, for example, Bitcoin-

backed tokens on Ethereum. Through the secure issuance,

swapping, and redemption of these assets, users can perform

cross-chain exchanges in a trustless and non-interactive man-

ner, overcoming the limitations of existing solutions.

To achieve this, XCLAIM exploits publicly verifiable smart

contracts to remove the need for trusted intermediaries and

leverages chain relays [6], [33], [76], [106] for cross-chain

state verification. Using these building blocks, XCLAIM con-

structs a publicly verifiable audit log of user actions on both

blockchains and employs collateralization and punishments to

enforce the correct behavior of participants. Thereby, XCLAIM

follows a proof-or-punishment approach, i.e., participants must

proactively prove adherence to system rules.

Due to its simple and efficient design, XCLAIM enables

several novel applications, such as: (i) cross-chain payment

channels, where users can exchange payments off-chain across

different blockchains in a trustless manner; (ii) temporary

transaction offloading, where users temporarily tokenize their

cryptocurrency on other blockchains to overcome network

congestion and high fees; and (iii) N-way and multi-party

atomic swaps allowing efficient and complex atomic swaps.

Finally, as XCLAIM maintains compatibility with existing

standardized asset interfaces [10], [11], the issued assets are

tradeable via existing decentralized exchanges, enabling these

193

2019 IEEE Symposium on Security and Privacy

© 2019, Alexei Zamyatin. Under license to IEEE.
DOI 10.1109/SP.2019.00085

exchanges to operate cross-blockchain.

This paper makes the following contributions:

• We define the notion of cryptocurrency-backed assets for

blockchains and formulate goals for security and function-

ality (Section III). We then present XCLAIM, a practical

and secure system to construct cryptocurrency-backed assets

without trusted intermediaries (Section IV-V).

• We provide a formal protocol specification for XCLAIM

and analyze in detail the requirements for the underlying

blockchains (Section VI). While the blockchain used to issue

cryptocurrency-backed assets must support smart contracts,

XCLAIM requires only base-ledger functionality on the

backing side, supporting practically all cryptocurrencies.

• We implement XCLAIM(BTC,ETH), to the best of our

knowledge, the first system for trustlessly issuing, trans-

ferring, swapping and redeeming Bitcoin-backed tokens on

Ethereum (Section VIII). In our prototype, it costs USD

0.47 to issue, USD 0.04 to transfer, USD 0.19 to atomically

swap and USD 0.49 to redeem an arbitrary amount of cross-

chain tokens1. We compare performance and costs to HTLC

atomic swaps and show XCLAIM is 95.7% faster and 65.4%

cheaper for 1000 swaps.

• Finally, we present and describe several novel applications

enabled exclusively by XCLAIM, such as cross-chain pay-

ment channels and efficient N-way and multi-party atomic

swaps (Section IX).

II. BACKGROUND

A. Blockchains and Decentralized Ledgers

Bitcoin [90] allows users to hold and exchange funds in a

decentralized manner, without trusting a third party. It achieves

this through a peer-to-peer replicated state machine that main-

tains a global append-only ledger. This ledger maintains the

history of all transactions in the network, and is constructed

through a sequence of blocks, chained together via the hashes

of their predecessors; thus forming the blockchain. To append

to the blockchain, Bitcoin operates a random leader election

protocol using Proof-of-Work (PoW) [34], [54], where peers

compete to solve a computationally expensive puzzle. This

approach, known as Nakamoto consensus, achieves agreement

in permissionless settings, i.e., where the set of network peers

is dynamically changing. Bitcoin, and other permissionless

blockchains, therefore provide only weak identities, i.e., mul-

tiple peers may be controlled by the same entity.

Inspired by Bitcoin, numerous other blockchain-based

cryptocurrencies have recently emerged. For example,

Ethereum [46], which extends the basic ledger functionality of

Bitcoin by adding a Turing-complete programming language

to transactions. This allows users to express and create smart

contracts: programs that operate as independent and automatic

entities on the blockchain. Other systems offer alternative

consensus mechanisms, such as Proof-of-Stake (PoS), where

the rate-limiting resource is the currency itself, rather than

1According to exchange rates as of 30 November 2018.

computational power [44], [75], [77]. For brevity, we use

blockchain and chain as synonyms in the rest of this paper.

B. Overlay Protocols, Colored Coins and Tokens

Overlay protocols and colored coins leverage the infras-

tructure of existing blockchains by extending blockchains

with additional features. Such protocols [8], [21], [97], are

supported by most existing blockchains today, as they only

require: (i) the inclusion of data in blockchain transactions and

(ii) eventual agreement on their ordering [114]. As such, over-

lay protocols enable the creation of cryptocurrencies without

bootstrapping a new dedicated blockchain. These are referred

to as cryptocurrency tokens and can be used to quantify both

fungible and non-fungible assets [10], [12]. Profiting from

the expressiveness of Ethereum’s scripting language [63], a

plethora of such tokens has emerged, rivaling cryptocurrencies

both in number and market capitalization [48], [112].

III. SYSTEM OVERVIEW

In this section we first define cryptocurrency-backed assets.

We then present the system model and actors in XCLAIM, as

well as the network and threat models. Finally, we present

XCLAIM’s system goals.

A. Cryptocurrency-backed Assets (CBA)

Definition. We define cryptocurrency-backed assets (CBAs)

as assets deployed on top of a blockchain I that are backed

by a cryptocurrency on blockchain B. We denote assets in I
as i, and cryptocurrency on B as b. We use i(b) to further

denote when an asset on I is backed by b. We extend the

definition of assets by Androulaki et al. [31] and describe a

CBA through the following fields:

• issuing blockchain, the blockchain I on which the CBA i(b)
is issued.

• backing blockchain, the blockchain B that backs i(b) using

cryptocurrency b.
• asset value, the units of the backing cryptocurrency b used

to generate the asset i(b).
• asset redeemability, whether or not i(b) can be redeemed

on B for b.
• asset owner, the current owner of i(b) on I .

• asset fungibility, whether or not units of i(b) are inter-

changeable.

We define a CBA as symmetric if the total amount of

backing units b is equivalent to the total amount of issued units

i(b), i.e., |b| = |i(b)|, and as asymmetric if the CBA exhibits

an alternate backing rate, i.e., |b| 6= |i(b)|. In XCLAIM, we

restrict CBAs to be symmetric cryptocurrency-backed assets.

Moreover, CBAs can be divided and merged back together as

necessary. We defer the analysis of alternate CBAs, such as

asymmetric and non-fungible CBAs, to future work.

B. System Model and Actors

XCLAIM operates between a backing blockchain B of

cryptocurrency b and an issuing blockchain I with underlying

194

CBA i(b). To operate CBAs, XCLAIM further differentiates

between the following actors in the system:

• CBA Requester. Locks b on B to request i(b) on I .

• CBA Sender. Owns i(b) and transfers ownership to another

user on I .

• CBA Receiver. Receives and is assigned ownership over

i(b) on I .

• CBA Redeemer. Destroys i(b) on I to request the corre-

sponding amount of b on B.

• CBA Backing Vault (vault). A (non-trusted) intermediary

liable for fulfilling redeem requests of i(b) for b on B.

• Issuing Smart Contract (iSC). A public smart contract

responsible for managing the correct issuing and exchange

of i(b) on I . The iSC ensures correct behaviour of the vault .

To perform these roles in XCLAIM, actors are identified on

a blockchain using their public/private key pairs. As a result,

the requester , redeemer and vault must maintain key pairs

for both blockchains B and I . The sender and receiver only

need to maintain key pairs for the issuing blockchain I . iSC

exists as a publicly verifiable smart contract on I .

C. Blockchain Model and Assumptions

XCLAIM establishes communication between two indepen-

dent blockchains with likely varying consensus mechanisms

and trust models. Therefore, should either blockchain B or

I be compromised by an adversary, the correct functionality

of XCLAIM cannot be guaranteed. As such, we assume that

the proportion of consensus participants f (or computational

power α in the case of Nakamoto consensus) corrupted by

an adversary for both B and I is bounded by the threshold

necessary to ensure safety and liveness for the underlying

blockchains. For example, in Nakamoto consensus based

blockchains, e.g. Bitcoin [90] and Ethereum [46], we assume

α ≤ 33% [61], [66], [98]. In Byzantine fault tolerant settings

using e.g. Proof-of-Stake, such as [44], [75], we assume

f < n/3 where n is the total number of consensus participants.

These assumptions guarantee that the number of maliciously

generated blocks is upper-bounded by f
n−f (chain quality

property) [62]. As such, we assume the probability of block-

chain reorganizations therefore drops exponentially with a

security parameter k ∈ N (common-prefix property) [62], [90],

[96]. We measure k in blocks and denote kB for blockchain B
and kI for blockchain I . Specifically, we say a transaction is

securely2 included in the underlying blockchain if, given the

current blockchain head at position h ∈ N, the transaction is

included in a block at position j ∈ N, such that h− j ≥ k.

For existing blockchains, the delay ∆ from transaction

broadcast to secure inclusion depends on the block generation

rate τ , i.e., the number of blocks created per round (cf.

chain growth property [62], [96]). Block generation rates are

however non-deterministic for most blockchains3 and differ

from system to system. To ensure secure communication

2Note: k is recommended to be set as a function of transferred value [100].
3E.g., for Nakamoto consensus the time between generated blocks is

exponentially distributed [51], [80], [90].

between B and I , we thus formulate assumptions for both ∆B

and ∆I , i.e., argue on a ratio rτ = E(τB)/E(τ I) between the

expected generation rates of B and I . We assume a known

upper bound rτ , i.e., increases and decreases of the rate at

which blocks are found in B remain within a known bound

in relation to the rate of I (and vice-versa).

D. Threat Model and Network Assumptions

We assume that the cryptographic primitives of B and I are

secure. We further assume that adversaries are computationally

bounded and economically rational, and we model economic

incentives as a zero-sum-game [108] across B and I . As such,

adversaries may perform arbitrary actions to maximize their

economic value, such as delay or censor transactions, read

unconfirmed transactions in the network or in mining pool

memory, and perform Sybil attacks [53].

To manage exchange rate fluctuations between B and I , we

assume an oracle O provides the iSC with the exchange rate

ε(i,b) ∈ R≥0 for cryptocurrencies i to b. We further assume

that there exists a lower bound min(ε(i,b)) for the value of i
with respect to b, below which adhering to protocol rules no

longer represents the equilibrium strategy of rational adver-

saries [92], [93]. Therefore, in case of extreme devaluation of

i, we assume a delay ∆min(ε) < ∆I , i.e., that honest users

can include a transaction in I before ε(i,b) < min(ε(i,b)).
For the underlying network, we make the same assumptions

as in prior work [60], [75], [79], i.e., we assume (i) honest

nodes are well connected and (ii) communication channels be-

tween these nodes are (semi-)synchronous. Specifically, trans-

actions broadcast by users are received by (honest) consensus

participants4 within a known maximum delay ∆tx [96], i.e.,

∆B
tx for chain B and ∆I

tx for chain I . Note: ∆I = kI

τI +∆I
tx

(analogous for B).

E. System Goals

Under the blockchain, network and threat models specified

above, in Sections III-B-III-D, we derive the following desir-

able security properties for XCLAIM with regards to CBAs:

• Auditability. Any user with read access to blockchains B
and I can audit the operation of XCLAIM and detect protocol

failures.

• Consistency. No CBA units i(b) can be issued without the

equivalent amount of backing currency b being locked, i.e.,

that |b| = |i(b)|.
• Redeemability. Any user can redeem CBAs i(b) for backing

currency b on B, or be reimbursed with equivalent economic

value on I .

• Liveness. Any user in XCLAIM can issue, transfer and swap

CBAs without requiring a third party, i.e., liveness relies

only on the secure operation of B and I .

• Atomic Swaps. Users can atomically swap XCLAIM CBAs

against other assets on I or the native currency i.

Furthermore, we derive the following desirable functional

properties for XCLAIM:

4E.g. miners in the case of Nakamoto consensus [90].

195

• Scale-out. The total amount of CBAs available for circula-

tion increases with the total amount5 of backing currency

locked up in blockchain B. Any user can contribute to this

amount by assuming the role of the vault .

• Compatibility. XCLAIM does not rely on a single crypto-

currency implementation with a set of specific features.

Instead, it allows to issue assets i(b) on any blockchain I
that supports smart contracts6, backed by any blockchain

B that supports only basic fund transfers between parties.

This enables XCLAIM to maintain backward compatibility

with existing blockchains that do not provide smart contract

support, such as Bitcoin.

IV. STRAWMAN SOLUTION AND DESIGN ROADMAP

In this section we present a strawman solution, CENTRAL-

CLAIM, that outlines how a CBA-based system with the

actors defined in Section III-B might operate. We use CEN-

TRALCLAIM to highlight the challenges faced by XCLAIM in

achieving the goals from Section III-E. Finally, we lay out a

design roadmap for the secure design of XCLAIM. We present

XCLAIM in Section V.

A. Strawman Solution

CENTRALCLAIM proposes the use of a single trusted inter-

mediary on the backing blockchain B that takes the role of

the vault . The iSC is a smart contract deployed on the issuing

blockchain I . The vault is registered with the iSC, i.e., the iSC

can verify the vault’s digital signature and knows the vault’s

public key. As defined in Section III-B, I is responsible for

managing the correct issuing and exchange of i(b) on I .

We assume a user Alice controls units of b on a blockchain

B, while a user Dave controls units of i on a blockchain I .

Alice wishes to create B-backed assets i(b) and transfer them

to Dave on I . Dave, at some later point in time, wishes to

redeem his units of i(b) for the corresponding amount of b.
To achieve this, CENTRALCLAIM offers four protocols:

Issue, Transfer, Swap and Redeem. For simplicity, we omit

any processing fees charged by the vault or the iSC for the

use of the service. We also omit the cost of transaction fees

on the underlying blockchains B and I .

Protocol: Issue. Alice (requester) locks units of b with the

vault on B to create i(b) on I:

1) Setup. First, Alice verifies the iSC smart contract is avail-

able on chain I , i.e., the issuing blockchain, and identifies

the single backing intermediary on B, i.e., the vault .

2) Lock. Alice generates a new public/private key pair on

I and locks funds b with the vault on B in a publicly

verifiable manner, i.e., by sending b to the vault . As part

of locking these funds with the vault , Alice also specifies

where the to-be-generated i(b) should be sent, i.e., Alice

associates her public key on I with the transfer of b to the

vault .

5Specifically, locked collateral. To become a vault , a user must provide at
a pre-defined minimal amount of collateral in i; cf. Section V-E.

6Turing completeness is not required, as discussed in Section VI-B.

3) Create. The vault confirms to the issuing smart contract

iSC via a signed message that Alice has correctly locked

her funds and forwards Alice’s public key on I to the

iSC. The iSC verifies the vault’s signature, then creates

and sends i(b) to Alice, such that |i(b)| = |b|.

Protocol: Transfer. Alice (sender) transfers i(b) to Dave

(receiver) on I:

1) Transfer. Alice notifies the iSC that she wishes to transfer

her i(b) to Dave (public key) on I . The state of the iSC is

updated and Dave becomes the new owner of i(b).
2) Witness. The vault witnesses the change of ownership on

I through iSC, and no longer allows Alice to withdraw the

associated amount of locked b on B. The process for any

further transfers from Dave to other users is analogous.

Protocol: Swap. Alice (sender) atomically swaps i(b) against

Dave’s (receiver) i on I:

1) Lock. Alice locks i(b) with the iSC.

2) Swap. If Dave locks the agreed upon units of i (or any

other asset on I) with the iSC within delay ∆swap , the iSC

updates the balance of Dave, making him the new owner

of i(b), and assigns Alice ownership over i.
3) Revoke. If Dave does not correctly lock i with the iSC

within ∆swap , the iSC releases locked i(b) to Alice.

4) Witness. If the swap is successful, the vault witnesses the

change of ownership of i(b) and no longer allows Alice to

redeem the associated amount.

Protocol: Redeem. Dave (redeemer) locks i(b) with the iSC

on I to receive b from the vault on B; i(b) is then destroyed:

1) Setup. Dave creates a new public/private key pair on B.

2) Lock. Next, Dave locks i(b) with the iSC on I and requests

the redemption of i(b). Thereby, Dave also specifies his

new public key on B as the target for the redeem.

3) Release. The vault witnesses the locking and redemption

request of i(b) on I and releases funds b to Dave’s specified

public key on B, such that |b| = |i(b)|.
4) Burn. Finally, the vault confirms with the iSC that b was

redeemed on B, and the iSC destroys, or burns, the locked

i(b) on I .

B. Strawman Limitations and Properties

While CENTRALCLAIM, as presented in Section IV-A,

already provides sufficient functionality for issuing, transfer-

ring, swapping and redeeming CBAs, it does not achieve

all the goals defined in Section III-E. Namely, it does not

achieve Consistency, Redeemability and Liveness. This is

because CENTRALCLAIM is inherently centralized around a

single vault , and trusts the vault to behave correctly. This is

fundamentally insecure, however, as the vault is economically

rational and therefore incentivized to misbehave.

For example, the vault is trusted to monitor the backing

chain B for newly created locks of b and notify the iSC

via a signed transaction on I . Should the vault fail to do

this, it can steal the locked funds and violate Consistency.

Similarly, the vault is trusted to release the correct amount

of b on B when a redeemer requests the redemption of

196

Fig. 1. High-level overview of the Issue, Swap and Redeem protocols in XCLAIM’s (under successful execution). All parties interact with the iSC, creating a
publicly verifiable audit log. Correct behavior is enforced by (i) over-collateralizing the vault and (ii) cross-chain transaction inclusion proofs. When issuing,
the requester proves correctness of the lock making Issue non-interactive. Safety is ensured by forcing the vault to proactively prove correctness of the
Redeem process. As a result, XCLAIM enforces Transfer and Swap occur consistently on the backing (B) and issuing (I) blockchains.

i(b). Failing to do this allows the vault to steal the locked

b and break Redeemability. Finally, CENTRALCLAIM also

inherently violates Liveness; it exhibits a single point of

failure, as backing-funds are locked with a single intermediary,

the vault . The vault is therefore assumed to be interactive, i.e.,

always online. As such, even in the case that the vault behaves

honestly, CENTRALCLAIM can fail to achieve Liveness, e.g.

due to denial-of-service and eclipse attacks [68] on the vault .

Surprisingly however, CENTRALCLAIM already exhibits

significant advantages over centralized systems offering digital

tokens backed by real-world assets, e.g. the US dollar [29].

Specifically, CENTRALCLAIM achieves Auditability, allowing

users to detect if any actors misbehave, and Atomic Swaps,

enabling secure swaps of assets and cryptocurrency.

It is easy to see how CENTRALCLAIM achieves Auditabil-

ity: for successful execution, Issue, Transfer, Swap and Re-

deem all require secure transaction inclusion in blockchains

B and I with security parameters kB and kI . Users can

therefore detect both crash and Byzantine failures if incorrect

transactions are published or transactions are missing from

each blockchain. As such, an adversary could only interfere

with this by: (i) preventing transaction inclusion in B and I;

or (ii) stopping a user from receiving messages broadcast by

other nodes on B and I . Both attack vectors are not possible

under the blockchain and (semi-)synchronous network models.

Likewise, it is easy to see how CENTRALCLAIM achieves

Atomic Swaps: the Swap protocol is exclusively executed by

the iSC on I . Specifically, to initiate Swap, the sender locks

i(b) in the iSC via a transaction on I . By construction, the iSC

will only release i(b) to the receiver if the receiver locks the

correct amount of i with the iSC within ∆swap. Otherwise, i(b)
is released back to the sender . An adversary cannot therefore

prevent the atomicity of Swap: this would require tampering

with the iSC, which is not possible under the assumptions of

the blockchain and threat models.

Finally, CENTRALCLAIM also provides Compatibility, as

the only operation executed on the backing chain B is a

simple transfer of funds to the vault . A detailed overview

of operational requirements is provided in Section VI-B.

C. XCLAIM Design Roadmap

To address the security challenges and limitations of CEN-

TRALCLAIM, we outline the design roadmap for XCLAIM and

introduce the building blocks used in its construction:

1) In Section V-B, we remove the trust required by the vault

during the issuing of CBAs, and make the issuing process

non-interactive, thus achieving Consistency and Liveness.

For this, we use chain relays to allow programmatic

verification of transaction inclusion proofs for B on I and

require all parties to proactively prove correct behavior.

2) In Section V-C, we show how to incentivize the correct

behaviour of the vault during CBA redemption through the

introduction of collateralization and punishments, enforc-

ing a proof-or-punishment model. We highlight race condi-

tions during Issue due to collateralization, and present two

effective mitigations: (i) deferred collateral withdrawal and

(ii) collateralized issue commitments. Hence, we achieve

Redeemability under a fixed exchange rate ε(i,b).
3) In Section V-D, we show how to prevent collateral deteri-

oration due to exchange rate fluctuations by introducing

(i) over-collateralization, (ii) collateral adjustment and

(iii) automatic liquidation. As a result, XCLAIM achieves

Redeemability under non-constant exchange rates.

4) Finally, in Section V-E, we achieve Scale-Out by removing

single points of failure in CENTRALCLAIM. We do this by

making XCLAIM a multi-vault system where any user can

assume the role of the vault .

V. XCLAIM SECURE DESIGN

This section presents the secure design of XCLAIM. We first

provide the high-level overview and intuition behind XCLAIM,

and then follow the technical roadmap outlined in Section IV

to provide a detailed system description.

197

A. XCLAIM Overview

XCLAIM overcomes the limitations of CENTRALCLAIM

through three primary techniques: (i) constructing secure audit

logs on both the backing blockchain B and the issuing

blockchain I to trace all actions in the system; (ii) transaction

inclusion proofs via chain relays to prove correct behaviour on

the backing blockchain B to the iSC; and (iii) collateralization

to incentivize correct behaviour through proof-or-punishment.

We provide a brief overview and intuition for XCLAIM below.

Figure 1 illustrates the Issue, Transfer, Swap and Redeem

protocols in XCLAIM, while the design of the issuing smart

contract iSC is shown in Figure 2.
Similar to CENTRALCLAIM, in XCLAIM, funds on the

backing blockchain B are secured by backing intermediaries,

vaults . The vaults store locked coins b on blockchain B and

handle issue and redeem requests. To avoid necessitating trust

in the vault however, XCLAIM uses collateral to incentivize

behaviour; XCLAIM requires actors, such as the vault , to

deposit collateral on blockchain I , owned by the iSC. Every

action in XCLAIM is then logged securely via the iSC and mis-

behaving actors, such as the vault , are punished by slashing

collateral belonging to them, and reimbursing wronged actors.

XCLAIM ensures deposited collateral is always sufficient, even

in case of exchange rate fluctionations between b and i.
For the iSC to ensure that correct behaviours have taken

place on blockchain B, where the iSC does not have direct

visibility, XCLAIM uses chain relays. Chain relays provide

external blockchain data, such as the transactions in blockchain

B, to the iSC executing on I . As such, the iSC can trace

every action by every actor in the system across blockchains.

Actors in XCLAIM therefore proactively prove their honest

behaviour to the iSC via the chain relay; failure to do so results

in punishment. By combining secure audit logs, chain relays,

and collateralization in this way, XCLAIM can overcome the

limitations of CENTRALCLAIM, and achieve the properties

defined in Section III-E.

B. Chain Relays: Cross-Chain State Verification

As outlined in Section V-A, XCLAIM employs chain re-

lays [6], [76], [106] to provide data from the backing block-

chain B to the iSC on the issuing blockchain I . We use chain

relays to make the issuing of assets i(b) on I non-interactive.

For this, XCLAIM introduces a chainRelay component to the

smart contract iSC (cf. Figure 2). The chainRelay is capable

of interpreting the state of the backing blockchain B and

provides functionality comparable to an SPV or light client [3],

[19], [23], [33]. That is, a chainRelay stores and maintains

block headers from blocks in B on I , and provides two

functionalities to the iSC: Transaction inclusion verification

and Consensus verification:

• Transaction inclusion verification. The chainRelay stores

every block header in the backing blockchain B on I . Each

block header in chainRelay contains the root of the Merkle

tree [87] containing all transactions (or their identifiers) for

that block. To verify the correct inclusion of a transaction

in a block in B, it is sufficient to provide the Merkle tree

Fig. 2. High level overview of the architecture of the XCLAIM smart contract
(iSC) and the interactions between its components. References to sections
introducing each component are provided. The treasury refers to the basic
ledger functionality of I .

path from the root to the leaf containing the transaction

(identifier) and the transaction data itself. This verification

can be then be performed in a non-interactive manner by

the chainRelay as part of the iSC.

• Consensus verification. The chainRelay can also verify that

any given block header is part of the backing blockchain B,

i.e., has been agreed upon by the majority of consensus

participants. In XCLAIM, consensus verification depends on

the consensus mechanism used by the backing blockchain

B. For Nakamoto consensus [90], the chainRelay must (i)

know the difficulty adjustment policy and (ii) verify that the

received headers are on the chain with the most accumulated

Proof-of-Work [6], [76]. For Proof-of-Stake blockchains,

e.g Ouroboros [75], the chainRelay must (i) be aware of

the protocol/staking epochs and (ii) verify the signature

membership of elected leader(s) for the threshold/multi-

signatures of block headers [64]. For permissioned (Proof-

of-Authority) systems, the verification is analogous, or sim-

pler, if the consensus participants are pre-defined [109]. We

provide a formal definition for the necessary functionality

of Proof-of-Work chain relays in Appendix D.

XCLAIM uses the chainRelay to modify the Issue protocol

presented in CENTRALCLAIM (Section IV-A): after locking

funds b with the vault , the requester must prove to the

chainRelay that funds were locked correctly by presenting the

transaction generated when sending b to the vault in B. The

chainRelay can then verify that the given transaction has been

securely included in B and the funds were locked correctly.

If successful, the chainRelay triggers the automatic issuing of

the corresponding amount of i(b) in the iSC.

Similarly, XCLAIM also modifies the Redeem protocol: upon

a redeem request being made by the user, the vault is required

to prove that (i) the funds b were released to the redeemer and

(ii) the released amount corresponds to the burnt CBA, i.e.,

198

|b| = |i(b)|. This is done by presenting the chainRelay with the

transaction that sends b to the redeemer within a maximum

delay ∆I
redeem . Should the vault fail to comply, it incurs a

financial penalty and the iSC guarantees reimbursement to the

redeemer ; we discuss this in Sections V-C and V-D.

We note that to correctly verify inclusion proofs, the

chainRelay must be up to date with the block headers of

B. As XCLAIM makes timing assumptions on inclusion proof

submission during Redeem, we must define an upper bound

∆relay for the delay between generation of a block containing

transaction TB on B and the submission of (i) the block

header and (ii) the inclusion proof for TB to the iSC via the

chainRelay. Hence, we define ∆relay = ∆B+∆submit +2∆I ,

where ∆submit is the delay before a transaction submitting

a B block header to the chainRelay is broadcast. If batched

submission of n block headers within a single transaction

on I is possible, the upper bound for the delay is increased

to ∆submit + n(∆B + 2∆I). This also applies for compact

proofing techniques, e.g. NiPoPoWs [74] or FlyClient [85].

Security Arguments for Liveness: The chainRelay makes the

Issue protocol non-interactive: instead of trusting the vault to

confirm the lock of b, the iSC accepts a transaction inclusion

proof provided by the requester . To prevent the requester

from executing Issue, an adversary hence must control all

funds i on I and/or prevent inclusion of transactions in B
or I . As Transfer and Swap only require interaction with the

iSC, to interfere, an adversary must modify the behavior of

the iSC or prevent transaction inclusion in I . This, however,

is not possible under the assumptions of the blockchain and

threat models. Hence, XCLAIM achieves Liveness.

Security Arguments for Consistency: By construction, the

iSC only issues i(b) if the provided transaction inclusion proof

shows that the correct amount on b was locked on B, i.e.,

|b| = |i(b)|. From the blockchain and threat models we know

an adversary cannot tamper with the iSC. Hence, XCLAIM

achieves Consistency.

We note that for the vault to have a realistic time window to

provide a proof, we must consider the security parameters for

B and I , as well as the block generation rates when parameter-

izing ∆redeem , i.e., it must hold that ∆redeem > ∆B+∆relay .

C. Tribunal: Incentives via Collateralization

We next modify CENTRALCLAIM by introducing collat-

eral as a means to incentivize honest behavior in XCLAIM

and impose punishment on misbehaving parties through the

iSC. We refer to this component of the iSC as the tribunal

(cf. Figure 2). Specifically, we modify CENTRALCLAIM by

requiring the vault to lock up units of i as collateral when

registering with the iSC, which we denote as icol. If the vault

fails to prove correct execution of the Redeem protocol, the

collateral is automatically used by the iSC to compensate the

redeemer and to pay an additional punishment fee.

For collateralization of the vault to be effective in terms of

maintaining incentives to behave honestly, the collateral must

be at least equal to the funds locked on backing chain B.

One challenge faced by this approach in XCLAIM is that the

vault’s collateral is locked in currency i, while the value it is

balanced against is measured in currency b. To this end, we

must ensure icol ≥ block · ε(i,b) holds, where block refers to

the units of b locked with the vault on B and ε(i,b) is the

exchange rate provided by oracle O. For ease of explanation,

at this point we assume the exchange rate ε(i,b) is constant.

We discuss challenges of non-constant exchange rates and

mitigation thereof in Section V-D.

To ensure Redeemability, users must only initiate the Issue

protocol, if sufficient collateral is provided by the vault in the

iSC. However, the naive Issue protocol of CENTRALCLAIM

exhibits vulnerabilities to race conditions: (i) the vault can

attempt to withdraw collateral before the requester can finalize

the issuing process, i.e., provide the transaction inclusion proof

to the chainRelay, and (ii) multiple requesters can attempt

to simultaneously issue for the same amount of the vault’s

collateral, triggering a race where the loser’s locked funds block
are not secured by collateral. We present mitigations for the

above attacks in XCLAIM:

• Deferred Collateral Withdrawal. The vault may exploit

race conditions due to network latency, delays ∆B and

∆I or DoS attacks against the requester to attempt col-

lateral withdrawal after a lock on B is executed, commit-

ting unpunished theft. We derive a simple announce-delay-

withdraw scheme to prevent such attacks. Specifically, we

require the vault to announce collateral withdrawal publicly

via the iSC. The iSC allows users to finalize (in theory also

to initiate new) issue processes within a delay ∆withdraw ,

after which the vault may withdraw the remaining unused

collateral. Thereby, the lower bound for ∆withdraw is the

upper bound on transaction inclusion proofs ∆relay defined

in Section V-B, i.e., ∆withdraw > ∆relay .

• Collateralized Issue Commitments. To prevent multiple

requesters from concurrently locking funds b using the same

amount of the vault’s collateral, we introduce a registration

step to the setup phase of the Issue protocol. Specifically,

a requester must register an issue request for i(b) with the

iSC, which temporarily locks the corresponding amount of

the vault’s collateral. Within the following delay ∆commit >
∆B + ∆relay the requester can then safely execute the

remaining steps of the Issue protocol. The iSC therefore only

accepts pre-registered issuing attempts. To avoid griefing

attacks by malicious requesters , i.e., continuous locks of

the vault’s collateral, we require the requester to commit to

issuing by providing collateral herself. The latter is used to

reimburse the vault in case of failure. We note that multiple

collateralized commitments can be created in parallel, of

which only a single one will be accepted by the iSC, on

a first-come-first-served basis. In this worse-case scenario,

the losses faced by requesters are hereby limited to a

transaction fee on I .

Security Arguments for Redeemability under constant ε(i,b):
By introducing collateralization in XCLAIM we ensure that an

economically rational vault has no incentive to misbehave.

Specifically, by construction, the iSC only accept issue re-

199

quests if collateral icol ≥ b · ε(i,b) is locked by the vault .

During the Redeem protocol, the vault is required to include

a transaction in B, sending b to the redeemer such that

|b| = |i(b)| and provide an inclusion proof to the iSC. If

the vault misbehaves, it will lose collateral icol , which the

iSC uses to reimburse the redeemer , and miss out on fees for

honest behavior. That is, a vault gains negative utility from

misbehaving and does not execute its equilibrium strategy.

Deferred collateral withdrawal and collateralized issue com-

mitments therefore prevent the vault from exploiting network

related race conditions to defraud users. It is also easy to

see that collusion of malicious vault and redeemer yields no

benefit, as issuing and redeeming in XCLAIM is a zero-sum

game. In fact, transaction fees on B and I lead to negative

utility in such scenarios. Hence, under the economically ra-

tional adversaries as per our threat model, XCLAIM achieves

Redeemability under constant exchange rates.

D. Mitigating Exchange Rate Fluctuations

Until now, we have assumed that both the exchange rate

ε(i,b) and the collateral icol provided by the vault remain

unchanged. However, real world observations show that the

exchange rate ε(i,b) between the two cryptocurrencies may

be susceptible to strong fluctuations. To ensure Redeemabil-

ity under non-constant exchange rates, we hence (i) over-

collateralize the vault , (ii) enable adjustment of the vault’s

locked collateral and (iii) introduce automatic liquidation to

prevent financial loss in case of extreme devaluation of i.
Over-collateralization helps mitigate failures due to sudden

drops of ε(i,b). We over-collateralize the vault by a factor

rcol ∈ R≥1, creating a buffer to account for possible exchange

rate fluctuations. For secure operation, the following must hold

for the lifecycle of XCLAIM:

icol ≥ block ·
(

rcol · ε(i,b)
)

≥ block (1)

As a result, the over-collateralization factor rcol becomes a

security parameter in XCLAIM. The combination of rcol with

the exchange rate ε(i,b) then defines how many units of the

backing cryptocurrency b a requester can safely lock with the

vault , i.e., the maximum amount of safely issuable i(b):

max(i(b)) =
icol

rcol · ε(i,b)
(2)

For clarity, we denote blocked collateral, i.e., collateral already

used to securely issue i(b), as i−col = i(b) · rcol · ε(i,b) and free

collateral as i+col = icol − i−col.
While over-collateralization helps mitigate extreme fluctua-

tions in the short term, it may be insufficient to securely handle

long-term issuing. To this end, we enable the adjustment of

the vault’s collateral and introduce the notion of automatic

liquidation of i(b) by the iSC. We derive a simple multi-stage

system for collateral icol. The latter defines the behavior of the

iSC, based on the observed collateral rate r∗col =
i−
col

+i+
col

block·ε(i,b)
and

the (parameterized) ideal rate rcol. Specifically, we introduce

thresholds rcol > rliqcol > 1.0. For ease of explanation, we

assume an exemplary collateral rate rcol = 2.0. We define the

multi-stage system for collateral as follows:

• Secure Operation : The vault has locked more collateral

than necessary to ensure Redeemability in XCLAIM, i.e.,

new i(b) can be issued correctly. Similarly, the available

free collateral i+col can be withdrawn by the vault , as long

as r∗col ≥ rcol holds.

• Buffered Collateral: The collateral rate r∗col has dropped

below ideal rate rcol, however there is sufficient buffer to

ensure secure operation of XCLAIM. However, as defined in

Eq. 2, no new i(b) can be issued.

• Liquidation: The collateral rate is critically close to the

lower bound of 1.0 (e.g. rliqcol = 1.05). If the vault does not

re-balance r∗col by increasing icol, the iSC automatically ini-

tiates Redeem for all existing i(b). The remaining collateral

buffer r∗col−1.0 > ε(i,b) is thereby used to cover transaction

fees. This measure is necessary to prevent users from facing

financial loss, should r∗col drop below 1.0.

Security Arguments for Redeemability under non-constant

ε(i,b): Through over-collateralization of the vault , we use a

buffer to tolerate sudden exchange rate drops. As the vault can

update collateral, it can, in the optimistic case, maintain secure

operation of XCLAIM even if the buffer is depleted. Should

the latter fail, the iSC ensures users do not face financial

losses via automatic liquidation. Specifically, an economically

rational vault will only misbehave if icol < b · ε(i,b). By con-

struction, the iSC automatically reimburses icol to a redeemer

if icol < b · ε(i,b). Hence, misbehaving only becomes the

equilibrium strategy of the vault , if it can alter the behaviour

of the iSC. As this is not possible under the assumptions of the

blockchain and threat model, it follows that XCLAIM achieves

Redeemability under non-constant exchange rates ε(i,b).
Note: from ∆min(ε) < ∆I it follows the redeemer can

either initiate the Redeem protocol or, in case of automatic liq-

uidation, withdraw i from the iSC before ε(i,b) < min(ε(i,b)).

E. Multi-vault System: Removing Single Points of Failure

Until now, we have assumed a single vault . However, the

design of XCLAIM allows it to be easily extended to a multi-

vault system. Hence, we allow any user to become a vault

by registering with the iSC and providing collateral. The list

of vaults is maintained in a public registry in the iSC. By

allowing both requesters and redeemers to freely choose

which vault they wish to use for issuing and redeeming, we

create a free market driven by charged fees and the observed

collateral rate rcol∗ of each vault . The availability of multiple

vaults further allows a redeemer , upon a failed Redeem

caused by a vault , to choose between: (i) being reimbursed

from the slashed collateral icol or (ii) retrying the Redeem

using a different vault .

One challenge that arises from a multi-vault system is en-

suring correct automatic liquidation. Deterioration of collateral

of a single vault does not affect the entire system, but only the

corresponding fraction of issued i(b). In a first step, the iSC

offers beneficial liquidation, i.e., redemption of i(b) against

the corresponding amount of block and an additional small

200

Operations:

Backing Blockchain:

For the backing blockchain B, operations are executed by the requester and the vault . We
differentiate between the two:

Operations performed by the requester :

• lockB(b, cond) → TB
lock which locks coins b on chain B under conditions cond .

Operations performed by the vault :

• verifyIOp(operation,TI
op [, ∆op]) → ⊤|⊥ which verifies that operation was executed on

I , i.e., that TI
op is securely included in I according to kI and within optional delay ∆op

as per XCLAIM parameters.
• redeemB(b, userB) → TB

redeem that releases locked coins b to userB .

• transferB(b, userB) → TB
transfer which transfers ownership of b to user userB .

Issuing Blockchain:

For the issuing blockchain I , operations are executed by the iSC:

• lock(x , cond) → TI
lock which locks x under conditions cond on I , where x can be i(b)

or i.
• release(x , user I) → TI

release that releases asset or coin x to user I , where x can be
i(b) or i.

• slash(x , user I , user I
∗
) → TI

slash that destroys or slashes collateral funds x of user I

and reimburses them to user I
∗

, where x can be i(b) or i.
• commit(b, userB , vault, i) → TI

commit which commits userB to calling

lockB(b, σB
vault) within ∆commit . Locks i as collateral conditioned on the iSC’s signature

via lock(i, σI
SC).

• verifyBOp(operation,TB
op [, ∆op]) → ⊤|⊥ which verifies operation was executed on B,

i.e., securely included in B via TB
op according to kB and within optional delay ∆op as

per XCLAIM parameters.
• issue(b, user I) → TI

issue which creates and allocates i(b) to user I , such that
|i(b)| = |b|.

• transfer(x, user I) → TI
transfer which transfers ownership of x to user user I , where x

can be i(b) or i.
• swap(x, user I

x , y, user
I
y) → TI

swap which transfers ownership of x to user I
y and y to

user user I
x atomically; x and y can be i(b) or i.

• burn(i(b)) → TI
burn that destroys i(b).

Algorithms:

1: protocol Issue

2: vault .lock(icol)
3: requester .commit(block , pk

B
requester , pk

I
vault , i

commit
col)

4: requester .lockB(block , σvault) /* → TB
lock*/

5: requester submits TB
lock to iSC calling verifyBOp

6: if iSC.verifyBOp(lockB,TB
lock , ∆commit) = ⊤ then

7: iSC.issue(block , pk
I
requester)

8: iSC.release(icommit
col , pkIrequester)

9: else

10: iSC.slash(icommit
col , pkIrequester , pk

I
vault)

11: protocol Swap

12: sender .lock(i(b), σI
SC)

13: receiver .lock(i, σI
SC) /* → TI

lock*/
14: if iSC.verifyIOp(lock,TI

lock , ∆swap) = ⊤ then

15: iSC.swap(i(b), pkIreceiver , i, pk
I
sender)

16: else

17: iSC.release(i(b), pkIsender)

18: protocol Transfer

19: sender calls iSC.transfer(i(b), pkIreceiver)

20: protocol Redeem

21: redeemer calls iSC.lock(i(b), pkBredeemer) /* → TI
lock*/

22: iSC signals |b| = |i(b)| is to be released to redeemer on B
23: if vault .verifyIOp(lock,TI

lock) = ⊤ then

24: vault .redeemB(block , pk
B
redeemer) /* → TB

redeem*/
25: vault submits TB

redeem to iSC calling verifyBOp

26: if iSC.verifyBOp(redeemB,TB
redeem , ∆redeem) = ⊤ then

27: iSC.release(icol , pk
I
vault)

28: else

29: slash(icol , pk
I
vault , pk

I
redeemer)

30: iSC.burn(i(b))

Fig. 3. Overview of operations exhibited by XCLAIM on the backing blockchain B and issuing blockchain I (left), and the algorithms specifying XCLAIM’s
Issue, Transfer, Swap and Redeem protocols for cryptocurrency-backed assets (right).

premium in i, deducted from the vault’s available collateral

(r∗col−1.0). Should insufficient users wish to execute Redeem,

the iSC, as a final fallback, equally distributes the liquidation

among all users of XCLAIM. Note: tracing CBAs back to the

vault they were issued makes CBAs non-fungible, which is

contrary to the desired functional properties.

Arguments for Scale-Out: By construction, any user can

register as a vault with the iSC on I by locking collateral

icol , i.e., the set of vaults can change dynamically and is not

pre-defined. It is easy to see any user can hence increase the

total amount of safely issuable CBAs, max(i(b)). We note

that to prevent registration of new vaults , an adversary must:

(i) control all funds i on I and/or (ii) prevent inclusion of

transactions in I . Both scenarios are not possible under the

assumptions of the blockchain and threat models. Hence, under

secure operation of B and I , XCLAIM achieves Scale-Out.

VI. FORMAL PROTOCOL SPECIFICATION

This section presents a formal specification XCLAIM’s Is-

sue, Transfer, Swap and Redeem protocols, as well as the

requirements imposed on the backing and issuing blockchains.

A. XCLAIM Operations and Protocols

Notation. We differentiate between state changing and non-

state changing operations in XCLAIM; state changing opera-

tions result in new transactions (T) in the underlying block-

chain, while non-state changing operations, such as verifying

operations, are “read-only”, returning boolean values (⊤|⊥).

We use TB
id to refer to a transaction created on chain B with

identifier id and T I
id for transactions on I respectively. The

execution of an operation on input in that produces an output

out is denoted as operation(in) → out . To indicate that an

operation is executed by a user user , we write user .operation.

We identify a user user in XCLAIM by her public key pkXu
(with corresponding private key skXu), where X can be either

blockchain B or I . For readability, we often write userX

when referring to pkXu . We use cond to refer to locking

and unlocking conditions for funds on both B and I , e.g.

a condition for a transaction may be the digital signature of

user u on chain X with private key skXu , denoted as σX
user A

summary of symbols is provided in Appendix B.
We parameterize XCLAIM, using: (i) the blockchain security

parameters kB and kI ; (ii) block generation rates τB and τ I ;

(iii) collateral rate rcol and the automatic liquidation threshold

rliqcol ; and (iv) the delays ∆redeem, ∆withdraw, ∆commit,

∆swap used in the Issue, Redeem and Swap protocols. The

algorithms specifying XCLAIM’s Issue, Transfer, Swap and

Redeem protocols, as well as the necessary operations exhib-

ited by XCLAIM on the underlying blockchains B and I are

provided in Figure 3.

B. Blockchain Requirements

Using the system operations performed by XCLAIM as

defined in section VI-A, we derive the requirements for the

201

underlying blockchains B and I . We summarize our findings

in Table I and provide examples for backing and issuing chains

currently supported by XCLAIM. We note that neither B nor

I require a Turing-complete instruction set.

Backing Blockchain (B): On the backing blockchain B we

need to lock and redeem funds based on conditions cond , i.e.,

a user’s digital signature. Boolean operations are required to

verify cond are either true or false. Moreover, conditions for

locking and redeeming from different users require (i) a stack

to store intermediary values, (ii) read and write operations for

the current stack, and (iii) public-key encryption and signa-

ture verification. Flow control operations do not have to be

available to users and can be expressed by stack states (empty

/ not empty) [41]. In addition, while public-key encryption

and signatures can be implemented using basic arithmetic and

bitwise operations, both script complexity and execution cost

can be reduced if cryptographic operations, including hash and

signature verification functions, are supported by the scripting

language as dedicated operations. Finally, B requires a method

to store data, necessary to e.g. include the target public key

of the requester for issuing on I .

Issuing Blockchain (I): To support issuing of CBAs in

a smart contract, the issuing chain I requires a method to

create custom assets, which are part of the consensus protocol.

This can be realized by permanent storage, i.e., storage read

and storage write operations. In accordance to our definitions

(cf. Section III-A), the CBA attributes, issuing chain, backing

chain, and asset value are represented as integers; integer

balances are assigned to the asset owner’s public keys (or

digests thereof). Modification of asset balances can be realized

using arithmetic operations on integers, and the authorization

of changes via boolean operations.

For transaction verification, the chainRelay requires (i)

permanent storage to store block header, transaction, and proof

data and (ii) arithmetic, bitwise, and boolean operations for

proof verification. Verifying Merkle tree inclusion requires to

traverse the data structure (both of block headers and transac-

tion lists), i.e., I must support finite loops or recursion. If I
supports the same (or super-) set of cryptographic operations

used on B (specifically hash functions and signature schemes),

the verification may be executed at lesser cost. Next, I requires

more complex conditional locks than B, i.e., flow control

must be supported (in addition to arithmetic and boolean

operations). Since Issue and Redeem require checking delays

(blocks or based on time stamps), I must allow access to

XCLAIM parameters via global parameters (integers).

Discussion: One of the main challenges overcome by the

design of XCLAIM is backward compatibility: any blockchain

supporting the minimum requirement of transferring funds

between users can act as backing blockchain B. However,

there are cases where B may support a similar set of operations

to I , i.e., B may also allow the deployment of a smart

contract bSC. More specifically, programmatic verification of

transaction inclusion proofs via chainRelay components is

supported bilaterally, i.e., the verifyIOp operation in Issue

and Redeem can be executed directly by bSC rather than

TABLE I
Required operations on backing (B) and issuing (I) chains including

application candidates.

Operations

R
eq

u
ir

em
en

ts

A
ri

th
m

et
ic

B
o
o
le

a
n

B
it

w
is

e

C
ry

p
to

g
ra

p
h
ic

†

F
lo

w
co

n
tr

o
l

L
o
ca

l
st

a
ck

F
in

it
e

lo
o
p
s

o
r

re
cu

rs
io

n

P
er

m
a
n
en

t
st

o
ra

g
e

G
lo

b
a
l

p
a
ra

m
et

er
s

Examples for supported

blockchains

Backing
chain B

✓ ✓ (✓‡) (✓) ✗⋆ ✓ ✗ ✓ ✗

Bitcoin [94], ZCash [37],
Namecoin [91], Litecoin [84],

Ethereum [58]

Issuing

chain I
✓ ✓ ✓ (✓) ✓ ✓ ✓ ✓ ✓

Ethereum [58], Zilliqa [99],
Cardano [7], Neo [20],

Ethereum Classic [14], RSK [82]

† Not strictly required, but reduces script complexity.
‡ Not necessary if native support for cryptographic operations (hash and signature verification) is available.
⋆ Can be represented as stack states (empty / not empty).

by an intermediate vault . The rest of the system remains

unchanged. The use of collateralized intermediaries in this

scenario, while no longer necessary for secure operation, can

act as a performance and cost improvement. An example are

Ethereum and Ethereum Classic, where inclusion proofs can

be verified via PeaceRelay [24].

VII. SECURITY ANALYSIS

In this section we provide an informal security analysis

to supplement the design choices and security propositions

presented in Sections IV and V. We discuss attack vectors,

potential impacts and their mitigations.

A. Chain Relay Poisoning

An adversary may attempt to poison the chainRelay with

false information regarding blockchain B. Such attacks are

equivalent to selfish mining [61] attacks, as the adversary must

trigger a chain reorganization according to the underlying con-

sensus rules. Even though in our model we assume f < n/3
(or α < 33%), if the assumptions regarding data availability

of the chainRelay do not hold (cf. Section V-B), a poisoning

attack can be successful well below this threshold. While an

adversary cannot prevent inclusion of transactions in I under

our model, the lack of honest block headers submitted to

the chainRelay may have alternate reasons, e.g. high cost. To

mitigate relay poisoning due to temporary lack of block header

data, we can introduce a maturity period ∆maturity for newly

generated CBAs [33], similar to that of newly minted coins in

PoW blockchains. If a (correct) conflicting chain is submitted

within ∆maturity , the pending CBAs are not issued.

B. Replay Attacks on Inclusion Proofs

Without adequate protection, inclusion proofs for transac-

tions on B can be replayed by: (i) the requester to trick the

iSC into issuing duplicate i(b) and (ii) the vault to reuse

a single transaction on B to falsely prove multiple redeem

requests. A simple and practical mitigation is to introduce

unique identifiers for each execution of Issue and Redeem and

require transactions on B submitted to the chainRelay of these

protocols to contain the corresponding identifier.

202

C. Counterfeiting

A vault which receives block from a requester during

Issue could use these coins to re-execute Issue itself, creating

counterfeit i(b), i.e., |block | < |i(b)|. To this end, the iSC

forbids vaults to move locked funds block received during

Issue. From Auditability we know any user with read access

to B can detect misbehavior and can submit a transaction

inclusion proof to the iSC showing the vault spent locked

funds block . To restore Consistency, the iSC slashes the vault’s

entire collateral and executes automatic liquidation, following

the steps described in Sections V-D and V-E, yielding negative

utility for the vault . To allow economically rational vaults

to move funds on B we describe Replace, a non-interactive

atomic cross-chain swap (ACCS) protocol based on cross-

chain state verification, in Appendix C.

D. Permanent Blockchain Splits

Permanent chain splits or hard forks occur where consensus

rules are loosened or conflicting rules are introduced [114], re-

sulting in multiple instances of the same blockchain. Thereby,

a mechanism to differentiate between the two resulting chains

(replay protection) is necessary for secure operation [86].

Backing Chain: If replay protection is provided after a

permanent split of B, the chainRelay must be updated to verify

the latter for B (or B′ respectively). If no replay protection

is implemented, the chainRelay will behave according to

the protocol rules of B for selecting the “main” chain. For

example, it will follow the chain with most accumulated PoW

under Nakamoto consensus.

Issuing Chain: A permanent fork on the issuing blockchain

results in two chains I and I ′ with two instances of the iSC

identified by the same public key. To prevent an adversary

exploiting this to execute replay attacks, both requester and

vault must be required to include the public key of the iSC

(or a digest thereof) in the transactions published on B as part

of Issue and Redeem (in addition to the identifiers introduces

in VII-B). Next, we identify two possibilities to synchronize

i(b) balances on I and I ′: (i) deploy a chain relay for I on I ′

and vice-versa to continuously synchronize iSC [24] and iSC′

states or (ii) redeploy the iSC on both chains and require users

and vaults to re-issue i(b), explicitly selecting I or I ′.

E. Denial-of-Service Attacks

XCLAIM is decentralized by design, thus making denial-

of-service (DoS) attacks difficult. Given that any user with

access to B and I can become a vault , an adversary would

have to target all vaults simultaneously. Where there are a

large number of vaults , this attack would be impractical and

expensive to perform. Alternatively, an attacker may try to

target the iSC. However, performing a DoS attack against the

iSC is equivalent to a DoS attack against the entire issuing

blockchain or network, which conflicts with our assumptions

of a resource bounded adversary and the security models of B
and I . Moreover, should an adversary perform a Sybil attack

and register as a large number of vaults and ignore service

requests to perform a DoS attack, the adversary would be

required to lock up a large amount of collateral to be effective.

This would lead to the collateral being slashed by the iSC,

making this attack expensive and irrational.

F. Fee Model Security: Sybil Attacks and Extortion

While the exact design of the fee model lies beyond the

scope of this paper, we outline the following two restrictions,

necessary to protect against attacks by malicious vaults .

Sybil Attacks: To prevent financial gains from Sybil attacks,

where a single adversary creates multiple low collateralized

vaults , the iSC can enforce (i) a minimum necessary collateral

amount and (ii) a fee model based on issued volume, rather

than “pay-per-issue”. In practice, users can in principle easily

filter out low-collateral vaults .

Extortion: Without adequate restrictions, vaults could set

extreme fees for executing Redeem, making redeeming of i(b)
unfeasible. To this end, the iSC must enforce that either (i)

no fees can be charged for executing Redeem or (ii) fees for

redeeming must be pre-agreed upon during Issue.

VIII. XCLAIM (BTC,ETH) IMPLEMENTATION AND

EVALUATION

We instantiate XCLAIM as XCLAIM (BTC,ETH) to is-

sue Bitcoin-backed tokens on Ethereum. Ethereum’s virtual

machine provides Turing completeness [63], fulfilling the

requirements (Section VI-B) for the issuing chain I . Bitcoin,

due to the limited operation set of its Script language [41]

only qualifies as a backing blockchain (Section VI-B). Both

Bitcoin and Ethereum use ECDSA with the secp256k1 Koblitz

curve [42], [78], providing native support for the correspond-

ing cryptographic operations. Ethereum further makes the

SHA-256 and RIPEMD-160 hash functions, which are used

in Bitcoin, available as pre-compiled contracts [63].

We implement the iSC smart contract on Ethereum in

Solidity v0.4.24 [27] in approximately 820 lines of code. On

Bitcoin we use regular P2PKH [40] transactions. We use

the existing Serpent [28] implementation of BTCRelay [6]

for the chainRelay component of the iSC. Bitcoin-backed

tokens per our implementation are compliant with the ERC20

token standard [10], and hence usable in most services on

Ethereum, including decentralized exchanges. To evaluate cost

and performance of XCLAIM (BTC,ETH), we deploy the iSC

on the Ethereum Ropsten test network [15]. For evaluations,

we assume a vault is registered with the iSC and has locked

in collateral on Ethereum.

A. Protocol Execution Costs

We define on-chain execution costs measured in USD as the

amount of Bitcoin and Ethereum transaction fees required to

execute each of the protocols: Issue, Transfer, Swap, Redeem

and Replace. The costs are calculated using current conversion

rates7. In Bitcoin, transaction fees are calculated based on

the transaction size, i.e., the number of consumed inputs and

generated outputs. To ensure transactions are included in the

7Storage and execution costs are in USD as per exchange rates of 30 Nov.
2018: BTC/USD 3717.38 and ETH/USD 105.71

203

TABLE II
Overview of execution costs7 and performance9 for the Issue, Transfer,

Swap and Redeem protocols in XCLAIM (BTC,ETH).

Protocols Transactions
Cost (USD) Duration

Ethereum Bitcoin Total (minutes)

Issue 2Eth 1Btc 0.16 0.31 0.47 75.98

Swap 2Eth 0.19 0.19 5.98

Redeem 2Eth 1Btc 0.18 0.31 0.49 75.98

Total 6Eth 2Btc 0.53
(46.1%)

0.62
(53,9%)

1.15 157.94

Transfer 1Eth 0.04 0.04 2.99

next generated block without delays, we calculate fees with 40

Satoshis (10−8 BTC) per byte [56]. In Ethereum, transaction

fees are measured in gas, depending both on the transaction

size and the cost of executed smart contract operations [63].

We assume a gas cost of 9 Gwei based on current network

fees for fast transaction inclusion [57].

We summarize our measurement results in Table II. In our

measurements, we refer to the complete process of issuing

(Issue), executing a trade (Swap) and then redeeming (Redeem)

an arbitrary amount of Bitcoin-backed tokens on Ethereum

as a round. Our experiments show a full protocol execution

round only costs USD 1.15. The main cost factor thereby

are Bitcoin transaction fees (53.9%). As such, transferring

ownership over units of Bitcoin via XCLAIM Bitcoin-backed

tokens on Ethereum costs only USD 0.04, in contrast to USD

0.31 if the transfer is executed natively on Bitcoin (87.1%

cheaper). We note, additional costs are incurred for keeping

BTCRelay up to date with the current state of the Bitcoin

blockchain, amounting to approximately USD 27 per day

(not included in the table). These costs are fixed and shared

among all users of XCLAIM; each user’s share decreases with

higher adoption of XCLAIM. We further note this number

constitutes an upper bound given current prices: (i) the existing

implementation of BTCRelay is non-optimal8 and (ii) our

measurements consider the worst case scenario where batched

block header submissions are not available (cf. Section V-B).

B. Performance

We evaluate the performance of XCLAIM (BTC,ETH) with

respect to the duration of the Issue, Transfer, Swap, Redeem

and Replace protocols (measurements provided in Table II).

Thereby, we adhere to the recommended security parameters

regarding transaction confirmations based on our threat model

(α ≤ 33%): kB = kBTC = 6 and kI = kETH = 12. Recall,

we consider a transaction in block at position j as securely

included when the blockchain tip reaches position h, with

h − j ≥ k. At the time of writing, the block time in Bitcoin

amounts to 10 minutes, and in Ethereum to 14 seconds.

8The Serpent language is not actively maintained (last commit on 1 October
2017) and is not optimized to the current version of the EVM, resulting in
higher execution costs. More efficient proofing techniques can further reduce
costs [72], [74], [85], [102].

9Performance is measured in minutes and includes security parameters: 6
conf. a 10 min for Bitcoin (kB); 12 conf. a 14 sec for Ethereum (kI).

Fig. 4. Comparison of BTC-ETH atomic swaps via XCLAIM and via HTLC
ACCS for 1000 individual swaps. Storage and execution costs (Left) are in
USD7; performance (Right, logarithmic y-axis) is measured in minutes9. We
observe XCLAIM is 95.7% faster and 65.4% cheaper for 1000 swaps.

One execution round of issuing, atomically swapping and

redeeming of Bitcoin-backed token on Ethereum requires 2

Bitcoin transactions (1 user transaction and 1 vault transac-

tion) and 6 Ethereum transactions (5 user transactions and 1

vault transaction). The end-to-end process is securely com-

pleted after 158 minutes; a Swap only takes 6 minutes, while

Issue and Redeem account for the greater part of the delay due

to Bitcoin transaction processing (96,2%). Note: we can use

off-chain payment channels [73], [88] on the issuing chain

(Ethereum) to significantly reduce execution cost and make

Swap real time (see Section IX).

C. Comparison to HTLC Atomic Swaps

We compare the performance and execution costs of

XCLAIM (BTC,ETH) to that of atomic cross-chain swaps

(ACCS) based on hashed-timelock contracts (HTLCs) [4],

[5], [105]. Both implementations are tested under identical

conditions, including fee calculation and security parameters.

We visualize the results of our experiments in Figure 4.
Each interactive atomic swap requires users to create two

transactions on both Bitcoin and Ethereum (4 in total). Includ-

ing a minimum necessary delay to prevent race conditions, an

atomic swap takes approximately 146.5 minutes to execute se-

curely. Note: we omit the additional necessary time to establish

out-of-band channels and exchange revocation transactions in

ACCS; hence the ACCS measurements are lower bounds.
In XCLAIM, after an initial Issue process, each additional

Swap requires only 2 Ethereum transactions. As such, using

XCLAIM to atomically exchange BTC against ETH is already

more efficient than ACCS after the second swap; for 1000

swaps XCLAIM is 95.7% faster. Similarly, XCLAIM (including

BTCRelay fees) outperforms ACCS cost-wise after the second

trade; for 1000 trades XCLAIM is 65.4% cheaper than ACCS.

Note, that a significant cost factor in XCLAIM (BTC,ETH)

are the non-optimized BTCRelay maintenance fees, which e.g.

account for 49.3% of the incurred cost for 1000 swaps.

IX. APPLICATIONS

This section provides a brief overview of several new and

novel applications enabled by XCLAIM cryptocurrency-backed

tokens. These applications illustrate how XCLAIM paves the

way for usable and scalable cross-chain communication.

204

Cross-Chain Payment Channels: Cryptographic payment

channels [47], [55], [73], [83], [88] address the performance

limitations of blockchain protocols [50], [65] by avoiding the

need to publish every transaction on the blockchain. Instead,

transactions are executed directly between participants off-

chain, and only the final balances of the participants are

published on the blockchain. Despite improving transaction

throughput and latency considerably, payment channels cannot

execute payments across different blockchains. As such, users

are required to setup and instantiate multiple channels, one for

every blockchain they wish to participate in. With XCLAIM,

however, payment channels deployed on a blockchain capable

of issuing XCLAIM CBAs become cross-blockchain compat-

ible automatically; users can transfer CBAs as per normal in

a payment channel network, and later redeem those CBAs

for native coins. As such, XCLAIM allows existing issuing

blockchains, such as Ethereum, to process transactions of any

backing cryptocurrency off-chain, without requiring changes to

the underlying code. XCLAIM can therefore be used to provide

novel contributions to state of the art payment channels.

Temporary Transaction Offloading: The design of XCLAIM

allows for both long-term and short-term issuance of CBAs.

As such, during temporary periods of high network conges-

tion [43] or transaction fee spikes [59], XCLAIM CBAs can

be used to temporarily switch to another blockchain for secure

payment processing. Moreover, users can temporarily leverage

this technique in XCLAIM to exploit features or benefits that

may be present in the issuing chain, but not on the backing

chain. For example, Bitcoin users may temporarily switch to

Bitcoin-backed tokens on Ethereum to avoid long transaction

processing times, or to leverage more complex transaction

scripts and smart contracts in Ethereum. Once such periods

have passed, users may exchange their CBA back to coins on

the native blockchain securely, without requiring trust.

N-Way and Multi-Party Atomic Swaps: XCLAIM is more ef-

ficient than atomic cross-chain swaps (ACCS), both in terms of

performance and cost (see Section VIII). In addition, XCLAIM

can be leveraged to perform more complex and intricate swap

constructions. For example, XCLAIM enables N-way atomic

swaps: by extending the Swap protocol in XCLAIM, users can

swap multiple different units of cryptocurrencies for others,

e.g. trading units of cryptocurrency x and y against units of

w and z atomically within a single swap. Comparing this to

ACCS, N -way swaps are impractical, as they would require

the creation of N locking and spending transactions, while

monitoring all involved chains for failures.

In addition, XCLAIM also enables multi-party atomic swaps.

Assume Alice owns coin x and wants to acquire coin y owned

by Bob. Bob, however, will only trade y for coin z owned by

Carol. Attempting to resolve this situation with ACCS would

require Alice to separately swap with Carol and then with

Bob, i.e., this process would not be atomic, resulting in 8

transactions on 3 different chains [4]. However, with XCLAIM,

if x, y and z are CBAs, Alice can construct a non-interactive

multi-party swap via the iSC, where a single transaction can

change the ownership of all 3 coins in iSC, atomically.

X. RELATED WORK

The only existing mechanism to perform a trustless cross-

chain transfer today is atomic cross-chain swaps (ACCS)

based on hashed timelocks [4], [5], [69], [105]. Although

ACCS enable trustless exchanges, they are interactive, i.e.,

they rely on all parties being online and monitoring the block-

chain throughout the exchange to ensure security. Each swap

thereby incurs long waiting periods to prevent fraud through

exploiting blockchain reorganizations, which substantially hin-

ders performance and involves synchronizing clocks between

independent blockchains. Moreover, ACCS are vulnerable to

packet and transaction memory-pool sniffing, allowing an

adversary to exploit blockchain race conditions to steal funds.

Finally, ACCS rely on a pre-established out-of-band communi-

cation channel between parties, required to exchange security-

critical revocation transactions [38], [104]. XCLAIM not only

avoids these problems, as discussed throughout the paper, but

is also more efficient in terms of execution costs and time.

Most existing approaches towards CBA systems require

trust in intermediaries. Liquid [52], RSK [82] and PoA Net-

work [25] use permissioned blockchains on the issuing side,

where a pre-defined set of validators is trusted with control

over assets on the backing chain. As such, these systems

resemble CENTRALCLAIM. In contrast, XCLAIM makes no

such trust assumptions and, in fact, can be applied to improve

security of CBAs issued on or from permissioned blockchains,

just like with CENTRALCLAIM. Dogethereum, a trustless

CBA approach similar to XCLAIM was described in a report

released online subsequently [103]. Bentov et al. describe

how to tokenize exiting cryptocurrencies via trusted execution

environments (TEEs) [38]. TEEs however, are known to be

vulnerable to a wide range of side-channel attacks [67], [110],

[113] and require trust in the hardware manufacturer.

Other approaches attempting to achieve blockchain in-

teroperability, such as Polkadot [22], [111], Cosmos [81],

AION [101] and COMIT [70], to this date, only achieve

communication between instances of their own permissioned

blockchains, i.e., they support sharding [49] rather than cross-

chain communication. XCLAIM can connect these systems to

permissionless blockchains such as Bitcoin and Ethereum.

XI. CONCLUSION

In this paper, we formalized the notion of cryptocurrency-

backed assets. We presented XCLAIM, a system for issuing,

transferring, swapping and redeeming cryptocurrency-backed

assets between blockchains, without necessitating trust. We

provided a detailed analysis of XCLAIM’s design, a formal

protocol specification and identified requirements for the

underlying blockchains. XCLAIM is general in design and

supports many existing cryptocurrencies without modification.

We implemented XCLAIM (BTC,ETH) to construct Bitcoin-

backed tokens on Ethereum and evaluated the performance and

execution costs; XCLAIM achieves a significant improvement

over atomic cross-chain swaps. Finally, we outlined several

novel and interesting applications enabled by XCLAIM.

205

REFERENCES

[1] “0xproject whitepaper,” https://0xproject.com/pdfs/0x white paper.
pdf, accessed: 2018-05-23.

[2] “Airswap,” https://www.airswap.io/, accessed: 2018-07-30.
[3] “Bitcoin Developer Guide: Simplified Payment Veri-

fication (SPV),” https://bitcoin.org/en/developer-guide#
simplified-payment-verification-spv, accessed: 2018-05-16.

[4] “Bitcoin Wiki: Atomic cross-chain trading,” https://en.bitcoin.it/wiki/
Atomic cross-chain trading, accessed: 2018-05-16.

[5] “Bitcoin Wiki: Hashed Time-Lock Contracts,” https://en.bitcoin.it/wiki/
Hashed Timelock Contracts, accessed: 2018-05-16.

[6] “Btcrelay,” https://github.com/ethereum/btcrelay, accessed 2018-04-17.
[7] “Cardano sl,” https://github.com/input-output-hk/cardano-sl, accessed:

2018-07-30.
[8] “Counterparty,” https://counterparty.io/, accessed: 2018-05-03.
[9] “Dogerelay,” https://github.com/dogethereum/dogerelay, accessed

2018-04-17.
[10] “Erc20: Token standard,” https://github.com/ethereum/EIPs/issues/20,

accessed 2018-06-27.
[11] “Erc223: Token standard,” https://github.com/ethereum/EIPs/issues/

223, accessed 2018-06-27.
[12] “Erc721: Non-fungible token standard,” https://github.com/namecoin/

namecoin, accessed 2018-06-27.
[13] “Etherdelta,” https://etherdelta.com/, accessed: 2018-07-30.
[14] “Ethereum Classic,” https://github.com/ethereumproject, accessed:

2018-05-23.
[15] “Etherscan - ropsten testnet explorer,” https://ropsten.etherscan.io/, ac-

cessed: 2018-05-23.
[16] “Idex whitepaper,” https://idex.market/static/IDEX-Whitepaper-V0.7.5.

pdf, accessed: 2018-05-23.
[17] “Komodo barterdex,” https://github.com/KomodoPlatform/

KomodoPlatform/wiki/BarterDEX-%E2%80%
93-A-Practical-Native-DEX, accessed: 2018-11-28.

[18] “Kyber network whitepaper,” https://home.kyber.network/assets/
KyberNetworkWhitepaper.pdf, accessed: 2018-05-23.

[19] “Light client protocol,” https://github.com/ethereum/wiki/wiki/
Light-client-protocol, accessed: 2018-11-20.

[20] “Neo whitepaper,” http://docs.neo.org/en-us/, accessed: 2018-07-30.
[21] “Omnilayer specification,” https://github.com/OmniLayer/spec, ac-

cessed: 2018-05-03.
[22] “Parity-Bridge,” https://github.com/paritytech/parity-bridge, accessed:

2018-05-21.
[23] “The parity light protocol - wiki,” https://wiki.parity.io/

The-Parity-Light-Protocol-(PIP), accessed: 2018-10-30.
[24] “Peace relay,” https://github.com/loiluu/peacerelay, accessed 2018-04-

17.
[25] “Poa bridge,” https://github.com/poanetwork/poa-bridge, accessed:

2018-05-23.
[26] “Project alchemy,” https://github.com/ConsenSys/Project-Alchemy, ac-

cessed 2018-04-17.
[27] “Solidity progamming language,” https://github.com/ethereum/solidity,

accessed: 2018-07-30.
[28] “The witness algorithm: Privacy protection in a fully transparent

system,” https://gist.github.com/gavofyork/dee1f3b727f691b381dc, ac-
cessed: 2018-07-30.

[29] “Tether: Fiat currencies on the bitcoin blockchain,” https://tether.to/
wp-content/uploads/2016/06/TetherWhitePaper.pdf, 2016.

[30] “Decred cross-chain atomic swapping,” https://github.com/decred/
atomicswap, 2017, accessed: 2018-05-16.

[31] E. Androulaki, C. Cachin, A. De Caro, and E. Kokoris-Kogias,
“Channels: Horizontal scaling and confidentiality on permissioned
blockchains,” in European Symposium on Research in Computer Secu-

rity. Springer, 2018, pp. 111–131.
[32] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum

smart contracts (sok),” in International Conference on Principles of

Security and Trust. Springer, 2017, pp. 164–186.
[33] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,

A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling block-
chain innovations with pegged sidechains,” https://blockstream.com/
sidechains.pdf, 2014, accessed: 2016-07-05.

[34] A. Back et al., “Hashcash-a denial of service counter-measure,” http:
//www.hashcash.org/papers/hashcash.pdf, 2002, accessed: 2016-03-09.

[35] C. Baldwin, “Bitcoin worth $72 million stolen from
bitfinex exchange in hong kong,” Reuters, accessed:
2018-05-23. [Online]. Available: https://www.reuters.com/article/
us-bitfinex-hacked-hongkong-idUSKCN10E0KP

[36] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity.” IACR

Cryptology ePrint Archive, vol. 2018, p. 46, 2018.
[37] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,

and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in Security and Privacy (SP), 2014 IEEE Symposium on.
IEEE, 2014, pp. 459–474.

[38] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian, and
A. Juels, “Tesseract: Real-time cryptocurrency exchange using trusted
hardware.” IACR Cryptology ePrint Archive, vol. 2017, p. 1153, 2017.

[39] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proceedings of the 3rd Innovations in Theoretical

Computer Science Conference. ACM, 2012, pp. 326–349.
[40] “Pay-to-Pubkey Hash,” https://en.bitcoinwiki.org/wiki/Pay-to-Pubkey

Hash, bitcoin.it, accessed: 2018-11-28.
[41] “Script,” https://en.bitcoin.it/wiki/Script, bitcoin.it, accessed: 2018-11-

28.
[42] S. Blake-Wilson and M. Qu, “Standards for efficient cryptography

(sec) 2: Recommended elliptic curve domain parameters,” Certicom

Research, Oct, 1999.
[43] “Bitcoin transaction fees,” https://www.blockchain.com/en/charts/

transaction-fees?timespan=all, Blockchain.com, accessed: 2018-11-28.
[44] E. Buchman, “Tendermint: Byzantine fault tolerance in the age

of blockchains,” http://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/
10214/9769/Buchman Ethan 201606 MAsc.pdf, Jun 2016, accessed:
2017-02-06.

[45] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,”
in Bulletproofs: Short Proofs for Confidential Transactions and More.
IEEE, 2018.

[46] V. Buterin, “Ethereum: A next-generation smart contract and decen-
tralized application platform,” https://github.com/ethereum/wiki/wiki/
White-Paper, 2014, accessed: 2016-08-22.

[47] Christian Decker and Roger Wattenhofer, “A fast and scalable payment
network with bitcoin duplex micropayment channels,” in Symposium

on Self-Stabilizing Systems. Springer, 2015, pp. 3–18.
[48] “Coinmarketcap,” http://coinmarketcap.com/, CoinMarketCap, ac-

cessed 2016-09-10.
[49] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,

S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Googles globally distributed database,” ACM Transactions on Com-

puter Systems (TOCS), vol. 31, no. 3, p. 8, 2013.
[50] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,

A. Miller, P. Saxena, E. Shi, and E. Gün, “On scaling decentralized
blockchains,” in 3rd Workshop on Bitcoin and Blockchain Research,

Financial Cryptography 16, 2016.
[51] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin

network,” in Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth

International Conference on. IEEE, 2013, pp. 1–10.
[52] J. Dilley, A. Poelstra, J. Wilkins, M. Piekarska, B. Gorlick, and

M. Friedenbach, “Strong federations: An interoperable blockchain solu-
tion to centralized third party risks,” arXiv preprint arXiv:1612.05491,
2016.

[53] J. R. Douceur, “The sybil attack,” in International Workshop on Peer-

to-Peer Systems. Springer, 2002, pp. 251–260.
[54] C. Dwork and M. Naor, “Pricing via processing or combatting junk

mail,” in Annual International Cryptology Conference. Springer, 1992,
pp. 139–147.

[55] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun:
Virtual payment hubs over cryptocurrencies,” in To appear in the

Proceedings of the IEEE), IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 2019.

[56] “Predicting bitcoin fees for transactions,” https://bitcoinfees.earn.com/,
earn.com, accessed: 2018-11-28.

[57] “Ethereum fee estimates,” https://ethgasstation.info/, ETH Gas Station,
accessed: 2018-11-28.

[58] Ethereum community, “Ethereum: A secure decentralised generalised
transaction ledger,” https://github.com/ethereum/yellowpaper, accessed:
2016-03-30.

206

[59] “Ethereum BlockSize History,” https://etherscan.io/chart/blocksize,
Etherscan.io, accessed: 2018-11-28.

[60] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse, “Bitcoin-ng: A
scalable blockchain protocol,” in 13th USENIX Security Symposium on

Networked Systems Design and Implementation (NSDI’16). USENIX
Association, Mar 2016. [Online]. Available: http://www.usenix.org/
system/files/conference/nsdi16/nsdi16-paper-eyal.pdf

[61] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in Financial Cryptography and Data Security. Springer,
2014, pp. 436–454.

[62] J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol with chains of variable difficulty,” http://eprint.iacr.org/2016/
1048.pdf, 2016, accessed: 2017-02-06.

[63] Gavin Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger eip-150 revision (759dccd - 2017-08-07),” https://ethereum.
github.io/yellowpaper/paper.pdf, 2017, accessed: 2018-01-03.

[64] P. Gaži, A. Kiayias, and D. Zindros, “Proof-of-stake sidechains,” in
To appear in the Proceedings of the IEEE Symposium on Security &

Privacy. IEEE Computer Society Press, 2019.
[65] A. Gervais, G. Karame, S. Capkun, and V. Capkun, “Is bitcoin a

decentralized currency?” in IEEE Security & Privacy, vol. 12, no. 3,
2014, pp. 54–60.

[66] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2016, pp. 3–16.
[67] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on

intel sgx,” in Proceedings of the 10th European Workshop on Systems

Security. ACM, 2017, p. 2.
[68] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on

bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium

(USENIX Security 15), 2015, pp. 129–144.
[69] M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018

ACM Symposium on Principles of Distributed Computing. ACM,
2018, pp. 245–254.

[70] J. Hosp, T. Hoenisch, and P. Kittiwongsunthorn, “Comit net-
work,” https://www.comit.network/doc/COMIT%20white%20paper%
20v1.0.2.pdf, 2017, accessed: 2018-07-30.

[71] Intel, “Intel software guard extensions (intel sgx) sdk,” https://software.
intel.com/sgx-sdk, accessed: 2018-05-23.

[72] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten, “Arbitrum: Scalable, private smart contracts,” in Proceedings

of the 27th USENIX Conference on Security Symposium. USENIX
Association, 2018, pp. 1353–1370.

[73] R. Khalil, A. Gervais, and G. Felley, “Nocust–a non-custodial 2 nd-
layer financial intermediary,” IACR Cryptology ePrint Archive, vol.
2018, p. 1642.

[74] A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proof-
of-work,” IACR Cryptology ePrint Archive, vol. 2017, p. 963, 2017.

[75] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” Cryptology ePrint
Archive, Report 2016/889, 2016, https://eprint.iacr.org/2016/889.

[76] A. Kiayias and D. Zindros, “Proof-of-work sidechains,” 2019.
[77] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency

with proof-of-stake,” https://peercoin.net/assets/paper/peercoin-paper.
pdf, Aug 2012, accessed: 2017-01-07. [Online]. Available: https:
//peercoin.net/assets/paper/peercoin-paper.pdf

[78] N. Koblitz, “Cm-curves with good cryptographic properties,” in Annual

international cryptology conference. Springer, 1991, pp. 279–287.
[79] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and

B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 583–598.

[80] D. Kraft, “Difficulty control for blockchain-based consensus systems,”
in Peer-to-Peer Networking and Applications, vol. 9, no. 2, 2016, pp.
397–413.

[81] J. Kwon and E. Buchman, “Cosmos: A network of distributed ledgers,”
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md,
2015.

[82] S. D. Lerner, “Rootstock: Bitcoin powered smart contracts,” https://
docs.rsk.co/RSK White Paper-Overview.pdf, 2015.

[83] J. Lind, I. Eyal, F. Kelbert, O. Naor, P. Pietzuch, and E. G. Sirer,
“Teechain: Scalable blockchain payments using trusted execution en-
vironments,” arXiv preprint arXiv:1707.05454, 2017.

[84] Litecoin community, “Litecoin reference implementation,” github.com/
litecoin-project/litecoin, accessed: 2017-06-30.

[85] L. Luu, B. Buenz, and M. Zamani, “Flyclient super
light client for cryptocurrencies,” accessed 2018-04-17. [On-
line]. Available: https://stanford2017.scalingbitcoin.org/files/Day1/
flyclientscalingbitcoin.pptx.pdf

[86] P. McCorry, E. Heilman, and A. Miller, “Atomically trading with roger:
Gambling on the success of a hardfork,” in CBT’17: Proceedings

of the International Workshop on Cryptocurrencies and Blockchain

Technology, Sep 2017.

[87] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the Theory and Application of Crypto-

graphic Techniques. Springer, 1987, pp. 369–378.

[88] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry, “Sprites: Payment
channels that go faster than lightning,” in Financial Cryptography and

Data Security, 2019.

[89] Moore, Tyler and Christin, Nicolas, “Beware the middleman: Empirical
analysis of bitcoin-exchange risk,” in International Conference on

Financial Cryptography and Data Security. Springer, 2013, pp. 25–33.

[90] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https:
//bitcoin.org/bitcoin.pdf, Dec 2008, accessed: 2015-07-01.

[91] Namecoin community, “Namecoin reference implementation,” https:
//github.com/namecoin/namecoin, accessed 2017-06-30.

[92] J. Nash, “Non-cooperative games,” Annals of mathematics, pp. 286–
295, 1951.

[93] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic

game theory. Cambridge University Press, 2007.

[94] K. Okupski, “Bitcoin protocol specification,” https://github.com/
minium/Bitcoin-Spec, accessed: 2014-10-14.

[95] J. Pagliery, “Another bitcoin exchange goes down,” CNN Tech, ac-
cessed: 2018-05-23.

[96] R. Pass, L. Seeman, and a. shelat, “Analysis of the blockchain protocol
in asynchronous networks,” IACR Cryptology ePrint Archive, vol. 2016,
p. 454, 2016.

[97] M. Rosenfeld, “Overview of colored coins,” https://bitcoil.co.il/
BitcoinX.pdf, 2012, accessed: 2016-03-09.

[98] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” in International Conference on Financial Cryp-

tography and Data Security. Springer, 2016, pp. 515–532.

[99] I. Sergey, A. Kumar, and A. Hobor, “Scilla: a smart contract
intermediate-level language,” arXiv preprint arXiv:1801.00687, 2018.

[100] Y. Sompolinsky and A. Zohar, “Bitcoin’s security model revisited,”
arXiv preprint arXiv:1605.09193, 2016.

[101] M. Spoke and Nuco Engineering Team, “Aion: The third-
generation blockchain network,” https://aion.network/media/2018/03/
aion.network technical-introduction en.pdf, accessed 2018-04-17.

[102] J. Teutsch and C. Reitwießner, “A scalable verification solution for
blockchains,” https://truebit.io/, March 2017, accessed:2017-10-06.

[103] J. Teutsch, M. Straka, and D. Boneh, “Retrofitting a two-way
peg between blockchains,” Tech. Rep., 2018. [Online]. Available:
https://people.cs.uchicago.edu/∼teutsch/papers/dogethereum.pdf

[104] S. Thomas and E. Schwartz, “A protocol for interledger payments,”
https://interledger.org/interledger.pdf, 2015.

[105] TierNolan, “Atomic swaps using cur and choose,” https://bitcointalk.
org/index.php?topic=1364951, 2016, accessed: 2018-05-16.

[106] V. Buterin, “Chain interoperability,” https://static1.squarespace.com/
static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/
1485209617040/Chain+Interoperability.pdfi, 2016, accessed: 2018-11-
30.

[107] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel {SGX} kingdom with
transient out-of-order execution,” in 27th {USENIX} Security Sympo-

sium ({USENIX} Security 18), 2018, pp. 991–1008.

[108] J. Von Neumann and O. Morgenstern, “Theory of games and economic
behavior,” 1944.

[109] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in International Workshop on Open Problems in

Network Security. Springer, 2015, pp. 112–125.

[110] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Asyncshock:
Exploiting synchronisation bugs in intel sgx enclaves,” in European

Symposium on Research in Computer Security. Springer, 2016, pp.
440–457.

207

[111] G. Wood, “Polkadot: Vision for a heterogeneous multi-chain frame-
work,” White Paper, 2015.

[112] K. Wu, S. Wheatley, and D. Sornette, “Classification of cryptocurrency
coins and tokens by the dynamics of their market capitalizations,” Royal

Society Open Science, vol. 5, no. 9, p. 180381, 2018.
[113] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-

ministic side channels for untrusted operating systems,” in Security and

Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 640–656.
[114] A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and

W. J. Knottebelt, “(Short Paper) A Wild Velvet Fork Appears! Inclusive
Blockchain Protocol Changes in Practice,” in 5th Workshop on Bitcoin

and Blockchain Research, Financial Cryptography and Data Security

18 (FC). Springer, 2018.

APPENDIX A

ACKNOWLEDGEMENTS

The authors would like to thank Nicholas Stifter, Pedro

Moreno-Sanchez, Andrew Miller, Georgia Avarikiot, Peter

Smith and Edgar Weippl for helpful comments and insight-

ful discussions. The authors also wish to thank the IEEE

S&P reviewers for their valuable comments that significantly

improved the presentation of our results. This research was

sponsored by Blockchain.com, Outlier Ventures, Bridge 1

858561 SESC, Bridge 1 864738 PR4DLT (all FFG), the

Christian Doppler Laboratory for Security and Quality Im-

provement in the Production System Lifecycle (CDL-SQI),

and the competence center SBA-K1 funded by COMET.

APPENDIX B

SYMBOLS AND NOTATIONS

Table III provides an overview of symbols and variables

used in this paper.

TABLE III
Summary of used symbols and notations.

Symbol Description

B Backing blockchain

b Cryptocurrency unit underlying the backing
blockchain B

block Units of b locked by a requester with a
vault during Issue

I Issuing blockchain

i Cryptocurrency unit underlying the issuing
blockchain I

icol Units of i locked by a user with the iSC

i(b) Unit of a CBA on I backed by units of b
on B

kX Security parameter of blockchain X . De-
fines how many confirmations are necessary
for secure transaction inclusion

∆X Maximum delay from transaction broadcast
to secure inclusion in blockchain X

rτ Upper bound for deviations of expected and
observed ratio between block generation
rates of B and I .

∆X
tx Maximum delay from transaction broadcast

to receipt by honest consensus participants
in X

ε(i,b) Exchange rate of i to b, given by oracle O

min ε(i,b) Lower bound for ε(i,b) below which
econom. rational adversaries are incen-
tivized to misbehave

∆min(ε) Delay before ε(i,b) falls below lower bound
min(ε(i,b))

τX Block generation rate of blockchain X

(pkXu , skXu) Public / private key pair of user u on block-
chain X

σX
u Digital signature of user u on chain X , i.e.,

via skXu

TX
id

Transaction created on blockchain X with
identifier id

operation(in) → out Operation taking in as input an generating
output out

operation Short for operation with default inputs and
outputs

cond Conditions used to lock coins, e.g. present-
ing a user’s digital signature σuser

∆id Time delay introduced in XCLAIM’s proto-
cols with identifier id

rcol Ideal (parameterized) collateralization rate
of vaults

r∗
col

Observed collateralization rate of a vault in
XCLAIM

r
liq
col

Collateralization threshold for automatic
liquidation

208

APPENDIX C

ATOMIC vault REPLACEMENT

Until now, we have assumed a vault cannot locked funds

block on B and must remain in XCLAIM until the latter is fully

redeemed by users. In a real world scenario, the vault may

wish to leave and transfer their role to another party earlier, or

move funds to a different account on B for practical purposes.

To this end, we describe Replace, a non-interactive atomic

cross-chain swap (ACCS) protocol based on cross-chain state

verification, which allows vaults to move funds on B without

being punished by the iSC.
Protocol: Replace. vault migrates locked funds b to vault ′,

who replaces vault’s collateral in the iSC.

1) Setup. The vault submits a replacement request to the iSC

and locks up collateral ireplacecol , sufficient to cover costs of

a transaction on I .

2) Lock. A new candidate vault ′ can lock the corresponding

amount of collateral for a pre-defined period ∆replace with

the iSC on I , such that |ivaultcol | = |ivault
′

col |, providing their

public key on backing chain B.

3) Migrate. Within ∆replace > ∆relay , the still active vault

must migrate the locked block to the public key of vault ′

on B and submit the corresponding transaction inclusion

proofs to the chainRelay on I .

4) Release. The chainRelay verifies the migration was exe-

cuted correctly on B and the iSC releases the old vault’s

collateral, i.e., both ivaultcol and ireplacecol . If the vault does

not execute the migration on B within ∆replace, the iSC

releases the new candidate’s collateral, while using ireplacecol

to reimburse wasted transaction fees.

Performance and Costs: We implement Replace in Solidity

v0.4.24 and measure the performance and execution costs of

Replace under the conditions described in Section VIII. The

results of our experiments are presented in Table IV. Note: the

duration and costs of Replace depend on the number of Bitcoin

UTXOs which need to be migrated. The provided numbers are

hence lower bounds.
Collateral Balancing: We can further use the Replace proto-

col to enable re-balancing of collateral among vaults . Assume

a vault’s observed collateralization rate r∗col has dropped

significantly below ideal rate rcol. To prevent automatic liq-

uidation, the vault must contribute additional collateral to

the iSC on I . Alternatively, the vault can execute Replace

to migrate a fraction of total locked coins block to vault ′,

so as to re-balance her collateralization rate r∗col. Should no

single vault have sufficient free collateral to complete the re-

balancing, the Replace protocol can be executed iteratively

with multiple vaults , e.g. until r∗col ≥ rcol holds. This

procedure is specifically useful if a vault cannot provide

additional collateral due to insufficient funds on I but intends

to ensure secure operation of iSC.

APPENDIX D

PROOF-OF-WORK CHAIN RELAY MODEL

As discussed in Section V-B, a chain relay is a program

deployed on a blockchain, capable of reading and verifying

protocol Replace

vault .lock(ireplace
col

, σI
SC)

vault′.lock(i′col , σ
I
SC)

vault .transferB(block , pk
B
vault′

) /* → TB
transfer*/

vault submits TB
transfer to iSC calling verifyBOp

if iSC.verifyBOp(transferB,TB
transfer , ∆replace) = ⊤ then

iSC.release(icol , pk
I
vault)

iSC.release(ireplace
col

, pkIvault)
else

iSC.release(icol′ , pk
I
vault′

)

iSC.slash(ireplace
col

, pkIvault′)

Fig. 5. Algorithm specifying XCLAIM’s Replace protocol for securely moving
/ swapping locked funds block on B.

TABLE IV
Performance and execution costs of XCLAIM’s Replace protocol.

Transactions
Cost (USD) Duration

Ethereum Bitcoin Total (minutes)

3Eth 2Btc+ 0.13 0.62 0.75 148.97+

the state of some other blockchain, comparable to the notion

of SPV-Clients [3]. That is, a chain relay stores and maintains

block headers and allows to verify transaction inclusion proofs.

In the following, we provide a formal model for the re-

quirements of a program π to represent a functioning chain

relay for a proof-of-work blockchain C. Then, we discuss the

practical challenges faced by chain relays today.

A. Model

Notation. We denote H(x) as the output of a cryptographic

hash function over some input x. Further, Bi shall denote

the block header of the block at position i in the blockchain,

represented by the tuple 〈Si−1, Ti,Mi,Ni, ti〉, where

• Si−1 is the reference to the PoW hash (i.e., solution) of the

predecessor of block i,
• Ti is the (expected) PoW difficulty target at block i as

defined by consensus rules,

• Mi is the root hash of the Merkle tree of the hashes of all

transactions (T0,T1, ...,Tn) included in i,
• Ni is the random nonce used to generate the PoW solution

hash Si = H(Bi),
• and ti is the timestamp specifying when block i was

generated.

We refer to the header of the first (i = 0) or so called genesis

block as G. We assume protocol rules of C require that the

PoW difficulty target T is adjusted every r blocks based on

the relation of the time between each two adjustments and

some pre-defined desired block generation rate τ . Note, while

potentially useful for more extensive block validity checks, for

simplification we ignore other information usually included in

the block headers. Furthermore, as it is not of greater relevance

to our model, we assume the same cryptographically secure

hash function H() is used to calculate both the hashes of block

headers and transactions.

209

We require a chain relay program π to support the following

functionalities with regards to the state of a Proof-of-Work

blockchain C:

Functionality 1 (Difficulty Adjustment).

Program π has knowledge of the difficulty adjustment rate r
and ideal block generation rate τ and, given Bi and Bi+r,

where i (mod i) = 0, outputs the new difficulty target Ti+r

according to consensus rules of C.

Functionality 2 (Block Validation).

Program π has a function checkBlock which takes as input

a block header Bi and a PoW solution Si, and returns True if

and only if Bi is the pre-image of Si, Ti is the difficulty target

required at block i and it holds that Si ≤ Ti.

Functionality 3 (Chain Validation).

Program π has a function checkChain which takes as input

the genesis block G, a list of consecutive block headers

(B1,B2, ...,Bn) and the list of corresponding PoW solutions

(S1,S2, ...,Sn), and returns True if and only if for each tuple

(Bi,Si)|i ≤ n, it holds that checkBlock(Bi,Si) = True and

for each two consecutive block headers Bi and Bi+1 it holds

that Si ∈ Bi+1, i.e., Bi is the predecessor of Bi+1.

Definition 1 (Valid Chain).

We define the tuple 〈G, (B1, ...,Bn), (S1, ...,Sn)〉 as a valid

chain if checkChain outputs True given this tuple as input.

Functionality 4 (Main Chain Detection).

Program π provides a function denoted mainChain which

takes as input two valid chains

〈G, (B1, ...,Bi,Bi+1, ...,Bn), (S1, ...,Si,Si+1, ...,Sn)〉 and

〈G, (B1, ...,Bi,B
′
i+1, ...,B

′
m), (S1, ...,Si,S

′
i+1, ...,S

′
m)〉 where

n 6= m and for every j ≥ i it holds that Bj 6= B′
j , Sj 6= S ′

j ,

and outputs the main chain according to the consensus rules

of C, e.g., the longest chain in the case of Nakamoto consenus.

Functionality 5 (Transaction Inclusion Verification).

Program π provides a function checkTransaction which,

if given a valid chain 〈G, (B1, ...,Bn), (S1, ...,Sn)〉, a block

header Bi, a transaction T and a Merkle tree path p, outputs

True if and only if H(T) is contained in the Merkle tree

with root Mi ∈ Bi at the position defined by p, Bi ∈
(B1, ...,Bn)|i ≤ n and the provided chain is the main chain

of C.

Definition 2 (Chain Relay).

A program π is a chain relay of a Proof-of-Work blockchain

C, if it satisfies Requirements 1-5 with regards to C.

B. Practicability of Chain Relays

Existing chain relays [6], [24], [26] require to store all

block headers of the verified blockchain, which can incur

substantial cost. Furthermore, the verification of PoW requires

to implement the verification procedure for the respective

hash functions. However, if native support for the necessary

cryptographic primitives is not provided in the blockchain

the relay is deployed on, verification may be infeasible. For

example, Ethereum currently only allows feasible chain relays

for a subset of existing of blockchains, which: (i) use the same

PoW algorithm, e.g. Ethereum Classic [24], or (ii) SHA-256

available as pre-compiled contract, such as Bitcoin [6] and

Namecoin [91].

The main performance and cost challenges of chain relays

as such lie in (i) efficient PoW / hash pre-image verification

and (ii) reduction of necessary input data (block headers). The

former can in theory be achieved by using non-interactive

zero-knowledge proof (ZKP) systems such as SNARKs [39],

STARKs [36] or Bulletproofs [45] for hash pre-image verifi-

cation (assuming the corresponding arithmetic circuits can be

efficiently constructed). Alternatively, the verification of PoW

can be outsources to users [9], [102], with disputes handled

via interactive games or ZKPs in smart contracts. However,

existing schemes have been shown to currently suffer security

challenges [72].

New proposals for efficient SPV clients, leveraging concepts

such as NiPoPoW [74], [76] or FlyClient [85], can signif-

icantly reduce verification costs by reducing the number of

stored block headers. At the moment of writing, however, both

require additional data to be included in the block headers of

the to-be-verified blockchain and do not provide details on how

to handle difficulty adjustments. While this can be achieved as

a velvet fork [74], [114], the performance improvement and

security of these schemes rely on the availability of this data.

Finally, deploying chain relays in trusted execution envi-

ronments (TEEs) (e.g. Intel SGX [71]) may present a cheap

and scalable approach to cross-chain state verification, at

the cost of trusting hardware manufacturers. However, recent

vulnerabilities detected in well known TEE implementations,

in particular to side-channel attacks [67], [107], [110], [113],

highlight existing security risks and raise questions about

current applicability to financial systems. Furthermore, de-

ploying blockchain clients in trusted execution environments

may require modifications to the original implementation,

increasing the long term maintenance costs and potentially

introducing compatibility issues with protocol upgrades, e.g.

hard forks.

210

