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Abstract

Background: Biological interpretation of genomic summary data such as those resulting from genome-wide

association studies (GWAS) and expression quantitative trait loci (eQTL) studies is one of the major bottlenecks in

medical genomics research, calling for efficient and integrative tools to resolve this problem.

Results: We introduce eXploring Genomic Relations (XGR), an open source tool designed for enhanced interpretation

of genomic summary data enabling downstream knowledge discovery. Targeting users of varying computational skills,

XGR utilises prior biological knowledge and relationships in a highly integrated but easily accessible way to make

user-input genomic summary datasets more interpretable. We show how by incorporating ontology, annotation, and

systems biology network-driven approaches, XGR generates more informative results than conventional analyses. We

apply XGR to GWAS and eQTL summary data to explore the genomic landscape of the activated innate immune

response and common immunological diseases. We provide genomic evidence for a disease taxonomy supporting the

concept of a disease spectrum from autoimmune to autoinflammatory disorders. We also show how XGR can define

SNP-modulated gene networks and pathways that are shared and distinct between diseases, how it achieves

functional, phenotypic and epigenomic annotations of genes and variants, and how it enables exploring

annotation-based relationships between genetic variants.

Conclusions: XGR provides a single integrated solution to enhance interpretation of genomic summary data

for downstream biological discovery. XGR is released as both an R package and a web-app, freely available at

http://galahad.well.ox.ac.uk/XGR.

Keywords: Software, eXploring Genomic Relations, Genomic summary data, Enhanced interpretation, Network

analysis, Enrichment analysis, Similarity analysis, Annotation analysis

Background
One of the defining characteristics of medical genomics

research is the large volume of genomic data available

but the comparatively limited amount of biological

knowledge revealed. This ‘big-data-limited-knowledge’

discrepancy stems from the heterogeneous forms and

handling of raw data (usually unstructured), but is also

attributed to imprecision in downstream interpretation

[1, 2]. Data ready for downstream interpretation can be

conveniently expressed as ‘genomic summary data’; that

is, a list of genes or SNPs (or, more generally, genomic

regions) along with summary statistics regarding the

significance level (e.g. p values).

Using genomic summary data as a starting point for

knowledge discovery is appealing. Cases in point are

genome-wide association studies (GWAS) producing

summary data on disease-associated genetic variants

(GWAS SNPs) and expression quantitative trait loci

(eQTL) mapping producing summary data on expression-

associated genetic variants (eQTL SNPs). Firstly, it simpli-

fies raw data (usually complex) and captures the essential

information content. Secondly, GWAS and eQTL sum-

mary data are publicly available and well curated in

relational databases, such as the GWAS Catalog [3],

ImmunoBase [4], GTEx Portal [5], and Blood eQTL

browser [6]. By comparison, the limited availability of
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genotyping data makes it prohibitively hard for ordinary

users to conduct cross-disease and cross-study analyses,

particularly those involving multiple data providers.

Thirdly, cross-disease GWAS summary data hold great

promise in understanding the genetic basis of disease co-

morbidity [7], whilst eQTL summary data could be useful

in identifying genetic targets for drug development [8, 9].

Despite the availability and potential utility of this

summary data, precise knowledge discovery itself is not

trivial. It raises two critical issues: first, how to more

systematically use widely distributed knowledge about

genes and SNPs, much of which is unfortunately re-

corded in natural language; and second, how to achieve

insights at the gene network level, which is desirable

considering the interdependent and often synergistic

nature of biological systems involving multiple players to

complete the same task.

Knowledge use and access via ontologies provides an

effective and efficient solution to the first issue. Using

ontologies to annotate genes and gene products dates

back to the beginning of this century when the Gene

Ontology (GO) consortium initiated efforts to digitise

gene functions [10]. Since then, a number of ontologies

have been created to describe genes from the perspective

of other knowledge domains (e.g. diseases [11] and phe-

notypes [12, 13]) and to describe protein domains [14].

Recent years have seen the shift in focus from the gene

level to the SNP level (and generally to the genomic

region level), accelerated by efforts to understand regu-

latory variants that most commonly underlie GWAS

[15], resulting in the generation of increasing amounts

of functional genomic data [16]. Compared to coding

genes, which are well annotated by ontologies, non-

coding genomic regions are lacking such annotations.

Their interpretation relies heavily on either extrapolation

from nearby genes or functional genomic data generated

experimentally by large consortia such as ENCODE [17],

FANTOM5 [18], BLUEPRINT Epigenome [19], TCGA

[20], and Roadmap Epigenomics [21].

To address the second issue, gene interaction data

should ideally be generated experimentally for every

tissue, in both normal and diseased conditions given the

fact that gene interactions are highly context-specific. In

reality, an achievable alternative to this is to assimilate

available context-specific interactions into a less context-

specific, so-called ‘ground-truth gene network’ representing

unified interaction knowledge. This strategy can be seen in

databases such as STRING [22] and Pathway Commons

[23]. Acting as a ‘scaffold’, the ground-truth gene network

can then be integrated with context-specific summary data

to identify the subset of the gene network, or ‘gene subnet-

work’, that best explains that data.

The above issues identify an emerging need for ‘enhanced

interpretation’ (effectiveness, efficiency, and transparency),

particularly at the SNP and genomic region level. To

meet this need, and also within our vision of its general

use in eXploring Genomic Relations, we develop the

open-source software ‘XGR’ for enhancing knowledge

discovery from genomic summary data. In addition to its

comprehensive use of ontology and network informa-

tion, we also show the uniqueness of XGR in 1)

ontology tree-aware enrichment and similarity analysis

and 2) cross-disease network and annotation analysis.

Using real datasets [4, 24], we showcase its analytic power

in uncovering the genetic landscape of immunological

disorders based on GWAS summary data, and also dem-

onstrate its added value in interpreting eQTL summary

data of an immune-activated system. In short, XGR is

software designed for enhanced interpretation necessary

for doing big data science in genomics.

Implementation
Overview

Figure 1 gives an overview of what XGR is and what the

user can expect from it. XGR has two ends, the backend

(an R package) [25] and the frontend (a web-app) [26].

Metaphorically, it works as a knowledge-driven ‘mega-

bus’, carrying the passengers (users of varying computa-

tional skills) from the departure (a user-input list of

genes, SNPs, or genomic regions) to the destination

(outputs in a user-friendly format including ontology

enrichments and network relationships). The petrol used

by this megabus is the ontology and network knowledge

(see next section), and the engine is its analytical

capability, currently supporting enrichment, similarity,

network, and annotation analysis (summarised in Table 1;

see below for details). Put simply, XGR is designed to

interpret genomic summary data resulting from modern

genetic studies (differential expression, GWAS, and

eQTL mappings), not targeting the upstream generation

of summary data but instead enhancing its downstream

biological discovery.

Source data and uniform representations

As a central part of the knowledge-driven interpretations,

we have assembled currently available knowledge at the

gene, SNP, and genomic region level (detailed below). All

source data are represented uniformly as well-documented

RData-formatted files, taking advantage of the R software

open-development environment and its infrastructure

packages such as igraph [27] and GenomicRanges

[28]. The primary source data are maintained as part

of in-house relational databases, from which Perl

scripts are used to create RData files. Following an

established pipeline, they are subject to regular up-

dates and are also regularly supplemented to keep

pace with the explosive nature of big data in

genomics.
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Fig. 1 Schematic workflow of XGR: achieving enhanced interpretation of genomic summary data. This flowchart illustrates the basic concepts

behind XGR. The user provides an input list of either genes, SNPs, or genomic regions, along with their significance levels (collectively referred to

as genomic summary data). XGR, available as both an R package and a web-app, is then able to run enrichment, network, similarity, and annotation

analyses based on this input. The analyses themselves are run using a combination of ontologies, gene networks, gene/SNP annotations,

and genomic annotation data (built-in data). The output comes in various forms, including bar plots, directed acyclic graphs (DAG), circos plots, and

network relationships. Furthermore, the web-app version provides interactive tables, downloadable files, and other visuals (e.g. heatmaps)

Table 1 A summary of XGR characteristics for tasks achieved and runtime required

Functions Tasks achieved Runtimea

Enrichment analysis

xEnricher A template for enrichment analysis ~40

xEnricherGenes Gene-based enrichment analysis using a wide variety of ontologiesb ~40

xEnricherSNPs SNP-based enrichment analysis using Experimental Factor Ontology on GWAS traits ~70

xEnricherYours Custom-based enrichment analysis using user-defined ontologies ~5

xEnrichConciser Removing redundant ones from enrichment outputs ~15

xEnrichBarplot Barplot of enrichment outputs <1

xEnrichCompare Side-by-side barplots of comparative enrichment outputs <1

xEnrichDAGplot DAG plot of enrichment outputs <1

xEnrichDAGplotAdv DAG plot of comparative enrichment outputs <1

Annotation analysis

xGRviaGeneAnno Annotation analysis using nearby gene annotations by a wide variety of ontologiesb ~60

xGRviaGenomicAnno Annotation analysis using a wide variety of genomic annotationsc ~30

Similarity analysis

xSocialiser A template for similarity analysis ~60

xSocialiserGenes Gene-based similarity analysis using structured ontologies on functions, diseases, and phenotypes ~70

xSocialiserSNPs SNP-based similarity analysis using Experimental Factor Ontology on GWAS traits ~60

xCircos Circos plot of similarity outputs ~10

xSocialiserDAGplot DAG plot of one set of terms used for similarity analysis <1

xSocialiserDAGplotAdv DAG plot of two sets of terms used for similarity analysis <1

Network analysis

xSubneterGenes Gene-based network analysis ~60

xSubneterSNPs SNP-based network analysis ~60

xVisNet Network visualisation <1

aRuntime (measured by seconds) tested using one core on Mac OS X
bIncluding structured ontologies on functions, diseases, and phenotypes, and non-structured ontologies on pathways, regulatory/expression signatures, druggability,

structural domains, GTEx eGene tissues, others
cIncluding genomic annotations sourced from ENCODE, FANTOME5, BLUEPRINT Epigenome, Roadmap Epigenomics, The Cancer Genome Atlas, UCSC, others
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Ontologies and annotations at the gene level

Conceptually similar to a dictionary, an ontology contains

well-defined vocabularies (called ‘terms’) and their rela-

tionships to each other, and is readable by both humans

and computers. Depending on how relationships between

terms are organised, ontologies can be broadly categorised

into two types: 1) structured ontologies, where terms are

organised in a tree-like structure (specifically a directed

acyclic graph (DAG)), e.g. Gene Ontology [10], Disease

Ontology [11], Phenotype Ontologies in human and

mouse [12, 13]; 2) non-structured ontologies, where terms

are simply listed as keywords, such as a collection of path-

ways from MSigDB [29], and of gene druggable categories

from DGIdb [30]. Using ontologies to annotate genes is

one of the most effective and scalable ways of capturing a

particular knowledge sphere. The reuse of existing know-

ledge through ontology annotations is one of the key

principles behind XGR. At the time of writing (October

2016), XGR supports nearly 30 gene annotations covering

almost every type of knowledge domain, ranging from

functions to diseases, phenotypes, pathways, and many

others (Table 1). Whether structured or non-structured

(in which case an artificial root is created to link together

all terms), an ontology together with annotations is

universally represented as an annotated directed graph.

This design aids in performing operations such as graph

visualisation, annotation propagation (according to the

true-path rule), and semantic similarity calculations be-

tween terms. Ontologies and their identifier codes used in

XGR are summarised in [31].

Ontology annotations at the SNP level

SNP annotations are based on the Experimental Factor

Ontology (EFO). EFO standardises GWAS traits from

the NHGRI GWAS Catalog using well-defined terms [3].

SNPs associated with one or more related traits grouped

together by an EFO term are annotated by this term.

Like any structured ontology, EFO is organised as a

DAG. By the true-path rule, an SNP associated with a

trait (mapped to an EFO term) should also be annotated

by its ancestor terms (more general terms). For example,

SNPs annotated by a term ‘EFO:0000540’ (immune sys-

tem disease) consist of: 1) SNPs directly annotated with

this term; and 2) SNPs associated with its child terms

such as ‘EFO:0005140’ (autoimmune disease) and

‘EFO:0000706’ (spondyloarthropathy), which inherit the

parent annotation. The problem of linkage disequilibrium

(LD) makes it necessary to also include additional SNPs

that are in strong LD with GWAS lead SNPs. For ease use

in XGR, LD SNPs are pre-calculated using PLINK [32]

based on the 1000 Genomes Project data [33] in different

population panels, and those with R2 > 0.8 with GWAS

lead SNPs are retained.

Annotations at the genomic region level

Unlike coding genes that are well annotated using ontol-

ogies, non-coding genomic regions lack such annotations.

Interpretation of these regions relies largely on functional

genomic data generated experimentally and on compara-

tive genomic data predicted by computational methods.

Genomic annotations currently supported in XGR include

a broad spectrum of genomic and epigenomic data includ-

ing, transcription factor binding sites, DNaseI hypersensi-

tivity sites, histone modifications, expressed enhancers,

and genome segmentations (Table 1). Each genomic anno-

tation set is represented as a ‘GRanges’ object, primarily

based on the ‘hg19’ (GRCh37) genome build. Also sup-

ported is conversion of genomic regions between com-

monly used builds: ‘hg19’, ‘hg38’ (GRCh38), and ‘hg18’.

Data types, sources, and identifier codes used in XGR are

summarised in [31].

Interaction networks at the gene level

XGR supports networks of different interaction types

(functional, physical, and pathway-derived), of varying

interaction quality (highest, high, and medium), and of

two interaction directions (directed versus undirected).

Networks are mainly sourced from the STRING data-

base [22] and the Pathway Commons database [23].

STRING is a meta-integration of undirected interactions

from a functional aspect, while Pathway Commons

contains both undirected and directed interactions from

a physical and pathway aspect. Interaction type and

quality, as well as identifier codes used in XGR, are

summarised in [31].

Enrichment analysis

Enrichment analysis (or ‘Enricher’) is based on conven-

tional statistical tests (Fisher’s exact test, hypergeometric

or binomial test) to identify enriched ontology terms

using either built-in or custom ontologies. The Fisher’s

exact test establishes the independence between, for ex-

ample, a user-defined gene group and a group of genes

annotated by a term, and compares sampling only to the

left part of the null background (without replacement).

The hypergeometric test is to sample at random (with-

out replacement) from the null background containing

annotated and non-annotated genes. Finally, and in con-

trast to the hypergeometric test, the binomial test is to

sample at random (with replacement) from the null

background with the constant probability. As to the ease

of reporting the significance level of a term (Additional

file 1), they are, in order: hypergeometric test > Fisher’s

exact test > binomial test. In other words, in terms of the

calculated p value, hypergeometric test < Fisher’s exact

test < binomial test. To further investigate the property

of the statistical test, we simulated a random set of genes

(having the same number of genes as in the real data)

Fang et al. Genome Medicine  (2016) 8:129 Page 4 of 20



and estimated how often each enriched term in the real

data would be expected from a null distribution based

on the simulated data. As seen in Additional file 2, the

chance (false positive rate) of enrichments in the real

data that is falsely called significant from the simulated

null data is extremely low. We also assessed false posi-

tive rate by simulating a random set of genes of different

sizes and found they were independent of the size of

gene sets (Additional file 3).

XGR is unique in being designed to produce much

more informative enrichment results. This is achieved

either by taking into account the ontology tree-like

structure when using a structured ontology or by apply-

ing a filtering procedure when using a non-structured

ontology (Fig. 2).

Using a structured ontology

The basic idea is to account for the dependency of terms

during enrichment analysis; for example, estimating the

significance of a term after removing gene annotations

that its significant child terms have. For technical details,

please refer to publications [34, 35].

Using a non-structured ontology

A filtering procedure is applied to further remove redun-

dant terms resulting from enrichment analysis. Take

pathway enrichment analysis as an example (Fig. 2),

assuming that there are two significant pathways, A

and B, and that pathway A is more significantly

enriched than pathway B. The less significant pathway

B is deemed to be redundant if it meets both of the

following criteria: 1) >90% of input genes annotated

with pathway B are also annotated by pathway A; and

2) >50% of input genes annotated by pathway A are

also annotated by pathway B. Both criteria were

chosen empirically, as we observed that the increase

in criterion 1 (90%) would result in the inability to

remove redundant terms (Additional file 4a) and that

criterion 2 (50%) produces the relative stability of re-

dundant terms being removed (Additional file 4b). It

should be noted that, although these default criteria

should be applicable in most circumstances, the user

can refine them by manipulating different thresholds.

Functionality

The function ‘xEnricherGenes’ conducts gene-level en-

richment analysis using either structured ontologies or

non-structured ontologies. The function ‘xEnricherSNPs’

conducts EFO-based enrichment analysis at the SNP

level, allowing the inclusion of additional SNPs that

are in LD with input SNPs. The function ‘xEnricherYours’

enables customised analysis using the user’s own ontol-

ogies and annotations for entities beyond genes and SNPs.

Enrichment outputs are stored as an object of a newly

defined class ‘eTerm’. Directly operating on this object,

the function ‘xEnrichBarplot’ visualises enrichment results

using a barplot, and the function ‘xEnrichDAGplot’ uses a

DAG plot to display enriched terms in the context of the

ontology tree. The function ‘xEnrichCompare’ is specially

designed for side-by-side barplot comparison when in-

volving two or more enrichment results (e.g. across differ-

ent conditions but using the same ontology). The function

‘xEnrichDAGplotAdv’ takes this comparison further,

highlighting which terms are shared and which are unique

in the ontology tree.

Annotation analysis

Annotation analysis (or ‘Annotator’) aims to interpret

a list of user-defined genomic regions in two ways:

either via annotations of nearby genes by ontologies

or via co-localised functional genomic annotations.

Thanks to the diversity of source data available and

the generalisation of data representation (see above),

XGR enables multifaceted interpretation of poorly

annotated genomic regions.

Functionality

The function ‘xGRviaGeneAnno’ takes as input a list of

user-defined genomic regions, defines the nearest genes

within a user-specified distance gap, and conducts en-

richment analysis using nearby gene annotations. Similar

to enrichment analysis at the gene level, this function gives

the choice of structured and non-structured ontol-

ogies, producing informative enrichment results that

can be visually displayed/compared. Alternatively,

both functions ‘xGRviaGenomicAnno’ and ‘xGRvia-

GenomicAnnoAdv’ conduct region-based enrichment

analysis using co-localising functional genomic anno-

tations. The function ‘xGRviaGenomicAnno’ uses the

binomial test for estimating the significance of over-

laps at base resolution. The function ‘xGRviaGenomi-

cAnnoAdv’ estimates the significance of the observed

overlaps against the expectation under the null distri-

bution, which is generated through random sampling

from background genomic regions. By default, the back-

ground uses annotatable genomic regions (depending on

which genomic annotations are used). However, it is

advisable for the user to specify this background ac-

cording to experimental settings. Enrichment results

(as ‘eTerm’ objects) from annotation analysis can be

visualised and compared using functions ‘xEnrichBar-

plot’ and ‘xEnrichCompare’.

Similarity analysis

Similarity analysis (or ‘Socialiser’) calculates semantic

similarity between two genes (or between two SNPs)

based on their ontology annotation profiles. More pre-

cisely, it assesses the degree of relatedness in meaning of
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Fig. 2 Necessity of respecting ontology tree-like structure and of removing redundant non-structured pathways in enrichment analysis. This is

demonstrated by analysing differentially expressed genes induced by 24-h interferon gamma in monocytes. The effect of taking ontology tree-like

structure into account is demonstrated using Disease Ontology (DO) and the removal of redundant non-structured ontologies using Reactome

pathways. a Side-by-side bar plots comparing the significant DO terms between the analysis without considering the tree structure (DO Tree(-)) versus

the analysis considering the tree structure (DO Tree(+)). The horizontal dotted line separates commonly identified terms (top section) and redundant

terms in the DO Tree(-) analysis. b DAG plot comparing commonly identified terms (coloured in cyan) and redundant terms from the DO Tree(-) analysis

(coloured in light cyan). The term name (if significant) is prefixed in the form ‘x1-x2’. x1 represents ‘DO Tree (-)’ and x2 ‘DO Tree (+)’. The value of x1

(or x2) can be ‘1’ or ‘0’, denoting whether this term is identified (present) or not (absent). c The top pathway enrichments, with the redundant pathways

to be removed indicated (X). d Illustrations of whether a less significant pathway B is redundant considering a more significant pathway A. Pathway B is

counted redundant if it meets both criteria. Criterion 1: more than 90% of input genes annotated with pathway B are also covered by pathway A.

Criterion 2: more than 50% of input genes annotated with pathway A are also covered by pathway B. Scenario 1 does not meet either criteria, scenario 2

meets both, and scenario 3 meets criterion 1 but not criterion 2. Notably, criterion 2 ensures the resulting pathways (as shown in scenario 3) are

informative in capturing knowledge spheres of different granularities; otherwise, pathway B would be considered redundant in scenario 3, leading to loss

of information. FDR: false discovery rate
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annotation profiles from a structured ontology. The

function ‘xSocialiserGenes’ conducts similarity analysis

for genes using annotations by structured ontologies,

while the function ‘xSocialiserSNPs’ conducts SNP-based

similarity analysis using annotations from EFO.

SNP semantic similarity

The procedure used to calculate semantic similarity

between two SNPs is as follows. First, the information

content (IC) of a term is defined to measure how inform-

ative it is when used to annotate SNPs: –log10(frequency

of SNPs annotated by this term). Semantic similarity be-

tween each pair of terms is pre-calculated, usually quanti-

fied as IC at the most informative common ancestor

(MICA) of the two terms. Finally, semantic similarity

SIM(S1, S2) between two SNPs, S1 and S2, is derived from

pairwise term similarity, using best-matching (BM) based

methods: average (Eq. 1), maximum (Eq. 2), or complete

(Eq. 3). For a term in the annotation profile of one SNP,

all these BM-based methods calculate the maximum simi-

larity to any term in the profile of the other SNP. It can be

deduced from the formula that the average and maximum

methods are more sensitive to the number of terms than

the complete method. However, due to the current sparse

nature of EFO-based annotation of GWAS SNPs, using

any of the three methods produces similar results. Indeed,

they are interchangeable, although results from the

average and maximum methods are more similar to each

other than to the complete method (Additional file 5). By

default, the complete method is used to minimise the im-

pact of the number of terms. The resulting SNP semantic

similarity network is a weighted undirected graph, with

SNPs as nodes and semantic similarity scores as the edge

weights. Inclusion of LD SNPs is also possible for similar-

ity analysis.

Basis of SNP similarity

The function ‘xCircos’ displays the similarity results

using a circos plot, in which the degree of similarity

between two SNPs is indicated by the coloured link.

This function can be used to display the most similar

links, or those links involving a specific SNP only.

Two functions, ‘xSocialiserDAGplot’ and ‘xSocialiser-

DAGplotAdv’, are specially designed to explore the

basis of similarity seen in the circos plot. The func-

tion ‘xSocialiserDAGplot’ is used to visualise the

ontology annotation profile for an SNP, i.e. as a DAG

plot of terms used to annotate the SNP, including ori-

ginal annotations (rectangular nodes) and inherited

annotations (elliptical nodes). The function ‘xSociali-

serDAGplotAdv’ uses a DAG plot to compare annota-

tion profiles between two similar SNPs.
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where T1 is a set of n1 EFO terms used to annotate S1,

T2 is a set of n2 EFO terms annotating S2, MICA(t1, t2)

is the IC of the MICA of two terms t1 and t2, operators

MAX, MIN, and U denote, respectively, maximum, mini-

mum, and union.

Network analysis

Network analysis (or ‘Networker’) identifies the subset

(gene subnetwork) from a gene interaction network with

nodes/genes labelled with significance information.

Depending on how the node/gene significance informa-

tion is provided, there are two types of network analyses

supported in XGR: gene-based network analysis and

SNP-based network analysis.

Gene-based network analysis

The node/gene information is directly provided, e.g.

differentially expressed genes with significance measured

by false discovery rate (FDR). Given a gene interaction net-

work with nodes/genes labelled with significance, the func-

tion ‘xSubneterGenes’ searches for a maximum-scoring

gene subnetwork enriched with the most significant (highly

scored) genes but allowing for a few less significant genes

as linkers (usually hubs). The search for this maximum-

scoring subnetwork is achieved via heuristically solving a

prize-collecting Steiner tree problem; this approach has

been demonstrated to be superior to other state-of-the-art

methods. If required, an iterative procedure is applied to

identify the subnetwork with a desired number of nodes/

genes. For details please refer to our previous publication

[36].

SNP-based network analysis

We extend the network analysis to the SNP level, allow-

ing node/gene information to be indirectly provided (i.e.

derived from the input), e.g. via GWAS SNPs along with

p values. The function ‘xSubneterSNPs’ is designed to

identify a gene subnetwork that is likely modulated by

input SNPs and/or their LD SNPs. It consists of three

steps (Fig. 3a):
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1. SNP scoring (Eq. 4), which considers the p values,

the threshold (e.g. 5e-8 for typical GWAS), and

(for LD SNPs) LD strength R
2.

2. Gene scoring (Eq. 5), which scores genes based

on genomic proximity to quantify their genetic

modulation by SNPs (and LD SNPs).

3. Network scoring, using the function

‘xSubneterGenes’ to identify a maximum-scoring

gene subnetwork (with the desired number of nodes

if required).

ScoreSNP ¼ R2 � log10
1−PSNP

PSNP
−log10

1−Pthresh

Pthresh

� �

; ð4Þ

where PSNP is the SNP p value, Pthresh is the significance

threshold (usually 5e-8), and R2 is the LD strength.

Scoregene ¼ MAX
SNP∈Ω

ScoreSNP � 1−
d

D

� �λ

� d≤Dj j

" #( )

;

ð5Þ

where ScoreSNP is the SNP score calculated using Eq. 4,

d is the gene-to-SNP distance within a maximum of the

distance window D, λ is the decay exponent controlling

the decaying influence of an SNP on a nearby gene as

the distance increases, Ω stands for collections of SNPs

(input SNPs and LD SNPs), and MAX denotes maximum

scoring scheme used here to only keep the most-

informative SNP when a large number of interdependent

SNPs are located within the same genetic region.

Other implementation issues

Control for multiple testing

Where a large number of tests are involved, we adjust

p values either controlling the FDR (by default) or

controlling the family-wise error rate (FWER). FDR is

a less stringent condition than FWER. The user can

choose how to account for multiple testing.

R package dependency

We rely on the package ‘ggplot2’ [37] for various visuals

and adapt the package ‘RCircos’ [38] for a circos plot.

Where necessary for high-performance parallel compu-

ting, two packages, ‘doMC’ and ‘foreach’, are used to

reduce computational costs. Other dependent packages

are listed in [25].

A

B C

Fig. 3 Informativeness of using cross-disease GWAS summary data in characterising relationships between immunological disorders. a Gene

scoring from GWAS SNPs prior to network analysis. b Heatmap of cross-disease gene scores for 11 common immunological disorders based on

ImmunoBase GWAS summary data. c Consensus neighbour-joining tree based on the gene-scoring matrix resolves disease classification/taxonomy

according to the genetic and cellular basis of autoinflammation and autoimmunity. Subdivided into 1) polygenic autoinflammatory diseases with a

prominent autoinflammatory component, 2) polygenic autoimmune diseases with a prominent autoimmune component, and 3) mixed diseases

having both components. Inter-disease distance is defined as the cumulative difference in gene scores
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Web-app implementation

We use a next-generation Perl web framework

‘Mojolicious’ [39], under which the XGR web-app is

portable requiring nearly zero-effort maintenance. Its

maintenance is further simplified as the web-app is purely

powered by the XGR R package (stably deposited into the

CRAN repository).

Results
We demonstrate the application of XGR to interpret three

commonly encountered types of genomic summary data:

1) gene sets resulting from differential expression studies;

2) GWAS SNPs from GWAS summary data; and 3) eQTL

SNPs from eQTL summary data. We first illustrate the

functionalities supported in XGR to interpret differentially

expressed genes induced by innate immune stimuli [24].

At the SNP level, we showcase the analytical power of

XGR to interpret GWAS SNPs associated with immuno-

logical disorders [4] and to interpret eQTL SNPs relevant

to immune-stimulated systems [24]. Within these show-

cases, we demonstrate improved performance compared

to conventional analyses. All these comparisons and

showcases are provided on the software website and are

reproducible following step-by-step instructions [31].

Interpreting summary data resulting from differential

expression studies

This demo illustrates the power of XGR to interpret the

output from differential expression studies, with the

focus on how to carry out ontology-based enrichment

analysis to achieve more informative results.

Necessity of respecting the ontology tree structure when

using structured ontologies for enrichment analysis

We use Disease Ontology (DO) to interpret differentially

expressed genes induced by 24-h interferon (IFN)-γ

treatment of primary human monocytes [24]. Figure 2a

shows side-by-side comparison of enrichment results

with and without consideration of the ontology tree

structure. As expected, both analyses identify a significant

link between IFN-γ-induced transcriptome changes and

genes involved in viral infectious disease (e.g. influenza

and measles) and autoimmunity (e.g. Graves’ disease).

However, considering the ontology tree structure allows

exclusion of significant but less informative DO terms

such as ‘disease by infectious agent’. This becomes clearer

when visualising enriched terms in the context of the DO

hierarchy (Fig. 2b), showing that the child term ‘viral

infectious disease’ is a much more precise descriptor.

Necessity of filtering redundant terms when using

non-structured ontologies for enrichment analysis

When using non-structured ontologies such as a collec-

tion of pathways, we develop a post-enrichment filtering

procedure to identify redundant terms for removal

(Fig. 2c). The goal is to filter out only pathways that have

been covered by a more significant pathway of similar

granularity (scenario 2 in Fig. 2d). However, if a pathway

is informative in capturing specific knowledge and the

more significant pathway is very general, XGR will retain

it (scenario 3 in Fig. 2d). This ensures the resulting

enrichments are non-redundant but still informative

enough to help interpretation.

Interpreting GWAS summary data

This demo showcases the power of XGR to interpret

GWAS SNPs, including network and annotation analysis.

SNP-modulated genes and their informativeness for

characterising disease relationships

Unique to XGR is its ability to identify SNP-modulated

gene networks. To do this, XGR first defines and scores

genes that are likely under the genetic influence of GWAS

SNPs (Fig. 3a). When applied to GWAS summary data for

11 common immunological diseases (available from

ImmunoBase [4]), we find that genes scored in this way

(Fig. 3b) are able to resolve disease taxonomy, providing

independent evidence for a proposed continuum of

autoinflammation and autoimmunity [40]. As seen in the

consensus neighbour-joining tree (Fig. 3c), the diseases ana-

lysed span an autoinflammatory–autoimmune spectrum,

reflecting the relative roles of the innate immune

response versus the adaptive immune response in dis-

ease development. The diseases analysed are divided

into three categories: 1) polygenic autoinflammatory

diseases with a prominent autoinflammatory compo-

nent, including inflammatory bowel disease (IBD),

Crohn’s disease (CRO), and ulcerative colitis (UC); 2)

polygenic autoimmune diseases with a prominent

autoimmune component, including celiac disease

(CEL), autoimmune thyroid disease (ATD), type 1 dia-

betes (T1D), rheumatoid arthritis (RA), multiple sclerosis

(MS), and systemic lupus erythematosus (SLE); and 3)

mixed diseases having both components, including psoria-

sis (PSO) and ankylosing spondylitis (AS). Our analysis

also shows that polygenic autoinflammatory diseases may

be subdivided into two subtypes, one comprising SLE and

ATD, the other CEL, MS, T1D, and RA.

SNP-modulated gene networks underlying disease categories

To understand the molecular basis of the observed auto-

inflammatory–autoimmune disease continuum, we next

identify the top SNP-modulated gene networks based on

pooled GWAS SNPs for each of the three categories

(Fig. 4a). The gene networks identified contain hallmark

genes for each category, for example, PTPN22 and MHC

genes for polygenic autoimmune diseases and NOD2 for

polygenic autoinflammatory diseases. Comparing network
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genes identifies one gene, STAT3, common to all three

categories; a few genes, including TNFSF1A, TNIP1, and

two interleukin (IL) genes (IL23R and IL2RA) are shared

by two categories, and many genes are unique to one

group, suggesting that each disease category has its own

specialised network architecture (Fig. 4b). However, at the

A

B

C

Fig. 4 SNP-modulated gene networks underlying three immunological disease categories. a The top-scoring gene network for the three disease

categories: autoinflammatory diseases (orange), mixed diseases (cyan), and autoimmune diseases (red). b Network genes shared by and unique to

disease categories. Genes involved in the Jak-STAT signalling pathway are in bold text. c Pathway enrichment analysis of network genes using all

pathway ontologies and eliminating redundant pathways. The horizontal dotted line separates pathways common to all three disease categories

(top section; e.g. Jak-STAT signalling pathway), those shared by any two categories (middle), and those only enriched in one category (bottom)
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pathway level we find much more commonality between

categories (Fig. 4c). For instance, all groups share the

Jak-STAT signalling pathway. In addition to the gene

STAT3, each category has unique players in this path-

way, including IL2, IFNG, IFNGR2, IL10, JAK2, and

SOCS1 in the polygenic autoinflammatory disease

gene network, IFNLR1, IL12B, IL13, IL23A, IL4, IL6R,

STAT2, and TYK2 in the mixed disease gene network,

and IL21 and STAT4 in the autoimmune gene network.

The IL12-mediated signalling pathway is another pathway

shared by all. These results suggest that targeting different

members of the same pathway for treatment might be a

useful approach. Among pathways shared by any two

groups, we find the IL pathways are informative for shared

disease features: the IL23 and IL27 pathways are common

to both autoinflammatory and mixed diseases, while the

IL2 pathway is common to both autoinflammatory and

autoimmune diseases.

Functional and phenotypic annotation of genes harbouring

GWAS SNPs for each of three disease categories

We use annotation analysis to interpret pooled GWAS

SNPs for each of the three categories by looking directly

at genes harbouring these SNPs. Here we focus on com-

monalities across two or three disease categories in

terms of functions and phenotypes shared (Fig. 5). As

shown in Fig. 5a, three disease groups share genetic

variants in genes with signal transduction activity, and

variants for both autoinflammatory and autoimmune

diseases are enriched in genes with kinase and ubiquitin

ligase binding activities. Similarly, functional commonal-

ities can be identified using GO biological processes

(Fig. 5b). Using phenotype annotations, XGR is able to

reveal shared abnormal phenotypes both in human and

mouse (Fig. 5c, d); they include diverse abnormalities

relating to inflammation and immunity, consistent with

the phenotypic complexity of these common disease

categories.

Genetic and epigenetic characterisation of GWAS SNPs for

each of three disease categories

Using functional genomic annotations supported in XGR,

we are also able to compare and define characteristics

underlying each of the three categories (Fig. 6). As a proof

of principle, we use cell type-specific genetic and epigen-

etic annotations to characterise pooled GWAS SNPs per

disease category. Based on cell type-specific expressed/ac-

tive enhancers from FANTOM5 (Fig. 6a), SNPs for auto-

immune diseases tend to be co-localised with expressed

enhancers in B lineage lymphocytes, in dendritic cells (also

seen with SNPs for mixed diseases), in T cells, and in nat-

ural killer cells (also in SNPs for autoinflammatory dis-

eases). Co-localisation with expressed enhancers in

neutrophils is only seen for autoinflammatory disease

SNPs. Using genetic and epigenetic data generated in the

GM12878 lymhoblastoid cell line (Fig. 6b–d), we identify

common characteristics, including transcription factor

binding sites, histone marks, and genome segments. The

multiple layers of information revealed by XGR provide a

powerful tool to characterise genomic features underlying

disease categories.

Interpreting eQTL summary data

This demo highlights the power of XGR to interpret

eQTL SNPs, including enrichment and similarity analysis.

Performance comparisons between conventional enrichment

analysis and ontology-based enrichment analysis

Conventionally, SNP-based enrichment analysis is only

done using traits originally reported in GWAS. However,

GWAS traits can be mapped onto EFO, enabling us to

look at general terms (representing a group of related

traits) and to include more annotated SNPs: GWAS-

reported SNPs (‘original annotations’) and inherited

SNPs from its child terms (‘inherited annotations’). By

convention, SNP-based enrichment analysis considers

LD SNPs. The benefit of using EFO and justification of

our ontology tree-aware enrichment analysis is demon-

strated using the disease part of EFO to interpret cis-eQTLs

induced by 24-h IFN-γ treatment of human monocytes

(Fig. 7a). We consider three scenarios: 1) ‘EFO (-)’ not using

EFO (i.e. conventional analysis); 2) ‘EFO (+) & Tree (-)’

using EFO but without respecting the ontology tree; and 3)

‘EFO (+) & Tree (+)’ using EFO and also respecting the

ontology tree. Using EFO identifies disease terms that

would otherwise be missed with conventional analysis.

However, without respecting the ontology tree, the redun-

dant disease terms identified would become a burden for

interpretation. Compared to conventional analysis, our

ontology tree-aware analysis identifies an additional term

(‘immune system disease’) that summarises the overall en-

richments, illustrated by visualising the enrichment results

in the EFO tree (Fig. 7b).

Cross-condition comparative enrichment analysis

We previously reported context-specific induced cis-

eQTLs that were frequently enriched for disease risk loci

[24]. Using ontology tree-aware analysis, we re-interpret

these context-specific eQTLs by comparing their disease

associations. Side-by-side barplots together with tree-

like DAG plots in Fig. 8 give sufficient information

for straightforward interpretation, aiding in hypothesis

generation. Induced cis-eQTLs, whether in the naïve

state or upon immune stimulation, are consistently

overrepresented in autoinflammatory diseases (IBD, CRO

and UC) as expected, but also linked to Parkinson’s

disease (PD).
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SNP similarity analysis based on disease trait profiles

The similarity between two SNPs is calculated based

on 1) their annotation by EFO terms organised as a

DAG, 2) specificity of terms, quantified by informa-

tion content (IC) indicative of their frequency of

annotation (including both original and inherited

annotation), and 3) term–term similarity measured as

IC at the MICA of two terms. Figure 9a illustrates

the workflow and the key concepts behind SNP simi-

larity analysis. The output is visualised as a circos

A

B

C

D

Fig. 5 Functional and phenotypic annotation analysis of genes harbouring GWAS SNPs for three immunological disease categories. Visualised in

aside-by-side bar plot and/or DAG plot using functional ontologies, including a GO molecular function and b GO biological process; and using

phenotype ontologies in human and mouse, including c human phenotype phenotypic abnormality, and d mammalian phenotype
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plot, showing the SNP locations, and their pairwise

similarity by coloured links. To help understand the

similarity results, DAG plots are used to visualise the

annotation profiles, with nodes coloured according to

IC and shaped according to the type of annotation. In

this toy example, SNP 1 is most similar to SNP C as

they have the same annotation profile and share the

highly informative Term.1.1.1.1. It is less similar to

SNP A, as the MICA they share is a less informative

parent term, and least similar to SNP B as the MICA

is the root term. Figure 9b shows the similarity re-

sults when exploring cis-eQTLs induced by 24-h IFN-

γ treatment. A circos plot displays the similarity

results for all cis-eQTL SNPs, which can be reduced

to display the similarity links involving a specific SNP,

in this case rs11150589 (GWAS SNP in UC). The

DAG plots clearly show why this SNP is most similar

to rs10500264 (GWAS SNP in IBD), and has greater

similarity to rs3957148 (GWAS SNP in MS) than

rs2066807 (GWAS SNP in PSO). Together with

knowledge of eQTL-containing genes such as ITGAL

cis-regulated by rs11150589 and CNPY2 by rs2066807

(Fig. 9b), disease profile-derived similarity between

SNPs adds a new dimension to eQTL mapping inter-

pretations. By identifying pairs of SNPs sharing the

similar annotation/trait profiles, this piece of informa-

tion can be used to select variants for follow-up

functional studies such as from QTL mapping. SNP

similarity measured in this way would be also useful

in predicting physical interactions between genomic

regions involving both SNPs, particularly when SNP

annotations by EFO become more complete.

Discussion
Demanding issues addressed by XGR

In the current era of high-throughput genomics, the

volume of data relating to complex human disease is

growing at an unprecedented rate. The NHGRI-EBI

A

B

C

D

Fig. 6 Functional genomic annotation analysis of GWAS SNPs by genomic location for three immunological disease categories. a Using the FANTOM

cell type-specific expressed enhancer data, b using ENCODE ChIP-seq transcription factor binding site (TFBS) data, c using ENCODE histone mark data,

and (d) using ENCODE genome segment information. Panels b–d use genetic and epigenetic data generated in the GM12878 lymphoblastoid cell line
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GWAS Catalog contains 2546 studies at the time of

writing (October 2016) [3], and there have been many

success stories in terms of the identification of risk loci

and the discovery of disease mechanisms. However, gen-

omics has not yet nearly realised its full potential in this

regard. In general, the generation of large datasets and

their analysis through association studies are not the end

goal of disease genomics, but instead represent a starting

point for downstream interpretation, which aims to

place preliminary results in a biological context. This

post-GWAS stage benefits from the leveraging of

multiple data sources and requires a general framework

for the integration of the available knowledge and the

application of appropriate methodologies to reveal the

underlying information in a systematic way. XGR is

created to meet this emerging need.

Web-app user interface of XGR

All results described above are generated using the R

package. To target users who are unfamiliar with R, we

also develop a user-friendly web interface for each of the

analyses supported by XGR (Fig. 1). In the web-app,

users can simply paste gene or SNP lists of interest,

choose an ontology or network, and specify parameters

(or at default values). After submission, users can

A

B

Fig. 7 Necessity of using Experimental Factor Ontology and respecting ontology tree-like structure in SNP-based enrichment analysis. This is dem-

onstrated using the disease subgraph of the Experimental Factor Ontology (EFO) and analysing cis-eQTLs induced by 24-h IFN-γ. a Side-by-side

bar plots comparing the significant EFO terms between the analysis not using EFO (conventional analysis; EFO (-)) and two ontology-based ana-

lyses: the EFO (+) & Tree (-) analysis using EFO but without respecting the ontology tree, and the EFO (+) & Tree (+) analysis using EFO and also re-

specting the ontology tree. The horizontal dotted lines separate commonly identified terms (top), the terms unique to the ontology-based

analyses (middle), and the redundant terms identified by the EFO (+) & Tree (-) analysis (bottom). b DAG plot comparing terms identified by all ana-

lyses (coloured in cyan), by two analyses (coloured in light cyan), and only by one analysis (coloured in lightest cyan). The term name (if significant)

is prefixed in the form of ‘x1-x2-x3’. In this case, x1 for ‘EFO (-)’, x2 for ‘EFO (+) & Tree (-)’, x3 for ‘EFO (+) & Tree (+)’. The value of x1–3 can be ‘1’ or

‘0’, denoting whether this term is identified (present) or not (absent)
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download, search, and explore the outputs in the form

of various visuals.

Generality of analyses supported by XGR

As well as software, XGR is also a resource incorporat-

ing diverse data types, thereby enabling comprehensive

investigation of a gene or SNP set through enrichment,

network, similarity, and annotation analysis. User input

is not limited to the gene or SNP-centric data types.

XGR can also be used to analyse genomic regions

directly (Fig. 6), or indeed carry out enrichment analysis

for any entity, e.g. protein domains (as demonstrated in

the web-app). Overall, XGR is designed to be scalable,

whilst also being efficient and effective.

Uses and benefits of XGR

In the “Results” section, we demonstrate the intended

uses of XGR to interpret three commonly encountered

types of genomic summary data: gene sets resulting from

differential expression studies; GWAS SNPs from

GWAS summary data; and eQTL SNPs from eQTL

summary data. In these use cases, we explore the genetic

landscape of the immune system and immunological

disorders, using differential expression and eQTL data

A

B

Fig. 8 Comparative enrichment analysis for cis-eQTL SNPs under four immunologically relevant conditions. The four eQTL SNP sets are: naive state

(Naïve cis-eQTLs), induced by 2-h LPS (LPS2 cis-eQTLs), by 24-h LPS (LPS24 cis-eQTLs), and by 24-h IFN-γ (IFN24 cis-eQTLs). All analyses are using the

disease subgraph of EFO and respecting the ontology tree. a Side-by-side bar plots comparing the significant EFO terms across the four conditions.

The horizontal dotted lines separate terms shared by four conditions (top), by three conditions (upper middle), by two conditions (lower middle), and

unique to one condition (bottom). b DAG plot comparing the significant EFO terms across the four conditions. Nodes/terms are coloured according

to the number of conditions sharing the terms
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A

B

Fig. 9 SNP similarity analysis interpreting eQTL SNPs. a This toy example illustrates the SNP similarity analysis, which calculates pairwise semantic

similarity between SNPs using the Experimental Factor Ontology (EFO). The input is a list of SNPs, with the option to include SNPs in linkage

disequilibrium (LD). The output is a circos plot, with the link line colour graded according to the degree of semantic similarity between each

pair of SNPs. The calculation of similarity takes into account the annotation profile of the SNPs, the information content (IC) of the term, and the

term–term similarity. In our example, each SNP is directly annotated by two terms, and inherit additional annotation terms according to the

true-path rule. The terms are coloured according to their IC; original terms have a rectangular border, inherited terms an elliptical border. SNP 1

shows similarity of varying degrees to the other three SNPs based on their shared annotation profiles. SNP 1 and SNP C share both “Term 1” and

the very informative “Term 1.1.1.1”; as such, they have a very high degree of semantic similarity. SNP 1 and SNP A do not share any terms directly;

however, SNP 1’s “Term 1.1.1.1” and SNP A’s “Term 1.1.1.2” are both child terms of “Term 1.1.1” and so a similarity measure can be calculated

based on this term. “Term 1.1.1” is the most informative common ancestor (MICA) between the two SNP annotation profiles, meaning they have

a relatively high degree of similarity. The MICA of SNP 1 and SNP B is “Term 1”. Since this term is less informative than the MICA of SNP 1 and

SNP A (lower IC value), the similarity score between SNP 1 and SNP B is lower. b Semantic similarity results for real data. Global similarity output

for cis-eQTLs induced by 24-h IFN-γ is shown in the circos plot (top left). The top similarity links involving a specific SNP, rs11150589, are shown in

the main circos plot, together with DAG plots showing the terms annotating each SNP. The genes modulated by the eQTL SNPs are given

in brackets
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for stimulated monocytes and the GWAS summary data

for a dozen or so common diseases. These showcases

are intended to give an overview of the workflow and

functionality of XGR, while simultaneously showing the

benefits of XGR to uncover interesting biology in real

applications. For example, we find evidence for a link be-

tween the immune system and Parkinson’s disease when

re-interpreting context-specific eQTL (Fig. 8). This is

supported by a recent study suggesting that Parkinson’s

disease may be considered as an autoimmune disease

[41] with aging-induced changes in the immune system

a potential contributor, and highlights the need for

further work in this area. Another interesting finding is

the disease vitiligo, overrepresented in analysis of eQTL

but only involving activated monocytes; this is consistent

with the hypothesis that vitiligo is triggered by cellular

stress, danger signals, and innate immune activation

[42]. Similarity analysis adds a new dimension in inter-

preting eQTL SNPs, not just showing their relevance to

GWAS traits but also measuring how similar they are to

each other in the meaning of trait profiles (i.e. ontology

annotation profiles). Network analysis in XGR is unique

in its power to identify SNP-modulated gene networks,

defining disease subtypes based on GWAS SNPs (Fig. 3),

and revealing shared and unique features across subtypes.

The disease subtypes correspond well with the idea that

immunological disorders form a spectrum from autoin-

flammatory to autoimmune based on clinical and mech-

anistic features [40]. It is generally recognised that

pathophysiological mechanisms are shared across this

disease spectrum to a greater or lesser extent. The

analysis presented in this study, together with other

studies leveraging the informativeness of current genetic

data [7, 43, 44], helps to reveal the nature of these

relationships, illustrating how cross-disease analysis can

enhance opportunities for identifying central mediators as

potential drug targets.

Improved performance of XGR

We evaluate the performance of XGR in generating

more informative results than conventional analyses. In

particular, we show the necessity of respecting the ontol-

ogy tree-like structure during enrichment analysis, either

for genes or SNPs (Figs. 2 and 7). In the literature, the

use of ontologies has gained popularity but is largely

done without taking the structure itself into account

(thus much less effective). We also show that XGR is

able to perform cross-disease analysis. When coupled

with annotation analysis (via nearby gene annotations or

via co-localised functional genomic annotations), XGR is

able to perform in-depth interpretation of the underlying

genetic landscape of immunological diseases (Figs. 5 and 6).

Therefore, XGR provides a single integrated solution to

improve interpretation of genomic summary data for

downstream biological discovery; this can also be seen from

Table 2, which provides a comparison in terms of function-

ality and availability between XGR and other freely available

tools, such as DAVID [45], GREAT [46], DEPICT [47],

GOSemSim [48], GRAIL [49], dnet [36], and jActiveMo-

dule [50], to name but a few. This comparison also identi-

fies a need for XGR to support other uses such as

prioritisation, and to provide an online discussion/FAQ

platform as the user base increases.

Future development of XGR

We are actively engaged in, and have a long-term com-

mitment to, ensuring XGR is updated and expanded on

a regular basis (both functionality and data sources) as

the field advances. For example, the built-in data include

a number of structured ontologies, e.g. GO, DO, Human

Phenotype Ontology, and EFO. The hierarchical nature

of ontologies provides additional information concerning

the relationships between terms, which we leverage to

enhance downstream biological discovery and increase

the informativeness of the outputs generated. SNP-level

analysis supported in XGR is unique in its ontology tree-

awareness through mapping of GWAS Catalog traits to

EFO and the ability to calculate semantic similarity, but

is currently restricted to use of this single ontology. As

additional resources become available for orthogonal know-

ledge domains, these will be incorporated into XGR to ex-

pand its capacity for multi-layered investigation of genomic

summary data. Other than the data expansion, future ef-

forts will focus on increasing and enabling the user base

(including deployment to community-driven genomics pro-

jects), evaluating predictive use of SNP similarity in

chromosomal interactions (such as promoter interactomes

[51]), and extending the network analysis to the genomic

region level (such as differentially methylated regions).

Conclusions
The publicly available XGR R package and web-app

(Fig. 1) presented here provide a user-friendly, flexible,

and powerful tool for the exploration and interpretation

of genomic summary data. As the field of big data con-

tinues to expand and new resources become available,

XGR will evolve alongside as an integrated solution for

revealing underlying biological information.

Availability and requirements
Project name: XGR

Project home page (web-app): http://galahad.well.ox.-

ac.uk/XGR

R package: http://cran.r-project.org/package=XGR

Operating system(s): Linux, Mac OS X, Windows

Programming language: R

License: GNU GPL

Any restrictions to use by non-academics: None.
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Additional files

Additional file 1: Comparison of three tests used for enrichment analysis.

The tests compared are hypergeometric test, Fisher’s exact test, and

binomial test. The DO enrichment analysis is applied to the same set of

genes, namely differentially expressed genes induced by IFN-γ treatment of

primary human monocytes [24]. (PDF 206 kb)

Additional file 2: Exploring the statistical test for enrichment through

null simulations. The hypergeometric test is used for DO enrichment

analysis applied to a set of genes, namely differentially expressed genes

induced by IFN-γ treatment of primary human monocytes [24], identifying

eight enriched terms (FDR <0.05). To estimate the chance of these enriched

terms resulting from the real data that would be expected from a null

distribution, we simulate a random set of genes (having the same number

of genes as in the real data) for 10,000 times. Applying DO enrichment

analysis to the simulated data, we count how often each enriched term is

called significant under FDR <0.05. We also count how often each enriched

term is called significant from the simulated data, but under the same or

lower term-specific FDR (for example, 3.10E-05 for the term ‘viral infectious

disease’). (PDF 58 kb)

Additional file 3: Estimating false positive rate for enrichments of genes

of different sizes through null simulations. We use DGIdb gene druggable

categories [30] for this purpose; there are a total of ~30 gene categories

(thus computationally feasible), with gene members of different sizes. For

each category, we simulate a random set of genes (having the same

number as genes annotated by this category) for 20,000 times, and

estimate how often (false positive rate) this category would be identified

as enrichment (under different FDR cutoffs: <1E-1, <5E-2, <1E-2 and <5E-

3) from the simulated data. a Histogram plot of FDR calculated from the

simulated data, using the term ‘Tumor suppressor’ as an exemplar. b Dot

plot of false positive rate (on the x-axis) for gene categories (ordered by

the size of gene members on the y-axis). (PDF 565 kb)

Additional file 4: Justification of the 90 and 50% criteria used to remove

redundant terms resulting from enrichment analysis. The pathway

enrichment analysis is applied to the same set of genes (that is, differentially

expressed genes induced by IFN-γ treatment of primary human monocytes

[24]). a >90% of members in a redundant term that overlap with members in

a more significant term. b >50% of members in a more significant term that

overlap with members in a redundant term. (PDF 234 kb)

Additional file 5: Correlations of SNP similarity using best-matching

(BM)-based methods. BM methods compared are average (BM.average),

maximum (BM.max), and complete (BM.complete). SNP similarity analysis

is applied to the same set of SNPs (cis-eQTLs) induced by IFN-γ treatment

of primary human monocytes [24]. (PDF 129 kb)
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