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Abstract—As the R&D experience accumulates, there is a 
rising interest of wireless sensor network (WSN) deployment in 
the urban environment.  For mission critical applications such 
as healthcare and workplace safety, in particular, it is essential 
that the data dissemination mechanisms satisfy two important 
quality of service (QoS) requirements: (1) high delivery rate 
and (2) low transmission delay. Proposed in this work is a 
cross-layer designed data dissemination mechanism, referred 
to as Cross-Layer Diffusion (XD), in which notions in the path 
discovery (routing) component are exploited by data 
forwarding (MAC) component to improve the delivery rate 
and transmission delay. Using traces collected from a 
prototype WSN deployed in urban environment, we compare 
XD to the state-of-the-art mechanisms and find that XD is not 
only more efficient but also more practical. 

Keywords- Urban Wireless Sensor Network; Data 
Dissemination, Cross-Layer Design 

I.  INTRODUCTION 
Envisioning a new generation of mission-critical 

applications in the urban environment, we seek mechanisms 
that provide reliable and timely transmissions of sensor data.  
The two QoS requirements, (1) high data delivery rate and (2) 
low end-to-end transmission delay, need to be jointly 
considered when devising such mechanisms. It is, however, 
not trivial to satisfy the two requirements at the same time. 
For high delivery rate, one often takes the ARQ approach [1] 
to retransmit lost data.  This adds to the end-to-end delay and, 
in a way, trades off the other QoS requirement for mission-
critical applications. Alternatively, one may take the FEC 
approach [2] which transmits redundant data to raise the 
probability of having at least one copy arriving at the data 
sink. This approach appears to allow timely delivery of data 
in the presence of loss, but it could also come back to haunt 
the network in terms of both loss and delay if the degree of 
redundancy is not cautiously administered.  Taking an FEC-
with-care approach, we propose a cross-layer designed data 
collection mechanism, referred to as Cross-Layer Diffusion 
(XD).  

XD is a mission-critical data collection mechanism with 
(1) opportunistic redundancy and (2) collision avoidance. 
The path discovery part of XD is based on a multi-path 

shortest path routing mechanism referred to as Magnetic 
Diffusion (MD) [3]. In that, the network establishes a 
magnetic field across the WSN, with decreasing magnetic 
charges radiating from the sink. Sensor data, in turn, travel 
the network tending to the nodes with higher magnetic 
charges until reaching the sink, mimicking how metallic 
objects (data) are attracted by a magnet (sink). If there exist 
multiple shortest paths in the WSN topology, all of such 
paths will be discovered by the mechanism. As a result, 
sensor data are disseminated with redundancy in a way that 
duplicates will travel multiple shortest paths.  Such 
redundancy is desired by mission-critical applications in that 
the data delivery rate tends to be high and the end-to-end 
delay tends to be low.  Because the degree of redundancy 
depends on the network topology, we refer to this property of 
XD as opportunistic redundancy.  

The data forwarding part of XD is co-designed with the 
path discovery component. In that, a hybrid TDMA and 
CSMA mechanism is proposed to administer the forwarding 
of sensor data.  The rationale behind such a design is that, 
with the opportunistic redundancy, there will be a higher 
amount of bits travelling the WSN which increases the 
chance of collision. TDMA-based solutions are effective 
avoiding collisions in high traffic load cases. However, 
conventional TDMA divides the time slots in a cycle by 
individual nodes in the neighborhood. This results in higher 
end-to-end delays in densely-deployed WSNs. The 
conventional TDMA mechanisms do not scale to the density 
of the WSNs. 

Our contribution lies in the design of a novel TDMA 
mechanism utilizing the magnetic charges established by the 
path discovery component. In our design, nodes of the same 
magnetic charge send data at the same time slot. A cycle is 
divided into three time slots only. A node with magnetic 
charge C transmits data at time slot C mod 3. This prevents 
data coming from a level up or a level down to collide at the 
middle level (hidden terminal). Furthermore, to avoid data 
collisions among the nodes of the same charge, a CSMA 
mechanism is applied within each level. I.e., each node 
listens to the channel and makes sure other nodes at the same 
charge level are indeed idle before transmitting. The TDMA 



Figure 1. Flow of Control and Data Packets 
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Figure 5. Hidden Terminal Effect around Sink. 

is thus not to establish a 100% contention-free network but to 
avoid as many collisions as possible with redundancy. More 
specifically, the TDMA part of the design eliminates 
collisions from hidden terminals two magnetic charge levels 
apart and its CSMA counterpart avoids collisions between 
neighboring nodes. 

To elaborate in more detail the design rationale, we 
classify collisions in MD networks into six canonical types. 
In Figure 2, node A and B are sending nodes and the packets 
collide at node C. The number on the node indicates the 
assigned magnetic charge. Type I, II and III are cases where 
sending nodes are at the same level. In that, the sending 
nodes can be one level higher, at the same level, or one level 
lower than the receiving node. Type I and II collisions are 
not critical because these data are traveling against the 
magnetic field. Type III collisions are, however, problematic. 
These collisions can be reduced partly by applying CSMA at 
nodes within the same level since nodes at the same level 
tend to be nearby. Note that, though, there remains a slight 
chance where nodes at the same level are away from each 
other’s carrier sense range.  

Type IV and V are cases where sending nodes are of 
adjacent magnetic charges. Again, Type IV is not critical 
given the transmission is not effective for data collection at 
the sink. Type V collisions, the critical ones, can be reduced 
by CSMA to a certain degree because nodes with adjacent 
magnetic charges can hear each other relatively easily. A 
significant amount of the collisions can be further reduced by 
separating the sending time of the nodes at different levels, 
hinting the benefit of a TDMA strategy to the design. In 
Type VI, where the two sending nodes are two levels apart, 
nodes of higher and smaller level become hidden terminals 
to each other. These collisions may not be eliminated by 
carrier sense. The sending time of nodes two levels apart 
needs to be separated to avoid collisions effectively. To 
avoid type V and VI collisions effectively, TDMA based on 
the magnetic charge levels is applied.  

XD uses three time slots for the TDMA schedule. The 
slot assignment is based on each node’s magnetic charge. In 
the interest broadcast phase of XD, the interest messages, 

originated from the sink, carry magnetic charges 
decremented at each hop. When a node receives the interest 
message, the node records the magnetic charge in the 
message and the TDMA slot for the node is assigned to n 
mod 3, where n is the recorded magnetic charge.  

An example of the TDMA mechanism is shown in Figure 
3. The numbers in the circles are the magnetic charges after 
the interest broadcast phase. In slot two, only nodes with 
charge 8 and 5 can send packets and the packets can be 
received by the nodes that are downstream, e.g. nodes with 
charge 9 and 6 respectively. At this time, nodes with charge 
10 and 7 will go into the sleep mode since receiving packets 
from their downstream neighbors is not necessary. In the 
next time slot, those nodes, who receive packets from 
upstream nodes at previous slot, will go into the transmit 
mode and transmit the packets to the nodes at the next level. 

Furthermore, XD may discover multiple paths to deliver 
data. Packets travelling multiple disjoint paths may collide at 
the sink node. Consider an urban WSN shown in Figure 5. 
The sender sends packets to the sink via two disjoint paths. 
Though node A, B and C are neighbors of the sink, node C is 
separated from node A and B by a corner in an indoor 
environment. In this case, A and B will not send data 
simultaneously due to CSMA. However, node B and C 
cannot hear each other thus collisions may still occur when 
node C also sends packets. In order to prevent data collisions 
at the sink node, XD further refines the TDMA schedule at 
the sink node. The sink node’s neighbors are grouped. Each 
group shares the same carrier sense region. By collecting 
neighbors’ information at the sink, the sink can determine 
how many groups and the appropriate schedule separating 
the sending of data from each group. Each time slot is 
divided into multiple sub-slots depending on the number of 
groups there are. An example of the refined schedule is 
shown in Figure 4. The nodes with charge 9 are the sink 
neighbors. That slot is further divided into two for two 
groups of neighbors, i.e., 9a and 9b. When 1a transmits 
packets, 9b goes to sleep. When 9a goes to sleep, 9b 
transmits packets.  

III. TRACE-DRIVEN SIMULATION 
To examine the performance of XD, we conduct a set of 

trace-driven simulations using ns-2 [4]. This methodology 
enables us to (1) repeat the tests, (2) reuse the existing 
simulation implementation, and in the meantime (3) capture 
the effect of packet losses occurring in realistic urban 
buildings.  
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Figure 6. Testbed Topology. 
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Figure 7. CDF of End-to-End Delay
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Figure 9. CDF of End-to-End Delay in MD with TDMA around Sink. 
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Figure 10. CDF of End-to-End Delay in XD 
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the first type (Recv). If a certain duplicate of a packet arrives 
while at least one of the duplicates is collided, the packet is 
categorized into the second type (Recv & Colli). The third 
type is for packets whose duplicates are all collided (Colli). 
The last type is for packets that are never sent by the 
upstream nodes (None). These are the packets that might 
have been collided at upstream nodes. The sum of the four 
types is 100% which is the total number of packets sent by 
the data source. 

The three plots in Figure 8 depict the portion of the 
packets of each type received at nodes from the first-hop 
neighbor of the source towards the sink. Each column 
represents the portion of the packets of each type at different 
sending rate. One can observe that, at the first-hop node, 
there are an increasing number of packets being collided as 
the workload increases.  Most of the packets are collided due 
to the hidden terminal effect between the source and the 
second-hop nodes. The portion of packets that are never seen 
at the first hop node also increases as the sending queue at 
the source node builds up faster and the packets are 
eventually dropped at the source node before they get to 
travel the network at all. The packets collided at the first hop 
and the packets never sent from the source will not reach the 
second-hop node at all. The amount is indicated as the type 
four packets (None) in the middle plot. There is a minor 
amount of collisions at the second-hop nodes which results 
in small portion of type two and type three packets. This is 
because the sink node does not forward data further.  
Therefore, there is no observation of collisions due to hidden 
terminals between the sink and the first-hop node at the 
second-hop node. 

The behavior at the sink node, i.e., the third-hop node, is 
particularly interesting. One would expect the portion of type 
four packets to be at least the amount observed in the 
second-hop node. The simulation results reflect the property 
of multi-path routing where packets might travel through 
other paths to reach the data sink. In this case, a significant 
amount of data eventually reaches the data sink. Also due to 
the fact that packets may travel multiple paths in the network, 
there is a slightly higher amount of collisions observed at the 
sink node. These contribute to the higher amounts of type 
two and type three packets  observed at the sink node.  

The performance of multi-path routing with simple 
CSMA is rather interesting in that (1) the multiple paths 

result in a higher delivery rate at the sink when the workload 
is high but in the meantime (2) the hidden terminal effect 
around the sink node also results in collisions which lowers 
the data delivery rate when the workload is low. We then 
turn on the TDMA around the sink node to eliminate the 
hidden terminal effects observed above. Figure 9 shows the 
CDF of end-to-end delay in MD with CSMA and TDMA 
around sink. The data delivery rate at the low traffic load 
case is effectively raised to 100% while the end-to-end delay 
is slightly compromised.   

Figure 10 shows the CDF of end-to-end delay of 
complete XD.  Because XD schedules both sink neighbors 
and nodes from different magnetic charges, it eliminates both 
hidden terminal problem at the sink node and the 
intermediate nodes (the first-hop and second-hop nodes). 
Important performance properties observed are as follows. (1) 
The data delivery rate in low-load cases are almost 100%. (2) 
In mid-load cases, e.g., 68.27kbps and 85.33kbps, XD helps 
raising the data delivery rate.  This, however, trades off the 
end-to-end delay, a problem general to TDMA-based 
solutions. Packets need to wait in the queue for the time slots 
assigned and such waiting repeats at each node along the 
transmission path. The queuing delay accumulates. (3) When 
the data rate is high, i.e., the traffic is close to the network 
capacity, the queue may overflow and result in packet drops, 
a problem that can only be alleviated by extending the 
network capacity.  

V.   COMPARISON 
We next compare XD to two other protocol stacks for 

sensor data collection. The first stack is Zigbee, using 
AODV for path discovery and IEEE802.15.4 for data 
forwarding. The other stack uses MD for path discovery and 
ZMAC for data forwarding.  

A. AODV with IEEE802.15.4: 
AODV is an on-demand single-path routing protocol. 

When a node needs to transmit data, AODV lookups its 
routing table to see is there exists a routing path to the 
destination. If not, the packet is buffered at the AODV queue 
(not the queue at MAC layer) while the mechanism begins to 
discover a routing path. This introduces a certain amount of 
delay.  



 
Figure 12. CDF of End-to-End Delay in MD+ZMAC Stack. 

10
-3

10
-2

10
-1

10
0

10
1

10
2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Delay (s)

R
ec

ep
tio

n 
R

at
e 

(%
)

22.76
25.60
40.96
68.27
85.33
93.09
113.78

 
Figure 11. CDF of End-to-End Delay in Zigbee Stack. 
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The MAC mechanism recommended in IEEE802.15.4 is 
CSMA-like.  The end-to-end delay of packets, if received at 
the sink, is expected small. Figure 11 shows the CDF of end-
to-end delay. The delay is indeed low. The data delivery rate 
is close 100% when the workload is low.  However, when 
traffic load increases, the collisions due to hidden terminal 
problem along the transmission path occur. About half of the 
packets are collided which results in a significant data 
delivery rate for mid-load and high-load cases.  

B. MD with ZMAC:  
ZMAC is a hybrid CSMA and TDMA mechanism. The 

schedule used by its TDMA component is derived by the 
DRAND [9] algorithm which requires topological 
information in the two-hop neighborhood. Each node 
exchanges information about its two-hop neighbors and then 
calculates a proper TDMA slot for itself. This is how ZMAC 
presents hidden terminals along the transmission paths from 
occurring. In ZMAC, although every node has its slots for 
transmission, it allows nodes competing sending data at the 
slots which are not assigned. The CDF of end-to-end delay is 
shown in Figure 12. When data rate is high, packets 
travelling the network need to wait longer in the queue and 
the nodes start to drop packets when the queue is full. 
Similar to XD, the data delivery rate is close to 100% in low-
load cases. From mid-load cases and on, the end-to-end 
delay is raised to the scale of seconds and the data delivery 
rate begins to drop afterwards.  

In summary, there is no significant difference in terms of 
performance in extreme low- and high-load cases.  However, 
in mid-load cases, although Zigbee can achieve low 
transmission delay, it is significantly less efficient in data 
delivery rate. MD with ZMAC shows comparable 
performance as XD. It is only slightly worse in terms of data 
delivery rate in the mid-load cases.  

The complexity of DRAND, the algorithm for 
establishing the TDMA schedule in ZMAC, is substantial. 
For WSNs with mobile nodes in the topology, the schedule 
needs to be recomputed repeatedly. As in XD, the schedule is 
determined by the magnetic charge and is set by the interest 
message propagated periodically, XD updates its TDMA 
schedule in the meantime it rediscovers paths. Relative to the 
MD-ZMAC combination, XD can be applied to a wider 
range of mission-critical WSNs in urban environments. 

VI. CONCLUSION 
We present in this work XD, a cross-layer designed 

sensor data collection mechanism. Through a set of trace-
driven simulations, we find that by scheduling sink 
neighbors and nodes according to magnetic charge, XD 
prevents most collisions due to the hidden terminal effect. 
Combined with the multiple shortest paths discovered by 
MD, XD performs, in terms of data delivery rate and end-to-
end delay, better than the Zigbee stack and just as well to the 
state of the art.  Given the simplicity of TDMA schedule 
establishment algorithm in XD, it is not just efficient but also 
practical for mission-critical WSNs in urban buildings. 
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