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Abstract

Gene set enrichment analysis (GSEA) has been widely used to identify gene sets with

statistically significant difference between cases and controls against a large gene set. GSEA

needs both phenotype labels and expression of genes. However, gene expression are assessed

more often for model organisms than minor species. More importantly, gene expression could

not be measured under specific conditions for human, due to high healthy risk of direct

experiments, such as non-approved treatment or gene knockout, and then often substituted by

mouse. Thus predicting enrichment significance (on a phenotype) of a given gene set of a

species (target, say human), by using gene expression measured under the same phenotype of

the other species (source, say mouse) is a vital and challenging problem, which we call

CROSS-species Gene Set Enrichment Problem (XGSEP). For XGSEP, we propose XGSEA

(Cross-species Gene Set Enrichment Analysis), with three steps of: 1) running GSEA for a

source species to obtain enrichment scores and p-values of source gene sets; 2) representing the

relation between source and target gene sets by domain adaptation; and 3) using regression to

predict p-values of target gene sets, based on the representation in 2). We extensively validated

XGSEA by using four real data sets under various settings, proving that XGSEA significantly

outperformed three baseline methods. A case study of identifying important human pathways

for T cell dysfunction and reprogramming from mouse ATAC-Seq data further confirmed the

reliability of XGSEA. Source code is available through https://github.com/LiminLi-xjtu/XGSEA

Author summary

Gene set enrichment analysis (GSEA) is a powerful tool in the gene sets differential analysis

given a ranked gene list. GSEA requires complete data, gene expression with phenotype labels.

However,gene expression could not be measured under specific conditions for human, due to

high risk of direct experiments, such as non-approved treatment or gene knockout, and then

often substituted by mouse. Thus no availability of gene expression leads to more challenging

problem, CROSS-species Gene Set Enrichment Problem (XGSEP), in which enrichment

significance (on a phenotype) of a given gene set of a species (target, say human) is predicted by

using gene expression measured under the same phenotype of the other species (source, say

mouse). In this work, we propose XGSEA (Cross-species Gene Set Enrichment Analysis) for

XGSEP, with three steps of: 1) GSEA; 2) domain adaptation; and 3) regression. The results of

four real data sets and a case study indicate that XGSEA significantly outperformed three

baseline methods and confirmed the reliability of XGSEA.
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Fig 1. XGSEP: Cross-species gene set enrichment problem, to predict enrichment p-values of

target gene sets by using source gene sets, gene expression data and sequence homology

between target and source genes.

Introduction 1

Due to recent advancement of modern experimental technologies, currently we have a massive 2

amount of basic biological data. For example, next-generation sequencing technology has made 3

sequencing faster and lower-cost, generating an incredible number of sequences. This situation 4

makes bioinformatics tools more promising in retrieving biological knowledge from data. For 5

example, gene set enrichment analysis (GSEA) [1] has been well used in biology and related 6

areas, which can rank gene set(s) most relevant (precisely, statistically significant) to 7

binary-labeled gene expression measurement. However, GSEA needs gene expression data 8

labeled binary, such as control and case, and is heavily affected by missing data. 9

Indeed gene expression are now measured by more speedy and precise techniques like 10

RNA-Seq than cDNA microarray, while measuring gene expression is still costly both on money 11

and time. Existing expression data often has strong bias in measured organisms or species. 12

Model organisms, such as Mus musculus, Caenorhabditis elegans, Arabidopsis thaliana, etc., 13

are well measured, while data on minor species are relatively insufficient. Additionally, human 14

gene expression data are unable to be measured under some specific conditions, due to high risk 15

of direct experiments on human, such as non-approved treatment or gene knockout. On the other 16

hand, mouse is usually used to study human disease [2, 3] because of lower cost, lower risk and 17

relatively strong homology relationship with human [4]. However, there exists essential 18

differences between mouse and human [5–8]. Effective treatments developed by mouse data 19

often fail in human clinical trials [9,10]. Thus it would be strongly expected to develop a method 20

to bridge the gap between expression data of different species, such as human and mouse. 21

We consider a problem of predicting enrichment significance of given gene sets of one 22

species (such as human) without gene expression, by using sufficient gene expression data of 23

another species (such as mouse). The assumption behind this problem is that both expression 24

data are measured under the same phenotype. We call this problem cross-species gene set 25

enrichment problem (XGSEP). Fig 1 shows a schematic picture of the problem setting of 26

XGSEP. Assume that we have enough data behind XGSEP for human and mouse (more 27

generally target and source), except target expression data. A gene set, either from mouse or 28
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human, could be represented as a binary annotation vector with dimension being the number of 29

all genes in the expression data, representing whether the corresponding gene is in the gene set. 30

The enrichment significance (such as p-values) of a source gene set S with an annotation vector 31

xs can be computed by traditional GSEA. The goal of XGSEP is to predict the enrichment 32

significance for a target gene set T with an annotation vector xt, which might have a different 33

dimension from xs since the number the total genes for target (human) and source (mouse) are 34

different. Note that the sequence homology between target genes and source genes is assumed to 35

be represented by binary matrix M , which should be important information for the prediction. 36

A naive idea for XGSEP would be to first find a source gene set xs, most homologous to 37

genes in a particular target gene set xt, by using M . Then GSEA is run over source expression 38

data and xs. The resultant p-value for xs is considered as a prediction of the enrichment p-value 39

for xt. The method is simple and fast, but the homology relationship between source and target 40

is often complex, and thus homologous source gene set xs cannot be clearly defined. Also using 41

M directly would be not robust. 42

Our idea for XGSEP is, rather than focusing on only one gene set, to consider many gene 43

sets at once and train a predictive machine learning model by these gene sets. Suppose that we 44

have source gene sets S1, . . . , Sm and target gene sets T1, . . . , Tn, with annotation matrices 45

Xs = [x1
s, . . . ,x

m
s ] and Xt = [x1

t , . . . ,x
n
t ], respectively. Then the enrichment p-value for the 46

source gene sets can be computed beforehand (by traditional GSEA). The goal of XGSEP is to 47

predict enrichment p-values for target gene sets x1
t , . . . ,x

n
t . Note that Xs (training data) and 48

Xt (test data) are different in size of rows (number of genes), and thus it is difficult to compare 49

the two matrices directly, meaning that a regular machine learning model such as a classifier 50

generated by Xs cannot be run directly over test data Xt. Thus a further idea is to transform 51

both the target and source species into a common space so that the target and source genes can 52

be compared. However this idea cannot be realized by regular machine learning models by the 53

above problem of difference in size between training and test data. We solve this problem by 54

domain adaptation, transfer learning between two domains: target and source. In general domain 55

adaption, a machine learning model, trained by a larger amount of labeled samples from a source 56

domain, is applied to a target domain with very few or no labeled samples [11]. This is exactly 57

the same situation of XGSEP. A common way of domain adaptation methods is to train a model 58

so that the model can reduce the probability gap between two domains. A possible measure for 59

the probability gap, i.e. the difference of two data distributions, is maximum mean discrepancy 60

(MMD) [12–15]. We will borrow the idea of domain adaptation and MMD to solve XGSEP. 61

We propose a method, XGSEA, standing for Cross-species Gene Set Enrichment Analysis. 62

XGSEA solves XGSEP by three steps: 1) We run GSEA over the source gene sets to obtain gene 63

enrichment scores Es and gene enrichment significance vs. 2) We first define pairwise 64

similarities among gene sets based on M , and then propose a MMD-based domain adaptation 65

method to project Xs and Xt into a latent common space with affine mappings Ps and Pt to 66

obtain Zs and Zt, respectively, so that i) the probability gap between Zs and Zt in the latent 67

space is minimized and ii) Ps and Pt are smooth over the connection M between source and 68

target gene sets. By solving this optimization problem, we can obtain the optimal new 69

representations Zs and Zt for source and target gene sets, respectively. 3) We train a regression 70

model by (Zs,Es) and run the trained model over Zt to predict enrichment scores Et for target 71

gene sets and finally p-values vt with the principle of null hypothesis. Schematically, we may be 72

able to explain our idea by using arrows: Xs
Ps→ Zs and Xt

Pt→ Zt, so that the adaptive 73

representations Zs and Zt for source and target gene sets should have the smallest distribution 74

divergence and preserving their pairwise homology similarities. 75

The contribution of this work can be summarized into three-fold: 1) We define a problem, 76

XGSEP, which is helpful for understanding a particular phenotype (label) of a species with too 77

limited data to run GSEA. 2) We propose a three-step method called XGSEA for XGSEP 78

through domain adaptation that projects gene sets from two species into a common latent space. 79

This projection is formulated as a nonlinear optimization problem, by which we can estimate the 80
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Fig 2. Flow chart of XGSEA: we 1) compute B+1 enrichment scores and p-values for each

source gene set by GSEA, where B is the number of permutation, 2) obtain new representations

for all source and target gene sets by domain adaptation, and 3) predict enrichment p-values for

target gene sets by a regression model based on the new representations.

latent space and also estimate the enrichment scores and p-values of target gene sets through the 81

latent space. Furthermore the computational complexity of the optimization problem is low 82

enough so that the computation of XGSEA becomes feasible over regular gene annotation 83

matrices. 3) We empirically validated XGSEA by using four different real phenotypes with 84

expression data. The experimental results showed that XGSEA significantly outperformed three 85

baseline methods under various settings. The advantage of XGSEA was further confirmed by a 86

case study of finding significant unknown human pathways for T cell dysfunction and 87

reprogramming from a mouse ATAC-Seq data set. 88

Method 89

To the best of our knowledge, there are no existing work for XGSEP. A similar problem setting 90

might be cross-species gene set analysis (XGSA) [16]. The goal of the XGSA is different with 91

our XGSEP. XGSA aims to compare a gene set from one species with a gene set from another 92

species. That is, XGSA directly examines if two gene sets (from two different species) are 93

significantly different or not, only through the homology between genes in given two gene sets. 94

On the other hand, XGSEP estimates enrichment scores through expression data sets obtained 95

under the same phenotype (see Fig 1, though the target expression is assumed to be missing). 96

Thus XGSA is totally different from XGSEP. 97
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Problem definition 98

We have two species, source and target. Let A = {a1, · · · , ap} be a source (say mouse) gene 99

set, and B = {b1, · · · , bq} be a target (say human) gene set. Let M ∈ R
p×q be a binary matrix 100

of sequence homology, where the (i, j)-element M(i, j) is 1 if source gene ai is homologous to 101

target gene bj ; otherwise zero. Suppose that we have gene expression matrix Gs with phenotype 102

vector ys for source genes only, meaning that we can run GSEA over Gs and ys to compute 103

gene set enrichment significance for an arbitrary source gene set. 104

Suppose further that we have multiple gene sets for both source and target. Let 105

S = {S1, · · · , Sm} be m source gene sets and T = {T1, · · · , Tn} be n target gene sets. Thus 106

we have a binary matrix (which we call annotation matrix) between A (for rows) and S (for 107

columns), where 1 means that the corresponding gene is in a gene set; otherwise zero. This can 108

be also for the target side. Let Xs = [x1
s, · · · ,xm

s ] ∈ R
p×m be the annotation matrix for source 109

gene sets S1, · · · , Sm, where the i-th element of xj
s is 1 if gene ai is in gene set Sj ; otherwise 110

zero. Similarly, let Xt = [x1
t , · · · ,xn

t ] ∈ R
q×n be the annotation matrix for target, where the 111

i-th element of x
j
t is 1 if gene bi is in gene set Tj ; otherwise zero. Then the problem, XGSEP 112

standing for CROSS-species Geneset Enrichment Problem, is, given Gs, ys, Xs, Xt and M , to 113

estimate the enrichment p-value of each gene set in T with respect to the same phenotype of ys. 114

We propose our method XGSEA, standing for CROSS-species Gene Set Enrichment Analysis, 115

to solve XGSEP by using three steps. Fig 2 shows a schematic picture of the three-step 116

procedure of XGSEA. Below we will explain each of these three steps in detail. 117

Step 1: Gene set enrichment analysis for source 118

Since gene expression Gs and phenotype ys are both available for the source side, we can 119

directly use regular GSEA to obtain p-values, vs,1, · · · , vs,m for S1, · · · , Sm, respectively. In 120

fact, p-value vs,i corresponds to null hypothesis H
s,i
0 : gene set Si has no association with 121

phenotype ys (against the entire set of genes) and can be computed by the following 122

procedure [1]. 123

1a. Compute enrichment score E0
s,i for gene set Si by using gene expression Gs and 124

phenotype ys. 125

1b. Permute the entries in ys and recompute the enrichment score for gene set Si. Repeat this 126

step B times to generate an empirical null distribution of the enrichment score: ENULL 127

with E1
s,i, · · · , EB

s,i. 128

1c. Compute empirical, nominal p-value vs,i for Si from null distribution ENULL by using the 129

positive (or negative) region of the distribution corresponding to observed enrichment 130

score E0
s,i. 131

For source gene set Si, we can compute B+1 enrichment scores E0
s,i, · · · , EB

s,i in 1a and 1b 132

to compute p-value vs,i in 1c. Similarly for target gene set Tj , we can first predict B+1 133

enrichment scores E0
t,j , · · · , EB

t,j for target gene set Tj and then p-value vt,j in 1c. 134

Step 2: Domain adaptation for source and target gene sets 135

We project the target and source genes into a common space, to maximally use the information 136

from the source gene side for the target gene sets. 137

Formulating the objective function 138

We project Xs and Xt to a common subspace in R
d by using affine mappings Ps ∈ R

p×d and 139

Pt ∈ R
q×d, respectively, such that Zs = [z1

s , · · · , zm
s ] = P T

s Xs and 140

Zt = [z1
t , · · · , zn

t ] = P T
t Xt. 141
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In this process, we can set the following two reasonable objectives: 142

(1). Probability divergence between Zs and Zt should be small. 143

(2). Pairwise distances among the gene sets in Zs and Zt should be preserved. 144

For the first objective, we use maximum mean discrepancy (MMD) [12, 14]. to measure the 145

divergence. An empirical estimate of MMD can be defined as follows: 146

D(Zs,Zt) = ‖ 1

m

m∑

i=1

φ(zi
s)−

1

n

n∑

i=1

φ(zi
t)‖2H ,

=
m∑

i,j=1

k(zi
s, z

j
s)

m2
+

n∑

i,j=1

k(zi
t, z

j
t )

n2
− 2

m,n∑

i,j=1

k(zi
s, z

j
t )

mn

= trace(KL), (1)

where φ(·) is a mapping to reproducible kernel Hilbert space H , k(·, ·) = (φ(·), φ(·)) is the 147

kernel associated to this mapping, and 148

K =

[
Kss Kst

Kts Ktt

]
∈ R

(m+n)×(m+n),

where the (i, j)-element of Kab is 149

Kab(i, j) = k(zi
a, z

j
b), a, b ∈ {s, t}, i = 1, · · · ,m, j = 1, · · · , n,

and the (i, j)-element of L is 150

L(i, j) =





1/m2 i, j ∈ {1, · · · ,m};
1/n2 i, j ∈ {m+ 1, · · · ,m+ n}
−1/mn otherwise.

(2)

For the second objective, we can first define the pairwise homologous similarity between 151

source gene sets S1, · · · , Sm and target gene sets T1, · · · , Tn from given data directly as 152

follows, 153

Wss(i, j) = min{ |Si∩Sj |
|Si|

,
|Si∩Sj |
|Sj |

} i, j ∈ {1, · · · ,m};

Wtt(i, j) = min{ |Ti∩Tj |
|Ti|

,
|Ti∩Tj |
|Tj |

} i, j ∈ {1, · · · , n};

Wst(i, j) = min{ |Tj∩S̃i|
|Tj |

,
|Si∩T̃j |
|Si|

} i ∈ {1, · · · ,m},
j ∈ {1, · · · , n}, (3)

where |A| is the number of genes in set A, S̃i = φM (Si) ⊂ T is the set with the target genes 154

homologous to the source genes in Si, and T̃j = φM (Ti) ⊂ S is the set with the source genes 155

homologous to the target genes in Tj . The projection should be smooth over homologous 156

similarity matrix W =

[
Wss Wst

W T
st Wtt

]
. 157

Thus entirely divergence D in (1) should be minimized, being regularized by the smoothness

(of the projection) over similarity matrix W . Overall the objective function can be given as

follows:

min
PT

s Ps=PT
t Pt=I

D(P T
s Xs,P

T
t Xt) + λ(

1

2

m∑

i,j=1

Wss(i, j)‖zi
s − zj

s‖22

+

m,n∑

i,j=1

Wst(i, j)‖zi
s − z

j
t ‖22 +

1

2

n∑

i,j=1

Wtt(i, j)‖zi
t − z

j
t ‖22) (4)
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Table 1. Pseudocode of the optimization algorithm in Step 2 of XGSEA

Algorithm

Inputs. Source annotation matrix Xs, Target annotation matrix Xt,

Sequence homology M

Parameters. Regularization λ and embedding dimension d.

Outputs. New representations Zs and Zt

1. Construct L by (2), W by (3) and X;

2. Compute G = XFXT , where F is Laplacian matrix;

3. Solve problem (5) for P with the initial [I; I]/
√
2;

4. Compute Z = [Zs Zt] = P TX .

Optimization on Grassman manifold 158

We can use 159

P =

[
Ps

Pt

]
∈ R

r×d,X =

[
Xs 0
0 Xt

]
= [x1, · · · ,xN ] ∈ R

r×N ,

where r = p+ q, and N = m+ n to write Z = [Zs Zt] = P TX ∈ R
d×N . Then the first 160

term in (4) can be written as 161

D(P T
s Xs,P

T
t Xt) = trace(KPL),

where KP (i, j) = exp(−‖PTxi−PTxj‖
2

2

σ
), i, j = 1, · · · , N, and L is defined in (2). Note that 162

KP depends on P . 163

Also the regularization term in (4) can be written as 164

λtrace(ZTFZ) = λtrace(P TXFXTP ) = λtrace(P TGP ),

where F = D −W is a Laplacian matrix, D is a diagonal matrix with Dii =
∑

j Wij , and 165

G = XFXT . 166

The constraints can be changed from P T
s Ps = P T

t Pt = I to P T
s Ps + P T

t Pt = I which 167

can avoid that all samples collapse to the origin. Finally (4) can be transformed into an easily 168

understandable form: 169

min
PTP=I

trace(KPL) + λtrace(P TGP ). (5)

Let f(P ) = trace(KPL) + λtrace(P TGP ). The optimization problem minPTP=I f(P )
can be solved on the Grassmann manifold, with all linear d-dimensional subspaces in R

p, since

optimizing f(P ) is not affected by any orthogonal transformation of P . We use the conjugate

gradient (CG) algorithm on the Grassmann manifold [17] to solve the optimization problem

minPTP=I f(P ). The key step is to compute partial derivative ∂P f(P ), which is used for

computing gradient ∇P f(P ) of f on the manifold at the current estimate P by

∇P f(P ) = ∂P f(P )− PP T∂P f(P ). The search direction is determined at each step by

combining the previous search direction with ∇P f(P ), and in this direction, a line search along

the geodesic at the current estimated P is performed. Note that partial derivative ∂P f(P ) at the

current P can be obtained as follows

∂P f(P ) =
∑
i,j

L(i, j)∂PKP (i, j) + 2λGP ,

= −2
∑
i,j

KP P (i,j)L(i,j)
σ

(xi − xj)(xi − xj)
TP + 2λGP .

Table 1 shows a pseudocode of the optimization algorithm of Step 2. 170
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Reducing computational complexity 171

The computational complexity of the above algorithm for solving the optimization problem (5) 172

is O(N2 + r2 +Nrd). The total number of either human or mouse genes is large, leading to 173

r(= p+ q) ≫ N(= m+ n). This (large r) problem can be a bottleneck for our algorithm, and 174

thus we need to reduce the r-related part of this complexity. For this purpose we propose an 175

approach, which uses QR decomposition, by which the computational complexity is reduced to 176

O(N2). Below, we will explain more detailed manner of our approach. 177

We first use QR decomposition: X = QR, where Q ∈ R
r×N is an orthonormal matrix and 178

R ∈ R
N×N is an upper diagonal matrix. By introducing P̃ = QTP ∈ R

N×d, the objective 179

function in (5) can be transformed as follows: 180

f(P ) = g(P̃ ) = trace(KP̃L) + λtrace(P̃ TG̃P̃ ),

where G̃ = RFRT, and KP̃ can be obtained using R since Z = P̃ TR = P TX . Thus we can 181

first solve a small-scale optimization problem of P̃ , i.e. 182

min
P̃T P̃=I

g(P̃ ) (6)

and then obtain the projections Z = P TX = P̃ TR. Note that now solving (6) by the above 183

algorithm on the Grassmann manifold needs the computational complexity of only O(N2). 184

Step 3: Enrichment scores and p-values for target 185

The final step in XGSEA is to estimate the p-values for the target gene sets, based on the 186

adaptive representations Zs and Zt for the source and target gene sets obtained in the above step. 187

One idea is to regress p-values on the new representations of the gene sets by logistic regression 188

(XGSEA-D). However, the resulting p-values may not obey the principle of null hypothesis. By 189

the principle of null hypothesis, p-values is defined as the probability of obtaining the same or 190

more extreme statistics than the observation under null hypothesis, and should be determined by 191

the observed enrichment scores and the null distribution of enrichment scores. Thus another idea 192

is to first predict the observed and null enrichment scores, and then determine p-values by its 193

definition. This means that we have one more step to reach p-values from the enrichment scores 194

Et. In detail, the second idea to predict p-value for target gene set Tj is that we first predict the 195

enrichment scores B + 1 enrichment scores E0
t,j , · · · , E0

t,j for target gene set Tj and then 196

estimate p-value vt,j by step 1c in the section of Step1. Based on this idea, we propose to use 197

two regression methods (XGSEA-E and XGSEA-E±). We explain the three methods as follow. 198

• XGSEA-D: Logistic regression on p-values 199

We first train the regression parameters α by source gene sets in the following logistic 200

regression model 201

logit(vs,i) := log(
vs,i

1− vs,i
) =

d∑

l=1

α(l)zi
s(l) + ǫi,

for i = 1, · · · ,m, and then predict p-values for the target gene sets by 202

logit(vt,j) =
d∑

l=1

α(l)zj
t (l), for j = 1, · · · , n.

Finally we can obtain the p-values of the target species by the following, 203

vt,j =
1

1 + exp(−logit(vt,j)
, for j = 1, · · · , n.
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• XGSEA-E: linear regression on enrichment scores 204

Note that we have computed Eb
s,i, the enrichment score of source gene set Si at the b-th 205

permutation (b = 0 means no permutation), in step 1. For any b ∈ {0, · · · , B}, we regress 206

the enrichment scores on the new representations of gene sets. The parameter in the 207

regression model can be learnt based on the source gene sets as follows 208

Eb
s,i =

d∑

l=1

βb(l)z
i
s(l) + ǫi,

for i = 1, · · · ,m, and then predict the enrichment scores for target gene sets by 209

Eb
t,j =

d∑

l=1

βb(l)z
j
t (l), for j = 1, · · · , n, b = 0, · · · , B.

Finally, we can compute the enrichment p-values for target gene sets by using step 1c in 210

the section of Step1. 211

• XGSEA-E±: linear regression on positive and negative enrichment scores, respectively 212

Similar to XGSEA-E, we predict p-values by first estimating enrichment scores for target 213

source gene sets. Different with XGSEA-E, in XGSEA-E± we learn two linear regression 214

models for positive and negative enrichment scores, separately as follows 215

Eb
s,i =

d∑

l=1

γ+
b (l)zi

s(l) + ǫi, if Eb
s,i ≥ 0

Eb
s,i =

d∑

l=1

γ−
b (l)zi

s(l) + ǫi, if Eb
s,i < 0,

for i = 1, · · · ,m. The parameters γ+ and γ− are learnt by training the source gene sets, 216

and then used to predict enrichment scores for target gene sets by 217

Eb
t,j =

{ ∑d

l=1 γ
+
b (l)zj

t (l), if ‖zj
t − z+

t ‖ ≤ ‖zj
t − z−

t ‖∑d

l=1 γ
−
b (l)zj

t (l), if ‖zj
t − z+

t ‖ > ‖zj
t − z−

t ‖

where z+
t and z−

t are the centers for Zs with positive and negative enrichment scores 218

respectively, and j = 1, · · · , n, b = 0, · · · , B. 219

Results 220

Comparison methods 221

Since there are no existing methods for XGSEP, we compared XGSEA with three simpler 222

methods, HM1, HMA, and HMO, which all directly map each target gene to source genes based 223

on sequence homology, and estimate the enrichment p-value of target gene set T from 224

enrichment p-values of particular source gene set S. However these three baseline methods take 225

different strategies to generate S: 226

HM1: S has a randomly chosen gene homologous to each gene in T (i.e. |S| = |T |). 227

HMA: S has all genes homologous to each gene in T (i.e. |S| ≥ |T |). 228

HMO: S has, out of gene sets predefined by biological pathways and GO terms, the set with 229

genes most overlapped with those in T . 230

Since we propose three methods, thus we compared totally six methods : XGSEA-D, 231

XGSEA-E, XGSEA-E±, HM1, HMA and HMO. 232
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Table 2. Statistics of expression data and human gene sets (T (3), where the cutoff for p-values

was 0.01 and 0.05 for embryonic development and the others, respectively).

Gene expression Test sets in human

Data set Species #genes #samples #labels #sets #positive sets

Embryonic
Human 14,766 29 7

674 24
Mouse 13,879 17 6

Brain
Human 44,030 12 2

674 24
Mouse 9,653 8 2

Ovarian
Human 21,188 17 2

674 13
Mouse 45,101 11 2

Melanomas
Human 42,346 12 2

664 15
Zebrafish 13,620 8 2

Data sets 233

To evaluate the performance of XGSEA, we need target expression data, so that we can compute 234

ground-truth enrichment p-values. We collected four gene expression data sets as below, where 235

each data set consists of human (target) and another species (source: mouse or zebrafish) which 236

share the same phenotype. Table 2 shows the statistics of the four data sets. 237

• Embryonic Development (human and mouse): The two datasets were collected from 238

www.ncbi.nlm.nih.gov/geo with accessing number GSE44183. Both gene expression 239

datasets were obtained from single cell RNA sequencing. In the human dataset, there are 240

29 samples with 14,766 genes and seven embryonic development stages, oocytes, 241

pronucleus, zygote, 2-cell, 4-cell, 8-cell and morula. For the mouse, there are 17 samples 242

with gene expression levels of 13,879 genes at sixembryonic development stages, oocytes, 243

pronucleus,2-cell, 4-cell, 8-cell and morula. These datasets were used in a cross-species 244

study [18] already, while this study is not on GSEA. 245

• Brain Cancer (human and mouse): The datasets of the two species were downloaded 246

from GEO with accession number GSE45874 and GSE38591, respectively. Both datasets 247

were measured by microarray. The human dataset has 44,030 genes with six disease and 248

six control samples, while the mouse dataset has 9,653 genes with four disease and four 249

control samples. These datasets were also used in another cross-species study [19], while 250

this study is also not on GSEA at all. 251

• Ovarian Cancer (human and mouse): The two Microarray gene expression datasets were 252

downloaded from GEO with accession number GSE6008 and GSE5987, respectively. The 253

human dataset has 21,188 genes with thirteen mucinous ovarian tumors and four control 254

samples, while the mouse dataset has 45,101 genes with seven disease and four control 255

samples. These datasets were also used in the cross-species study [19]. 256

• Melanomas (human and zebrafish): The Microarray gene expression datasets of the two 257

species were downloaded from GEO with accession number GSE83343 and GSE83399, 258

respectively. The human dataset has 42, 346 genes with eight disease and four control 259

samples, while the zebrafish dataset has 13, 620 genes with five disease and three control 260

samples. These datasets were collected from two different studies [20, 21]. 261

We then accessed Ensembl BioMart through http://www.ensembl.org/ [22] to retrieve homology 262

relationships between 19,404 human and 19,614 mouse genes, and also 16,070 human and 263

18,324 zebrafish genes. The homology data from Ensembl is produced at the protein level rather 264

than the DNA level by whole-genome alignments of vertebrate species [23, 24]. Fig 3 shows two 265

homology matrices between human and mouse (left) and between human and zebrafish (right). 266
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Fig 3. Homology relationships for (left) mouse-human and (right) zebrafish-human.

We can see that genes cannot be assigned in a simple one-to-one correspondences manner. We 267

collected 674 human gene sets (pathways) from Reactome in Molecular Signatures Database 268

(MSigDB), 2,250 mouse gene sets from http://baderlab.org/GeneSets and 1,550 zebrafish gene 269

sets from http://bioinformatics.org/go2msig/. 270

Experimental setting 271

In our experiments, we take human species as target species, and take mouse or zebrafish as the 272

target species. We apply our XGSEA approach to predict the enrichment p-values for the 674 273

human pathway gene sets T = {T1, · · · , Tn}(n = 674), for embryonic development and brain, 274

ovarian and melanomas, respectively. For the target gene sets T = {T1, · · · , Tn}, we take the 275

training source gene sets S = {S1, · · · , Sn} in the XGSEA, where Si corresponds to Ti, 276

meaning that each gene in Si is homologous to one or more genes in Ti. 277

To sufficiently evaluate our XGESA method, we predict enrichment p-values for target gene 278

sets with three experimental settings. Note that the homology between two genes can be 279

classified into four types: one-to-one, many-to-one, one-to-many, and many-to-many, where 280

one-to-one means only one gene in one side is homologous to only one gene in the other side. 281

First level is for simple target gene sets T (1) = {T (1)
1 , · · · , T (1)

n } , where each T
(1)
i ⊂ Ti only 282

includes the target genes in Ti with label ’one-to-one’. For this case, each target gene g in set 283

T
(1)
i only have one homologous source gene, which does not have any other homologous target 284

gene except g. The second case is for more complex target gene sets T (2) == {T (2)
1 , · · · , T (2)

n } 285

, where each T
(1)
i ⊂ Ti only includes the target genes in Ti with label ’one-to-one’ and 286

’one-to-many’. For this case, each target gene g in set T
(2)
i only have one homologous source 287

gene, which may or may not have other homologous target genes besides g. The third case is the 288

most complicated case with pathway target gene sets T 3 = T = {T1, · · · , Tn}, where the target 289

genes may have any of four labels. 290

In summary, we consider three levels for T , i.e. T (1), T (2) and T (3), where 291

T
(1)
i ⊂ T

(2)
i ⊂ T

(3)
i ( i = 1, . . . , n): 292

T (1) (simple): each set in T (1) has one-to-one genes only. That is, target gene g ∈ T
(1)
i has 293

only one homologous source gene s, which has no other homologous target genes except g. 294

T (2) (medium): each set in T (2) has one-to-one or many-to-one genes. That is, target gene 295

g ∈ T
(2)
i has always only one homologous source gene s, which has one or more homologous 296

target genes including g. 297
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Fig 4. ROC and PR curves by XGSEA-D (black), XGSEA-E (red), XGSEA-E± (blue), HM1

(green), HMA (yellow) and HMO (light blue) for embryonic deveopment under T (3).

T (3) (complex): each set in T (3) target gene g may have one or more homologous source 298

gene, and one of them s also may have one or more homologous target gene, including g. 299

Evaluating XGSEA by supervised learning 300

Each target gene set has a ground-truth p-value. In evaluation, target gene sets with smaller true 301

p-values should be predicted to have smaller p-values. In this light, we examined XGSEA and 302

competing methods in a supervised manner: we set a cutoff (significance level) for the 303

ground-truth p-values of target gene sets so that a gene set is a positive instance if the true 304

p-value of this instance is lower than the cutoff; otherwise a negative. This means that we can 305

control the number of positives (and negatives) by changing the cutoff. Then once after true 306

positives (and true negatives) are determined by the cutoff for p-values in the above manner, we 307

can examine the ROC (receiver operator characteristics) curve (and also precision-recall (PR) 308

curve) by sorting the predicted p-values for gene sets in the ascending order. Note that this is 309

regular validation of supervised learning (more precisely binary classification). 310

The d and λ were chosen from {5, 10, 20, 30, 40, 50} and {0.01, 0.1, 1, 10, 100}, 311

respectively, to give the best performance under each experimental setting. 312

Performance on four real data sets 313

Fig 4 shows sample ROC and PR curves for one of the four data sets, i.e. embryonic 314

development under T (3) with the cutoff (for p-values) of 0.01. These figures shows that XGSEA 315

(red and blue) look outperformed compared naive methods (green, yellow and light blue), except 316

for XGSEA-D (black), indicating that regression of p-values on p-values directly may perform 317

badly, as we expected. Note that there exist overlaps between XGSEA and naive methods, 318

making the comparison unclear. Thus we checked the performance difference more 319

systematically. 320

We changed the cutoff for p-values: {5e-1, 1e-1, 5e-2, 2.5e-2, 1e-2, 5e-3, 2.5e-3, 1e-3}, 321

resulting in changing the number of true (ground-truth) positives. That is, the number of true 322

positives becomes smaller for smaller cutoff values. Fig 5 (left column) shows, changing the 323

cutoff for p-values, the AUC (area under the ROC curve) of all competing methods on all four 324

real data sets under T (3). The AUC increased as the cutoff was decreasing (the number of true 325

positives was decreasing). For most of the changing cutoff values, XGSEA (black, red and blue) 326
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showed better AUCs than the three baseline methods (green, yellow and light blue).
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Fig 5. (Left column) AUCs on four data sets (T (3)), changing the cutoff for p-values. (Right

column) Bootstrapped (20 trials) AUCs under the same condition as the left column. Compared

methods are XGSEA-D (black), XGSEA-E (red), XGSEA-E± (blue), HM1 (green), HMA

(yellow) and HMO (light blue).
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Table 3. AUCs of six competing methods on four data sets and three target gene sets. The best

and second best in each row are in bold and underlined, respectively. The p-value by t-test

between the best and each corresponding naive method is shown in brackets.

Data set HM1 HMA HMO XGSEA-D XGSEA-E XGSEA-E±

Embryonic

T (1) 0.81 (6.59e-06) 0.81 (6.59e-06) 0.75 (1.48e-08) 0.86 0.80 0.89

T (2) 0.80 (2.12e-06) 0.80 (2.12e-06) 0.74 (6.84e-09) 0.86 0.83 0.89

T (3) 0.79 (1.58e-09) 0.80 (4.43e-09) 0.75 (3.73e-11) 0.87 0.83 0.90

Brain

T (1) 0.66 (3.14e-01) 0.66 (3.14e-01) 0.58 (1.14e-05) 0.60 0.68 0.67

T (2) 0.59 (1.00e-04) 0.59 (1.00e-04) 0.57 (5.59e-06) 0.60 0.66 0.67

T (3) 0.58 (1.75e-07) 0.60 (1.36e-05) 0.55 (2.64e-07) 0.61 0.63 0.68

Ovarian

T (1) 0.45 (2.53e-12) 0.45 (2.53e-12) 0.57 (1.65e-04) 0.67 0.64 0.70

T (2) 0.56 (6.72e-09) 0.56 (6.72e-09) 0.50 (2.07e-08) 0.67 0.69 0.75

T (3) 0.57 (5.60e-12) 0.61 (1.50e-07) 0.46 (6.60e-14) 0.65 0.70 0.77

Melanomas

T (1) 0.72 (3.65e-12) 0.72 (3.65e-12) 0.47 (2.10e-16) 0.84 0.92 0.87

T (2) 0.63 (6.14e-05) 0.63 (6.14e-05) 0.48 (8.01e-14) 0.74 0.80 0.81

T (3) 0.44 (1.74e-16) 0.44 (2.90e-15) 0.59 (4.68e-06) 0.64 0.72 0.71

Stabilized results by bootstrapping 327

Smaller cutoff values, such as 5e-3, resulted in an extremely few number of positives. For 328

example, brain cancer had only one positive for the cutoff of 5e-3. Also each AUC (in the left 329

column of Fig 5) was obtained by only one trial of training and test. These two aspects made 330

AUCs in the left column of Fig 5 rather unstable. To resolve this issue, we conducted 331

bootstrapping on 674 human gene sets of T (3) by repeating sampling with replacement 20 times, 332

resulting in 20 AUCs, which were averaged. Fig 5 (right column) shows the averaged AUCs 333

(over 20 trials) of all methods on all four real data sets, under T (3), changing the cutoffs for 334

p-values. Comparing with the left column, the results were stabilized, clarifying the 335

performance advantage of XGSEA (black, red and blue) over the three baseline methods (green, 336

yellow and light blue). In particular, even the difference between the three proposed methods 337

became clearer. 338

We then, fixing the cutoff value, examined the performance of the competing methods. Table 339

3 shows (bootstrapped) AUCs under three different gene sets (T (1), T (3) and T (3)) by all six 340

methods, fixing the cutoff at 0.01 for embryonic development and 0.05 for the other data sets. 341

This table shows that XGSEA significantly outperformed the baseline methods. For example, 342

XGSEA-E± achieved the best in nine out of all 12 cases, followed by XGSEA-E of three cases. 343

Any naive method could neither be the best nor the second best in all cases, the difference from 344

the best being statistically significant in t-test over 20 trials. Also the AUC of T (1) was not 345

necessarily higher than T (2) (also T (3)), since each one-to-one homologous gene pair between 346

two species is not necessarily the same gene, which would be prediction-wise harder than the 347

case that the target and source gene sets share the same gene. 348

Robustness against parameter value change 349

We examined the performance robustness of XGSEA, regarding parameter (λ) variation. Fig 6 350

shows AUCs of XGSEA-E under three gene sets (T (1) (red), T (2) (blue) and T (3) (black)) on 351

embryonic development and melanomas, when λ is one of {1e-4, 1e-3, 1e-2, 1e-1}. This figure 352

shows that AUC of XGSEA-E was rather stable within the given range, implying that the 353

advantage over the baseline methods will be kept constantly. 354
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Fig 6. AUCs of XGSEA-E (solid line) and the best of naive methods (dotted line) under T (1)

(red), T (2) (blue) and T (3) (black) on (right) embryonic development and (left) melanomas.

Table 4. AUCs of XGSEA in variants and transferabilities, respectively, in embryonic

development under gene set T (3).

XGSEA-D XGSEA-E XGSEA-E±

Similarity

MMD 0.62 0.88 0.71

MMD+W 0.61 0.88 0.74

MMD+B 0.62 0.80 0.73

MMD+WB 0.60 0.90 0.75

Homology

M50 0.72 0.77 0.51

M500 0.73 0.78 0.53

M5000 0.75 0.84 0.73

M 0.75 0.84 0.74

Effect of similarity and homology on predictive performance 355

We examined the contribution of three types of gene set similarity, i.e. Wss, Wst and Wtt, used 356

in XGSEA, by modifying the objective function in the formulation of XGSEA. The objective 357

function of XGSEA is given by (4), which has four terms, where the first term is the divergence 358

and the last three terms are for Wss, Wst and Wtt. We then generated four different variants of 359

(4), as follows: 360

MMD: only divergence, i.e. no terms on gene set similarity. 361

MMD+W: divergence and two terms on Wss and Wtt. 362

MMD+B: divergence and the term on Wst. 363

MMD+WB: original objective function, i.e. (4). 364

We applied these four variants to embryonic development data with target gene set T (3). 365

Table 4 shows AUCs obtained with the cutoff (for p-values) of 0.01. From Table 4, MMD+WB 366

(i.e. original (4)) achieved the best result for XGSEA-E and XGSEA-E±, and MMD was worst 367

for them. This result implies that all gene set similarity contribute to the performance 368

improvement. 369

We then evaluated the effect of sequence homology on predictive performance, by removing 370

a certain amount of part in sequence homology matrix M : being motivated by that less 371

homology connectivity between two species would cause poorer performance. 372
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Table 5. 11 human pathways (with p-values) identified by XGSEA-E for T cell dysfunction and

reprogramming.

Pathway p-value

Gene expression (Transcription) 0.03

A third proteolytic cleavage releases NICD 0.03

Signaling by NOTCH 0.03

Immune System 0.04

Signaling by NOTCH3 0.04

Signaling by NOTCH4 0.04

NOTCH2 Activation and Transmission of Signal to the Nucleus 0.04

Activated NOTCH1 Transmits Signal to the Nucleus 0.04

Signaling by NOTCH2 0.04

Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 0.04

Signaling by NOTCH1 0.04

In more detail, we first randomly chose a certain number of genes from the source and target 373

gene sets, respectively, and kept only the part corresponding to these genes in M . Practically we 374

used 50, 500 and 5,000 for this number of selecting genes, resulting in three matrices: M50, 375

M500 and M5000, respectively. Using each of the four sequence homology matrices (including 376

original M ), we ran XGSEA over embryonic development data under gene set T (3) to predict 377

enrichment p-values. 378

Table 4 shows the performance results (AUC) of this experiment. The results show that the 379

AUC was reduced by decreasing the number of randomly selected genes, while if the selected 380

number is 5,000, the performance was almost consistent with that of using the original M , 381

implying that interestingly 5,000 genes might be good enough. 382

Case study: Identifying human pathways for T cell dysfunction and 383

reprogramming from mouse ATAC-Seq 384

It is important for cancer immunotherapy to study the epigenetic regulation of T cell dysfunction 385

and therapeutic reprogrammability: a plastic dysfunctional state from which T cells can be 386

rescued, and a fixed dysfunctional state in which cells are resistant to reprogramming [25]. 387

Identifying two (plastic or fixed) dysfunctional chromatin states, through which T cells in 388

tumours differentiate, would be very important to predict, for example, if a patient will respond 389

to a therapy. Using GSE89308 of GEO on ATAC-Seq data of mouse, with 22 samples and the 390

two chromatin states [25], we ran XGSEA-E (B = 100,000, λ=0.01 and d=5) to identify human 391

pathways out of 1,960 Reactome pathways (downloaded from 392

https://reactome.org/download-data). 393

Table 5 shows 11 human pathways identified by XGSEA-E at the cutoff of 0.05, where the 394

top, “gene expression (transcription)”, and the fourth ”immune system” are large pathways with 395

1367 and 2296 genes, respectively. Obviously due to important chromatin roles in transcription, 396

“gene expression (transcription)” is tightly related to the chromatin states. Also ”immune system” 397

definitely plays important roles in T cell dysfunction and reprogramming through a number of 398

membrane proteins, such as CD38, CD101, CD30L, CD5, TCF1, IRF4, BCL2, CD44, PD1, 399

LAG3 and CD62L [25]. 400

The remaining 9 pathways are all on Notch signaling pathways, which affect T cells in 401

various ways. Notch signaling pathways play multiple essential roles in thymic T cell 402

development and peripheral T cell differentiation [26]. For example, Delta-like ligand 4 (DLL4) 403

interacts with Notch 1 to specify thymic T cell commitment during lymphocyte development. 404

This Notch pathway regulates CD8+ T cells by directly upregulating mRNA expression of 405

granzyme B and perforin to maintain memory T cells [27]. Furthermore, the Notch pathway 406
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Table 6. 20 human pathways (with p-values) identified by HMA for T cell dysfunction and

reprogramming.

Pathway p-value

Assembly Of The HIV Virion 4e-5

Membrane binding and targetting of GAG proteins 2e-4

Mineralocorticoid biosynthesis 4e-4

Type II Na+/Pi cotransporters 8e-4

Interactions of Tat with host cellular proteins 3e-3

Biogenic amines are oxidatively deaminated to aldehydes 5e-3

SDK interactions 0.01

Cohesin Loading onto Chromatin 0.01

XAV939 inhibits tankyrase, stabilizing AXIN 0.01

Mitotic Telophase/Cytokinesis 0.02

Interleukin-9 signaling 0.02

TWIK-releated acid-sensitive K+ channel (TASK) 0.02

Defective Mismatch Repair Associated With MLH1 0.02

Budding and maturation of HIV virion 0.02

CREB phosphorylation through the activation of CaMKK 0.04

Synthesis of 5-eicosatetraenoic acids 0.04

Apoptotic execution phase 0.04

NOTCH2 intracellular domain regulates transcription 0.05

Toxicity of botulinum toxin type C (BoNT/C) 0.05

CD209 (DC-SIGN) signaling 0.05

plays an important role in antitumor immunity. CD8+ T cell-specific Notch2 deletion impairs 407

antitumor immunity, whereas the stimulation of the Notch pathway can increase tumor 408

suppression. Ezh2, a suppressor of the Notch pathway, regulates effector T cell polyfunctionality 409

and survival by targeting the Notch signaling pathway [28]. Down regulation of Ezh2 could 410

elicit poor antitumor immunity. Besides, Delta-like 1-mediated Notch signaling enhances the 411

conversion of human memory CD4 T cells into FOXP3-expressing regulatory T cells [29]. 412

These facts support the reliability of the pathways identified by XGSEA. 413

On the other hand, we ran a naive approach, HMA, over the same data, under the cutoff of 414

0.05, resulting in 20 pathways showed in Table 6. Although the number of pathways is larger 415

than Table 5, these 20 pathways were diverse and less connected to the chromatin states, such as 416

only two being related to Notch signaling pathways. This result implies that XGSEA-E would 417

be more convincing than HMA. 418

Conclusion 419

We have defined XGSEP for promoting GSEA on species with scarce expression data, and 420

proposed XGSEA with three steps, which can be simply: 1) GSEA, 2) domain adaptation, and 3) 421

regression. Our empirical supervised validation over four real data sets revealed that XGSEA 422

outperformed three naive approaches in AUC under various settings, particularly the advantage 423

being proved statistically by bootstrapping and t-test. In the case study, mouse ATAC-Seq 424

expression data is used to identify significant human pathways for T cell dysfunction and 425

reprogramming. XGSEA found rather general two pathways related with gene expression 426

(transcription) and immune system, as well as nine Notch signal-related pathways, all being 427

convincing, especially compared with pathways found by a baseline approach. 428

Improvement of XGSEA would be definitely interesting future work. It would be worth 429

working on exploring a better variation on each of the three steps of XGSEA: Step 1 can be 430

generalized or focused on another statistical problem. Exploring more efficient, robust domain 431
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adaptation would be interesting future work for Step 2. Reasonably in Step 3, we can consider 432

more sophisticated regression models. The most key point of XGSEA is Step 2, i.e. domain 433

adaptation, which would be useful for other problems between two species, such as genome 434

wide association studies between a well- and the other less-sequenced species. This direction of 435

applying domain adaptation to various problems would be also promising future work. On the 436

statistical side, we could also further consider the problem of multiple testing and controlling the 437

false discovery rate or family-wise error rate, which have been well studied in regular GSEA. 438
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