
 Open access Proceedings Article DOI:10.1109/ICDE.2002.994712

XGrind: a query-friendly XML compressor — Source link

Pankaj M. Tolani, Jayant R. Haritsa

Institutions: Indian Institute of Science

Published on: 07 Aug 2002 - International Conference on Data Engineering

Topics: Well-formed document, XML validation, Document Structure Description, XML schema and Simple API for XML

Related papers:

 XMill: an efficient compressor for XML data

 XPRESS: a queriable compression for XML data

 Compressing XML with multiplexed hierarchical PPM models

 XQzip: Querying Compressed XML Using Structural Indexing

 Path queries on compressed XML

Share this paper:

View more about this paper here: https://typeset.io/papers/xgrind-a-query-friendly-xml-compressor-
5f184p4793

https://typeset.io/
https://www.doi.org/10.1109/ICDE.2002.994712
https://typeset.io/papers/xgrind-a-query-friendly-xml-compressor-5f184p4793
https://typeset.io/authors/pankaj-m-tolani-5eyhtlxa9l
https://typeset.io/authors/jayant-r-haritsa-2wb8y16zsa
https://typeset.io/institutions/indian-institute-of-science-3ga7vigs
https://typeset.io/conferences/international-conference-on-data-engineering-12yajil8
https://typeset.io/topics/well-formed-document-19cnrbjs
https://typeset.io/topics/xml-validation-1oid9ic0
https://typeset.io/topics/document-structure-description-k6zvhvzc
https://typeset.io/topics/xml-schema-1bzwqfc8
https://typeset.io/topics/simple-api-for-xml-23a10j06
https://typeset.io/papers/xmill-an-efficient-compressor-for-xml-data-3alxa3folt
https://typeset.io/papers/xpress-a-queriable-compression-for-xml-data-4glsr3u5q1
https://typeset.io/papers/compressing-xml-with-multiplexed-hierarchical-ppm-models-q0s2rpj7x2
https://typeset.io/papers/xqzip-querying-compressed-xml-using-structural-indexing-18v4ab1b7a
https://typeset.io/papers/path-queries-on-compressed-xml-58muywe69d
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/xgrind-a-query-friendly-xml-compressor-5f184p4793
https://twitter.com/intent/tweet?text=XGrind:%20a%20query-friendly%20XML%20compressor&url=https://typeset.io/papers/xgrind-a-query-friendly-xml-compressor-5f184p4793
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/xgrind-a-query-friendly-xml-compressor-5f184p4793
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/xgrind-a-query-friendly-xml-compressor-5f184p4793
https://typeset.io/papers/xgrind-a-query-friendly-xml-compressor-5f184p4793

XGRIND: A Query-friendly XML Compressor

Pankaj M. Tolani Jayant R. Haritsa�

Dept. of Computer Science & Automation

Indian Institute of Science, Bangalore 560012, INDIA

Abstract

XML documents are extremely verbose since the

“schema” is repeated for every “record” in the document.

While a variety of compressors are available to address this

problem, they are not designed to support direct querying of

the compressed document, a useful feature from a database

perspective. In this paper, we propose a new compression

tool called XGrind, that directly supports queries in the
compressed domain. A special feature of XGrind is that
the compressed document retains the structure of the orig-

inal document, permitting reuse of the standard XML tech-

niques for processing the compressed document. Perfor-

mance evaluation over a variety of XML documents and

user queries indicates that XGrind simultaneously deliv-
ers improved query processing times and reasonable com-

pression ratios.

1. Introduction

The XML language [1], by virtue of its self-describing

and textual nature, has become extremely popular as a

medium of data exchange and storage, especially on the

Internet. To support this functionality, XML resorts to, in

database terms, storing the “schema” with each and every

“record” in the document. This is in marked contrast to the

traditional database approach of storing the meta-data once

for the whole database. A consequence of XML’s repeating-

schema characteristic is that documents are extremely ver-

bose as compared to their intrinsic information content. In

fact, according to a recent industry white-paper [19], the

typical size increase is estimated to be as much as 400 per-

cent!

One approach to address the verbosity problem is to uti-

lize a standard text compressor, for example, gzip [17],

and thereby reduce the size of the document. An alternative

is to design an XML-specific compressor – this approach

resulted in the XMill tool, proposed recently by Liefke

�Contact Author: haritsa@dsl.serc.iisc.ernet.in

and Suciu [10]. XMill achieves compression ratios typi-

cally in excess of 80 percent on large XML documents by

grouping semantically related data items into “containers”,

separately compressing each container with a specialized

compressor ideal for that container, followed by a gzip on

each container. For example, the meta-data (in the form

of XML tags and attributes) and the data (element/attribute

values) are compressed separately. A performance study

[10] showed XMill to consistently provide better compres-

sion ratios than gzip.

Since XMill is designed to minimize the size of the

compressed XML document, it is attractive in terms of re-

ducing the network bandwidth required for transmission,

and the disk space required for storage, of the original doc-

ument. However, its compression approach is not intended

for directly supporting querying or updating of the com-

pressed document. In fact, accomplishing such operations

on XMill-compressed documents would typically entail a

complete decompression of the file.1

The ability to perform direct querying is important for

a variety of applications, especially for those hosted on

resource-limited computing devices such as Palm Tops. For

example, consider a vendor who travels around with a de-

tailed list of her customers and orders, in compressed XML

format, on her PDA. She could be reasonably expected to

frequently query this database in order to check customer

contact information, order status, delivery schedules, etc.,

as well as enter information about new customers or orders,

status updates, etc. If she would need to decompress the en-

tire document every time she wanted an answer or needed

to make an update, it could be quite time-consuming and

tiresome. Worse, it may even turn out to be impossible to

perform the decompression since her device may run out of

space to hold the uncompressed document!

At the other extreme of the resource spectrum, data ware-

houses storing XML documents may find that, even if de-

compressing were available for free, directly supporting

1Since XMill compresses in “chunks” of 8MB size, in principle it is

possible to separately decompress and query each chunk – however, there

are significant design and implementation complexities involved in this

process, as mentioned in [11].

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)

1063-6382/02 $17.00 © 2002 IEEE

data-intensive decision support queries on the compressed

data may result in a significant improvement in query re-

sponse times as compared to querying the uncompressed

version. This is because compression, as highlighted in

[5, 6, 9, 13], provides many other benefits apart from the

obvious utility of reduced space: disk seek times are re-

duced since the compressed data fits into a smaller physical

disk area; disk bandwidth is effectively increased due to the

increased information density of the transferred data; and,

the memory buffer hit ratio increases since a larger fraction

of the document now fits in the buffer pool.

1.1. The XGRIND Compressor

Based on the above observations, we propose in this pa-

per a new XML compression tool, called XGrind, that di-

rectly supports queries in the compressed domain. It com-

presses at the granularity of individual element/attribute

values using a simple context-free compression scheme

based on Huffman coding [8]. This means that exact-match

and prefix-match user queries can be entirely executed di-

rectly on the compressed document, with decompression

restricted to only the final results provided to the user. 2 Fur-

ther, range or partial-match queries require on-the-fly de-

compression of only those element/attribute values that fea-

ture in the query predicates, not the entire document.

A novel and especially useful feature of XGrind is that

it retains the structure of the original XML document in the

compressed format also. This means that the compressed

document can be parsed using exactly the same techniques

that are used for parsing the original XML document. A

related major benefit is that XML indexes [12] can be cre-

ated on the compressed document. Further, updates to the

XML document can be directly executed on the compressed

version. Lastly, a compressed document can be checked for

validity against the compressed version of its DTD. We ex-

pect that these properties would be of considerable utility

in practical settings, especially those hosting large numbers

of XML documents. For example, major repositories of ge-

nomic data such as the European Bioinformatics Institute

(EBI) [16], allow registered users to upload new genetic in-

formation to their archives. It would be extremely useful if

such information could be compressed by the user and then

uploaded, checked for validity, and integrated with the ex-

isting archives, all operations taking place completely in the

compressed domain.

Another feature of XGrind is that, for XML documents

adhering to a DTD, it attempts to utilize the information in

the DTD to enhance the compression ratio. For example,

attribute values that are of enumerated-type are recognized

2Note that this decompression is the minimum which will have to be

performed by any compression scheme.

from the DTD and are encoded differently from other at-

tribute values.

1.2. Performance Results

We have conducted a detailed performance evaluation

of XGrind over a representative set of real and syn-

thetic XML documents, including some generated from

Xmark [24], the recently announced XML benchmark, for a

variety of XML search queries. Our study considers a vari-

ety of metrics including the compression ratio, the compres-

sion time, and the query processing times. To our knowl-

edge, there do not exist any prior queryable XML compres-

sors. Therefore, we have attempted to place the XGrind
performance results in perspective as follows: (a) For the

compression ratio and compression time metrics, we com-

pare with the XMill compressor; (b) For the query pro-

cessing time metric, we compare against a query proces-

sor, hereafter referred to as Native, which is built around

XMill’s XML parser and operates directly on the original

uncompressed document.

Our experimental results show that XGrind simultane-

ously and efficiently achieves a reasonably good compres-

sion ratio compared to XMill and substantially improved

query processing times with regard to Native.

2. Background Material

In this section, we overview background material on text

compression techniques, and on the XMill compressor,

which represents the state-of-the-art in XML compression.

Most lossless3 data compression techniques are based on

one of two models: statistical or pattern.4 With statistical

modeling, each distinct character of the input data is en-

coded, with the code assignment based on the probability of

the character’s appearance in the data. In contrast, pattern-

based compression schemes recognize duplicate strings in

the input data, and these duplicates are replaced either by

pointers to the first appearance of the string, or by an index

into a dictionary that maps strings to codes.

Another dimension of lossless compression algorithms

is that they may be adaptive or non-adaptive. In adaptive

schemes no prior knowledge about the input data is assumed

and statistics are dynamically gathered and updated during

the encoding phase itself. On the other hand, non-adaptive

schemes are essentially “two-pass” over the input data: dur-

ing the first pass, statistics are gathered, and in the second

pass, these values are used for encoding.

Most of the popular compression tools are based on one

of the following algorithms: Huffman, Arithmetic, LZ77

3Only lossless techniques are considered viable for XML compression

since the documents contain textual information.
4An exception is the classical run-length encoding scheme.

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)

1063-6382/02 $17.00 © 2002 IEEE

or LZ78. The Huffman and Arithmetic coding techniques

implement the statistical model, while LZ77 and LZ78 are

pattern-based. For Huffman and Arithmetic, both adaptive

and non-adaptive flavors are available, whereas both the LZ

encoders are adaptive. The compressors evaluated in this

paper utilize the Huffman and LZ77 techniques, whose de-

tails are described next.

2.1. Huffman Coding

In Huffman coding [8], the most frequent characters in

the input data are assigned shorter codes and the less fre-

quent characters are assigned longer codes. The longer

codes are constructed such that the shorter codes do not ap-

pear as prefixes. In particular, a tree is constructed with the

characters of the input alphabet forming the leaves of the

tree. The links in the tree are labeled with either 0 or 1 and

the code for a character is the label sequence that is obtained

by traversing, in the Huffman tree, the path from the root to

the leaf node corresponding to that character.

In non-adaptive Huffman coding, the Huffman tree is

completely built before encoding starts, and remains un-

changed during the encoding process. Adaptive Huffman

coding, on the other hand, starts off with a Huffman tree that

is built using an assumed frequency distribution of the char-

acters in the data. As the encoding process proceeds and

more data is scanned, the Huffman tree is modified based

on the data seen up to that point. Thus the same charac-

ter can have different codes depending on its location in the

data being compressed (unlike non-adaptive Huffman).

2.2. LZ77 Coding

The LZ77 coding scheme [18] is used in popular com-

pression tools such as gzip. Here, the input data is scanned

sequentially and the longest recognized input string (that is,

a string which already exists in the string table) is parsed off

each time. The recognized string is then replaced by its as-

sociated code. Each parsed input string, when extended by

its next input character, gives a string that is not yet present

in the string table. This new string is added to the string ta-

ble and is assigned a unique code value. In this manner, the

string table is built incrementally during the compression

process. For decompression, the decoder logically uses the

same string table as the encoder and constructs it incremen-

tally in a similar manner.

2.3. The XMill Compressor

The XMill [10] compressor, as mentioned earlier, rep-

resents the state-of-the-art in XML compression. In XMill’s

document model, each XML document is composed of

three kinds of tokens: tags, attributes, and data values.

These tokens are organized as a tree, with internal nodes be-

ing labeled with tags or attributes, and leaves labeled with

data values. The path to a data value is the sequence of tags,

(and, possibly one attribute) from the root to the data value

node.

With the above model, XMill operates in the follow-

ing manner: First, meta-data in the form of XML tags and

attributes is compressed separately from the data, which is

the set of strings formed from element and attribute val-

ues. Second, semantically related data items are grouped

into “containers”. For example, all <name> data items

form one container, while all <phone> items form a sec-

ond container. This is an extension to the semi-structured

domain of the notion of column-wise or domain-wise com-

pression that is well-known in relational DBMS (e.g. [9,

13]). The motivation for such semantic grouping is that data

belonging to the same group will usually have similar char-

acteristics and can therefore be compressed better than data

sequences that have only syntactic proximity. Third, each

container is compressed separately with a specialized com-

pressor that is ideal for that container. For example, a delta

(difference) compressor may be used for a container host-

ing integers that typically have moderate changes from one

value to the next, while a run-length encoder may be used

for domains with a very limited set of values (e.g., “Male”

or “Female” for a gender element). Finally, the outputs

of all containers are individually compressed using gzip,

which as mentioned above, is based on LZ77, and the re-

sults are concatenated into a single XML file.

A performance study over a wide variety of XML doc-

uments showed XMill to consistently provide improved

compression ratios as compared to plain gzip, which treats

the entire file as a continuous stream of bytes and does not

associate any semantics with the contents.

3. The XGRIND Query-friendly Compressor

In this section, we first describe the features of XGrind,

our new XML compressor. These features are intended

to ensure both good query performance and reasonable

compression ratios. We conclude with a presentation of

XGrind’s architectural and implementation details.

3.1. Compression Techniques

XGrind uses different techniques for compressing

meta-data, enumerated-type attribute values, and (general)

element/attribute values, respectively. These techniques are

described below:

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)

1063-6382/02 $17.00 © 2002 IEEE

3.1.1 Meta-Data Compression

XGrind follows the XMill compression approach of sep-

arating structure from content. The method to encode meta-

data is similar to that in XMill, and is as follows: Each

start-tag of an element is encoded by a ‘T’ followed by a

uniquely assigned element-ID. All end-tags are encoded by

‘/’s. Attribute names are similarly encoded by the character

‘A’ followed by a uniquely assigned attribute-ID.

3.1.2 Enumerated-type Attribute Value Compression

Enumerated-type attribute values are a common occurrence

in XML documents. For example, the states of a country, or

the set of departments in a company, or the set of zip-codes,

are all instances of frequently occurring enumerated-type

attribute values. This knowledge is often captured in the

DTD itself. XGrind identifies such enumerated-type at-

tributes by examining the DTD of the document and en-

codes their values using a simple log2K encoding scheme

to represent an enumerated domain of K values.

3.1.3 General Element/Attribute Value Compression

While the above schemes cater to meta-data and

enumerated-type attribute values, we now move on to the

compression technique for general element/attribute values,

which typically form the bulk of the XML document.

Given XGrind’s goal of efficiently querying com-

pressed XML documents, a context-free compression

scheme is required. That is, a compression scheme in which

the code assigned to a string in the document is independent

of its location in the document. This feature allows us, given

an arbitrary string, to locate occurrences of that string in

the compressed document directly, without decompressing

it. This is done by first compressing the query string (ex-

pressed as a path expression) and then searching for occur-

rences of its corresponding encoded sequence in the com-

pressed document.

Context-free compression is not possible with adaptive

algorithms such as LZ77, since the code assigned to a data

item is dependent on the entire contents of the document

prior to the occurrence of the data item. That is, only with a

complete decompression of the prior contents is it possible

to match a sequence. On the other hand, context-free coding

of strings is possible with the non-adaptive versions of com-

pression algorithms such as Huffman coding and Arithmetic

coding. We have currently implemented the non-adaptive

Huffman compression algorithm in XGrind. To support

the non-adaptive feature, two passes have to be made over

the XML document: the first to collect the statistics and the

second to do the actual encoding.

In principle, we could use a single character-frequency

distribution for the entire document. However, in XGrind,

we compute a separate frequency distribution table for

each element and non-enumerated attribute. The motiva-

tion for this approach is that data belonging to the same

element/attribute is usually semantically related and is ex-

pected to have similar distribution. For example, data such

as telephone numbers or zip-codes will be composed exclu-

sively of digits. Therefore, the characteristics of each ele-

ment/attribute are reflected more accurately and the smooth-

ing out of the peculiarities of a particular element/attribute

(which may happen in the case of a single document-wide

frequency distribution) is prevented.5 Since we expect

that queries will typically have predicates related to ele-

ment/attribute values, we compress at the granularity of in-

dividual element/attribute values. This is done during the

second pass using the set of frequency tables generated dur-

ing the first pass.

With the above scheme, queries can be carried out over

the compressed document without fully decompressing it.

More precisely, exact-match (the search key is a specific

data value) and prefix-match (the search key is a prefix of the

data values) queries can be completely carried out directly

on the compressed document, while range (the search key

covers a range of data values) or partial-match (the search

key is a substring of the data values) queries require on-the-

fly decompression of only the element/attribute values that

are part of the query predicates.

3.2. Homomorphic Compression

The most novel feature of the XGrind compressor

is that its output, like its input, is semi-structured in

nature. In fact, the compressed XML document can be

viewed as the original XML document with its tags and

element/attribute values replaced by their corresponding

encodings. The advantage of doing so is that the variety of

efficient techniques available for parsing/querying XML

documents can also be used to process the compressed

document. Second, indexes, such as those proposed in [12],

can now be built on the compressed document in similar

manner to those built on regular XML documents. Third,

updates to the XML document can be directly executed on

the compressed version. Finally, a compressed document

can be checked for validity against the compressed version

of its DTD, without having to resort to any decompression,

as shown by the following property.

Given an XML document X which is valid for a DTD

D, let hD be the homomorphism defining the XGrind en-

coding scheme for the meta-data and enumerated-type at-

tribute values. Let hD(D) denote the compressed DTD and
hD(X) denote the compressed XML document. The follow-

5This is similar to collecting column or domain statistics for compres-

sion in an RDBMS [13].

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)

1063-6382/02 $17.00 © 2002 IEEE

DTD ParserXML
Doc

XGrind Kernel

XML−Gen

Enum−EncoderHuffman−Compressor

Frequency Tables Symbol Table

XML−Parser

Compressed XML Document

...

DTD

Semi−Structured

Compressed
Internal

Representation

Figure 1. Architecture of XGrind Compressor

ing property is a consequence of the “context freeness” of

the compression scheme and the semi-structured nature of

the output.

X is valid for D , hD(X) is valid for hD(D).

In other words, the XGrind compressed document is

valid with respect to its associated compressed DTD. The

proof for this follows from the closure of regular languages

and context-free languages under homomorphisms and in-

verse homomorphisms [7].

3.3. System Architecture

The architecture of the XGrind compressor, along with

the information flows, is shown in Figure 1. The XGrind

Kernel is the heart of the compressor. It starts off by invok-

ing the DTD Parser, which parses the DTD of the XML

document, initializes frequency tables for each element or

non-enumerated attribute, and populates a symbol table for

attributes having enumerated-type values. The kernel then

invokes the XML Parser, which scans the XML document

and populates the set of frequency tables containing statis-

tics (in the form of frequencies of character occurrences)

for each element and non-enumerated attribute. The XML

Parser is invoked a second time by the kernel to construct a

tokenized form – tag, attribute, or data value – of the XML

document. These tokens are supplied in streaming fashion

to the kernel which calls for each token, based on its type,

one of the following encoders:

Enum-Encoder is used for meta-data and enumerated-

type data items. Each start-tag of an element is en-

coded by a ‘T’ followed by a unique element-ID. All

end-tags are encoded by ‘/’s. Attribute names are

encoded by the character ‘A’ followed by a unique

attribute-ID. Enumerated-type attribute values, on the

other hand, are encoded using the symbol table infor-

mation.

Huffman-Compressor is used for non-enumerated data

items. This module implements the non-adaptive Huff-

man coding compression scheme. It encodes each el-

ement/attribute value with the help of its associated

Huffman tree, which is constructed from its corre-

sponding frequency table. The last byte of the en-

coded sequence is padded to be byte-aligned, and this

encoded sequence is then “escaped” so that the com-

pressed XML document can be parsed without ambi-

guity.

The compressed output of the above encoders, along

with the various frequency and symbol tables, is called the

Compressed Internal Representation (CIR) of the compres-

sor and is fed to XML-Gen, which converts the CIR into

a semi-structured compressed XML document. This con-

version is done on the fly during the second pass while the

document is being compressed.

3.4. Compression Example

Consider an XML document fragment along with its

DTD as shown in Figures 2 and 3, respectively. The doc-

ument represents a student database with five elements:

STUDENT, NAME, YEAR, PROG and DEPT. The STUDENT
element has a rollno attribute, while DEPT has a name
attribute of enumerated-type.

An abstract view of the compressed version of the above

document is shown in Figure 4. Here, the tag STUDENT
is encoded as T0, NAME as T1, YEAR as T2, PROG as T3
and DEPT as T4. All end tags are encoded as ‘/’s. The at-

tributes rollno and name are encoded as A0 and A1, re-

spectively. The unique element/attribute IDs and the encod-

ings for the attribute name of DEPT element are determined

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)

1063-6382/02 $17.00 © 2002 IEEE

<!- student.xml -->
<STUDENT rollno = "604100418">

<NAME>Pankaj Tolani</NAME>
<YEAR>2000</YEAR>
<PROG>Master of Engineering</PROG>
<DEPT name = "Computer Science">

</STUDENT>

Figure 2. Fragment of the Student DB

<!- DTD for the Student database -->
<!ELEMENT STUDENT (NAME, YEAR, PROG, DEPT)>
<!ATTLIST STUDENT rollno CDATA ℄REQUIRED>
<!ELEMENT NAME (℄PCDATA)>
<!ELEMENT YEAR (℄PCDATA)>
<!ELEMENT PROG (℄PCDATA)>
<!ELEMENT DEPT EMPTY>
<!ATTLIST DEPT name (Computer Science

| Electrical Engineering

.

.

.
| Physics | Chemistry)

>

Figure 3. DTD for the Student DB

by the DTD parser in the first pass. nahuff(s) denotes

the output of the Huffman-Compressor for an input data

value s, while enum(s) denotes the output of the Enum-

Encoder for an input data value s, which is an enumerated

attribute. As is evident from Figure 4, the compressed docu-

ment output in the second pass is semi-structured in nature,

and maintains the property of validity with respect to the

compressed DTD.

3.5. Query Processing

The compressed-domain query processing engine con-

sists of a lexical analyzer that emits tokens for encoded

tags, attributes, and data values, and a parser built on top

of this lexical analyzer that does the matching and dump-

ing of the matched “records” (which in the XML world

are semi-structured tree fragments). As all the tokens are

byte-aligned, the lexical analyzer that tokenizes the CIR is

able to operate on a byte-by-byte basis. This means no bit-

by-bit operations are necessary, considerably speeding up

the lexical analysis. The parser, which makes a depth-first-

search traversal of the XML document, maintains informa-

tion about its current location (path) in the XML document

and the contents of the set of XML nodes that it is currently

processing.

For exact-match or prefix-match queries, the query path

and the query predicate are converted to the compressed-

domain equivalent. During parsing of the compressed

XML document, when the parser detects that the current

path matches the query path, and that the compressed data

value matches the compressed query predicate, it outputs

T0 A0 nahuff(604100418)
T1 nahuff(Pankaj Tolani) =
T2 nahuff(2000) =
T3 nahuff(Master of Engineering) =
T4 A1 enum(Computer Science) =

=

Figure 4. Abstract view of XGrind document

the matched XML fragment. Note that the compressed-

domain pattern-match is byte-by-byte and not a bit-by-bit

pattern-match, which would be highly inefficient. In fact,

the matching requires significantly less work in the com-

pressed domain, since the number of bytes to be processed

have considerably decreased.

For range or partial-match queries, only the query path

is compressed. While parsing the compressed XML docu-

ment, when the parser detects that the current path matches

the query path, the associated data value is decompressed

and used for evaluating the match. This decompression is

required since the compression scheme we use is not “order

preserving” (i.e. given two strings s1, s2 and their respec-

tive compressed versions
1,
2, then s1 > s2 6)
1 >
2).

Only the records whose element/attribute values fall in the

range are fully decompressed and returned to the user.

3.6. Implementation

We have implemented the XGrind tool in C/C++. The

SAX API [21] XML Parser provided in [23] was used for

implementing the XML Parser. Lex and Yacc were used

for implementing the DTD Parser as well as the parser for

the semi-structured compressed XML document. Also, we

wrote our own non-adaptive Huffman-Compressor.

4. Experimental Framework

In this section, we describe the experimental setup used

to profile XGrind’s performance. We evaluated XGrind
on a representative set of real and synthetic XML docu-

ments, including one generated from Xmark, the recently

announced XML benchmark [24]. To our knowledge, there

do not exist any prior queryable XML compressors. There-

fore, we have attempted to place the XGrind performance

results in perspective as follows: (a) For the compres-

sion ratio and compression time metrics, we compare with

the XMill compressor; (b) For the query processing time

metric, we compare against the Native query processor,

which we built around XMill’s XML parser and operates

directly on the original uncompressed document. Our ex-

periments were conducted on a PIII, 700 MHz machine,

running Linux (TurboLinux 6.0), with 64 MB main memory

and 18 GB local IDE disk.

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)

1063-6382/02 $17.00 © 2002 IEEE

4.1. XML Documents

Document S R D E A N M
xmark 1145 1 8 77 16 0 1

conferences 382 1.04M 3 25 5 0 10
journals 294 0.76M 3 15 2 0 11

shakespeare 161 740 6 22 0 0 22
ham-radio 361 0.70M 4 24 0 0 1
student1 960 5M 3 6 2 1 1
student4 1408 5M 3 7 5 4 1

Table 1. Document Statistics

The details of the XML documents considered in our

study are summarized in Table 1. S (size) refers to the total

disk space occupied by the document in MBs; R (records)

indicates the number of top-level records in the document;

D (depth) indicates the maximum level of nesting; E (ele-

ments), A (attributes) and N (enums) indicate the number of

elements, attributes and enumerated-attributes, respectively,

in the document; M (scale-up) indicates the number of times

the original file has been concatenated.

The XML documents used in our study cover a variety

of sizes, document characteristics and application domains,

and are listed below:

xmark: This document was generated from Xmark, the

xml-benchmark project, using their xmlgen data genera-

tor [24]. It models an auction database and is deeply-nested

with a large number of elements and attributes. Many of the

element values are long textual passages.

conferences, journals: These documents represent con-
ference and journal entries, respectively, from the

DBLP archive [20].

shakespeare: This document is the publicly available XML

version of the plays of Shakespeare [22]. Similar to xmark

above, many of the element values are long textual pas-

sages.

ham-radio: This document was obtained from the publicly

available Ham Radio database of the US Government’s Fed-

eral Communications Commission [15]. It has the high-

est percentage of meta-data content (approximately 70%)

among the set of XML documents considered here.

student1: This is a synthetically generated XML document

that represents a database of student information. The DTD

for this document has one attribute – name (of the depart-

ment) – which is an enumerated type.

student4: This is also a synthetically generated document,

similar to student1, except that the DTD has four enu-

merated attributes – year (of registration), name (of the

course), name (of the department), and name (of the pre-

vious school).

The reason that we have enlarged, by concatenation,

some of the above documents is to ensure that our results

scale to the large XML documents that are expected to be

commonplace in the future, especially in the bioinformat-

ics domain. We also ran our experiments on the original

(unscaled) versions of these documents, and the results are

consistent with those presented here.

4.2. XML Queries

We have evaluated query response times for a variety

of exact-match and range queries, the details of which are

given below (the queries are specified in XML-QL):

Exact-match queries: A sample exact-match query is

shown in Figure 5. This query extracts the name of the

student whose roll number (which is a “key” value) equals

123456789. We evaluated the query performance for ran-

domly positioned records over the entire document and

present here the results for the average case. For these

queries, the parsers used in XGrind and Native were in-

strumented to stop when the desired record was found – that

is, it is assumed that the search keys are unique.

CONSTRUCT <student rollno=$r> f
WHERE

<student rollno=123456789>
<name>$n</name>
<year>$y</year>
<dept name=$d>

</student> IN "student.xml",
CONSTRUCT <name>$n</name>

g </student>

Figure 5. XML-QL exact-match query

Range queries: A sample range query is shown in Figure 6,

which extracts all students whose date of joining is between

the years 1998 and 2000. We evaluate a wide range of query

selectivities in our experiments.

CONSTRUCT <student rollno=$r> f
WHERE

<student rollno=$r>
<name>$n</name>
<year>$y</year>
<dept name=$d>

</student> IN "student.xml",
$y � 1998 and $y � 2000

CONSTRUCT <name>$n</name>
g </student>

Figure 6. XML-QL range query

4.3. Compression Performance Metrics

From the compression perspective, we compare

XGrind’s compression ratios and compression times with

that of XMill. These metrics are defined below:

Compression Ratio (CR): Defined as

CR = 1�
sizeof(
ompressed file)

sizeof(original file)
.

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)

1063-6382/02 $17.00 © 2002 IEEE

Compression Ratio Factor (CRF): Normalizes the com-

pression ratio of XGrind with respect to XMill, that is,

CRF =
CRXG

CRXM
.

Compression Time (CT): Time taken to compress the

XML file.

Compression Time Factor (CTF): Normalizes the com-

pression time of XGrind with respect to XMill, that is,

CTF =
CTXG

CTXM
.

4.4. Query Performance Metrics

From the query perspective, we compare XGrind’s

query response times with that of Native. These metrics

are defined below:

Query Response Time (QRT): Total time required to exe-

cute the query.

Query Speedup Factor (QSF): Normalizes the query re-

sponse time of Native with respect to XGrind, that is,

QSF =
QRTNa

QRTXG
.

5. Performance Results

In this section, we present the performance results for the

documents and queries described in the previous section.

The results for the compression metrics are described first,

followed by the results for the query metrics.

5.1. Compression Metrics

Do
ument CRX G CRXM CRF
xmark 55.03 70.95 0.78

conferences 57.44 84.61 0.68
journals 57.85 85.59 0.68

shakespeare 54.96 74.12 0.74
ham-radio 76.85 93.54 0.82
student1 77.13 91.74 0.84
student4 82.12 93.87 0.87

Average 0.77

Table 2. Comparison of compression ratios

The compression ratio statistics for the seven XML doc-

uments are shown in Table 2. We see here that, as expected,

XGrind has lower compression ratio than XMill, but the

important point is that its compression ratio factor (CRF)

is, on the average, about 77% that of XMill. Also, the

worst case is within 68% of XMill. These results were also

true for a variety of other documents that we considered in

our experiment evaluation.

Further, the results for student1 and student4 indi-

cate that the compression ratio for XGrind improves with

increase in the number of enumerated attributes. Experi-

ments with other documents also showed similar results.

Since we expect a significant usage of enumerated attributes

in real life XML documents, XGrind’s compression ratios

will probably be better in practice than those shown here,

that is, the values presented here are “conservative”.

Do
ument CTX G CTXM CTF
xmark 1246 878 1.41

conferences 442 222 1.99
journals 344 170 2.02

shakespeare 183 125 1.46
ham-radio 353 182 1.93
student1 978 471 2.07
student4 1328 647 2.05

Average 1.83

Table 3. Comparison of compression times

The compression time statistics are shown in Table 3. We

observe here that XGrind’s compression time is always

within about twice the time taken by XMill. This is not

surprising since the XGrind compression scheme is two-

pass, whereas XMill is one-pass. Further, for the xmark

and shakespeare documents, which have longer text pas-

sages, the XGrind compression time is within about one

and a half times the time taken by XMill. This is because

XMill’s pattern-based compression scheme turns out to

be computationally costlier than the simple character-based

encoding used in XGrind for such long text segments.

5.2. Query Metrics

Do
ument QRTX G QRTNa QSF
xmark 80 185 2.00

conferences 27 68 2.51
journals 21 53 2.52

shakespeare 14 31 2.21
ham-radio 20 73 3.65
student1 46 184 4.00
student4 50 250 5.00

Average 3.12

Table 4. Exact-Match Query Performance

Do
ument DTXM DTgzip
xmark 663 488

conferences 151 145
journals 116 107

shakespeare 71 65
ham-radio 125 73
student1 288 336
student4 428 479

Table 5. Decompression Times

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)

1063-6382/02 $17.00 © 2002 IEEE

We now move on to the query performance comparisons.

For exact-match queries the average query response times

are shown in Table 4. The inferences we make from the

results are: First, QRTXG � QRTNa in all the cases, and

this is made explicit in the QSF column, which measures the

relative speed up of XGrindw.r.t. Native. The minimum

QSF for XGrind is about 2 times and is typically much

higher, overall averaging around 3.

Second, QRTXG (as well as QRTNa) is much less than

the time it takes XMill or gzip to decompress the XML

document, shown as DTXM and DTgzip, respectively, in

Table 5. This result has the important implication that

XGrindwould perform substantially better than XMill or

gzip even if these tools were supplied with an algorithm

that takes zero time to execute exact-match queries over an

uncompressed XML document. Moreover, XGrind would

require less space to process the query than XMill or

gzip.

Do
ument Sel QRTX G QRTNa QSF
conferences 1 71 136 1.92

10 87 150 1.72
50 153 205 1.34

journals 1 54 106 1.96
10 64 117 1.83
50 115 162 1.41

shakespeare 1 27 57 2.11
10 35 66 1.89
50 65 88 1.35

ham-radio 1 43 139 3.23
10 58 150 2.59
50 125 255 2.04

student1 1 138 364 2.64
10 166 390 2.35
50 292 540 1.85

student4 1 140 497 3.55
10 172 549 3.19
50 319 751 2.35

Table 6. Range Query Performance

Sel Average QSF (over all do
uments)
1 2.56

10 2.26
50 1.72

Table 7. Range Query Average Performance

For range queries, the query response times for a spec-

trum of result selectivities (1%, 10%, and 50%) are shown

in Table 6. The selectivity is evaluated with respect to the

number of top-level nodes,6 but it is straightforward to ex-

tend our experiments to lower-level nodes.

The results in Table 6 show thatQRTXG � QRTNa for

all selectivities over all the documents. This is made explicit

6Therefore, this experiment is not meaningful for xmark since it has

only one top-level node.

in the Average QSF values shown in Table 7, which aver-

ages the performance for a selectivity across all documents.

Note that for 1% and 10% selectivity, which are typically

the types of queries seen in practice, the average improve-

ment is above 2.25 times with respect to Native. Further,

even for a selectivity as coarse as 50 %, the improvement is

by over 70 percent.

5.3. Summary and Discussion

Our experimental results indicate that XGrind provides

a reasonably good compression ratio – on the average, about

three-quarters that of XMill, and always at least two-

thirds that achieved by XMill. Further, the compression

time is always within a factor of two of that of XMill.

These numbers are especially encouraging given that we are

(a) using element/attribute-granularity compression, rather

than document-granularity compression, (b) using a sim-

ple character-based Huffman coding scheme, rather than

a pattern-based approach, and (c) making two passes over

the original XML document to provide context-free com-

pression. Further, note that while compression is a “one-

time” operation, querying is a repeated occurrence – there-

fore, any overheads in document compression time would

be quickly amortized over large query sequences.

On the query processing front, XGrind provides sub-

stantially improved response times over Native. For an

exact-match predicate on a key field, XGrind does better

by a factor of three, on average. Similarly, even for range

queries where a significant portion of the document would

necessarily be decompressed, XGrind’s response time is

about half that of Native, on average.

Finally, while XGrind exhibits a good performance pro-

file in general, it performs particularly well with respect to

all performance metrics when the XML document exhibits

the following characteristics: (a) long textual passages, and

(b) several enumerated-type attributes.

6. Related Work

On the research front, apart from XMill, there are two

other XML compressors that we are aware of: Millau [4],

which is designed for efficient encoding and streaming of

XML structures; and a more recent encoding based on Pre-

diction by Partial Match (PPM), called Multiplexed Hi-

erarchical Modeling (MHM) [2]. Similarly, on the in-

dustrial front, there are quite a few companies – for ex-

ample, www.xmlzip.com, www.ictcompress.com
and www.dbxml.com – which supply XML compression

products. However, a common feature of all these tools

is that their focus is primarily on reducing the size of the

compressed document, ignoring the issue of being query-

friendly, which we consider here.

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)

1063-6382/02 $17.00 © 2002 IEEE

7. Conclusions and Future Work

In this paper, we have considered, for the first time,

the problem of developing XML compression algorithms

that permit querying to be directly carried out on the com-

pressed document. To this end, we developed an prototype

tool called XGrind, which is built around non-adaptive

Huffman coding that supports context-free decompression

at the token granularity. XGrind also has a special en-

coder for enumerated types, a frequent occurrence in XML

documents. The most novel feature of XGrind, however,

is that the compressed document retains exactly the same

semi-structured layout as the original document. This fa-

cilitates the use of similar parsing techniques for both ver-

sions. More importantly, it permits us to build indexes di-

rectly on the compressed document, which we expect to be a

major value-addition in practice. Finally, an attractive side-

effect of XGrind’s token-granularity, context-free, compres-

sion scheme is that the compressed XML document is more

robust with regard to transmission and disk errors as com-

pared to XMill or gzip.

We evaluated XGrind’s query performance against Na-
tive and the results indicate substantially improved query

response times. These benefits are obtained while simul-

taneously and efficiently achieving compression ratios that

are comparable with that of XMill. To further improve the

performance and utility of the XGrind tool, we could:

� identify “fixed-schema” elements (i.e. no f*/+/?g
modifiers for the nested elements) from the DTD, and

not repeat their schema in the compressed document.

� use sampling in the statistics gathering phase to reduce

document compression times.

� use the statistics gathering phase to identify the

enumerated-type elements/attributes if the document

happens to not have a DTD.

Acknowledgments

We are very grateful to Aditya Nori for his technical in-

puts and programming support during the early stages of

this work. J. R. Haritsa was supported in part by a research

grant from the Dept. of Bio-technology, Govt. of India.

References

[1] T. Bray, et al. “Extensible Markup Language (XML)
1.0”, October 2000, http://www.w3.org/TR/REC-xml.

[2] J. Cheney, “Compressing XML with Multiplexed Hi-
erarchical PPM Models”, Proc. of IEEE Data Com-
pression Conf., May 2000.

[3] A. Deutsch, et al. “A Query Language for XML”, June
2001, http://www.w3.org/TR/xquery/ .

[4] G. Girardot and N. Sundaresam, “Millau:
an encoding format for efficient representa-
tion and exchange of XML over the Web”,
http://www9.org/w9cdrom/154/154.html.

[5] G. Graefe, “Options in Physical Database”, ACM SIG-
MOD Record, September 1993.

[6] G. Graefe and L. Shapiro, “Data Compression and
Database Performance”, Proc. of ACM/IEEE CS
Symp. on Applied Computing, April 1991.

[7] J. Hopcroft and J. Ullman, “Introduction to Automata
Theory, Languages, and Computation”, Addison-
Wesley, 1979.

[8] D. Huffman, “A Method for Construction of
Minimum-Redundancy Codes”, Proc. of IRE,
September 1952.

[9] B. Iyer and D. Wilhite, “Data Compression Support in
Databases”, Proc. of VLDB, September 1994.

[10] H. Liefke and D. Suciu, “XMill: An Efficient Com-
pressor for XML Data”, Proc. of ACM SIGMOD, May
2000.

[11] H. Liefke and D. Suciu, “XMill: An Efficient Com-
pressor for XML Data”, Tech. Rep. MS-CIS-99-26,
Dept. of Computer and Information Science, Univ. of
Pennsylvania, October 1999.

[12] J. McHugh, et al. “Indexing Semi-structured Data”,
Technical Report, Computer Science Dept., Stanford
University, January 1998.

[13] G. Ray, J. Haritsa and S. Seshadri, “Database Com-
pression: A Performance Enhancement Tool”, Proc.
of 7th Intl. Conf. on Management of Data (COMAD),
December 1995.

[14] I. Witten, R. Neal and J. Cleary, “Arithmetic Coding
For Data Compression”, Comm. of ACM, June 1987.

[15] ftp://ftp.ictcompress.com/pub/xmltestfiles

[16] http://www.ebi.ac.uk

[17] http://www.gzip.org

[18] http://www.gzip.org/algorithm.txt

[19] http://www.ictcompress.com/xml.html

[20] http://www.informatik.uni-trier.de/�ley/db

[21] http://www.megginson.com/SAX

[22] http://www.oasis-open.org/cover/
bosakShakespeare200.html

[23] http://www.research.att.com/sw/tools/xmill

[24] http://www.xml-benchmark.org

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)

1063-6382/02 $17.00 © 2002 IEEE

