
XFM: An Incremental Methodology for Developing

Formal Models

Syed M. Suhaib, Deepak A. Mathaikutty and Sandeep K. Shukla

FERMAT LAB., Virginia Tech, Blacksburg, Virginia

and

David Berner

Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA/INRIA)

35042 Rennes, France.

We present an agile formal methodology named eXtreme Formal Modeling (XFM), based on
Extreme Programming (XP) concepts to construct abstract models from natural language speci-
fications of complex systems. In particular, we focus on Prescriptive Formal Models (PFMs) that
capture the specification of the system under design in a mathematically precise manner. Such
models can be used as golden reference models for formal verification, test generation, coverage
monitor generation, etc. This methodology for incrementally building PFMs works by adding
user stories expressed as LTL formulae gleaned from the natural language specifications, one by
one, into the model. XFM builds the models, retaining correctness with respect to incrementally
added properties by regressively model checking all the LTL properties captured theretofore in
the model. We illustrate XFM with a graded set of examples consisting of a traffic light controller
and a DLX pipeline. To make the regressive model checking steps feasible with current model
checking tools, we need to control the model size increments at each subsequent step in the pro-

cess. We therefore analyze the effects of ordering the LTL properties in XFM on the statespace
growth rate of the model. We compare three different property-ordering methodologies: ad hoc
ordering, property based ordering, and predicate based ordering. We experiment on the models of
the ISA bus monitor and the arbitration phase of the Pentium Pro bus. We experimentally show
and mathematically reason that the predicate based ordering is the best among these orderings.
Finally, we present a GUI based toolbox we implemented to build PFMs using XFM.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design aids—Verification; B.7.1
[Logic Design]: Types and design styles—VLSI; B.7.2 [Integrated Circuits]: Design aids—
Verification; D.2.1 [Software Engineering]: Requirements/Specification—Methodologies; Tools;
D.2.2 [Software Engineering]: Tools and Techniques—Computer-aided software engineering;

D.2.4 [Software Engineering]: Program Verification—Validation; D.2.1 [Software Engi-

neering]: Requirements/Specification—Methodologies; Tools ; F.3.1 [Logics and Meaning of

Programs]: Specifying and Verifying and Reasoning about Programs—Assertions; Specification
techniques

Additional Key Words and Phrases: Extreme formal modeling, extreme programming, formal
specification, formal verification, prescriptive formal models, property ordering, property refac-
toring, SPIN, SMV

1. INTRODUCTION

Computational systems, consumer electronics, avionics and other mission critical
systems are dependent on complex hardware and software components. Most of-
ten, these systems entail a complexity beyond the scope of ordinary validation

0This work has been supported by the NSF project CRCD/EI-0417340 and CCR-0237947

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005, Pages 1–0??.

2 · Syed Suhaib et al.

techniques. Formal verification and formal methods have been emerging as viable
techniques for mitigating this increasing system complexity and the resulting vali-
dation challenges.

Formal Methods include describing the behaviors of systems mathematically and
reasoning about them to prove correctness and analyze their behavior and perfor-
mance. The key aspects of formal methods include specification, verification, and
testing techniques for enhancing the quality of the software and hardware devel-
opment. It is known from industrial trends that the validation cycle is often the
limiting factor for the decrease in time-to-market. Some industry experts estimate
that about 70% of the design cycle is spent on verification.

However, formal methods often themselves are complex, difficult to use, and re-
quire mathematical sophistication. To make formal methods easily accessible to
design engineers, one has to build methodologies and toolsets that enable the engi-
neers to easily utilize the effectiveness of formal methods without being thwarted
by the complexity of the method itself.

We believe that one of the major gaps between formal systems engineering and

the requirement specification is the translation from natural language specification

to formal models. Most design teams start with a requirements document written
in a natural language and capture the main functionalities, interpret them, which
often leads to subtle functional bugs in the resulting product. Therefore, there is
a need for a golden reference model in a formal framework that is not only correct
with respect to the intent of the required product, but also unambiguous through
the rigorous semantics of the formal language, which it is coded in. It is not easy to
build such golden reference models because there is no specific methodology either
in academia or in the industry that prescribes the steps for building such models.
In most cases, such models are never built or are built in an ad hoc manner.

In this article, we present a formal model building methodology based on the prin-
ciples of Extreme Programming (XP) [Wells 2001; Wood and Kleb 2003] method-
ology in software engineering. Our proposal to use a modeling methodology, which
we call Extreme Formal Modeling (XFM) is intended to change this practice and
to lead designers to adopt this methodology to build these golden models. We call
such models Prescriptive Formal Models (PFM). During the incremental building
of a PFM, the model is regressively verified. This model helps in creating test-
benches, validating implementation, create coverage monitors etc. However, there
are intricacies in this methodology, especially related to the order in which the
model is incrementally enhanced with newer features. We address this problem by
building specific heuristics and their theoretical justifications.

1.1 Industrial Trends

The design productivity has not kept up with the increase in complexity of com-
putational systems as well as the increase in the size and complexity of the circuit
designs. Although one of the key steps in the design cycle is verification, progress
has been slow in improving formal verification methodology in the industry. Most
of the progress reported in the literature deal with enhancement of the verification
engines, but not so much in verification methodologies. In this article, our focus is
on a specific methodology that enhances the efficacy of formal verification.

In the industry, building formal models for verification purposes is used in two

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

XFM: An Incremental Methodology for Developing Formal Models · 3

different usage modes: Descriptive formal models (DFM) [Bentley 2001] and Pre-
scriptive formal models (PFM). Descriptive formal models are used to capture an
implementation in an abstract model to submit to analysis by model checking tools.
Most of the verification these days is done on DFMs. Since, DFMs are built from the
implementation, there is a high possibility that some of the vital implementation
bugs are not modeled unless automatically abstracted from the implementation.
Another drawback with these types of models is that they may include unwanted
complexity and irrelevant behaviors from the implementation.

On the other hand, Prescriptive Formal Models (PFM) [Shimizu et al. 2000;
Clarke et al. 2000; Berner et al. 2004] are used to capture natural language spec-
ifications in a formal model to analyze consistency of the specification. In this
approach of model building, the intended behavior of the system is described and
not what a specific implementation does. These specifications describe how the
system should work. They are also used as a reference model to compare a DFM
against it.

Currently, in our experience from the industry, whenever PFMs are built and
verified, it is done in an ad hoc manner. Figure 1 shows that an ad hoc abstract
model is usually built from an English specification and checked against formal
properties with a model checker. At times, the ad hoc abstraction is built from an
implementation, which is then checked against the implementation for conformance.
There are several drawbacks in this approach. First, the ad hoc building of both
the model and the properties is error prone and the effort of model building and
debugging grows along with the size of the model. Next, as there is no way to
control the inclusion of all properties, some may be overlooked, thus reducing the
significance of the model. Then, if a property fails, it is tedious to debug the model.
Few indications exist where the bug is located. Finally, there is a tendency that the
model includes less behaviors than the specification allows. This is because often
implementation bias gets into the abstract model. In addition, implementation
details in the abstract model may introduce unwanted complexity and may later
cause problems in a conformance check.

English
Specification

Linear Time
Properties

Ad Hoc
Abstract Model

Model
Checking

Fig. 1. Current practice in capturing a formal model from natural language specification

1.2 Motivation

In our experience in developing formal models for systems such as real-time meta-
scheduler and EDF scheduling algorithm [Li et al. 2004], we feel that the design
preceded the modeling, which then makes it difficult to abstract the design into a

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

4 · Syed Suhaib et al.

formal model. Also going directly into an implementation, which is heavy with lots
of implementation artifacts, the properties intended for the design often get hidden.
So we advocate the “model formally first and design later” (MOFDEL) approach.

Our methodological motivation is derived from XP [Wells 2001] where a “test-
first” approach is recommended in building designs. In the “test-first” approach, the
customer gives a set of user stories which are converted to tests. The user stories

are short descriptions that convey the exact detail of the required functionality of
the design, which enables the programmers to be certain about the features that
the customers request. By creating tests first, an urge arises to test everything that
is valuable to the customer. We first create one test to define some small aspects of
the problem. Then, we create the simplest code that can make that test pass. We
then create a second test. Now we add to the code that we just created to make
this new test pass, and no more. We continue with the procedure until there is
nothing left to test. The code created is simple and concise, implementing only the
required features.

With verification being a major part of the design cycle, our motivation is to
facilitate the verification process by creating PFMs as golden reference models for
verification. Usually the golden reference model is not built or even if it is built,
it is usually captured in a high level programming language such as C or C++,
which does not have a well-defined semantics. Bits and pieces of PFMs are often
built in the verification IPs, such as verification IPs constructed in Vera [Synopsis
2004], Specman [Verisity 2004], etc., but these are usually done after the design
is developed, and are often constructed in an ad hoc fashion. We believe building
PFMs a priori to design implementation in a verifiable language would benefit the
industrial design flow.

Building correct PFMs is one of the challenging problems, and we address this
by using XFM. PFMs, as described earlier, capture natural language specifications
in a formal model to analyze consistency of the specification. It is vital that these
PFMs contain all the relevant system properties that need to be analyzed. PFMs
with implementation specific complexity and irrelevant behavior may result in a
longer verification time implying a larger state space search for verification. One of
the key ideas of efficient verification is to reduce the number of reachable states that
must be searched to verify the properties. As we incrementally build a PFM, our
approach attempts to control state space growth in small increments, rather than
sudden large growths in state space resulting in a failure to carry out regressive
model checking.

1.3 Main Contributions of this Work

In this section, we summarize the main contributions of this work. At the risk of
repeating ourselves, we enlist the main facets of this article for readers’ convenience.
We propose a methodology for an agile formal method: eXtreme Formal Modeling
(XFM), based on XP concepts to construct abstract models from a natural language
specification of a complex system. We show how to incrementally build PFMs by
adding user stories one by one into the model. XFM uses a “property driven”
approach to build formal models. Models are built based on the properties instead
of being built depending on the implementation. We illustrate our methodology
with examples of a traffic light controller and a DLX pipeline [Suhaib et al. 2004a;

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

XFM: An Incremental Methodology for Developing Formal Models · 5

Suhaib 2004].

Since XFM is based on modeling the properties, it is important to decide what
order of properties should be used to build the abstract model. The properties
contain predicates that describe certain behaviors. The complete set of these be-
haviors modeled in a specific manner constitute the model. Our ordering schemes
are based on the frequency of the predicates present in the system. We analyze
the effect of ordering properties for building PFMs with XFM with three differ-
ent property ordering approaches: ad hoc ordering, property based ordering and
predicate based ordering of properties. We use our property ordering approaches
with XFM methodology on the models of ISA bus [Shanley and Anderson 1995]
and the arbitration phase of Pentium Pro bus [Shanley 1998]. We found out that
the predicate based ordering approach is the most effective way of XFM and with
formal reasoning we conclude the same [Suhaib et al. 2004; Suhaib et al. 2004b].

We also build a platform independent GUI tool that provides a GUI interface
to facilitate the usage of our XFM approach with property ordering. For model
checking purposes, the tool is interfaced with the SMV model checker [McMillan
1993].

To the best of our knowledge, this is the first methodology for building formal
models in an agile development style. The GUI is enabling users to easily build
models incrementally and correctly through regressive steps. The property set
developed as user stories is expressed formally, and hence can be used as well to
automatically create a coverage monitor and generate tests.

This article is organized as follows: Section 2 describes related work in the field.
In Section 3, we discuss in detail the methodology of XFM along with examples of
a traffic light controller and a DLX pipeline. In Section 4, we discuss the theory
behind ordering the properties for XFM and the schemes we use for our method-
ology. We illustrate the ordering with examples of the monitor of the ISA bus and
the arbitration phase of the Pentium Pro bus. In Section 5, we discuss the XFM
toolkit followed by conclusion in Section 6.

2. RELATED WORK

Efforts are being made to use the XP methodology to build large systems fast in
high quality, but this approach has not been connected so far to formal modeling
and verification. Some related work in the field of using formal methods with XP
has been done by Herranz and Moreno-Navarro at the TU Madrid in [Herranz
and Moreno-Navarro 2003a; 2003b]. They describe the integration of some XP
practices to formal methods in the SLAM software tool [Herranz 2003]. While our
work involves the use of XP to model complex concurrent systems, their approach is
directed towards sequential software programs. General information about XP and
agile techniques can be found in [Wells 2001; Beck 2000; Williams 2003; Wood and
Kleb 2003]. Our approach in using XP ideas to formal modeling is distinct from
a recent work in [Henzinger et al. 2003], where they show how to reuse previous
model checking results to incrementally model check a modification of a model.
Their technique can be plugged into XFM in the essential regression steps of XFM.

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

6 · Syed Suhaib et al.

3. EXTREME FORMAL MODELING (XFM)

As for any system development, it is important to have a concise and clearly written
specification for the system. Some time must be spent on the specification to get
an overview of the whole system and maybe visualize its main structure. Both, a
clear system specification and a deep understanding of the system are crucial for
writing correct LTL properties.

Many of the XP rules can be applied directly and successfully in XFM. For
instance, one of the main XP rules is to write tests before the actual code (test-
driven approach). In XFM, this rule maps to specifying the linear time property
before writing the abstract model (property-driven approach). Another important
XP technique is to add functionality as late as possible, incrementally increasing
the complexity of the model. Iterations are small steps in the development process.
At the start of each iteration the goals are identified and written down in the form
of “user stories” - short narratives that point out specific implementation details
and requirements. These user stories act as a detailed guideline for the programmer.
To refactor problems and to update tests after a bug is found are also principles
that are as beneficial to the capturing of formal methods as they are for common
programming projects.

The initial part of our XFM procedure involves breaking down the English spec-
ification to user stories. We select a user story that describes basic functionality of
the system, and transform it into one or more LTL properties.

Algorithm 1 XFM Approach

/* For a given system, we have the behaviors in terms of natural language specification which
are converted to user stories */

Let US = {us1, us2, ..., usn} be the set of all user stories for the system
Let Π(usi) = {πj , πj+1, ..., πk} be the set of properties for usi user story
Let Π = ∪iΠ(usi) ={π1, π2, ..., πm} be the complete ordered set of properties.
/*We show 3 different ordering approaches for property modeling later in this article */
Let Πi = {π1, π2, ..., πi} ⊆ Π, so Πi represents the first i properties in the specific order chosen.
Let X(Πi) be the model that satisfies all the properties in Πi

Initial X = ∅, i = 0,
Step1: i := i + 1
Step2: Build Abstract Model X(Πi), the model is built to satisfy all the properties in Πi

simultaneously.
X := X(Πi)
ModelCheck(X,Πi)
if ModelCheck fails for a πk /* This is the regression step */

go to Step2 /* to change the model suitably so the failing property can pass*/
else if i = m

X is the required model
else

go to Step1

We can now check if the LTL property correctly expresses the behavior of the
user story. LTL properties can be visualized as finite state machines (FSM) and
LTL 2 BA [Oddoux 2001] eases this step by displaying the corresponding FSM.
It is important that during implementation, only the behavior of this property is

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

XFM: An Incremental Methodology for Developing Formal Models · 7

taken into account. After listing out all LTL properties, we select one property
from the list, build an abstract model for this property, and model check if it
holds for the model. Once the property is satisfied, we take a second property,
extend the model according to this property, and model check for both properties.
This procedure is repeated until the abstract model contains all behaviors from the
English specification and all the properties in the list are satisfied. The controlled
and incremental model building results in a compact and structured abstract model.
If the model checker fails to validate the property, the error can be located with
the help of a trace file generated by the model checker, fix the bug and rerun
verification. Whenever a property fails to validate, it is straightforward to find
the bug as it usually is related to the most recent additions. The complete effort
of modeling and bug fixing grows incrementally along with the size of the model.
Algorithm 1 gives a formal representation of the basic XFM methodology.

The fact that the behavior of the model is closely linked to the properties entails
a close to complete set of properties once the model is complete; simulation of the
model helps reveal missing functionality. However, in an ad hoc approach, the
model tends to contain much more functionality than specified, but less properties
than needed as there is no mechanism that guarantees the exposure of all properties
of the spec. The overall time to build and validate the model is substantially less,
especially for large systems. With two illustrative examples (of a control intensive
traffic light controller, and the DLX pipeline) we present this methodology and
show the benefits.

3.1 Examples and Results

A simple traffic light illustrates the main steps, tools, and techniques involved.
The design of a DLX microprocessor pipeline [Hennessy et al. 2002] shows how
this methodology works for a bigger model, and how the model evolves with the
incremental approach.

3.1.1 Traffic Light Model. This example of a traffic light controller shows a
pedestrian crossing at a traffic light. When a pedestrian pushes the switch,
the car signal turns red, and the pedestrian signal turns green. Af-
ter thirty seconds, the pedestrian signal turns red again and car signal
turns green such that cars can go. At any point of time, the cars and
the pedestrians cannot go simultaneously. This description is the English
specification. Now, we construct LTL properties describing this system. Let us
assume that p, c, and sw are predicates in the system where p is high when the
pedestrian signal is red and c is high when the car signal is red. We denote sw high
when the switch pressed. We start with the most important property that states
that both pedestrian and car, can never get the green signal at the same time: []!(!p
&& !c).

The next property states that whenever the car signal turns red, they eventually
become green. Table I lists all LTL properties for this example. LTL does not
allow expressing exact timing, only relative occurrences of events. However, in the
model, we add a timer that counts to thirty before the pedestrian’s signal turns red
and the car’s signal turns green. The model now includes two states, one where
cars go (!c) and pedestrians stop (p) and the other where pedestrians go (!p) and

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

8 · Syed Suhaib et al.

cars stop (c).

Prop1 Never both signals can be green at same time []!(!c&&!p)

Prop2 If cars cannot go, they will go eventually [](c →<>!c)

Prop3 No button pressed, cars keep going []((!c&&!sw) → X!c)

Prop4 No button pressed means that the pedestrian
signal cannot turn green

[]((p&&!sw) → Xp)

Prop5 When the switch is pressed while the cars go, pedestrians will go before the switch
is turned off.
[](sw&&p → swU(!p&&sw)&&(!p&&sw →!pU(!p&&!sw)))

Table I. LTL properties for traffic light (c = cars stop, p = ped stop, sw = button is pressed)

Prop3 and Prop4 state that when no switch is pressed, the cars keep driving
and the pedestrians keep stopping. As we check these properties against the formal
model, we realize that they can be verified without making many modifications to
the system.

The functionality that is still missing is the inclusion of the switch. When cars go
and the switch is pressed, eventually pedestrians should be allowed to walk before
the switch turns off. This property is a bit longer than the others are, and without
LTL 2 BA it is not easy to figure out if it is correct. After implementing the
functionality of these properties into the model, simulation shows that it works as
specified, so we have found all properties.

3.1.2 Model of a DLX Pipeline Control. The pipeline control of the DLX RISC
processor model [Hennessy et al. 2002] is a well-known and reasonably large example
to show the use of XFM. The DLX has a 5-stage pipeline, which means up to five
instructions can run concurrently. The cycles for the instructions are instruction
fetch (IF), instruction decode (ID), execute (EX), memory access (MEM), and
write back (WB). However, not all instruction types use the same cycles in the
same order. Table II shows the cycle usage for the different instruction types.

IF ID EX MEM WB

Arithmetic X X X X

Load X X X X X

Store X X X X

Branch X X X X

Table II. Cycles for Different Instruction Types

Starting from this system description, we identify the first user story. One of the
most basic behavior states that each instruction executes in a certain order. So,
generally speaking, instructions execute in the order IF → ID → EX → MEM →
WB. In LTL this can be expressed as [](if → Xid), always ID after IF and then
the same for ID and EX, EX and MEM, MEM and WB, and finally WB and IF.

The second user story expresses the fact that this order of execution still has to
hold when we consider five concurrent instructions in the pipeline. In order to keep
the model small we decide to use five concurrent processes each of which handles

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

XFM: An Incremental Methodology for Developing Formal Models · 9

cat1 [](if1 →!(Xex1||Xmem1||Xwb1))

cat1b []((ex1&&(load1||store1||branch1)) →!(Xif1||Xwb1||Xdec1||Xwait1))

cat2 []((if1&&!enable1) → (if1Uenable1))

cat2b []((wait1&&!enable1) → (wait1Uenable1))

cat3 [](if1 → ((enable1Udec1)||!enable1))

cat3b []((ex1&&(load1||store1||branch1)) → ((enable1Umem1)||!enable1))

cat4 []((if1&&enable1) → ((!(if2&&enable2)||(!(if3&&enable3))
||(!(if4&&enable4))||(!(if5&&enable5)))U !enable1))

Table III. LTL properties for pipeline (examples)

one instruction. Since the processes run independently, the first property does not
hold any more. It is not guaranteed that directly after the first instruction is in the
fetch stage it advances to the decode stage, since in the meantime other processes
may get execution time. What we can guarantee however, is that we never go
directly into any of the other stages. Now this has to be expressed for each cycle in
each instruction, which means we get 25 LTL properties such as cat1 in Table III.

In the next iteration, we introduce the possibility to control the instructions
from outside. This is done by “enable signals”, one for each instruction. The LTL
expression says that an instruction does not advance unless the enable signal is
given. Again we obtain 25 properties in the style of cat2 in Table III. The changes
in the model for these properties are small, so all of them can be verified without
problems.

The following iteration is adding some synchronization. The user story states that
the control enables each instruction in each cycle. Once the instruction advances,
it is setting its enable signal to zero, thus signaling the control that it is ready for
the next cycle.

Another important behavior of a pipeline is to prohibit the multiple usages of
resources. If at no time the fetch, decode, execute, address bus, and data bus units
are used by more than one instruction there are no resource conflicts. Cat4 in
Table III expresses this in LTL for the fetch cycle of the first instruction. Again
the category consists of 25 properties, one for each cycle. In order to satisfy this
property in the model, we are introducing a control process that in an initialization
phase starts each instruction successively, and later makes sure that every instruc-
tion advances in each cycle. The verification of all properties and simulation finishes
this iteration step. With only four categories of properties the basic functionality
of the pipeline is now verified and working.

To make the model of the pipeline more realistic, we select the user story that
defines the different instruction types and their different cycle sequences from Ta-
ble II. It turns out that this does not result in a new category of properties, but
rather implies changes to existing properties. This step illustrates that in the it-
erative process, not only does the model evolve, but also the properties can evolve
and get more complex later in the modeling process. To satisfy the requirement, we
extend our basic instruction automaton with a wait stage and transitions according
to Table II. This makes sure that an arithmetic instruction for example goes from
EX to WAIT and then to WB. We have to change some properties in category 1
and 3, and add properties in all four categories. Resulting LTL examples are shown
in cat 1b and 3b in Table III. Changes in the abstract model to reflect this are

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

10 · Syed Suhaib et al.

limited to update the FSM description for each instruction that means introducing
the notion of an instruction type, and adding the transitions to and from the wait
stage. These changes are transparent to the control logic since after the changes
still each instruction takes 5 cycles to finish, therefore preventing the occurrence of
structural hazards. Of course, there are still more details that could be added to
the pipeline, such as data dependencies and forwarding, but the steps for building
the model are always the same.

4. PROPERTY ORDERING

In this section, we analyze the effect of ordering the linear time properties while
using the XFM methodology in building PFMs. During incremental model building,
the PFMs often blow up in size in terms of the state space, and the main tenet of
XFM being regressive model checking, blown up models often make it impossible
to carry out the XFM methodology. We compare three different model building
methodologies, (i) Ad hoc selection of user stories (ad hoc ordering), (ii) Sorting
of the user stories based on a weighting scheme (property based sorting), and (iii)
Predicate based sorting of user stories based on an eliminative scheme (predicate
based sorting). We show that the predicate based sorting scheme is the most
effective way to carry out XFM model building. We illustrate the schemes and the
comparison by modeling a monitor for the ISA bus [Shanley and Anderson 1995]
and a model of the arbitration phase of the Pentium Pro processor bus [Shanley
1998] using Cadence SMV [McMillan 1993].

4.1 Preliminary Definitions

Let X = {x1, x2, . . . , xl} be the set of variables in the system being modeled. Let
D(xi) denote the domain of variable xi. In most cases D(xi) = {0, 1}, when xi

is a Boolean variable. Let us call xi = v or xi 6= v where v ∈ D(xi) as predicates
of our system. In other words, in every state of the system, for each variable xi,
one can evaluate these predicates easily. It is easy to see, that the number of such
predicates in the system is Σxi∈X(2· | D(xi) |), which is finite for a finite variable
set X , and below we indicate this number by n. Now let P = {p1, p2, . . . , pn} be
the set of all such predicates and Π = {π1, π2, . . . , πm} be the set of properties to
be modeled.

Fig. 2. Predicate-Property Representation

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

XFM: An Incremental Methodology for Developing Formal Models · 11

Definition 4.1. Predicate-Property Relationship Graph: A bipartite graph
G = (P ∪ Π, E) where P ∩ Π = ∅, E ⊆ P × Π s.t (pi, πj) ∈ E iff pi ∈ πj , is named
a Predicate-Property Relationship Graph (PPRG).

The relationship between the properties and predicates can be represented by a
bi-partite graph, where one set of nodes is marked with the predicates, and another
set of nodes is marked with the properties. Edges go from a node marked with
predicate pi to a node marked with a property πj if the predicate pi is used in
the property πj . We write this condition in short hand as pi ∈ πj . A predicate
describes the behavior of the system with respect to a specific functionality. A
predicate-property relationship graph is shown in Figure 2.

Definition 4.2. Weights of Predicates and Properties: δ(pi) = out degree
of a node marked pi in G is called the weight of the predicate pi. It indicates how
many times pi appears in different properties. We denote this by ̥(pi) or by δ(pi)
interchangeably. The weight of a property πj is now defined as W (πj) =

∑
δ(pi)

where (pi, πj) ∈ E, and the weight of a property is a measure of the entanglement

of that property with other properties.

4.2 Importance of Ordering

One of the important factors in building an abstract model for formal verification
is to make sure that it does not contain any unnecessary behavior. These behaviors
may get included in the updated model when it is not seen as an incremental ap-
proach but rather as unstable in terms of state space searched. Another important
concern is to achieve a model that has smaller state space searched for the property
in order to verify it. With smaller state space, verification would be faster and effi-
cient. Both the concerns are resolved by modeling using the XFM approach with a
consistent ordering of properties. Our goal of XFM does focus on the fact that we
want to satisfy the property with the least changes in the model from its previous
increment. We experiment with different property ordering approaches using XFM
to construct the model.

The first approach, ad hoc ordering, is based on the designers selection of prop-
erties for modeling. This approach may cause the model to blow up initially and
remain same throughout or may cause the model to decrease in size in between.
Second, we have the property based ordering scheme, where the order is based on
the weight of each property. We first compute the total weight of the predicates in
the system. We start modeling the property πf with the least W (πf). Also, note
that if multiple properties have the same weight, we model them in any order. Fi-
nally, we have the predicate based ordering scheme, in which we do an elimination
of the properties based on the frequency of the predicates. In this scheme, we model
the properties containing the least frequent predicate. Once the above properties
are modeled, that specific functionality of the system has been completely modeled.
The remaining properties are independent of the modeled functionalities. There-
fore, by modeling using a predicate based ordering, we model in a more incremental
fashion. We find this to be the most effective of the property ordering schemes for
XFM. The scheme for predicate based ordering is shown in Algorithm 2.

Recall that, our goal for ordering properties is twofold: (i) To keep the number of
states searched for verification as low as possible in the incremental model building

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

12 · Syed Suhaib et al.

Algorithm 2 Predicate based ordering
Let Π = {π1, π2, ..., πm} be the set of properties of size m

Let P = {p1, p2, ..., pn} be the set of predicates of size n

/* W (πf) = Af · δ̂ where Af is the column vector corresponding to property πf in PP matrix
*/
Let L = ∅ /* L is an ordered list of properties initially empty */
while Π is not empty

for all pi ∈ P, such that (̥pi) is minimum

Obtain D = {π1
minp

, π2
minp

, ..., πt
minp

}, where minp is the set of

predicates with least (̥pi) in P and one or more predicates

from minp appears in all πi
minp

in D

end for

Select πj from D such that W (πj) is minimum

Remove πj from Π such that Π = Π − {πj} /* For multiple πj , select one randomly*/
Add πj to the end of list L

Update all (̥p) for all p’s in πj

/* Effect of removing πj is equivalent to deleting the column Aj from PP matrix

and updating the δ̂ such that δ̂ := δ̂ ⊖ Aj where ⊖ indicates element by element
subtraction between two vectors */
for all remaining πi ∈ Π

Update W (πi) with new δ̂ · Ai

end for

end while /* The ordered list L now contains the predicate based order for XFM modeling */

process, as long as we can, (ii) To keep the changes needed at later stages of the
model building minimal. We realize that to achieve these two goals, we need to
make sure that the properties that have the least entanglement with other properties
must be modeled first, so that we can minimize changes on parts modeling these
early properties. We also realize that if we model a property, and the next property
we model has more predicates in common with this property, the changes in the
state space are minimal since each predicate may introduce new states. In other
words, if we model a property with a collection of predicates, and then we model
another property, which has very little overlap in predicates with the last modeled
property, we have to introduce more states.

In the following series of lemmas and theorem, we show that in predicate based
modeling, usually when a sequence of properties is modeled they share predicates,
and therefore, the statespace does not increase drastically from one step to the
other. In the property based scheme, since the modeling is done based on property
weights, two subsequently modeled properties may not have any shared predicates,
and hence the state space can suddenly go up drastically, as seen in the experimental
evidence presented later.

Pmin denotes the set of predicates with the least occurrences among the properties
not modeled yet. In other words Pmin = {p | δ(p) ≤ δ(q)∀q ∈ P}. At every iteration
of the predicate based sorting, this set Pmin is updated, since δ values for predicates
change based on what property is modeled at that iteration.

Observation 1. At the end of every iteration, for any predicate p, δ(p) either

reduces by 1 or remains the same.

Lemma 1. If δ(p) > 1 and p ∈ Pmin, then p remains in Pmin in the next iteration

if and only if p is in the modeled property in the current iteration.

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

XFM: An Incremental Methodology for Developing Formal Models · 13

Proof sketch: If the modeled property contains p, then δ
′

(p) = δ(p) - 1, and
since δ(p) is the smallest, and no other property’s δ value can reduce by more than
1, p still remains among predicates whose δ value is minimum. On the other hand,
if δ(p) > 1 and if the modeled property does not contain p, then by the algorithm,
the modeled property has to contain q ∈ Pmin, and hence δ(q) becomes smaller
than δ(p) and p leaves Pmin in the next iteration.

Observation 2. If δ(p) = 1 and if one of the properties selected to be modeled

contains p, then p does not have to be modeled again.

Lemma 2. if δ(p) = 1, then always p ∈ Pmin until a property containing p is

modeled.

Proof sketch: Let us assume that there is q ∈ Pmin, then also δ(q) = 1 since
p ∈ Pmin and δ(p) = 1 . If q is selected to be modeled, then δ

′

(q) = 0 and it is
removed from Pmin, but p remains. If p also is in the modeled property, then again
the condition of the lemma is met.

Lemma 3. Once a Pmin is chosen, Pmin may lose some predicates from one

iteration to the next, but it does not gain any new predicates, until the current

Pmin becomes completely empty.

Proof sketch: By definition of Pmin, for all q /∈ Pmin, δ(q) > δ(p) for all
p ∈ Pmin. Now, when a property is modeled in the current iteration, it must
contain at least one p ∈ Pmin, and hence its δ value decreases, so that p stays in
Pmin through the next iteration. Now if p′ ∈ Pmin is not in the modeled property,
its δ value remains unchanged, and so it is removed from Pmin. However, since for
all q /∈ Pmin, the reduction in δ value is at most 1, they cannot enter Pmin.

Observation 3. If Pmin has more than 1 entry, and some p is chosen, and

δ(p) > 1, and πp is the property being modeled, then in the next iteration all q /∈ πp

goes out of Pmin.

Lemma 4. If Pmin is singleton, then no new Pmin can be constructed until all

properties containing that predicate are modeled.

Proof sketch: Follows from the previous lemma.

Observation 4. The size of Pmin either decreases from one iteration to the next

or remains the same until a property is chosen to be modeled such that it does not

contain all the predicates currently in Pmin. In either case, until Pmin = ∅, no new

predicate enters Pmin

The time we choose a new Pmin till it becomes empty, let us call that set of itera-
tions a phase of the modeling. Therefore, the entire predicate based sorting ordered
XFM goes through these phases. Based on the previous lemmas and observations,
we can now claim the following:

Theorem 4.2.1. In a single phase of the modeling, all properties that are mod-

eled overlap in some predicates. Also, in each phase, for at least one predicate, all

properties containing that predicate are modeled in a single phase.

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

14 · Syed Suhaib et al.

Proof sketch: Follows from previous observations and lemmas. This theorem,
points out that the state space increase in this methodology is more controlled,
because if we model properties that have predicates common with the previously
modeled properties, we are likely to introduce less states in the next increment of
the model, as some predicates of the new property are already modeled. Remember
Πi denotes the set of properties until πi.

Experimentally we find that predicate based ordering is the most effective of the
property ordering schemes for XFM. In the next section, we show our results from
modeling the ISA bus architecture as well as the arbitration of the Pentium Pro
bus for the three distinct approaches to XFM.

4.3 Case Studies Based on Property Ordering

4.3.1 ISA Bus Architecture. The XFM approach is applied to formalize the
monitor model of the ISA bus architecture, which is compact. Following the XFM
guidelines, we first write the user stories from the natural specifications dictating
the behavior of the ISA bus protocol. The user stories are converted into a se-
ries of LTL properties. These properties are then sorted in accordance with the
schemes mentioned earlier and an incremental model is constructed using the XFM
approach. The model of the ISA bus architecture is one of the basic models of the
first IBM PC. The main component of the ISA bus architecture is the expansion
bus. The expansion bus interfaces the memory with the I/O cards. The model
of the ISA bus protocol is based on the signal specifications indicated in [Shanley
and Anderson 1995]. Based on the functions, the signals are grouped into address
signals, data signals, and system management signals. The bus clock drives the ISA
bus and introduces the notion of timing. When the unit is initially powered up,
the reset signal on the ISA bus remains asserted until the power supply voltages
stabilize.

Furthermore, the ISA cards are prevented from functioning until the power has
stabilized. When a bus cycle is initiated by the CPU, the target address is placed on
the address bus once the Buffered Address Latched Enable (BALE) signal appears
on the bus. The BALE signal is used to indicate that the address is successfully
decoded. Once the address becomes valid, the data transfer proceeds either on the
upper or lower paths of the data bus, based on whether it is an 8-bit or a 16-bit
expansion card that initiated the bus cycle with or without the System Bus High
enable asserted. The specification of the ISA bus along with the corresponding
properties is illustrated in Table IV. The results of the state space search for the
properties for all three approaches are illustrated in Section 4.4.

4.3.2 Bus Arbitration of the Pentium Pro Processor. One of the most impor-
tant concerns of the Pentium Pro bus is how it handles arbitration between its
symmetric and priority agents [Shanley 1998]. Before a request agent can issue a
new transaction to the bus, it must arbitrate for and win ownership of the request
signal group. Once ownership is acquired, the request agent initiates the request
phase of the transaction. Some of the behavior handled includes arbitration among
the symmetric agents, arbitration by the priority agents and its effect on the sym-
metry agents. The user stories incorporate the behavior when the symmetric agent
locks the bus and a priority agent is giving a request. The ability of bus parking

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

XFM: An Incremental Methodology for Developing Formal Models · 15

Table IV. LTL properties for the ISA bus
1 When the system powers up, all bus signals

are reset.
G(power → X !reset)

2 The cards are prevented from doing anything
until power stabilizes.

G(power → X isacards)

3 The BALE signal occurs once in a bus cycle. G(balelock → baleon)
G(balelock U !endbuscycle)
G((baleon && power && !endbuscy-
cle) → X balelock)

4 At the end of the bus cycle, the address is
not valid, the bale signal is not high and data
transfer is not complete.

G(endbuscycle → X(!addressvalid &&
!baleon && !dtstart && !balelock &&
!dtcomp))

5 Whenever the data transfer takes place, the
address is valid

G(dtstart → addressvalid)

6 When the device is powered and data transfer
is complete, the current bus cycle ends in the
next bus clock.

G((dtcomp && b clock && power) →
X endbuscycle)

7 When the 8 bit device is powered and if the
data transfer can start in the same bus cycle,
the lower path of the data bus is used to trans-
fer the data.

G((isacardselect && dtstart && power
&& !endbuscycle) → X lowerpath)

8 When the 8 bit device is powered and if the
data transfer can start in the same bus cycle,
the upperpath of the data bus is never used to
transfer the data.

G((isacardselect && dtstart && power
&& !endbuscycle) → X !upperpath)

9 When the 16 bit device is powered up and the
data transfer can start in the same bus cycle
to an even addressed location along with the
high enable signal set low, the lower path of
the data bus is used for transfer.

G((address && isacardselect && dt-
start && power && !endbuscycle &&
!highen) → X lowerpath)

10 When the 16 bit device is powered up and the
data transfer can start in the same bus cycle
to an even addressed location along with the
high enable signal set high, the upper path of
the data bus is used for transfer.

G((!address && isacardselect && dt-
start && power && !endbuscycle) →
X upperpath)

11 Data transfer completes after Data transfer
starts.

G(dtcomp → dtstart)

12 When the power off signal is received, balelock,
baleon, data transfer, bus clock, buscycle is
reset and address is not valid.

G(!power → X(!baleon && !dtstart
&& !balelock && !isacards && !b clock
&& !dtcomp && !endbuscycle && !ad-
dressvalid))

13 Whenever the address is valid, then the baleon
signal has already arrived.

G(addressvalid → baleon)

14 When the 16 bit device is powered up and the
data transfer can start in the same bus cycle
to an even addressed location along with the
high enable signal set high, the upper path of
the data bus is used for transfer.

G((highen && isacardselect && ad-
dress && dtstart && power && !end-
buscycle) → X upperpath)

by an agent is also modeled.
The Pentium architecture for arbitration contains four symmetry agents and a

priority agent, where a symmetric agent is a processor capable of handling any task.
At a given instance in time, one or more of the processors may request ownership of

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

16 · Syed Suhaib et al.

Table V. Sample user stories and LTL properties for Pentium Pro Arbitration
1 If only agent 2 is requesting the ownership of the

bus then it is given the ownership of the bus and
all the other agents will update their rotating ID
to ’2’, irrespective of who was the previous owner

G(!breq0 && !breq1 && breq2 &&
!breq3 && Arbit && X !reset → X
Rid2̄ && X busstate)

2 If agent 2 and agent 3 are requesting the bus and
if agent 0 had the ownership of the bus previously
then agent 2 wins the arbitration and gains own-
ership of the bus

G(!breq0 && !breq1 && breq2 &&
breq3 && Rid0̄ && Arbit && X
!reset → X Rid2̄ && X busstate)

3 If agent0, agent2 and agent3 are requesting the
bus and if agent0 had the ownership of the bus
previously then agent 2 wins the arbitration and

gains ownership of the bus

G(breq0 && breq2 && breq3 &&
!breq1 && Rid1̄ && Arbit && X
!reset → X Rid2̄ && X busstate)

4 If agent0 is the owner of the request signal group
and one or more of the other agents are request-
ing the bus then agent0 deasserts its request and
allows the other agents to arbitrate the ownership

G(busstate && Rid0̄ && (breq1 ||
breq2 || breq3) && Arbit && →
!breq0)

5 If agent0 and agent1 are requesting the ownership
along with the priority agent and the LOCK signal
has not been asserted, then the priority is given the
ownership

G(breq0 && breq1 && !breq2 &&
!breq3 && Rid3̄ && BPRI &&
!LOCK && Arbit && X !reset →
X Rid4̄ && X busstate)

6 If agent1 and the priority agent are requesting the
ownership at the same time when the LOCK is
asserted then the ownership is not given to the
priority agent

G(breq0 && breq1 && !breq2 &&
!breq3 && Rid3̄ && BPRI &&
LOCK && Arbit && X !reset →
X Rid0̄ && X busstate)

the request signal group in order to communicate with an external device. The bus
arbitration decides which of the processors gets the ownership of the bus, based on
a built in rotational priority assignment scheme. In order to track this information,
each agent knows its own agent ID as well as the agent ID of the processor that
last gained ownership of the request signal group. An arbitration event, defined
as passing of ownership from one agent to another, occurs under the following
circumstances: (i) None of the agents are requesting during one clock and then one

or more are seen requesting in the next clock. and (ii) The current symmetric owner

of the request signal group relinquishes ownership of the bus and one or more of the

other agents have been requesting the bus. In either case, the symmetric agents must
collectively decide which of them assumes ownership of the request signal group in
the next clock. In the Arbitration event, when only one of the symmetric agents is
requesting the bus, it gets the ownership of the request signal group. Whereas, if
two or more of the symmetric agents are requesting the bus, one of them wins the
arbitration and gets the ownership of the request signal group based on who had the
ownership previously. The sequence in which the processor gains ownership is 0, 1,
2, 3, 0, . . . (Agent IDs). Each agent has a bus state and a Rid, which is used to keep
track of the bus status and the ID of the current owner of the bus respectively. The
processor may retain ownership after completing a transaction in case it needs the
request signal group again in the future. This is referred to as bus parking. When a
processor parks the ownership of the bus, it may retain the ownership until another
processor requests ownership. In other words, be fair to the other processors. If an
agent is requesting ownership within 4 arbitration events, it is given the ownership

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

XFM: An Incremental Methodology for Developing Formal Models · 17

of the request signal group. While the symmetric agents are very polite to each
other, the system may include another agent that plays by different rules, referred
to as a priority agent. When a priority agent is requesting ownership at the same
time as one or more of the symmetric agents, the priority agent wins. The only
case where the priority agent is unsuccessful in winning the ownership of the bus is
the case where a symmetric agent has already acquired ownership and has asserted
a LOCK signal. This prevents the priority agent from acquiring ownership until
the symmetric agent deasserts the LOCK signal. Some of the user stories and the
corresponding properties of the arbitration event are mentioned in Table V [Suhaib
2004].

4.4 Experimental Results

The ISA Bus and the arbitration event of the Pentium bus have been modeled and
number of reachable states searched for the verification of the properties were noted
for each of the three different methods of ordering and modeling properties. The
two models differ in the number of properties for modeling as well as the size of the
model. Vacuity checks are performed on all properties in order to ensure that they
are not vacuously true.

Property based

Predicate based

Random

0

2000

4000

6000

8000

10000

12000

14000

0 5 15 25 35 45 55 65 75 85 95 105 115 125

Property Rank

S
ta

 t
e

S
p

a
c

e
S

iz
 e

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
ta

 t
e

S
p

a
c

e
S

iz
 e

Property Rank

i) State space search
for ISA bus monitor

ii) State space search for
Pentium arbitration

Fig. 3. State space search graphs

In the model of the ISA Bus architecture, 16 properties are modeled; they are
derived from 14 distinct user stories and include 15 predicates. We find that during
the ad hoc approach the model state space grows significantly large after modeling
the first property. The main reason is that the property selected required the user
to build the complete model in one shot in order to verify the property. This
approach causes inclusion of irrelevant behavior in the model, which is not seen in
the other two approaches due to an incremental modeling methodology. Therefore,
the property based and the predicate based ordering result in a smaller number
of states searched than the ad hoc modeling approach of properties. The number

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

18 · Syed Suhaib et al.

of states searched for verification by predicate based ordering results in better
performance in terms of more properties being verified with a lower number of
states searched than the property based ordering.

On the other hand, the arbitration model of the Pentium bus is more complex
than the ISA bus model. The arbitration model consists of 126 properties from
as many user stories and includes 24 predicates. The state space search graph for
the verification of properties has a huge discrepancy between the model built by
ad hoc ordering as to the other two approaches. The model built using the ad hoc
approach becomes complex in the early stage of modeling requiring a large number
of states to be searched to verify the properties. The property based sorting has a
smaller state space search for the initial set of properties but the number of states
for verification grows as more properties are added. After about 75 properties, the
state space search becomes stable since the model is complete at this point. This
ordering approach is better than the ad hoc approach, but the predicate based
property ordering gives better results with the graph of the state space search
being more incremental throughout. The results of the state space search of the
ISA bus as well as the arbitration model are shown in Figure 3.

5. XFM GUI TOOLKIT

We develop a user-friendly Graphical User Interface (GUI) for users to build ef-
fective models by using our agile methodology and ordering schemes. The GUI is
written using the tcl/tk toolkit [Ousterhout 2002] in wish version 8.4. The GUI
interface of XFM is shown in Figure 4. The GUI consists of many widget classes
and is interfaced with a C/C++ based ordering program. The GUI also has the
capabilities to model check the model with SMV [McMillan 1993].

Property WindowSelection Window

Editing WindowOperator Bar

Fig. 4. XFM GUI toolkit

The user can load a list of variables or properties from a file and can write or
insert the properties in the property window. After the user has a complete list of
properties in the property window, they can be sorted based on the ordering schemes

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

XFM: An Incremental Methodology for Developing Formal Models · 19

selected. Three property ordering schemes are implemented: Ad hoc, Property based

and Predicate based ordering. When a sorting option is selected, the sort program
executes in the back-end and the sorted properties are displayed in a new window.

The tool accepts the properties in the format used by SMV. If the format of
the properties does not adhere to the specified format, SMV gives an error. Once
the properties are sorted, a new window shows the sorted properties. The user
can develop the model in the window directly or use an editor of his/her choice.
To follow the XFM approach, the user has to manually comment (/*...*/) the
properties other than the one that is being currently modeled. The user has to
remove the comments from the properties one by one as per the XFM methodology
for model building. On each iteration, the user can save and model check the model.
Once verified, the user can return to the tool and follow the XFM methodology until
all the properties are modeled. The XFM toolkit can be downloaded from [Suhaib
et al. 2004].

6. CONCLUSION

We have developed an incremental methodology for building PFMs by adding user
stories expressed as LTL formulae gleaned from the natural language specifications,
one by one, into the model. We have applied XFM on various case studies such
as a traffic light controller, and the DLX pipeline using the SPIN [Holzmann 2003]
and SMV [McMillan 1993] model checkers. We also have experimented with vari-
ous property ordering schemes in XFM to make it a truly incremental development
methodology. We analyzed the effect of these orderings while using XFM in build-
ing PFMs. We show the difference between the ad hoc ordering, property based
ordering and predicate based ordering schemes. From the experimental results, we
conclude that the predicate based ordering is better than property based and ad hoc
schemes. We also formally justify such a conclusion. To facilitate our methodology
for other users, we have also developed a toolkit for XFM that sorts the properties
specified by the user, enables modeling and model checking using Cadence SMV.
The tool can also be interfaced with other model checkers. We believe that this tool
can successfully assist engineers in making effective formal models for verification
purposes.

REFERENCES

Beck, K. 2000. Extreme Programming explained: Embrace change. Addison Wesley.

Bentley, B. 2001. Validating the Intel Pentium 4 Microprocessor. In Proc. of Design Automation
Conference. 244–248.

Berner, D., Suhaib, S., Shukla, S., and Talpin, J. 2004. Capturing Formal Specification into
Abstract Models. Kluwer Academic Publishers, 325–346.

Clarke, E. M., German, S. M., Lu, Y., Veith, H., and Wang, D. 2000. Executable protocol

specification in ESL. In Proc. of Formal Methods in Computer-Aided Design. 197–216.

Hennessy, J. L., Patterson, D. A., and Goldberg, D. 2002. Computer Architecture: A Quan-
titative Approach, 3rd ed. Morgan Kaufmann, San Mateo, CA.

Henzinger, T. A., Jhala, R., Majumdar, R., and Sanvido, M. A. 2003. Extreme model
checking. In Proc. of International Symposium on Verification: Theory and Practice. Lecture
Notes in Computer Science, Springer-Verlag.

Herranz, A. 2003. The SLAM website.
http://lml.ls.fi.upm.es/slam.

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

20 · Syed Suhaib et al.

Herranz, A. and Moreno-Navarro, J. 2003a. Formal extreme (and extremely formal) program-

ming. In Proc. of 4th International Conference on Extreme Programming and Agile Processes
in Software Engineering, XP 2003, M. Marchesi and G. Succi, Eds. Number 2675 in LNCS.
Genova, Italy, 88–96.

Herranz, A. and Moreno-Navarro, J. 2003b. Rapid prototyping and incremental evolution
using SLAM. In Proc. of 14th IEEE International Workshop on Rapid System Prototyping,
RSP 2003). San Diego, California, USA.

Holzmann, G. J. 2003. The SPIN Model Checker: Primer and Reference Manual. Addison
Wesley, Boston, MA.

Li, P., Ravindran, B., Suhaib, S., and Feizabadi, S. 2004. A Formally Verified Application-
Level Framework for Utility Accrual Real -Time Scheduling On POSIX Real-Time Operating
Systems. IEEE Transactions on Software Engineering 30, 9 (September), 613–629.

McMillan, K. 1993. Symbolic Model Checking. Kluwer Academic Publishers.

Oddoux, D. 2001. LTL 2 BA : fast algorithm from LTL to buchi automata.
http://www.liafa.jussieu.fr/˜oddoux/ltl2ba/.

Ousterhout, J. K. 2002. Tcl and the Tk Toolkit , Third ed. Addison-Wesley Professional Com-
puting Series. Pearson Education Inc.

Shanley, T. 1998. Pentium Pro and Pentium II bus System Architecture, Second Edition ed.
Addison-Wesley Inc.

Shanley, T. and Anderson, D. 1995. ISA System Architecture, 3rd ed. Addison-Wesley Pub-
lishing Company.

Shimizu, K., Dill, D. L., and Hu, A. J. 2000. Monitor-based formal specification of PCI. In
Proc. of Formal Methods in Computer-Aided Design. 335–353.

Suhaib, S. 2004. Incremental methodology for developing formal models. M.S. thesis, Virginia
Polytechnic and State University.

Suhaib, S., Jhala, A., and Shukla, S. 2004. XFM toolkit.
http://fermat.ece.vt.edu/XFM.html.

Suhaib, S., Mathaikutty, D., Berner, D., and Shukla, S. 2004a. Extreme formal modeling
for hardware models. In Proc. of 5th International Workshop on Microprocessor Test and
Verification (MTV’04).

Suhaib, S., Mathaikutty, D., Berner, D., and Shukla, S. 2004b. Property ordering effects in
an incremental formal modeling methodology. In Proc. of Thirteenth International Workshop
on Logic and Synthesis (IWLS’04).

Suhaib, S., Mathaikutty, D., and Shukla, S. 2004. Effects of property ordering in an in-
cremental formal modeling methodology. In Proc. of IEEE International High Level Design
Validation and Test Workshop (HLDVT’04).

Synopsis. 2004. Vera: Testbench automation.
http://www.synopsys.com/products/vera/vera ds.html.

Verisity. 2004. Specman elite: Testbench automation.
http://www.verisity.com/products/specman.html.

Wells, D. 2001. Extreme Programming: A gentle introduction.
http://www.extremeprogramming.org/.

Williams, L. 2003. The XP programmer - the few minutes programmer. IEEE Software 20, 3
(May/June), 16–20.

Wood, W. A. and Kleb, W. L. 2003. Exploring XP for scientific research. IEEE Software 20, 3
(May/June), 30–36.

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, 10 2005.

