
XenSocket: A High-Throughput Interdomain
Transport for Virtual Machines

Xiaolan Zhang1, Suzanne McIntosh1,
Pankaj Rohatgi1, and John Linwood Griffin2

1 IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
{cxzhang,skranjac,rohatgi}@us.ibm.com

2 Arlington, Virginia, USA

Abstract. This paper presents the design and implementation of
XenSocket, a UNIX-domain-socket-like construct for high-throughput in-
terdomain (VM-to-VM) communication on the same system. The design
of XenSocket replaces the Xen page-flipping mechanism with a static cir-
cular memory buffer shared between two domains, wherein information
is written by one domain and read asynchronously by the other domain.
XenSocket draws on best-practice work in this field and avoids incurring
the overhead of multiple hypercalls and memory page table updates by
aggregating what were previously multiple operations on multiple net-
work packets into one or more large operations on the shared buffer.
While the reference implementation (and name) of XenSocket is written
against the Xen virtual machine monitor, the principle behind XenSocket
applies broadly across the field of virtual machines.

Keywords: shared-memory IPC, interdomain communication, virtual
machine, stream processing, security architectures, Xen.

1 Introduction

Virtual machine technologies offer a number of benefits in the design of middle-
ware. These include the ability to make more efficient use of hardware resources
and to minimize network overhead by colocating multiple parties acting on the
same data on the same physical machine. In addition, virtualization can provide
increased robustness and security by isolating different applications and critical
system components into separate protection domains within the same physical
system. Finally, virtual machine technologies facilitate efficient monitoring and
resource control of these different protection domains or partitions to ensure
that adequate resources are available to critical domains. Figure 1 illustrates, at
a conceptual level, how security can be improved by employing virtualization.

Unfortunately, the disappointing I/O performance of virtual machines has
limited their adoption in application domains that require data-intensive, high-
throughput network computing. Even with the recent advances in virtualization
technology, virtual network and interdomain communication performance re-
main a problem. Taking the Xen [3] version 3.0.2 virtual machine monitor as an

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 184–203, 2007.
c© IFIP International Federation for Information Processing 2007



XenSocket: A High-Throughput Interdomain Transport for Virtual Machines 185

Operating System

Untrusted
Component

Trusted
Component

IPC

Process A Process B

Virtual Machine Monitor

Untrusted
Component

TCP/IP

Process A

Operating 
System

VM 1

Trusted
Component

Process B

Operating 
System

VM 2

(a) Monolithic Approach (b) Virtualization Approach

Fig. 1. Improved Security via Virtualization. In (a), the untrusted component might
compromise the Operating System on which it is running which in turn leads to com-
promise of the trusted component running on the same OS. By isolating the trusted and
untrusted components into separate Virtual Machines in (b), it is significantly more
difficult for the untrusted component to affect the integrity of the trusted component.
We are assuming that, because the Virtual Machine Monitor (VMM) is much smaller
compared to a modern monolithic kernel, it is therefore much harder to break.

example, Figure 2 shows the transport throughput of two guest domains on the
same machine communicating through a TCP connection. For comparison, the
figure also shows the throughput of two Unix processes communicating through
a UNIX domain socket stream on a native Linux system. As shown in the figure,
the disparity is enormous, 13952 Mb/s for a UNIX domain socket vs. a mere 130
Mb/s for a TCP socket.

Analyses of the literature, combined with our own empirical observations, led
us to speculate that a large source of overhead in Xen’s interdomain network-
ing was caused by the overhead of the TCP/IP stack as well as the repeated
issuance of hypercalls to invoke Xen’s page flipping mechanism. As described by
Barham et al. [3], the Xen virtual machine monitor supports an atomic opera-
tion that updates the page tables in two virtual machines to swap the mapping
of a pair of pages between the domains. This operation is used to implement
a zero-copy network transmission from one domain to another: data in a net-
work packet is page-aligned in one domain, the operation is invoked, and the
data is now resident in the other domain. While this is a useful general solution
for low-bandwidth messaging between domains, we speculated that it led to low
throughput and high processor overhead for inter-domain communication bound
applications.



186 X. Zhang et al.

To address these problems we designed and built XenSocket—a specialized in-
terdomain transport based on memory buffers that are shared statically
between a pair of domains. Applications inside a domain access this shared
memory segment using the standard POSIX socket API, from which we derived
the name XenSocket. A XenSocket is conceptually similar to a UNIX domain
socket as would be provided by an operating system for interprocess communica-
tion; we note that we cannot simply use UNIX domain sockets for same-system
component-to-component communication due to the need for virtualization-
based isolation as described above.

The idea of using shared memory buffers for interprocess communication is
obviously not new. However, one critical design issue for the virtualized environ-
ment is that information leakage is a sincere concern in a scheme that involves
the direct sharing of memory resources between two dissimilar virtual machines
(such as Domain-0 and an unprivileged domain). Special care must be taken to
ensure that the integrity of the interdomain protections are maintained after the
shared memory channel is torn down or after a workload is complete.

Another contribution of this paper is our exposition of one of several poten-
tially useful techniques for high-throughput interdomain messaging in a virtual
machine environment. Our sockets-based interface to the shared-memory-based
transport provides a straightforward integration mechanism for large applica-
tions that require a mix of intra-machine and inter-machine communications.

We have realized an implementation of XenSocket against the Xen 3.0.2
release. Beyond Xen, the technique of using shared memory buffers for high-
throughput communications applies generally across the field of virtual machines
as well as other low-level resource protection schemes such as microkernels.

We summarize the key contributions of our paper below:

1. We designed and implemented an interdomain transport on Xen using shared
memory. Our approach requires no modification to Xen or the Operating
System.

2. Our design takes special care to maintain the interdomain protection pro-
vided by the original security architecture.

3. We measured the performance of our implementation and compared with
previous approaches.

4. We demonstrated that security can be achieved with marginal performance
loss—we were able to achieve throughput close to that of a native Unix
Domain Sockets with much better security and robustness guarantees than
we otherwise could with a monolithic kernel approach.

The remainder of this paper is organized as follows. Section 2 presents an
example of a complex middleware application and details the existing perfor-
mance problems we encountered with Xen. Section 3 describes our high-level
design objectives with XenSocket. Section 4 discusses details of our Xen-based
implementation. Section 5 presents the performance of our reference implemen-
tation. Section 6 describes related work. Section 7 discusses current status, open
issues and future work surrounding XenSocket. Section 8 presents our concluding
remarks.



XenSocket: A High-Throughput Interdomain Transport for Virtual Machines 187

0

2000

4000

6000

8000

10000

12000

14000

16000

100 1000 10000 100000

Message Size (Bytes)

B
an

d
w

id
th

 (
M

b
/s

)
Unix Domain Socket (Native Linux)

TCP (DomU to DomU)

Bandwidth = 13952 Mb/s

Message Size = 16 KB
Bandwidth = 130 Mb/s

Fig. 2. Performance Comparison of TCP vs. Unix Domain Sockets as a Function of
Message Size

2 Background and Motivation

2.1 A Motivating Example: System S

Outside the context of this paper, we are involved in building the security ar-
chitecture for the large-scale distributed stream processing system known as
System S being developed at IBM Research. The goal of System S is to extract
important information by analyzing voluminous amounts of unstructured and
mostly irrelevant data. Example applications for System S include analyzing
audio, video and data feeds carrying information about financial, business and
current events in order to support trading activities in financial institutions, and
supporting responses to disasters such as Hurricane Katrina, based on analysis
of vehicular movements, traffic and other sensors, news reports etc. System S
has been designed to simultaneously address a number of challenges including

– Rapid Reconfiguration: The system must be quick to adjust to external
events and the changing requirements and priorities of its users to the rapidly
evolving data forms and types.

– Perpetual Overload: The system is required to “process” orders of mag-
nitude higher data rates than existing systems, so a design goal has been
to ensure that it functions well at high load. In fact, the system is designed
to operate under a perpetual state of overload and must adjust its resource
allocations to support the highest priority activities. This means that there
will not be enough processing resources to completely analyze all the data
being ingested, nor the bandwidth to transmit all the intermediate results,



188 X. Zhang et al.

nor the storage to store all the data, so applications have to be designed
to be resilient to variations in processing resources and to operate despite
missing data.

– System Security and Information Confidentiality: The system must
be resilient against compromise from data-driven attacks originating from
the ingested data and must adequately protect the confidential information
being processed within it from unauthorized disclosure.

– Heterogeneity: System S has to be designed to be a distributed system
running on a heterogeneous collection of platforms, each specialized for par-
ticular types of processing.

The Stream Processing Core (SPC) is the middleware component of Sys-
tem S that hosts the distributed stream processing applications over heteroge-
neous hardware platforms and manages the stream connections, resources and
dataflow autonomically. From a logical perspective, applications running on Sys-
tem S consist of multiple software-based processing and analysis components
known as Processing Elements (PEs) which can communicate with each other
via a unidirectional data stream abstraction. Each application can therefore be
viewed as a directed graph with the PEs as nodes and the streams as edges, and
at any point in time multiple applications could be running concurrently within
System S. The SPC is responsible for providing both the execution environment
for the PEs running in the system as well as the underlying data transport mech-
anism that implements the streams abstraction. The actual PE’s are processes
that are scheduled throughout a large physical installation and communicate
with the rest of the system via the abstractions provided by a Streams Library
(SL) that is linked into the PE executable. This library is also responsible for
providing the streams API to the PEs, with the actual data transport across
PEs managed by a separate data routing and transport component known as
the Data Fabric. Each PE takes in chunks of data (known as stream data objects
or SDOs) from one or more incoming streams, operates atomically and collec-
tively on the input SDOs, and passes out results in the form of SDOs into one
or more outgoing streams. These output SDOs are then transferred by the PE’s
streams library to the Data Fabric, which is then responsible for transporting
them to the Streams Library of the subsequent PEs that need to consume them.1

2.2 Security Requirement of System S and Virtualization

Virtualization technology is an important component of the System S architec-
ture. Although virtualization is not yet pervasively used throughout the system,
it is critically needed in select places for the purposes of aggregation, colocation
and most importantly for security and robustness. Given the large attack surface
of applications analyzing large quantities of unstructured data of all types, it is
1 The interested reader will find more information on the scale and scope of the Sys-

tem S components in the treatment by Amini et al. [1] and on the Web; only those
details that motivate the design of our high-throughput messaging system are in-
cluded in this paper.



XenSocket: A High-Throughput Interdomain Transport for Virtual Machines 189

highly likely that application PEs and even the operating systems hosting them
could be compromised by exploits within the ingested data. The security archi-
tecture for System S (see Section 6 in [4]) therefore requires that application PEs
that are not robust enough to handle low-integrity external data be confined and
restricted in the way they can interact with other PEs as well as the rest of the sys-
tem. This could be done by exploiting the protections provided by a virtualization
layer; for example PEs operating on streams with different security or privacy la-
bels could be isolated from each other and the virtualization protection could also
be used to ensure the integrity of System S itself, in that trusted portions of the
system (such as the Data Fabric modules that route SDOs between PEs) exist ei-
ther on standalone physical machines or in isolated virtual machines, so as to be
protected from damage from poorly designed or compromised PEs. In particular,
the security architecture calls for the PEs and the Data Fabric to be resident in
separate partitions or nodes, whereas in the current implementation these reside
on the same node and the Streams Library transports the SDOs back and forth
from the Data Fabric using Unix Domain Sockets.

2.3 Performance Requirement of System S

The fundamental performance bottleneck of System S is designed to be the sat-
uration of the network links between each processing component [7]. In other
words, throughput—the number of chunks per second passing through the sys-
tem (or between components)—is a key metric of goodness for our purposes.2In
contrast, the latency incurred by chunks moving from component to component
does not have an important impact on the overall performance of the Stream
Processing Core, and the fraction of processing time consumed for each chunk is
expected to be negligible in comparison with the fraction of the network capacity
consumed by each SDO.

2.4 Problem Statement

Unfortunately, our empirical experience with Xen as a virtualization platform
for System S showed that interdomain communication using the Xen virtual
network fell well short of the throughput metrics identified for the project. In
addition, the processor overhead consumed by the virtual network infrastructure
was substantial enough to take away resources needed by each SDO. Specifically,
domain-to-domain throughput capped out at around 130 Mb/s to 142 Mb/s
(13-14% of the available raw physical network capacity), while maxing out the
CPU utilization of the guest domains and requiring 18-20% of the processor in
Domain-0.

The inefficiency of virtual machines as regards same-system networking per-
formance is a well-known problem. In the literature, Menon et al. use profiling to
explain some inefficiencies in the Xen virtual network [13], and in follow-up work

2 Actually, the metric of goodness in System S is the utility of the work done within
the system [2], but networking throughput remains a key bottleneck.



190 X. Zhang et al.

Menon, Cox, and Zwaenepoel discuss performance optimizations to the network
stack that leverage the fact that two domains on the same system are not con-
strained by physical network effects such as small packet sizes and the need to
calculate and verify checksums [12]. Through these optimizations the authors
achieve a maximum receive throughput of 970 Mb/s and transmit throughput
of 3310Mb/s. While these improvements are noteworthy, the performance of the
resulting system still falls short compared to that of Unix Domain Sockets (over
10,000Mb/s, see Figure 2).

In order to support the use of virtualization in our distributed stream process-
ing application, our objective is to achieve throughput performance on both the
send and receive paths at speeds approaching those of a UNIX domain socket
for mid-sized messages (tens or hundreds of kilobytes).

3 Design

XenSocket provides a sockets-based interface to one or more large shared memory
buffers for domain-to-domain communication. We make the design assumption
that a XenSocket provides a one-way tunnel between a sender domain and a
receiver domain. As discussed in Section 7, this assumption is not a requirement
of a shared-memory-based transport; rather, the choice was made to conserve
memory in the event that only one-way communications are needed.

Our shared-memory-based system is especially appropriate for asymmetric
broadcast communications, where one domain sends a lot of information to mul-
tiple other domains on the same system (perhaps including an I/O domain for
retransmission to other physical machines) without expecting to receive anything
in return other than an acknowledgment of receipt.

3.1 Shared Memory and Circular Buffers

XenSocket was designed to test our hypothesis that per-packet page flipping is a
large source of inefficiency in the Xen virtual network design. This was inspired
in large part by the work of Menon, Cox, and Zwaenepoel [12] who demonstrated
substantial performance gains in the Xen virtual network by transmitting more
information per hypercall and, notably, replacing some instances of page flipping
between domains with a memory copy between the domains.

XenSocket uses shared memory for message passing. There are two types of
memory pages shared by each endpoint of a XenSocket: a descriptor page and
buffer pages. The descriptor page is used to store control information. The buffer
pages together form the circular buffer. When a socket connection is established
between two domains, a shared memory region is reserved by one domain and
mapped by the other domain. This shared memory is treated as a circular buffer:
the sender writes data into this buffer, and the receiver reads directly from the
buffer in FIFO order. This design differs from the well-utilized method of using
Xen communication rings and page flipping, where data are first placed onto a
memory page by the sender and then that page is remapped into the receiver’s
address space.



XenSocket: A High-Throughput Interdomain Transport for Virtual Machines 191

3.2 Sharing and Security

When sharing pages between domains of different trust levels (say, between an
unprivileged domain and Domain-0), it is important that pages are only shared
from the less-trusted domain and only mapped by the more-trusted domain.
This design is to prevent the less trusted domain from launching a Denial of
Service (DoS) attack on the more trusted domain by repeatedly establishing
XenSocket connections to the more trusted domain without tearing them down,
eventually exhausting the resources of the more trusted domain. We refer to the
less-trusted domain as the server domain, since it provides the pages used for
the circular buffer. The more-trusted domain is then the client domain, since it
maps these pages into its own memory space. Note that the label of server and
client is independent of which domain acts as the sender of data and which as
the receiver.

It is currently necessary for the designer of a shared-memory-based transport
to consider this, as Xen does not support the forced revocation by the hypervisor
of a mapped page by a domain. This security design must be enforced by the
existing security architecture of the application using an explicit policy, as Xen
by default does not assign trust labels to domains (other than the hardwired fact
that Domain-0 is more trusted than any other domain). One way of implementing
this is through sHype, the secure hypervisor architecture for Xen [16].

Each XenSocket uses one descriptor page per one-way connection. The de-
scriptor page is mapped read-write by both domains and is used for transmis-
sion of control information passing between the domains. An alternate design is
possible where each domain provides its own descriptor page that is readable by
both domains but only writable by itself. However, such a split design is both
undesirable (from the standpoint of only wanting less-trusted domains to expose
pages) and unnecessary, as long as none of the domains use the information in
an unsafe, unchecked manner. In other words, if there is operationally-sensitive
information that domain S shares with domain R, then S should keep the au-
thoritative copy of the information in memory that is not shared or visible to
R. In this way, if R overwrites the copy of this information on the shared page,
it will not affect the correct operation of S—R’s overwrites will only impact R
itself.

3.3 A Sockets Interface to Shared Memory

In XenSocket, a sender application in one domain can create a socket (just as it
would create a socket for TCP/IP-based communication or Unix Domain Sock-
ets) and use send() (or write()) to push data into the socket. A receiver appli-
cation in another domain can also create a socket and use recv() (or read())
to pull data from the socket. The choice of a sockets-based interface was initially
made because existing System S components such as the Stream Processing Core
(SPC) already make use of a sockets interface in their communications, but we
believe that a sockets-based interface is a generally useful one to support the
migration of distributed applications into a virtual machine environment.



192 X. Zhang et al.

xen_
sendmsg()

Stream
in

Sender
App

Receiver
App

Stream
out

Shared
Circular
Buffer

128 KB
(Thirty-two 4KB pages)

Shared
Descriptor

Page

4KB page

xen_
recvmsg()

available_bytes
send_offset

available_bytes
recv_offset

Rx DataTx Data

Fig. 3. XenSocket Architecture

In our design, a domain does not specify whether it will be a sender or a
receiver on a XenSocket; this choice is indicated the first time the domain issues
a write() or read() operation on the socket—after issuing a command of one
type (e.g., write), any commands of the opposite type (read) will immediately
return with a failure code.

4 Implementation

XenSocket is a socket-based solution for increasing interdomain throughput in
Xen. Its APIs follow from standard socket APIs. Underneath this socket API,
XenSocket uses shared memory for implementing high-throughput, interdomain
data transfer. Our implementation is based on Xen version 3.0.2. XenSocket
compiles into a kernel module and currently requires no changes to Xen or Linux.
Work is in progress to port the implementation to newer versions of Xen.

XenSocket allocates two shared memory regions accessible by both the sender
and receiver. One region consists of just one 4KB page for storage of state and
control variables shared by the sender and receiver, which is called the descriptor
page. The second region is comprised of multiple 4KB buffer pages that form
one shared circular buffer. In our present implementation, thirty-two pages are
allocated to realize a 128 kilobyte circular buffer. Figure 3 shows the architecture
of the XenSocket implementation.

4.1 User Perspective

From a user perspective, XenSocket has a simple sockets-based interface, so cho-
sen because of its simplicity and because existing components in our application
already communicated over a socket interface. In this section we show how an
application would use the XenSocket API, highlighting the differences between
XenSocket API and standard socket API.



XenSocket: A High-Throughput Interdomain Transport for Virtual Machines 193

Server (Receiver) Client (Sender)
s = socket(); s = socket();

... ...
gref = bind(s, xaddr); ...

... connect(s, xaddr);
recv(s); send(s);

... ...

... shutdown(s);
shutdown(s);

Fig. 4. XenSocket Usage Example

Figure 4 illustrates the time sequence whereby XenSockets are established and
used by a client (sender) and server (receiver) in a typical scenario3. The receiver
in one domain first creates a socket by calling the socket()API. It then calls the
bind() API to bind the socket to an address (xaddr). Additionally, it allocates
physical memory to establish both a descriptor page and a shared circular buffer.
Unlike the normal bind() call, which returns an error code indicating success
or failure, the XenSocket bind() call returns the grant table reference to the
descriptor page (gref) on success so that the sender can later use it to establish
the sharing of that page. The bind() API also allocates an event channel to be
used for communication with the sender whose identity, its domain number, is
passed in as part of the socket address (xaddr) parameter. The receiver then
calls read() or recv() for receiving data. The receiver blocks until it detects
data in the circular buffer. The receiver calls shutdown() upon detecting that
the sender has ended the connection.

The sender similarly calls socket() to create a socket just as the receiver
does. The sender then calls connect(), supplying the receiver’s domain ID and
the grant table reference of the shared descriptor page4, both are part of the
xaddr parameter. The connect() call gets the addresses of the physical pages
of the shared circular buffer, which were placed in shared memory when the
receiver called bind(), and maps them into the virtual address space of the
sender. Additionally, it establishes the other end of the event channel facilitating
communication of events between the client and server. With all this in place,
the sender can now transmit data by calling send() or write() to deposit data
into the circular buffer. The sender shuts down when all data has been sent.

4.2 Data Transfer

One core piece of the implementation is an efficient data transfer algorithm
using atomic operations provided by the Linux kernel. A sketch of the send
3 Note that although in this example, the server acts as a receiver and the client as

a sender, the mapping between the server and the receiver (similarly the client and
the sender) is not fixed, as discussed in Section 3.2.

4 In our current implementation, the grant table reference value is passed to the con-
nect() call manually, however in the future we intend to automate this.



194 X. Zhang et al.

Procedure: xen sendmsg
Input : target bytes
Output : written bytes

begin
num bytes ← 0;
written bytes ← 0;
while written bytes < target bytes do

num bytes ← atomic read(available bytes);
num bytes ← min(num bytes, target bytes);
if num bytes = 0 then

wait with timeout;
continue;

end
write num bytes into circular buffer;
send offset ← (send offset + num bytes) mod BUFFER SIZE ;
atomic sub(available bytes, num bytes);
signal receiver of newly available data;
written bytes ← written bytes + num bytes ;

end
return written bytes;

end

Algorithm 1. Send Algorithm. The use of atomic operations eliminates the need
for conventional locks and thus improves performance.

Procedure: xen recvmsg
Input : target bytes
Output : read bytes

begin
num bytes ← 0;
read bytes ← 0;
while read bytes < target bytes do

num bytes ← atomic read(available bytes);
num bytes ← min(num bytes, target bytes);
if num bytes = 0 then

wait with timeout;
continue;

end
read num bytes from circular buffer;
recv offset ← (recv offset + num bytes) mod BUFFER SIZE ;
atomic add(available bytes, num bytes);
signal sender of newly available space;
read bytes ← read bytes + num bytes ;

end
return read bytes;

end

Algorithm 2. Receive Algorithm



XenSocket: A High-Throughput Interdomain Transport for Virtual Machines 195

and receive algorithms is shown in Algorithm 1 and Algorithm 2 respectively.
Pseudo procedures starting with atomic indicate atomic operations. The send
and receive algorithms use one shared control variable, available_bytes, which
indicates the number of bytes available for write in the circular buffer. Both the
sender and the receiver maintain local read/write offsets into the circular buffer,
which are not shared.

Currently, our implementation supports only blocking reads and writes. When
there is no room in the circular buffer for writing, send() will block. The sender
will remain in a wait loop, awaking periodically, until space becomes available in
the circular buffer. Similarly, recv() blocks when the buffer is empty. It remains
in the blocking state until data is available for read. The sender signals the
receiver of available data via the event channel when more data is written to the
buffer. Similarly, the receiver signals the sender of available space when more
data is consumed from the buffer.

4.3 Connection Teardown

Unlike Unix Domain Sockets, where either endpoint of the connection can shut
down independent of the other, care must be taken to tear down a connection
in XenSocket to ensure a smooth unmapping process because of the shared
resources between the two endpoints. Since the server is the one that allocates
the shared resources, our current implementation of XenSocket ensures that
the client shut down first. If we had allowed the server to shut down first, the
descriptor page, event channel, and circular buffer would all have been torn
down, making communication between the client and server for the purpose of
synchronization impossible. On the other hand, the shutdown API provides the
user applications with the capability of initiating a shutdown at either endpoint.
To support this, our shutdown implementation uses two shared control variables
to serialize the shutdown. shutdown() first detects whether the client or the
server is the caller. In the former case, the shutdown proceeds as usual, and
one shared variable is set to indicate that the client has shutdown. The server
application is notified of this condition after all data sent by the client has
been emptied from the circular buffer. The server application can then issue
a shutdown call, which properly deallocates all shared resources. If the server
application issues a shutdown() call first, a second shared control variable is set
to indicate that the server has initiated a shutdown and waits for the client to
shut down first. When the client detects such a situation, it immediately stops
sending data and returns an error code to the application, which in turn will
eventually issue a shutdown() call. The shutdown process then proceeds as if
the client had initiated the shutdown first.

Our XenSocket implementation is resistant against misbehaving server do-
mains. We assume that the high integrity client domain is trustworthy and
therefore can be relied upon to behave correctly. In our implementation, the
client domain is non-blocking – it merely notifies the server domain that it has
initiated a shutdown. Therefore, if the server misbehaves, it will only hurt itself.



196 X. Zhang et al.

0

2000

4000

6000

8000

10000

12000

14000

16000

100 1000 10000 100000

Message Size (Bytes)

B
an

d
w

id
th

 (
M

b
/s

)
Unix Domain Socket (Native Linux)

Xen Socket (Linux on Xen)

TCP (DomU to DomU)

Message Size = 16 KB
Bandwidth = 130 Mb/s

Bandwidth = 9295 Mb/s

Bandwidth = 13952 Mb/s

Fig. 5. Throughput Comparison of XenSocket vs. Unix Domain Sockets and TCP for
Message Sizes Between 512 Bytes and 16 KB. XenSocket achieves up to 72 times the
throughput of standard TCP stream at message size of 16 KB.

5 Performance Evaluation

We evaluated our XenSocket implementation on an IBM HS20 blade with dual
2.8GHz Pentium Xeon processors and 4GB RAM. We use netperf version 2.4.2
as our primary benchmark. All data reported was run on Xen version 3.0.2 and
Linux version 2.6.16.18. Each test was run 3 times, with the average reported.
All experiments were run in single CPU mode with hyper-threading disabled to
minimize performance variation.

5.1 Performance for Common Message Sizes

Figure 5 shows the reported throughput as a function of message size for
XenSocket between two guest domains, as compared to that for Unix Domain
Sockets of two processes on native Linux, and that for unmodified TCP between
two DomUs. As demonstrated in the figure, XenSocket achieves up to 72 times
the throughput of standard TCP stream in the peak case (message size = 16
KB). However, XenSocket still lags Unix Domain Sockets by 33% in this case.
We are very encouraged by this initial performance result and are continuing to
optimize XenSocket further.

The gradual increase of the throughput as the message size increases indicates
that at small message sizes, the performance is dominated by the per-message
call overhead (one system call plus one Xen Hypercall each side). When the
message size increases, the performance becomes dominated by the overhead of



XenSocket: A High-Throughput Interdomain Transport for Virtual Machines 197

Table 1. CPU Utilization vs. Achieved Throughput in XenSocket. As discussed in
Section 2, the existing Xen virtual network requires 18-20% CPU usage in Domain-0
to transfer only 130-142 Mb/s between two guest domains.

Throughput
CPU Utilization

Sender Receiver Domain-0
3320 Mb/s 6% 11% 1%
972 Mb/s 3% 4% 0%
136 Mb/s 0% 2% 0%

actually transferring the data. At the message size of 16 KB, XenSocket reaches
a peak throughput of 9295 Mb/s. At this rate, the CPU utilizations of both guest
domains reach 100%, whereas Domain-0 remains at near zero CPU utilization.

A direct comparison with the results of Menon et al. [12] is not illustrative,
as described below, but it is useful to point out the design choices that cause
our results to differ. Their results are asymmetric, with a maximum receive
performance of 970 Mb/s and a maximum transmit performance of 3310 Mb/s.
In addition, there is a big difference between running the benchmark in the driver
domain and in the guest domain. In our case, since we run both the receiver and
the sender on the same machine, we only look at the maximum bandwidth that
can be achieved between the two. Additionally, since XenSocket does not require
Domain-0 to be involved in the data exchange, it does not make much difference
whether the sender (or receiver) resides in the driver domain or the guest domain.

To make the comparison more complete, we also look at the CPU utilization
of XenSocket at performance close to 3310 Mb/s, 970 Mb/s and 130 Mb/s, the
maximum transmit and receive throughputs achieved in Menon et al., and in
unmodified TCP on Xen (see Section 2). We modify netperf to sleep at a certain
rate so as to bring down the performance to the specific target level. Since the
throughput varies at each run, it is difficult to fix the throughput at exactly a
static value. Thus, we chose the throughput level that is closest to the target
level. The CPU utilization at the sender and receiver is taken from the statistics
reported by netperf. For Domain-0, we use the percentage of total processor
time spent idle reported by the vmstat tool. Table 1 lists the CPU utilization of
the sender and receiver guest domains, and domain-0. At 3320 Mb/s, the CPU
utilization is around 6% for the sender and 11% for the receiver. At 972 Mb/s,
the CPU utilization is around 3-4% for the sender and the receiver. At 136 Mb/s,
the CPU utilization is close to 0% for the sender and about 2% for the receiver.
In all cases, Domain-0 is mostly idle.

Note that this is not an exact apples to apples comparison for two reasons:
First, we run the sender and the receiver on the same machine, whereas in
the case of Menon et al., the sender and the receiver are evaluated separately.
Secondly, we have different assumptions on the intended usages of XenSocket
than that of Menon et al. Our intended applications are high-throughput dis-
tributed stream systems, thus we relax the latency requirement, and can do
batching at the receiver side. In contrast, Menon et al. have to support interactive



198 X. Zhang et al.

0

2000

4000

6000

8000

10000

12000

14000

16000

10000 100000 1000000 10000000 100000000

Message Size (Bytes)

B
an

d
w

id
th

 (
M

b
/s

)
Unix Domain Socket (Native Linux)
Xen Socket (Linux on Xen)
TCP (DomU to DomU)

Message Size = 2MB
Bandwidth = 141 Mb/s Bandwidth = 4907 Mb/s

Bandwidth = 6535 Mb/s

Fig. 6. Throughput Comparison of XenSocket vs. Unix Domain Sockets and TCP for
Large Message Sizes. Both XenSocket and Unix Domain Sockets see a large drop-
off when the message size reaches 512 KB and then stabilize around 5-6 Mb/s. The
performance curves invert at message size of 512 KB where XenSocket outperforms
Unix Domain Sockets.

networking, and therefore have to dispatch any network packet received from
the network immediately to the receiver.

Despite these differences, we believe that the comparison is still meaningful
in that it highlights the unique features of our approach and shows how the
differences in the two approaches affect performance.

5.2 Performance for Larger Message Sizes

Figure 6 shows the throughput of XenSocket, Unix Domain Sockets and TCP
for large message sizes (ranging from 16 KB to 64 MB). It’s interesting to note
that for both XenSocket and Unix Domain Sockets, the throughput starts to
drop off after a certain message size (16 KB for XenSocket and 64 KB for Unix
Domain Sockets), then stabilizes when the message size is larger than 512 KB.
Interestingly, XenSocket performs about 33% better than Unix Domain Socket
(6534 Mb/s vs. 4907 Mb/s for message size of 2 MB). For TCP, the throughput
is virtually unchanged at about 141 Mb/s.

We investigated the cause of the performance drop off for large message sizes
using the OProfile tool [10] and its extension to Xen [13]. Our initial results
indicate that there is a strong correlation between the throughput performance
and the L2 cache hit ratio. We thus believe that the drop off is caused by some
caching effects of the L2 cache. Another indication that this is due to cache effects



XenSocket: A High-Throughput Interdomain Transport for Virtual Machines 199

comes from the fact that performance of the Unix Domain Socket varies across
identically configured hardware platforms. A precise characterization of the per-
formance variation and pinpointing the causes will require further research. It
suffices to say that the variation is comparable to the performance difference be-
tween XenSocket and Unix Domain Socket, confirming that XenSocket indeed
achieves throughput close to that of Unix Domain Socket.

6 Related Work

Our approach is inspired by previous research on using shared memory buffers for
interprocess communication. As an earlier example, we note the use of cached
fast buffers by Druschel, Peterson, and Davie [5] in their optimization of the
Osiris network adaptor. More recently, Götz implemented a shared-memory-
based transport for high-throughput data transfer in the L4 microkernel [6].
There are also examples other than our work on System S that motivate high-
throughput communication in a VM environment, such as the virtualization of
a transaction processing system that contains multiple front-end web servers,
interconnected database servers, and back-end storage system nodes.

The Xway project [8] also uses a sockets interface over a shared-memory
transport to improve Xen interdomain communications throughput. The Xway
and XenSocket projects were developed independently but share similar designs.
The core difference is the type of socket interface presented to the user or ap-
plication. With Xway, applications create sockets using the existing AF INET
protocol family. Modified INET socket code creates a shared-memory transport
whenever both endpoints are on the same physical host. The Xway design al-
lows deployment of the shared-memory transport without requiring changes to
existing applications. With XenSocket, sockets are created using a new AF XEN
protocol family. The XenSocket design enables communication between domains
that do not have virtual network devices or that do not share a common Inter-
net Protocol-based network interface. This level of isolation is important for
System S security and in such architectures as that described by Payne [15].

The PROSE System prototype developed by Van Hensbergen and Gross [17]
uses shared buffers for low-latency IPC in a hybrid microkernel-and-virtual-
machine environment. Their work focuses on latency and no performance de-
tails are available for bandwidth benchmarks. In addition, their approach uses
polling at the receiving side, which leads to more CPU usage than a non-polling
algorithm.

Liu et al [11] looked at improving device I/O of Virtual Machines by leveraging
the virtualization capabilities of the device itself and bypassing the VMM all
together for performance critical operations. The idea was inspired by early work
on OS-bypassing I/O where user-level applications can directly access physical
devices in order to improve performance. While their approach shares similar
principle with ours in that both try to improve performance by minimizing the
involvement of the VMM, there are two fundamental differences between the two
approaches. In our approach, the VMM is always involved in the communication



200 X. Zhang et al.

(e.g., it’s never bypassed). In addition, our approach does not involve physical
devices. Rather, it only concerns the communication of two VMs on the same
physical platform.

An orthogonal area of memory sharing research on virtual machines focuses
on improving the spatial efficiency of memory usage. For example, Kloster et
al [9] employs hashing to locate identical pages that belong to different VMs and
transparently share the page among VMs, thereby reducing the total number of
required physical pages. Because the pages are identical, and sharing is performed
transparently from the VM’s perspective, there is no security implication of this
optimization, except for the possibility of opening up potential side channels.

7 Discussion

As described above, our design of a XenSocket is a one-way communications
pipe between two domains. While the traditional view of a socket is a two-way
mechanism, we chose the one-way design as a balance between our desire to
minimize overall system impact and our interest in ensuring a large circular
buffer to avoid stalling by the sender or receiver. A more complete design would
include variable-size circular buffers whose logic is capable of adapting the buffer
reservation size to the actual usage of the buffer. In this way a two-way socket
could be the norm, where the initial circular buffer size is small but grows to most
efficiently match the demand. A variant on this idea would be to dynamically
move pages between the two circular buffers in order to adapt the buffer size to
the workload while maintaining a constant amount of memory reservation per
XenSocket.

An unexplored aspect of our design for XenSocket is its use in a local multi-
cast environment; i.e., in the case where one domain sends identical messages to a
constant set of multiple other domains on the same system. When one or more of
these other domains act as an external network bridge, this could represent a mul-
ticast to applications running both in local domains and on remote systems. The
descriptor page in our design could be extended to include acknowledgments from
each of the receiving domains. This would reduce the memory and computational
pressure on the sending domain—both in comparison with the design presented
in this paper and with the original Xen virtual network—as the sending domain
would only have to copy each message once into a shared memory buffer instead
of performing work for each receiving domain. However, it remains to be explored
the degree to which such an approach is open to denial-of-service attacks when one
domain chooses not to acknowledge on a timely basis the data it receives, filling
up the circular buffer and therefore halting the information flow.

There are other aspects of performance optimization that we have not yet
explored. For example, we can offload control of memory transfers into and out
of the shared memory space to the DMA controller or the I/O memory man-
agement units. Resource contention may become an issue for multiple instances
of XenSocket running in parallel due to the extra memory copies needed into
and out of the circular buffer. However, we note that even in the original Xen



XenSocket: A High-Throughput Interdomain Transport for Virtual Machines 201

page-flipping scheme for virtual networks, it is still necessary to copy data into
and out of the pages that are flipped. Another optimization is to implement
the shared pages in the hypervisor memory, which is mapped to all VMs. An
advantage of this approach is reducing the number of cache and TLB flushes
due to context switches. A disadvantage is that it does not scale to large number
of concurrent connections. A third optimization is using cooperative scheduling
mechanisms such as gang scheduling [14], where the sender and the receiver are
scheduled together to minimize waiting time.

A hardware trend that is relevant to our work on XenSocket is the emer-
gence of multi-core processors. In a virtualized multi-core environment—where
a currently-open question is “what are we going to do with all those cores?”—
one class of applications that will map well to the environment contains those
distributed applications that compute sequential analyses over large local data
sets. Examples of these are image recognition or feature extraction applications.
While such applications could be written as large multi-threaded programs with
a common shared memory pool, we postulate that the preservation of isolation
boundaries combined with a distributed message-passing paradigm will provide
the most useful transition path for minimally-modified distributed software ar-
chitectures into a multi-core environment.

8 Conclusion

As virtualization becomes more widely deployed, we foresee a growing num-
ber of applications that require high-performance interdomain communication.
This is in part driven by security and reliability concerns—by separating compo-
nents of a complex software system into different domains, one achieves better
isolation among the components, thus improving security and reliability. For
example, in our target application, a large-scale distributed stream processing
system consisting of components with different trust levels, our security design
mandates that components of different trust levels must be placed either on
separate machines or on separate virtual machines, in both cases with a proper
security-label-based gating of communication between the machines. Achieving
this with only marginal degradation of communication performance in a virtual
machine environment is particularly crucial for our target application whose suc-
cess depends on the ability to transfer large amounts of data rapidly between
the distributed application components.

In this paper we present XenSocket, a shared-memory-based construct that
provides a POSIX sockets-based mechanism for high-throughput interdomain
communications. XenSocket draws on best-practice work in this field and avoids
incurring the overhead of multiple hypercalls and memory page table updates
by aggregating what were previously multiple operations on multiple network
packets into one or more large operations on the shared buffer. Our performance
evaluation indicates that with XenSocket we have successfully achieved our goal
of same-system interdomain transport throughput that approaches that of in-
terprocess communication using UNIX domain sockets.



202 X. Zhang et al.

We have released the source code for our XenSocket reference implementation
under the name XVMSocket. XVMSocket is freely available at the SourceForge
open source software development web site [18] for use under the terms of the
GNU General Public License.

Acknowledgments

We would like to thank our colleagues from IBM Research, Ronald Perez, Dou-
glas Lee Schales, and Volkmar Uhlig, and our colleagues in the IBM Linux Tech-
nology Center, Anthony Liguori, Ryan Harper, Muli Ben-Yehuda, and Eric Van
Hensbergen, and Jose Santos from Hewlett Packard for insightful discussions
and comments. Reiner Sailer, Stefan Berger and Wesley Most helped in the ini-
tial Xen setup. And finally, we thank our anonymous reviewers for their careful
review and helpful comments on improving this paper.

References

1. Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King, R., Selo, P., Park, Y.,
Venkatramani, C.: SPC: A distributed, scalable platform for data mining. In:
DMSSP 2006: Proceedings of ACM SIGKDD Workshop on Data Mining Stan-
dards, Services and Platforms, Philadelphia, PA, USA (2006)

2. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive control of
extreme-scale stream processing systems. In: ICDCS 2006 (2006)

3. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Pro-
ceedings of the nineteenth ACM Symposium on Operating Systems Principles, pp.
164–177. ACM Press, New York (2003)

4. Cheng, P., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.:
Fuzzy multi-level security: An experiment on quantified risk-adaptive access con-
trol. Technical Report RC24190, IBM Research, Yorktown Heights, NY, USA
(Feburary 2007)

5. Druschel, P., Peterson, L.L., Davie, B.S.: Experiences with a high-speed network
adaptor: A software perspective. In: SIGCOMM 1994: Proceedings of the Con-
ference on Communications Architectures, Protocols and Applications, pp. 2–13.
ACM Press, New York (1994)

6. Götz, S.: Asynchronous communication using synchronous IPC primitives. Diploma
thesis, System Architecture Group, University of Karlsruhe, Germany (May 2003)

7. Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venkatramani,
C.: Design, implementation, and evaluation of the linear road benchmark on the
stream processing core. In: SIGMOD 2006. Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, pp. 431–442. ACM Press, New
York (2006)

8. Kim,K.-H.:Personal communication (May1,2007), http://lists.xensource.com/
archives/html/xen-devel/2007-05/msg00122.html

9. Kloster, J.F., Kristensen, J., Mejlholm, A.: Efficient memory sharing in the xen
virtual machine monitor. Technical report, Aalborg University (January 2006),
https://services.cs.aau.dk/public/tools/library/files/rapbibfiles1/
1136884892.pdf

http://lists.xensource.com/archives/html/xen-devel/2007-05/msg00122.html
http://lists.xensource.com/archives/html/xen-devel/2007-05/msg00122.html
https://services.cs.aau.dk/public/tools/library/files/rapbibfiles1/1136884892.pdf
https://services.cs.aau.dk/public/tools/library/files/rapbibfiles1/1136884892.pdf


XenSocket: A High-Throughput Interdomain Transport for Virtual Machines 203

10. Levon, J., Elie, P.: http://oprofile.sourceforge.net/about/
11. Liu, J., Huang, W., Abali, B., Panda, D.K.: High Performance VMM-Bypass I/O

in Virtual Machines. In: 2006 USENIX Annual Technical Conference, Boston, Mas-
sachusetts, USA, pp. 29–42 (June 2006)

12. Menon, A., Cox, A.L., Zwaenepoel, W.: Optimizing network virtualization in Xen.
In: 2006 USENIX Annual Technical Conference, Boston, Massachusetts, USA, pp.
15–28 (June 2006)

13. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diag-
nosing performance overheads in the Xen virtual machine environment. In: VEE
2005: First International Conference on Virtual Execution Environments, Chicago,
Illinois, USA, pp. 13–23 (June 2005)

14. Ousterhout, J.K.: Scheduling techniques for concurrent systems. In: ICDCS 1982:
3rd International Conference on Distributed Computing Systems, pp. 22–30 (1982)

15. Payne, B.D., Sailer, R., Cáceres, R., Perez, R., Lee, W.: A layered approach to
simplified access control in virtualized systems. Operating Systems Review 41(3),
12–19 (2007)

16. Sailer, R., Jaeger, T., Valdez, E., Perez, R., Berger, S., Griffin, J.L., van Doorn, L.:
Building a MAC-based security architecture for the Xen opensource hypervisor.
Technical Report RC23629, IBM Research, Yorktown Heights, NY, USA (June
2005)

17. Van Hensbergen, E., Goss, K.: PROSE I/O. In: IWP9 2006: First International
Conference on Plan 9, Madrid, Spain (December 2006)

18. XVMSocket, http://sourceforge.net/projects/xvmsocket/

http://oprofile.sourceforge.net/about/
http://sourceforge.net/projects/xvmsocket/

	XenSocket: A High-Throughput Interdomain Transport for Virtual Machines
	Introduction
	Background and Motivation
	A Motivating Example: System S
	Security Requirement of System S and Virtualization
	Performance Requirement of System S
	Problem Statement

	Design
	Shared Memory and Circular Buffers
	Sharing and Security
	A Sockets Interface to Shared Memory

	Implementation
	User Perspective
	Data Transfer
	Connection Teardown

	Performance Evaluation
	Performance for Common Message Sizes
	Performance for Larger Message Sizes

	Related Work
	Discussion
	Conclusion


