
XIRQL: An XML Query Language Based on

Information Retrieval Concepts

Norbert Fuhr, Kai Großjohann

University of Duisburg-Essen, Germany

XIRQL (“circle”) is an XML query language that incorporates imprecision and vagueness for both
structural and content-oriented query conditions. The corresponding uncertainty is handled by
a consistent probabilistic model. The core features of XIRQL are 1) document ranking based
on index term weighting, 2) specificity-oriented search for retrieving the most relevant parts of
documents, 3) datatypes with vague predicates for dealing with specific types of content and 4)
structural vagueness for vague interpretation of structural query conditions. A XIRQL database
may contain several classes of documents, where all documents in a class conform to the same
DTD; links between documents also are supported. XIRQL queries are translated into a path
algebra, which can be processed by our HyREX retrieval engine.

Categories and Subject Descriptors: H.2.4 [Languages]: Query languages; H.3.3 [Information
Search and Retrieval]: Retrieval models; H.5.4 [Hypertext/Hypermedia]: Navigation

General Terms: Theory

Additional Key Words and Phrases: path algebra, probabilistic retrieval, ranked retrieval, vague
predicates, XML, XQuery

1. INTRODUCTION

More and more, XML [Bray et al. 2000] is acknowledged as a standard document
format, especially for Web applications. In contrast to HTML which is mainly
layout-oriented, XML follows the fundamental concept of separating the logical
structure of a document from its layout. The major purpose of XML markup is the
explicit representation of the logical structure of a document (whereas the layout
of a document (type) is described in a separate stylesheet).

Given the logical markup, different kinds of operations referring to the logical
structure can be performed on XML documents: multiple views of a document
can be generated (e.g., for different audiences), specific elements of an XML doc-

Contact address: Prof. Dr. Norbert Fuhr, Institute of Informatics and Interac-
tive Systems, University of Duisburg-Essen, 47048 Duisburg, Germany. Email:
fuhr@uni-duisburg.de
This work was supported by the German Research Foundation (DFG) under grant
no. FU-205/15-1.
Permission to make digital/hard copy of all or part of this material without fee for
personal or classroom use provided that the copies are not made or distributed for
profit or commercial advantage, the ACM copyright/server notice, the title of the
publication, and its date appear, and notice is given that copying is by permission of
the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute
to lists requires prior specific permission and/or a fee.
© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–42.

2 · XIRQL

ument can be extracted, or documents fulfilling specific structural conditions can
be retrieved from a document base. Overall, if information is represented in XML
format, exchange of this information between different software systems (especially
on the Web) is simplified, thus supporting interoperability.

Looking at the broad variety of XML applications and systems that are currently
under development, one can see that there are in fact two different views on XML:

— The document-centric view focuses on structured documents in the traditional
sense (based on concepts from electronic publishing, especially SGML) where XML
is used for logical markup of texts.

— The data-centric view uses XML for exchanging formatted data in a generic,
serialized form between different applications (e.g., spreadsheets, database records).
This is especially important for e-business applications (e.g., for exchanging orders,
bills).

In both views, there is a need for a query language for XML. However, the require-
ments for such a language are very much view-dependent:

— The document-centric view requires a query language that mainly supports
selection based on conditions with respect to both structure and content, taking
into account the intrinsic uncertainty and vagueness of content-based retrieval.

— The data-centric view asks for a query language that allows for selection as
well as restructuring (of result documents) and aggregation operators (e.g., count,
sum).

In this article, we focus on the document-centric view and address the issue
of information retrieval (IR) in XML documents. For IR, the role of XML as the
forthcoming standard format for fulltext documents offers new opportunities. XML
supports logical markup of texts both at the macro level and at the micro level,
where the former describes the overall logical structure of the document down to
the paragraph level (e.g., chapter, section, paragraph) and the latter is used for
marking one or multiple tokens/terms for describing their special semantics (e.g.,
MathML for mathematical formulas, CML for chemical formulas). Thus, retrieval
methods dealing with both kinds of markup should be developed. At the macro
level, fulltext retrieval should allow for selection of appropriate parts of a document
in response to a query, such as by returning a section or a paragraph instead of the
complete document. At the micro level, specific similarity operators for different
types of text or data should be provided (e.g., similarity of chemical structures,
phonetic similarity for person names). These similarity operators deal with vague
comparisons of query values and document content. Since XML combines content
with structure, there is also a need for vague structural comparisons (e.g., when a
user does not know the precise spelling of an element name or the proper nesting
of XML elements).

Although a large number of query languages for XML have been proposed in re-
cent years, none of them fully addresses the IR issues related to XML. In particular,
the XQuery proposal of the W3C working group [Boag et al. 2002] focuses on the
data-centric view on XML; thus, the query language is more database-oriented and
offers almost no support for IR-oriented querying of XML documents. There are
only a few approaches that provide partial solutions to the IR problem, namely by

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 3

taking into account the intrinsic imprecision and vagueness of IR; however, none of
them is based on a consistent model of uncertainty (see Section 7).

In this article, we present a new query language, XIRQL (“circle”), that combines
the major concepts of XML querying with those from IR. Based on XPath (which
also forms the core of XQuery), XIRQL incorporates the IR approach of vagueness
and imprecision for XML retrieval by means of the following features:

—index term weighting for both search terms and document terms, thus producing
ranked results,

—specificity-oriented search for retrieving the most relevant parts of documents,

—datatypes with vague predicates for dealing with specific content in micro-level
markup, and

—structural vagueness, in order also to find close matches for structural query
conditions.

Thus, we arrive at a query language which implements imprecision and vagueness
for both structural and content-oriented query conditions. For dealing with the
uncertainty issue, we present a consistent probabilistic model.

In the following, we first briefly describe the syntax of XML documents and
XML path expressions. Then we discuss the problem of IR on XML documents,
and present the major concepts of our new query language XIRQL (Section 3).
Section 4 describes the underlying algebra for processing XIRQL queries. The
transformation of XIRQL queries into path expressions is addressed in Section 5.
XIRQL is implemented as part of the HyREX retrieval system, which is briefly
described in Section 6, along with evaluation results. Section 7 gives a survey of
related work, followed by the final conclusions and an outlook toward the future.

2. XML RETRIEVAL

XML is a text-based markup language similar to SGML. Text is enclosed in start
tags and end tags for markup, and the tag name provides information on the kind
of content enclosed. As an exception to this rule, #PCDATA elements (plain text)
have no tags. Elements can be nested, as in the following example:

<author><first>John</first>

<last>Smith</last></author>

Elements also can be assigned attributes, which are given in the start tag, as in
<date format="ISO">2000-05-01</date>; here the attribute name is format, and
the attribute value is ISO.

Following is an example XML document, which also illustrates the tree structure
resulting from the nesting of elements. Figure 1 shows the corresponding document
tree (the dashed boxes are explained later, in Section 3.2).

<book class="H.3.3">

<author>John Smith</author>

<title>XML Retrieval</title>

<chapter>

<heading>Introduction</heading>

This text explains all about XML and IR.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · XIRQL

Fig. 1 Example XML document tree.

class="H.3.3"

Introduction

chapter

heading This. . .

book

title

XML Retrieval

heading

SyntaxExamples

heading

sectionheading

XML Query
Language XQL

section

chapter

We describe
syntax of XQL

John Smith

author

element

text

attribute

[1] [2] [3]

[4] [5]

</chapter>

<chapter>

<heading>

XML Query Language XQL

</heading>

<section>

<heading>Examples</heading>

</section>

<section>

<heading>Syntax</heading>

Now we describe the XQL syntax.

</section>

</chapter>

</book>

All XML documents have to be well-formed, that is, the nesting of elements must
be correct (<a> is forbidden). In addition, a document type definition
(DTD) may be given, which specifies the syntax of a set of XML documents. An
XML document is valid if it conforms to the corresponding DTD.

When our development of XIRQL started, we chose the query language XQL
([Robie et al. 1998], [Robie et al. 1999]) as starting point. Later, a variant of XQL
called XPath became a W3C recommendation ([Clark and DeRose 1999]). The
XQuery proposal [Boag et al. 2002] also uses XPath as its core part for specifying
selection conditions (see Section 7). Here we give a brief description of XPath.

XPath retrieves elements (i.e., subtrees) of the XML document fulfilling the spec-
ified condition. The simplest kind of query specifies elements by giving their names,
for instance, the query heading retrieves the four different heading elements from
our example document. Attributes are specified with a preceding ‘@’ (as in @class).
Context can be considered by means of the child operator ‘/’ between two element
names, so section/heading retrieves only headings occurring as children of sec-
tions, or by the descendant operator (‘//’), so that book//heading finds headings
which are descendants of a book element. Wildcards can be used for element names,
as in chapter/*/heading. A ‘/’ at the beginning of a query refers to the root node
of documents (e.g., the query /book/title specifies that the book element should
be the root element of the document). The filter operator (denoted with square

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 5

brackets) filters the set of nodes to its left. For example, //chapter[heading]

retrieves all chapters which have a heading. (In contrast, //chapter/heading re-
trieves the heading elements of these chapters.) Explicit reference to the context
node is possible by means of the dot (.): //chapter[.//heading] searches for a
chapter containing a heading element as descendant. Square brackets also are used
for subscripts indicating the position of children within an element, with separate
counters for each element type; for example //chapter/section[2] refers to the
second section in a chapter (which is the third child of the second chapter in our
example document). Disjunctive conditions can be specified via the | operator,
for example //(chapter|section) will find all chapter elements in addition to all
section elements.

In order to pose restrictions on the content of elements and the value of attributes,
comparisons can be formulated. For example, /book[author = "John Smith"]

refers to the value of the element author, whereas /book[@class = "H.3.3"] com-
pares an attribute value with the specified string. Besides strings, XPath also sup-
ports numbers and dates as datatypes, along with additional comparison operators
like > and <.

Subqueries can be combined by means of Boolean operators and and or or be
negated by means of not.1

For considering the sequence of elements, the operators before and after can
be used, as in //chapter[section/heading = "Examples" before

section/heading = "Syntax"].
These features of XPath allow for flexible formulation of conditions with respect

to the structure and the content of XML documents. The result is always a set of
elements from the original document(s).

3. XIRQL CONCEPTS

3.1 Requirements

From an IR point of view, the combination of content with logical markup in XML
offers the following opportunities for enhancing IR functionality in comparison to
plain text:

— Queries referring to content only should retrieve relevant document parts
according to the logical structure, thus overcoming some limitations of passage
retrieval. The FERMI model [Chiaramella et al. 1996] suggests the following strat-
egy for the retrieval of structured (multimedia) documents: A system should always
retrieve the most specific part of a document answering the query.
As an example, consider a user searching for information about multimedia databases.
If multimedia and databases are discussed in the same section, then surely that sec-
tion should be returned as the query result. If the two concepts are covered in two
distinct sections within the same chapter, then the chapter should be returned.

— Based on the markup of specific elements, high-precision searches can be
performed that look for content occurring in specific elements.
Possible scenarios include distinguishing between the sender and the addressee of
a letter, and finding the definition of a concept in a mathematics textbook.

1Negation will be part of XPath version 2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · XIRQL

— The concept of mixed content allows for the combination of high precision
searches with plain text search. An element contains mixed content if both plain
text (#PCDATA) and other elements may occur in it. Thus, it is possible to
mark up specific items occurring in a text. For example, in an arts encyclopedia,
names of artists, places they worked, and titles of pieces of art may be marked up
(thus allowing for example, to search for Picasso’s paintings of toreadors, avoiding
passages mentioning Picasso’s frequent visits to bull-fights).

— For query conditions referring to the structure of documents, it should be
possible to perform vague comparisons with the actual document structure, such
as semantically related element names (e.g., region vs. country), or similar paths
(e.g., /article/section vs. /article/body/section).

With respect to these requirements, XPath seems to be a good starting point for
IR on XML documents. However, the following features should be added to XPath:

Weighting. IR research has shown that document term weighting as well as query
term weighting are necessary tools for effective retrieval in textual documents. So
comparisons in XPath referring to the text of elements should consider index term
weights. Furthermore, query term weighting also should be possible, by introducing
a weighted sum operator (e.g., 0.6 · “XML” +0.4 · “retrieval”). These weights should
be used for computing an overall retrieval status value for the elements retrieved,
thus resulting in a ranked list of elements.

Specificity-oriented search. The query language also should support traditional
IR queries, where only the requested content is specified, but not the type of ele-
ments to be retrieved. In this case, the IR system should be able to retrieve the
most relevant elements; following the FERMI multimedia model cited above, this
should be the most specific element(s) that fulfill the query. In the presence of
weighted index terms, the tradeoff between these weights and the specifity of an
answer has to be considered, perhaps by using an appropriate weighting scheme.

Datatypes and vague predicates. The standard IR approach for weighting sup-
ports vague searches on plain text only. XML allows for a fine grained markup
of elements, and thus there should be the possibility to use special search predi-
cates for different types of elements. For example, for an element containing person
names, similarity search for proper names should be offered; in technical docu-
ments, elements containing measurement values should be searchable by means of
the comparison predicates > and < operating on floating point numbers. Thus,
there should be the possibility to have elements of different datatypes, where each
data type comes with a set of specific search predicates. In order to support the
intrinsic vagueness of IR, most of these predicates should be vague (e.g., search for
measurements that were taken at about 20 ℃).

Structural vagueness. Due to the fact that syntactically different XML variants
may express the same meaning (at least from a user’s point of view), the query
language should support the search for syntactic variants with similar semantics:
For this purpose, it should be possible to drop the distinction between XML ele-
ments and attributes. As a further generalization, users may want to search in all
attributes and elements of a specific datatype (e.g., a person name). Also, there
should be similarity operators for element names, based on string comparison (e.g.,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 7

item vs. item-text) or ontologies (e.g., continent – country – region). Finally,
parent/child relationships can be generalized to ancestor/descendant ones.

In the remainder of this section, we describe concepts for integrating the features
listed above in XIRQL.

3.2 Weighting

At first glance, extending XPath by a weighting mechanism seems to be straight-
forward. The query is decomposed into basic query conditions (leaf nodes of the
XPath expression parse tree) and combining operators (inner nodes). The basic
query conditions return weighted sets of results, which then are processed by the
combining operators. Assuming probabilistic independence, the combination of
weights according to the different Boolean operators is obvious, thus leading to an
overall weight for any answer.

However, there are two major problems that have to be solved first:

(1) How should terms in structured documents be weighted?

(2) What are the probabilistic events, that is, which term occurrences are identical,
and which are independent?

Obviously, the answer to the second question depends partly on the answer to the
first one.

As we said before, classical IR models have treated documents as atomic units,
whereas XML suggests a tree-like view of documents. One possibility for term
weighting in structured documents would be the development of a completely new
weighting mechanism. Given the long experience with weighting formulas for un-
structured documents, such an approach would probably take a big effort to achieve
good performance; furthermore, we would have to cope with the problem of partial
dependence of events (see below). As an alternative, we suggest to generalize the
classical weighting formulas. Thus, we have to define the “atomic” units (or hierar-
chic aggregations of those) in XML documents that are to be treated like atomic
documents. The benefit of such a definition is twofold:

(1) Given these units, we can separate indexing and retrieval methods. Thus, for
indexing (which is beyond the scope of this article), we can start with a standard
formula such as a kind of tf · idf , and more advanced methods (e.g., indexing
functions considering the XML structure) can be used once they are available.
We interpret a weight as the probability that the corresponding condition is true.
Our current implementation uses the BM25 formula [Robertson et al. 1995] multi-
plied by a normalization constant, thus yielding values from the interval [0, 1] which
can be interpreted as probabilities.

(2) For specificity-oriented search, where no type of result element is specified,
only these “atomic” units can be returned as answers, whereas other elements are
not considered as meaningful results.

We start from the observation that text is contained in the leaf nodes of the XML
tree only. So these leaves would be an obvious choice as atomic units. However, this
structure may be too fine-grained (e.g., markup of each item in an enumerated list,
or markup of a single word in order to emphasize it). A more appropriate solution

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · XIRQL

is based on the concept of index objects from the FERMI multimedia model: Given
a hierarchic document structure, only nodes of specific types form the roots of index
objects. In the case of XML, this means that we have to specify the names of the
elements that are to be treated as index nodes. This definition can be part of the
XML Schema (see below).

From the weighting point of view, index objects should be disjoint, such that
each term occurrence is considered only once. On the other hand, we should allow
for retrieval of results of different granularity: For very specific queries, a single
paragraph may contain the right answer, whereas more general questions could be
answered best by returning a whole chapter of a book. Thus, nesting of index
objects should be possible. In order to combine these two views, we first start with
the most specific index nodes. For the higher-level index objects comprising other
index objects, only the text that is not contained within the other index objects is
indexed. As an example, assume that we have defined section, chapter and book
elements as index nodes in our example document; the corresponding disjoint text
units are marked as dashed boxes in figure 1.

So we have a method for computing term weights, and we can do relevance based
search. Now we have to solve the problem of combining weights and structural
conditions. For the following examples, let us assume that there is a comparison
predicate cw (contains word) which tests for word occurrence in an element. Now
consider the query //section[heading cw "syntax"] and assume that this word
does not only occur in the heading, but also multiple times within the same index
node (i.e., section). Here we first have to decide about the interpretation of such a
query: Is it a content-related condition, or does the user search for the occurrence
of a specific string? In the latter case, in would be reasonable to view the filter
part as a Boolean condition, for which only binary weights are possible. We offer
this possibility by providing datatypes with a variety of predicates, where some of
them are Boolean and others are vague (see below).

In the content-related interpretation, there are two possibilities for computing
the term weight: We could either compute a weight for this specific structural
condition only, or we could use the weight from the corresponding index node.
In the first case, there would be the problem of computing the weight on the fly.
Furthermore, in case we have a query with multiple structural conditions referring to
the same term, it would be very difficult to make sure that the weighting mechanism
considers each term occurrence at most once. For example, when applying the query
/document[.//heading cw "XML" or .//section//* cw "XML"] to our example
document, one can see that there are several elements which fulfill both structural
conditions. In this simple case, one could just count the total number of occurrences
fulfilling at least one of the two conditions before applying a weighting function;
in general, we would have to compute weights for each of the conditions. Using
a probabilistic interpretation, however, the (possible) partial overlapping of the
underlying occurrences would imply a partial dependence of the probabilistic events
associated with the different query conditions; thus, it would not be possible to
specify a correct combination function that leads to a point probability for the
result.2 Besides these technical problems, we think that the context should never be

2The only other possible solution would be to define each term occurrence as a probabilistic event

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 9

ignored in content-oriented searches, even when structural conditions are specified;
these conditions should only work as additional filters. So we take the term weight
from the index node. Thus the index node determines the significance of a term in
the context given by the node.

With the term weights defined this way, we also have solved the problem of inde-
pendence/identity of probabilistic events: Each term in each index node represents
a unique probabilistic event, and all occurrences of a term within the same node
refer to the same event (e.g., both occurrences of the word “syntax” in the last sec-
tion of our example document represent the same event). Assuming unique node
IDs, events can be identified by event keys that are pairs [node id , term]. For re-
trieval, we assume that different events are independent. That is, different terms
are independent of each other. Moreover, occurrences of the same term in differ-
ent index nodes also are independent of each other. Following this idea, retrieval
results correspond to Boolean combinations of probabilistic events which we call
event expressions. For example, a search for sections dealing with the syntax of
XQL could be specified as //section[.//* cw "XQL" and .//* cw "syntax"].
Here, our example document (figure 1 on page 4) would yield the conjunction
[5,XQL] ∧ [5, syntax]. In contrast, a query searching for this content in complete
documents would have to consider the occurrence of the term “XQL” in two differ-
ent index nodes (which are combined by disjunction), thus leading to the Boolean
expression ([3,XQL] ∨ [5,XQL]) ∧ [5, syntax].

For dealing with these Boolean expressions, we adopt the idea of event keys
(the [node id , term] pairs here) and event expressions (Boolean combinations of
such pairs, using the operators ∧, ∨ and ¬) described in [Fuhr and Rölleke 1997].
The event expression for an answer element is formed in the following way: For
each query condition, the event keys of all hits are combined by disjunction; query
conditions having no hits are assigned the special event key ⊥, which has zero prob-
ability. Then the event expressions for the different query conditions are combined
according to the query logic, thus resulting in an event expression describing the
relationship between the answer element and the query.

Since the event expressions form a Boolean algebra, we can transform any event
expression into disjunctive normal form (DNF), that is:

e = C1 ∨ · · · ∨ Cn,

where the Ci are event atoms or conjunctions of event atoms, and an event atom
is either an event key or a negated event key (n is the number of conjuncts of
the DNF). Then the inclusion-exclusion formula (see, e.g., [Billingsley 1979, p. 20])
yields the probability for this event expression as follows:

P (e) = P (C1 ∨ . . . ∨ Cn) =

n
∑

i=1

(−1)i−1

∑

1≤j1<
...<ji≤n

P (Cj1 ∧ . . . ∧ Cji
)

— but then we would have to deal with the dependence of multiple occurrences of a term in the
same XML element.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · XIRQL

For example, the last example expression from above would be transformed into

([3,XQL] ∧ [5, syntax]) ∨ ([5,XQL] ∧ [5, syntax]).

Then the resulting probability would be computed as

P ([3,XQL] ∧ [5, syntax]) + P ([5,XQL] ∧ [5, syntax])

− P ([3,XQL] ∧ [5, syntax] ∧ [5,XQL] ∧ [5, syntax]).

(Note the duplicate event in the last conjunction, which can be eliminated due
to idempotency.) Since different events are independent, the probability of the
conjunctions can be expressed as the product of the probabilities of the single
events, thus resulting in

P ([3,XQL]) · P ([5, syntax]) + P ([5,XQL]) · P ([5, syntax])

− P ([3,XQL]) · P ([5, syntax]) · P ([5,XQL]).

Following the ideas from [Fuhr and Rölleke 1997], this approach can be easily
extended in order to allow for query term weighting. Assume that the query for
sections about XQL syntax would be reformulated as //section[0.6 · .//* cw

"XQL" + 0.4 · .//* cw "syntax"].
For each of the conditions combined by the weighted sum operator, we introduce

an additional event with a probability as specified in the query (the sum of these
probabilities must not exceed 1). Let us assume that we identify these events as
pairs of an ID referring to the weighted sum expression, and the corresponding
term. So, in the above example, using q1 as an identifier for the weighted sum,
the event corresponding to the 0.6 query term weight would be represented by an
event [q1,XQL] and the event corresponding to the 0.4 query term weight would
be represented by an event [q1, syntax]. Furthermore, the operator ‘·’ is mapped
onto the logical conjunction, and ‘+’ onto disjunction. For the last section of our
example document, this would result in the event expression [q1,XQL]∧ [5,XQL]∨
[q1, syntax] ∧ [5, syntax]. In order to yield the scalar product, we have to assume
that different query conditions belonging to the same weighted sum expression are
disjoint events (that is, P ([q1,XQL] ∧ [q1, syntax]) = 0). For the last section of
our example document, the final probability would be computed as P ([q1,XQL] ∧
[5,XQL]) + P ([q1, syntax] ∧ [5, syntax]) − P ([q1,XQL] ∧ [5,XQL] ∧ [q1, syntax] ∧
[5, syntax]). Due to the disjointness of query conditions, the probability of the
last conjunct equals zero, and thus we end up with the scalar product of query and
document term weights: P ([q1,XQL])·P ([5,XQL])+P ([q1, syntax])·P ([5, syntax]).

3.3 Specificity-oriented search

In Section 3.2, we have described a method for combining weights and structural
conditions. In contrast, relevance-based search omits any structural conditions; in-
stead, we must be able to retrieve index objects at all levels. The index weights
of the most specific index nodes are given directly. For retrieval of the higher-level
objects, we have to combine the weights of the different text units contained. For
example, assume the document structure depicted in figure 2. The figure is an
excerpt of figure 1, corresponding to index nodes 3, 4 and 5. Each index node is
labeled with its number in square brackets (in the upper left corner), and “0.3 XQL”

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 11

Fig. 2 Three index nodes with term weights.

[4]

0.5 example
[5]

0.8 XQL
0.7 syntax

[3]
0.3 XQL

in index node 3 means that the weighting algorithm has computed the (hypotheti-
cal) weight 0.3 for the term “XQL” occurring in this index node. In the following,
we use [3,XQL] for this event.

A straightforward possibility would be the disjunction of the different weights
for a single term, as explained in Section 3.2. Given the query ‘XQL’, this method
would assign the weight 0.8 to index node [5] (this comes directly from the weight
for [5,XQL]). To index node [3], it would assign the disjunction [5,XQL]∨ [3,XQL].
Assuming stochastic independence of these events, the probability is computed as
follows:

Pr(a ∨ b) = Pr(a) + Pr(b) − Pr(a) · Pr(b)

This results in 0.8 + 0.3 − 0.8 · 0.3 = 0.86 for index node [3].
Obviously, this disjunction strategy always assigns the highest weight to the

most general element. This result contradicts the structured document retrieval
principle mentioned before. Thus, we adopt the concept of augmentation from
[Fuhr et al. 1998]. For this purpose, we introduce augmentation events, the event
[5] in this example. Instead of computing Pr([5,XQL]∨ [3,XQL]), we now compute
Pr(([5] ∧ [5,XQL]) ∨ [3,XQL]). Suppose that Pr([5]) = 0.6, then the weight for
index node [3] becomes 0.3+0.6 ·0.8−0.3 ·0.6 ·0.8 = 0.636, thus ranking the section
(index node [5] with weight 0.8) ahead of the chapter (index node [3] with weight
0.636).

As in [Fuhr et al. 1998], we use event keys and event expressions for the augmenta-
tion process, too, to implement a consistent weighting process, whereby equivalent
query expressions should result in the same weights for any given document. We
define one augmentation event per index node, which is invoked when index terms
of the node are accessed from the node’s ancestors. Augmentation events are (as-
sumed to be) stochastically independent from each other, and also independent
from all other events. In our case, we attach them to the root element of each
index node, so that the index node number becomes a suitable identifier (event
key). Hence the notation [5] for the augmentation event in the above example.

In the following, paths leading to index nodes are denoted by ‘inode()’ and
recursive search with downweighting is indicated via ‘. . . ’. As an example, the
query /document//inode()[... cw "XQL" and ... cw "syntax"] searches for

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · XIRQL

index nodes about ‘XQL’ and ‘syntax’, thus resulting in the following event ex-
pression:

([3,XQL] ∨ ([5] ∧ [5,XQL])) ∧ ([5] ∧ [5, syntax])

In principle, augmentation weights may be different for each index node. A good
compromise between these specific weights and a single global weight may be the
definition of type-specific weights, that is, depending on the name of the index
node root element. The optimum choice between these possibilities will be subject
to empirical investigations.

3.4 Datatypes and vague predicates

Given the possibility of fine-grained markup in XML documents, we would like to
exploit this information in order to perform more specific searches. For the content
of certain elements, strict conditions are not sufficient, since the standard text
search methods are inappropriate. For example, in an arts encyclopedia, it would
be possible to mark artist’s names, locations or dates. Given this markup, one could
imagine a query like “Give me information about an artist whose name is similar to
Ulbrich and who worked around 1900 near Frankfort, Germany”, which also should
retrieve an article mentioning Joseph Maria Olbrich’s work in Darmstadt, Germany,
in 1901. Thus, we need vague predicates for different kinds of datatypes (e.g., person
names, locations, dates). Besides similarity (vague equality), additional datatype-
specific comparison operators should be provided (e.g., ‘near’, <, >, or ‘broader’,
‘narrower’ and ‘related’ for terms from a classification or thesaurus). In order to
deal with vagueness, these predicates should return a weight as a result of the
comparison between the query value and the value found in the document.

The XML standard itself only distinguishes between three datatypes, namely
text, integer and date. The XML Schema recommendation [Fallside 2001] extends
these types towards a large set of atomic types and constructors (tuple, set) which
are typical for database systems. The issues of defining XML data types and type
checking problems also are investigated in [Abiteboul et al. 1999],[Alon et al. 2001].

For the document-oriented view, this notion of datatypes is of limited use. This
is due to the fact that most of the datatypes relevant for IR applications can hardly
be specified at the syntactic level (consider for instance names of a geographic
locations, or English vs. French text). In the context of XIRQL, datatypes are
characterized by their sets of vague predicates (such as phonetic similarity of names,
English vs. French stemming), which are useful for vague retrieval of values from
this data type.

For supporting IR in XML documents, there should be a core set of appro-
priate datatypes and there should be a mechanism for adding application-specific
datatypes. Candidates for the core set are texts in different languages, hierarchi-
cal classification schemes, thesauri and person names. In order to perform text
searches, some knowledge about the kind of text is necessary. Truncation and ad-
jacency operators available in many IR systems are suitable for western languages
only (whereas XML in combination with Unicode allows for coding of most writ-
ten languages). Therefore, language-specific predicates, for dealing with stemming,
noun phrases, compound words and so on should be provided. Since many docu-
ments may contain elements in multiple languages, the language problem should

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 13

be handled at the datatype level.3 Classification schemes and thesauri are very
popular now in many digital library applications; thus, the relationships from these
schemes should be supported, e.g., by including narrower or related terms in the
search. Vague predicates for this datatype should allow for automatic inclusion of
terms that are similar according to the classification scheme. Person names often
pose problems in document search, as the first and middle names may sometimes
be initials only (so, searching for “Jack Smith” should also retrieve “J. Smith”, with
a reduced weight). A major problem is the correct spelling of names, especially
when transliteration is involved (e.g., “Chebychef”); thus, phonetic similarity or
spelling-tolerant search should be provided.

Application-specific datatypes must support the similarity of the datatypes that
are common in this area. For example, in technical texts, measurement values often
play an important role; thus, dealing with the different units, the linear ordering
involved (<) as well as similarity (vague equality) should be supported (e.g., show
me all measurements taken at room temperature). For texts describing chemical
elements and compounds, it should be possible to search for elements of compounds,
or to search for common generalizations (e.g., search for ‘aluminium salts’, without
the need to enumerate them).

The examples given above have illustrated the need for a notion of datatypes
that deals with vague predicates for supporting IR-type queries. In contrast, data-
centric approaches (including XML Schema) for typing in XML focus on checking of
integrity constraints, which are a prerequisite for applying type-specific operations.
As mentioned before, type checking is not possible for many IR data types. For
retrieval, the only operations to be applied are vague predicates, where even a
few type errors can be tolerated: vague predicates are hardly always correct (e.g.,
equality based on stemming), so single incorrect values also won’t have significant
effects on retrieval quality.

As a framework for dealing with these problems, we adopt the concept of datatypes
in IR from [Fuhr 1999], where a datatype T is a pair consisting of a domain |T |
and a set of (vague comparison) predicates PT = {c1, . . . , cn}. Like in other type
systems, IR datatypes also should be organized in a type hierarchy (e.g., Text –
Western_Language – English), where the subtype restricts the domain and/or pro-
vides additional predicates (e.g., n-gram matching for general text, plus adjacency
and truncation for western languages, plus stemming and noun phrase search for
English). Through this mechanism, additional datatypes can be added to the sys-
tem implementation by refining the appropriate datatype (e.g., introduce French
as refinement of Western_Language).4

In order to exploit these datatypes in retrieval, the datatypes of the XML el-
ements have to be specified. Thus, in addition to the DTDs of the documents,
we need some schema information. Although the XML Schema recommendation
[Fallside 2001] is targeted towards the data-centric view of XML, it also can be
used for our purpose. Most of the datatypes discussed above are simple types in
terms of XML Schema (that is, they have no internal structure), but do not belong

3Cross-lingual retrieval should be implemented on top of the retrieval language.
4Please note that we make no additional assumptions about the internal structure of the text
datatype (and its subtypes), like representing text as set or list of words.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · XIRQL

to the builtin types of XML Schema. Thus, they have to be derived by means of
restriction from the builtin types. However, in most cases, it is not possible to give
necessary conditions for the restriction (e.g., English as a specialization of the XML
schema builtin datatype normalizedString). On the other hand, XML Schema does
not deal with (vague) predicates of datatypes; they can be listed as application info
only and are treated like comments by the schema processor. Thus we use XML
Schema for describing the schema of a document base, by specifying the document
structure and the datatype of elements. Due to the typing problems described be-
fore, the schema specification may only refer to the set of data types provided by
the actual implementation.

By using XML Schema (although in a non-standard way), our approach contrasts
with XPath, which requires neither a schema nor a DTD; thus, XPath also can han-
dle invalid (not conforming to a DTD) but well-formed XML, whereas XIRQL is
restricted to XML documents satisfying a given schema declaration. This is a natu-
ral consequence of the fact that we want to enhance the query semantics: Without
additional information, it is impossible to provide functions like specificity-oriented
search or vague predicates for specific datatypes. As a minimum requirement,
XIRQL also can operate with valid XML documents only (assuming that the con-
tent of all leaf elements belongs to the same basic datatype).

Another good reason for requiring valid XML documents in order to perform IR is
user guidance. For a set of XML documents with heterogeneous structures, it would
be very hard to formulate meaningful XML queries. Without knowledge about the
DTD or at least about element names, most queries would retrieve no documents
at all. On the other hand, based on a schema, it is possible to guide the user in the
query formulation process. However, we should mention that we view the role of
XIRQL as similar to the one that SQL plays in relational databases. Typical end
users do not formulate queries in this language; usually, they are offered some form
for entering query conditions, from which the user interface generates the correct
query syntax (we have described a prototype of such an interface in [Großjohann
et al. 2002]).

3.5 Structural Vagueness

Since typical queries in IR are vague, the query language also should support vague-
ness in different forms. In the definition of XIRQL, we have focused on those types
of structural vagueness that can be implemented without changing the standard
processing mode of the underlying query algebra (see below). Other forms of struc-
tural vagueness can be implemented by rewriting the original query at the XIRQL
level (a table, e.g., can be expressed in XML either as table/row/column or as
table/column/row, and a query formulated for the first representation can be
rewritten such that it fits into the second structure.)

XIRQL supports four different types of structural vagueness, which are described
in the following.

Elements vs. attributes. The distinction between elements and attributes may
not be relevant to many users. Thus, in XIRQL, author searches for elements,
@author is for attributes, and =author is used for abstracting from this distinction.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 15

Datatypes as generalization of elements and attributes. Further abstraction from
the concrete XML syntax is possible by introducing datatypes. For example, a date
value can be represented in various forms in an XML document, as illustrated by
the following example:

<date year="2001" month="12" day="11"/>

<date>2001-12-11</date>

<date><year>2001</year>

<month>12</month>

<day>11</day></date>

With the ‘date’ datatype, users just specify the date in a standard format in their
query (e.g., /article[pub-date>"2001-12-11"] and do not need to know how
dates happen to be represented in the current document type.

Besides abstracting from the concrete syntax, datatypes also can be used for
generalizing from specific element or attribute names. For example, we may want
to search for persons in documents, without specifying their role (e.g., author,
editor, referenced author, subject of a biography) in these documents. Thus, we
provide a mechanism for searching for certain datatypes, regardless of their name
and their position in the XML document tree. For example, #persname searches
for all elements and attributes of the datatype persname (for person names).

Similarity of element names. The precise naming of elements (or attributes) may
be a major problem when formulating structural conditions in a query. For this
purpose, we provide a similarity operator for element names, which is expressed in
XIRQL via the tilde as prefix of an element name: Whereas author searches for an
element by specifying an element name, ~author searches for an element seman-
tically similar to “author”; in the latter case, elements with different, but similar
names will also match, but with a lower score than elements with the specified
name.

The precise definition of element similarity depends on the actual application.
We envision two general approaches for this problem. A simple solution is based
on string similarity. As an example, consider the following excerpt from the INEX
DTD (for IEEE Computer Science journal articles) [Fuhr et al. 2002]:

<!ENTITY % list-items

"item-bold|item-both|item-bullet|item-diamond|item-letpara|item-mdash|item-numpara|

item-roman|item-text|li">

<!ENTITY % lists

"l1|l2|l3|l4|l5|l6|l7|l8|l9|la|lb|lc|ld|le|list|numeric-list|numeric-rbrace|

bullet-list">

Most users will not want to distinguish between all these different types of lists
and list items. Similarity search on element names allows them to just say ~item

when they mean a list item of any of these kinds (provided there is an appropriate
definition of element similarity based on string comparison).

As a second approach for defining element name similarity, ontologies can be
used. For example, consider a query with a similarity search condition ~region

= "India". In order to retrieve element names semantically related to region,
assume that we have an ontology defining explicit semantic relationships between

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · XIRQL

element names. Assuming that region is defined as a subproperty of the more gen-
eral element named geographic-area, which in turn has additional subproperties
continent and country, we would match also the latter two element names. The
same approach also works for the list elements in the previous example.

Generalizing parent/child relationships. In the case of complex DTDs, most users
will have problems in specifying the precise path to an element. However, instead of
replacing all child operators in the query by descendant operators, they might want
to prefer those matches that are close to the path specification in the query. For
this purpose, we provide the vague extension of the child operator, which is written
as \\. So chapter/title specifies a parent-child relationship, chapter//title

specifies an ancestor-descendant relationship, and chapter\\title specifies that a
parent-child relationship should get a higher weight than a grandparent-grandchild
relationship and that the weight should decrease with the number of intervening
levels of elements.

The \\ operator is useful when the documents contain layers of elements which do
not add semantic value to the structure but which are just used for structuring the
document formally. For example, one might store the chapter title as a subelement
of the chapter element, or it might be wrapped inside a head element, say. Here,
the query chapter/title does not find the element, and chapter//title finds too
many elements, namely it finds section titles and subsection titles, as well. While
chapter\\title also finds these ‘superfluous’ elements, it gives a higher score to
the chapter titles than to the section and subsection titles, which is good enough
for most purposes.

As a real-world example, we refer again to the INEX DTD. Consider the following
excerpt:

<!ELEMENT article (fno, doi?, fm, bdy, bm?)>

<!ELEMENT fm (hdr?, (edinfo|au|tig|pubfm|abs|edintro|kwd|fig|figw)*)>

<!ELEMENT hdr (fig?, hdr1, hdr2)>

<!ELEMENT hdr1 (#PCDATA|crt|obi|pdt|pp|ti)*>

<!ELEMENT hdr2 (#PCDATA|crt|obi|pdt|pp|ti)*>

Here the publication data is wrapped inside an fm (front matter) element, where ti-
tle and publication date are nested even more deeply within hdr/hdr1 or hdr/hdr2,
respectively. Obviously, this DTD has evolved over time (possibly as a result of
merging different DTDs), thus creating syntactic variants like the hdr1 and hdr2

elements that are irrelevant for most users. It would be more convenient for a
user to specify that s/he is looking for the author, or the title, or the publication
date, of an article. Using the \\ operator, article authors can be matched by the
formulation article\\au whereas article//au would match other occurrences of
authors (e.g., in the references section) with the same weight.

3.6 Document classes and hyperlinks

In many applications, documents will belong to different schemas. For this rea-
son, we assume that a document base may contain different document classes. All
documents belonging to a single class conform to the same schema. When formulat-
ing a XIRQL query the name of the document class addressed has to be specified
first, (e.g., class(book)//chapter[heading cw "XML"]). As syntactical sugar,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 17

the class declaration can be omitted in case it is identical with the name of the
top-level element named in the query.

As a major extension over XPath, XIRQL also supports hyperlinks. Along with
the possibility of different document classes in a document base, this feature allows
for powerful querying of XML documents. For example, assume that we have a doc-
ument class article where citation references are given as links to the cited article.
Using the operator => for dereferencing, we can search for all articles that are cited
by at least one publication in the following way: /article/citations/cite=>

/article. Selection criteria may occur on both sides of the link. For example,
searching for articles by Jones cited by anybody can be accomplished by plac-
ing a restriction on the target (right hand) side: /article/citations/cite=>

/article[au = "Jones"]. The next example returns results from the source side
of the link, where we search for papers by Smith citing Jones’ articles: /article[au
= "Smith" and ./citations/cite=>/article[au = "Jones"]]. Conceptually,
this type of query also can be seen as a way of following links in the ‘inverse’
direction.

Since XIRQL cannot construct new documents, the result of a query is either
an element from the source side or from the target side, but not a combination
of both. If the link operator occurs within a filter, the results are elements of the
source document class, otherwise from the target class. However, XIRQL allows
for restrictions both on the source and target side of a link.

For document bases with several document classes, the classes of both the source
and the target of a link must be specified in the query. As an example, assume that
we have the document class book in addition to article. Then we would need a
second query for retrieving Jones’ books cited in Smith’s articles: /article[au =

"Smith" and ./citations/cite=>/book[au = "Jones"]].
Hyperlinks may not only refer to complete documents, they may point to any

element in any document. For example, assume that there are citation links pointing
to chapters of books, and we want to see the headings of these chapters only:
/article/citations/cite=>class(book)//chapter/heading.

In general, a query cannot follow links between arbitrary document classes. At
the schema level, both the source and the target of a hyperlink are XML ele-
ments. However, only the source element needs to be specified explicitly in the
XML Schema definition, by using the builtin type URI.

4. PROCESSING XIRQL QUERIES

In this section, we describe a path algebra for processing XIRQL queries.
The major purpose of the description below is the specification of the behavior

of the different operators. But first, we give some basic definitions concerning
datatypes, the document base and event expressions.

4.1 Schemas and paths

As mentioned above, XIRQL can only process XML documents conforming to
an XML Schema. However, since XIRQL offers no special operators for dealing
with complex types, we can use a simplified view on datatypes here. We treat
all datatypes as simple types, and only need to consider the subtype relationship
between types. Following the notion of IR datatypes from [Fuhr 1999], a datatype

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · XIRQL

T is a pair consisting of a domain |T | and a set of (vague) predicates PT ; a subtype
restricts the domain and/or extends the set of predicates.

Definition 1 A data type T is a pair (|T |, PT), where |T | is the domain and
PT = {c1, . . . , cn} is the set of (vague comparison) predicates, where each predicate
is a function ci:|T | × |T | → [0, 1]. Let T denote the set of all datatypes, and
D = ∪t∈T |T | the union of all domains. ✷

Definition 2 The subtype relationship ¹T ⊂ T × T is a hierarchic relationship
and a partial order on T , which also fulfills the following condition:

T ¹T T ′ =⇒ |T | ⊆ |T ′| ∧ PT ⊇ PT ′ .

Let T⊤ = (D, ∅) denote the top element, of which all other types are subtypes. ✷

Based on this interpretation of datatypes, XIRQL conditions referring to the
content of elements usually will mainly address leaf nodes. Internal nodes will have
complex datatypes, for which appropriate predicates will not be available in most
cases. A major exception to this statement is the invocation of functions for data
type conversion (such as the text() function), thus mapping a complex data type
into a simple one, for which XIRQL offers appropriate predicates. Where complex
datatypes are supported, our approach does not explicitly model their structural
properties (e.g., a person name as a sequence of first name and last name, or a
date consisting of year, month, and day subelements); the structural properties
of these datatypes are hidden by the implementation. However, by referring to
the underlying XML structure, it is always possible to specify conditions for the
subelements.

For modeling an XML document base, we draw on ideas from the FERMI mul-
timedia model as well as from XQuery semantics. Like with the latter, we drop
the distinction between XML elements and attributes and refer to both of them as
elements.

As with databases, a document base consists of a schema and an instance. Similar
to relational databases containing multiple relations (or object-oriented databases
with multiple classes), we assume that a document base contains multiple document
classes, where the documents of each class conform to one document schema.

Since XIRQL only deals with the access to elements of existing XML documents
(without constructing new documents), we do not describe a complete document
model here. Thus we do not address the issue of the structural constraints of
documents, we assume that they are given as a set of semantic constraints which
are not explained any further.

Definition 3 A document base is a pair D = (S, I), where S is the schema and I

is the instance. ✷

Definition 4 The schema of a document base is a tuple

S = (S1, . . . , Sm)

of class schemata Si with

Si = (Mi, Ni,Xi, τi, Ri) for i = 1 . . . m

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 19

where

Mi is the class name

Ni is a set of element names occurring in the DTD of class Si, plus ‘/’ (the name
of the root element),

Xi ⊆ Ni is the set of element names of index node roots,

τi is a mapping τi : Ni → T that specifies the data type for each element name,

Ri is a set of semantic constraints that follows from the XML Schema of class Si.✷

For specifying a document base instance, we assume that each document class
comprises a set of XML elements, and that each element has a name and contents,
and the contents are of the datatype specified for that element name. We specify an
aggregative relation between elements (for containment) and a sequential relation
(for document order).

In order to model hyperlinks, we have an additional hyperlink relation on pairs
of document elements. Hyperlinks may occur within the same document, between
documents of the same class or even between elements from different document
classes.

Definition 5 For a document base D = (S, I) with schema S = (S1, . . . , Sm), the
document base instance I is a tuple

I = (C1, . . .Cm,H)

with

Ci = (Ei,≺i, κi, λi, νi, τi, δi) for i = 1 . . . m

where

Ei is a set of XML elements,

≺i ⊆ Ei ×Ei is an aggregative relation on Ei that defines the hierarchical compo-
sition between elements,

κi is a mapping Ei → IN that describes the sequential order among elements that
are children of the same parent element,

λi is a mapping Ei → IN that gives the relative index among children with the
same name that belong to the same parent,

νi is a mapping Ei → Ni that gives the name of each element,

δi is a mapping Ei → D yielding the content of an element e with the restriction
δi(e) ∈ |τi(νi(e))|, and

H ⊆ E × E is the hyperlink relation, where

E =
m
⋃

i=1

Ei

Furthermore, we define the mappings κ : E → IN , λ : E → IN , ν : E → N (where
N =

⋃m

i=1 Ni), and δ : E → D as the ‘union’ of the corresponding functions for each
class: if e ∈ Ei, then κ(e) := κi(e), λ(e) := λi(e), ν(e) := νi(e) and δ(e) := δi(e).✷

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · XIRQL

Between the elements E of a document class instance, there is an aggregative rela-
tion ≺i that models the parent-child relationship: e ≺i e′ iff e is the parent of e′.
The function ν(e) gives us the name of element e, and δ(e) gives the content of leaf
elements.

The sequential order among all children of a parent node is given by the index
function κi, which also satisfies the condition e ≺i e′ ∧ e ≺i e′′ =⇒ (κi(e

′) =
κi(e

′′) ⇐⇒ e = e′′). In addition, the function λi gives the relative index for
children of the same type, thus satisfying the condition e ≺i e′ ∧ e ≺i e′′ ∧ λi(e

′) =
λi(e

′′) =⇒ e′ = e′′ ∨ νi(e
′) 6= νi(e

′′).
Due to the fact that XIRQL only allows for accessing document elements, the

objects manipulated by XIRQL are mainly paths, not complete XML documents.
A path is a sequence of elements, where each pair of adjacent elements is in

the aggregative relation ≺i. Similar to the definition of the XQuery semantics,
we assume that there is a root element for each document (with the special name
‘/’), which has exactly one child, namely the top-level element of the corresponding
document class.

Definition 6 For a document class instance Ci = (Ei,≺i, κi, λi, νi, τi, δi), a path
is a list p = (e0, e1, . . . , en) with n ≥ 0 and νi(e0) =‘/’ and ej ∈ Ei for 1 ≤ j ≤ n; in
addition, for 1 ≤ k ≤ n − 1, ek ≺i ek+1 ∧ ∄e′ : ek ≺i e′ ≺i ek+1. Let Ci denote the
set of all paths that can be formed from Ci, and let C = ∪m

i=1Ci. (In the following,
we will identify the class name Mi with the set Ci.)

Furthermore, let lst(p) = en and head(p) = (e0, e1, . . . , en−1).
For two paths p = (e0, e1, . . . , en) and p′ = (e′0, e

′
1, . . . , e

′
m) , we define the follow-

ing relations

p ⊆ p′ if n ≤ m and ei = e′i for i = 0 . . . n,

p < p′ if ei = e′i for i = 0 . . . k for some k ≥ 0 with k < min(n,m) and κ(ek+1) <
κ(e′k+1).

We also say that p is a prefix of p′ if p ⊆ p′ holds, and we say that p precedes p′ in
document order if p < p′ holds. ✷

Here p ⊆ p′ denotes containment of paths, that is, the element pointed to by p
contains the element pointed to by p′. p < p′ refers to the sequence of elements,
being true iff p points to an element that precedes the element pointed to by p′ in
document order.

In order to deal with weighting, we use event keys to identify the probabilis-
tic events, and event expressions to describe Boolean combinations of events. In
order to distinguish event expressions from ordinary Boolean expressions, we use
underlined Boolean operators for the event expressions.

Definition 7 A set of event keys EK is a set of identifiers that also contains the
special elements ⊥ (always false) and ⊤ (always true).

The set of event expressions EE is defined recursively as the smallest set satisfying
the following conditions:

(1) w ∈ EK → w ∈ EE.

(2) w ∈ EE → ¬w ∈ EE.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 21

(3) w,w′ ∈ EE → w ∧ w′ ∈ EE, w ∨ w′ ∈ EE

As shorthand for the disjunction w1∨w2∨ . . .∨wn, we also use the notation
∨

i
wi.✷

4.2 Path algebra

The general idea for processing XIRQL queries is the manipulation of sets of paths.
Given a document base, a query should produce a result set consisting of pairs
(path, event expression). The path points to the XML element to be retrieved.
Below, we will show that we need a second path in order to handle intermediate
results. So a query maps a document base instance I onto a subset of C × C ×EE.

In a subsequent step, the event expressions are used for computing the probabilis-
tic weight for each answer, as described before. XIRQL operators take one or two
result sets as input and produce another result set as output. This model is similar
to query processing in standard text retrieval, where inverted list entries (consisting
of document IDs and indexing weights) are combined in order to produce a result
list of document IDs with weights. However, our path algebra approach is flexible
enough to allow for other kinds of processing as well, such as by using different
kinds of access paths or processing parts of the query by scanning a preselected set
of documents.

In the remainder of this subsection, we will present the different operators of the
path algebra, starting with the unary operators for (vague) value selection and pro-
jection/selection for structural criteria. Then we will describe binary operators for
combining two search results in various ways, and finally specify join operators for
following hyperlinks and comparing the values of different elements of a document.

First, we need a transformation operator from a set of paths into a query result:

Definition 8 Let R denote a set of paths. Then the operator ε is defined as:
ε(R) = {(p, p,⊤)|p ∈ R}. As a shorthand notation for ε(R), we will write R in the
following. ✷

By applying ε to the set of paths of a document class, we get a starting point for
the other operators.

In classical text retrieval, the basic operator is single term retrieval: Given a term,
it returns a set of document IDs with weights. In our case, a term corresponds to a
triple (datatype, predicate, comparison value). Since we are dealing with structured
documents, the document ID is extended by the path describing the element where
the condition matched. Instead of a simple weight, we return an event key (with an
associated weight), in order to compute the resulting probability in a correct way.

Definition 9 Let e denote an element, T a datatype, V ∈ |T | a comparison value
and let c̃ be the name of a predicate c ∈ PT . Then event(v, e, T, c̃, V) is defined
to be a function which generates an event key with probability v for the result of
applying the value selection condition T c̃ V on the element e. ✷

Note that we assume event(v, e, T, c̃, V) = event(v, e′, T, c̃, V) if e and e′ are in the
same index node. See the discussion on specificity-oriented search in section 3.3.
Now we can define value selection as the application of a value condition (datatype,
predicate, comparison value) to an element value, provided that the latter has the
correct datatype (otherwise no result element is returned):

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · XIRQL

Fig. 3 Examples for processing structural conditions in XIRQL

(1) Query: /*/chapter/section[heading cw "syntax"]

(2) ⇓ ω[text cw "syntax"]

(3) (/book[1]/chapter[2]/section[2]/heading[1]), [5, syntax]
(4) (/book[1]/chapter[2]/section[2]/#PCDATA[1]), [5, syntax]
(5) ⇓ Π[heading]

(6) (/book[1]/chapter[2]/section[2]/), [5, syntax]
(7) ⇓ σ[/*/chapter/section]
(8) ()/book[1]/chapter[2]/section[2], [5, syntax]

(9) Query: /*/chapter/section[./* cw "syntax"]

(10) ⇓ ω[text cw "syntax"]

(11) /book[1]/chapter[2]/section[2]/heading[1], [5, syntax]
(12) /book[1]/chapter[2]/section[2]/ #PCDATA[1], [5, syntax]
(13) ⇓ Π[*]

(14) /book[1]/chapter[2]/section[2], [5, syntax]
(15) /book[1]/chapter[2]/section[2], [5, syntax]
(16) ⇓ σ/*/chapter/section
(17) ()/book[1]/chapter[2]/section[2], [5, syntax] ∨ [5, syntax]

(18) Query: /*/chapter/section[.//* cw "XQL"]

(19) ⇓ ω[text cw "XQL"]

(20) (/book[1]/chapter[2]/section[2]/#PCDATA[1]),[5,XQL]
(21) (/book[1]/chapter[2]/heading[1]), [3,XQL]
(22) ⇓ Π[.//*]

(23) (/book[1]/chapter[2]),[5,XQL]
(24) (/book[1]/chapter[2]),[3,XQL]
(25) . . .
(26) ⇓ σ[/*/chapter]
(27) ()/book[1]/chapter[2], [5,XQL] ∨ [3,XQL]

Definition 10 Let e, T , V , c̃, and v be as in the previous definition. Furthermore,
let w = event(v, e, T, c̃, V). Then value selection on a query result Q is defined
as ω[T c̃ V](Q) = {(p, r, w)|∃e∃v ∃w′ (p, r, w′) ∈ Q ∧ lst(r) = e ∧ τ(e) ¹T T ∧
c(V, δ(e)) = v ∧ w = w′ ∧ event(v, e, T, c̃, V)} ✷

Query results consist of triples (processing path, result path, event expressions).
In figure 3, we give a few examples for the handling of processing and result paths
when querying our example document. For the query in line 1, value selection would
return the two paths in lines 3 and 4.5 In order to test the structural conditions,
we check them in a bottom-up way. During this process, we have to distinguish
between the path that leads to the result element (in our case section elements)
and the position in the path where we test the next structural condition. For
illustrating this procedure, we enclose the processing path in parentheses, while the
full path always represents the (current) result path; for example, (/a[1])/b[2]

5In our examples, we denote paths p = (e1, . . . , en) by writing sequences of (ν(ei), λ(ei)) pairs,
separated by slashes.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 23

means that /a[1]/b[2] is the result path and /a[1] is the processing path. As
output from value selection, the example paths from above are both processing and
result paths. Testing for the heading condition in the filter is performed by the
Π operation (described in more detail below), which returns the single path listed
in line 6. Next, we have to test for the remaining structural conditions without
moving the result pointer, which is performed by the σ operator (described below)
thus yielding the final result in line 8.

In line 9, we consider a variant of the query from above, where the value selection
would yield the same paths as before, which would also both pass the filter in
line 13. As event expressions we get the event key [5, syntax] for both paths.6

Logically, when the result paths are equal, we have to form the disjunction of the
corresponding event keys, as shown in line 17.

As another example, the query in line 18 first returns two result elements for
the value selection (lines 20, 21). Structural conditions of the form // produce
all possible subpaths of each argument path. (In contrast to other operators or
conditions, this condition increases the size of the result.) The final structural
selection σ[/*/chapter] would identify only two paths which are also equal, but
have different event keys (line 27).

Based on these considerations, we can now give the definition of the structural
projection operator Π and the structural selection operator σ (similar to relational
algebra, where projection modifies the structure of the result, whereas selection
only filters elements from the input).

Definition 11 Let S denote a query result and c = s[i] a condition, where i de-
notes a set of indexes (which also may be empty) and s is a structural condition
of the form ‘/’, ‘¯’, ‘*’ or ‘a’ (where ‘a’ denotes an element name). For a path
p = (e0, e1, . . . , en), we define a function

proj(s[i], p) =

{

struct(s, p), if λ(en) ∈ i ∨ i = ∅

∅ otherwise

with

struct(s, p) =

{(e0)} if s = / ∧ n = 0,

{(e0, e1, . . . , ej)|0 ≤ j ≤ n} if s = ¯,

{(e0, e1, . . . , en−1)} if s = a ∧ n ≥ 1∧

ν(en) = a,

{(e0, e1, . . . , en−1)} if s = ∗ ∧ n ≥ 1,

∅ otherwise.

Then we define the following operations

σ[c](S) = {(p, r, w)|∃p′ (p′, r, w) ∈ S ∧ p ∈ proj(c, p′)}

Π[.](S) = {(p, p, w)|T = {(p, r, w′) ∈ S} ∧ T 6= ∅ ∧ w =
∨

(p′,r′,w′)∈T
w′}

6For illustration purposes, we keep the notation of event keys simpler than required by the defi-
nition of the function event(.).

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · XIRQL

As shorthand for complex structural conditions, we define

Π[c](S) := Π[.](σ[c](S)),

σ[c/c′](S) := σ[c](σ[c′](S)),

Π[c/c′](S) := Π[c](Π[c′](S)). ✷

For specificity-oriented search, we extend the definition of selection. We introduce
the condition ‘/\’ as a variant of the descendant operator ‘¯’. The only difference
between the two operators lies in the consideration of augmentation weights when
paths are truncated through the function struct(s, p): Whenever we chop off an
element (from the processing path) which is an index node, then the corresponding
augmentation weight of this element e should be considered. For this purpose, we
assume that augmentation weights are given as part of the class instance.

Definition 12 For each document class instance Ci, there is a function αi : Ei →
EK that yields a probabilistic event representing the augmentation weight of ele-
ments, with the restriction νi(e) 6∈ Xi =⇒ αi(e) = ⊤.

For two paths r ⊆ r′ ∈ Ci with r = (e0, e1, . . . , en) and r′ = (e0, e1, . . . , en,
en+1, . . . , em), the function rwi : Ci × Ci → EE is defined as follows:

rwi(r, r
′) = ⊤ ∧

m
∧

k=n+1

αi(ek)

Let S denote a query result with paths from class Ci. Then relevance selection
σ[/\](S) is defined as

σ[/\](S) = {(p, r, w)|T = {(p′, r′, w′)|p ∈ struct(¯, p′) ∧ (p′, r′, w′) ∈ S} ∧ T 6=
∅ ∧ w =

∨

(p′,r′,w′)∈T
(w′ ∧ rwi(p, p′))} ✷

This definition of relevance selection handles the weighting part of specificity-
oriented search. In order to retrieve only index nodes as answers, the XIRQL query
is transformed internally by listing the names of index node elements as alternative
types of answers. For example, the query class(book)//inode()[... cw "XML"]

would be transformed into class(book)//(document | chapter | section)

[... cw "XML"].
The binary operators are fairly straightforward: we combine two elements if they

contain identical result and processing paths, and the event expressions are com-
bined according to the semantics of the operator. As a variant of intersection, the
subpath operator ‘/’ only considers equality of processing paths and then takes
the result path from its right argument. As an example, consider the query /book[

@class clsim "H.3.3"]/chapter[./heading cw "XQL"]. For our example docu-
ment, the first filter condition would produce the path (/book[1]), whereas the sec-
ond filter and the subsequent test on /chapter would yield (/book[1])/chapter[2].
The subpath operator would produce the second path as result (plus the conjunc-
tion of the corresponding event expressions).

Like in relational algebra, negation in XIRQL queries is mapped onto difference
of intermediate results. If no other argument is given, we form the difference to the
complete database; for example, the query /document[not title] searching for
all documents that have no title is transformed into σ[/document](R−Π[title](R))

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 25

For the XIRQL operators before and after, the corresponding algebra operators
< and > are processed by means of pairwise comparison of paths using the relation
‘<’.

Definition 13 Let S and T denote two query results. Then we define the following
operations:

S ∩ T = {(p, r, w)|∃w′∃w′′ (p, r, w′) ∈ S ∧ (p, r, w′′) ∈ T ∧ w = w′ ∧ w′′}

S/T = {(p, r, w)|∃w′∃w′′ (p, r′, w′) ∈ S ∧ (p, r, w′′) ∈ T ∧ w = w′ ∧ w′′}

S ∪ T = {(p, r, w)|∃w′∃w′′ (p, r, w′) ∈ S∧∃(p, r, w′′) ∈ T∧w = w′∨w′′∨∃(p, r, w) ∈
S ∧ ∄(p, r, w′) ∈ T ∃(p, r, w) ∈ T ∧ ∄(p, r, w′) ∈ S}

S − T = {(p, r, w)|∃w′ (p, r, w′) ∈ S ∧ ((∃w′′ (p, r, w′′) ∈ T ∧ w = w′ ∨ ¬w′′) ∨
((∄w′′(p, r, w′′) ∈ T) ∧ w = w′))}.

S < T = {(p, r, w)|∃w′∃w′′ (p, r, w′) ∈ S ∧ (p′, r′, w′′) ∈ T ∧w = w′ ∧w′′ ∧ r < r′}.

S > T = {(p, r, w)|∃w′∃w′′ (p, r, w′) ∈ S ∧ (p′, r′, w′′) ∈ T ∧w = w′ ∧w′′ ∧ r′ < r}.

α · S + β · T = {(p, r, w)|)∃w′∃w′′ (p, r, w′) ∈ S ∧ (p, r, w′′) ∈ T ∧ w = α̃ ∧ w′ ∨ β̃ ∧
w′′) ∨ (∃w′ (p, r, w′) ∈ S ∧ (∄w′′(p, r, w′′) ∈ T) ∧ w = α̃ ∧ w′) ∨ (∃w′′(p, r, w′′) ∈
T ∧ (∄w′(p, r, w′) ∈ S) ∧ w = β̃ ∧ w′′)}

In the definition of the weighted sum operator, α̃ and β̃ denote query-specific event
keys with the corresponding probabilities α and β.

With the operators described so far, we can already transform most XIRQL
queries into combinations of XIRQL operators. We give two examples illustrating
this process:
/book//section[title cw "syntax" and #PCDATA cw "XQL"] (where cw denotes
the ‘contains word’ predicate) is mapped onto

σ[/book ¯ section](Π[title](ω[text cw "syntax"](R)) ∩

Π[#PCDATA](ω[text cw "XQL"](R)))

/book[@class clsim "H.3.3"]/chapter[./heading cw "XQL"] (here clsim de-
notes the ’class similarity’ predicate) can be expressed as

σ[/book]
(

Π[@class](H) / σ[chapter](Π[heading](X))
)

Here, we use the abbreviations H = ω[class clsim “H.3.3”](R) and X = ω[text cw
“XQL”](R).

Details of the transformation process are described in Section 5.
For following hyperlinks and for comparing the values of two XML elements,

we need two additional operators. Since they are similar to joins in relational
databases, we also call them join operators. In order to follow hypertext links, we
define the link join operator:

Definition 14 For a document base instance I = (C1, . . .Cm,H) and two query
results R,S, the following link join operations are defined:

R => S := {(s, s′, w′′)|∃r∃r′∃w∃w′ (r′, s) ∈ H ∧ (r, r′, w) ∈ R ∧ (s, s′, w′) ∈ S ∧
w′′ = w ∧ w′}

R >= S := {(r, r′, w′′)|∃s∃s′∃w∃w′ (r′, s′) ∈ H ∧ (r, r′, w) ∈ R ∧ (s, s′, w′) ∈ S ∧
w′′ = w ∧ w′} ✷

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · XIRQL

Note that the => operator refers to the processing path of the target (the right
hand side), whereas the >= operator uses the target’s result path (which is the
left hand side). In the former case, we want to be able to follow the link and
navigate down to a more specific element, and this can be accomplished only by
referring to the processing path. As an example for this problem, assume that we
have a class article containing citation references that are given as links; search-
ing for authors of articles cited by anybody can be accomplished by the query
/article/citations/cite=>/article/au, with the corresponding path algebra
expression (σ[/article/citations/cite](article)) => σ[/article/au](article). For fo-
cusing on the source side of the link, assume a query searching for papers citing
Jones’ articles: /article[citations/cite=>/article[au = "Jones"]]. In the
path algebra, this yields:

σ[/article]
(

Π[/citations/cite]
(

article >= (σ[/article/au](

ω[persname = "Jones"](article)))
)

)

The value join operator is similar to value selection, but instead of comparing a
constant value specified in the query with the value of an element, it compares the
value of two elements.

Definition 15 Let T denote a datatype, c̃ be the name of a predicate c ∈ PT and
the function event(.) be defined as in Definition 10. For two query results R and S
the value join operator is defined as

R ✶[T c̃] S = {(p, r, w)|∃p′′∃r′′∃w′∃w′′∃e′∃e′′∃v
(p, r, w′) ∈ R ∧ (p′′, r′′, w′′) ∈ S ∧ e′ = lst(r) ∧ e′′ = lst(r′′) ∧ c(δ(e′), δ(e′′)) =
v ∧ w = w′ ∧ w′′ ∧ event(v, e′, T, c̃, δ(e′′))}. ✷

We need the value join for the case where the comparison operator in a filter
expression is not a literal, but another XML element. For example, the query
book[editor=./chapter/author] searches for books where the editor is also the
author of one of its chapters. Assuming that both the editor and the author element
are of the datatype persname, this query yields in our algebra:

σ[book]
(

Π[.]
(

σ[editor](R) ✶[persname=] (σ[chapter](σ[author](R)))
)

)

4.3 Structural Vagueness in the Path Algebra

From the concepts for structural vagueness as described in Section 3.5, the first
two are implemented as part of the transformation from XIRQL to path algebra:
dropping the distinction between elements and attributes can be expressed as dis-
junction of the two names, and datatypes as generalization of elements. Attributes
are implicitly included in the algebra, namely due to the fact that the value selection
operator refers to the datatype only. For the remaining two concepts (similarity of
element names and the generalization of the parent/child relationship), we define
two additional operators.

Element name similarity. We define the concept of similarity between element
names by extending the database schema definition, as follows.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 27

Definition 16 We augment the definition of a document base instance (see Defi-
nition 5) by an element name similarity function ζi as follows:

For a document base D = (S, I) the document base instance I is a tuple

I = (C1, . . .Cm,H, ζ)

where Ci and H are defined as in Definition 5, and ζ is a mapping ζ : N×N → [0; 1]
giving the similarity between two element names, with ζ(n, n) = 1. ✷

Using this notion of element name similarity, we can augment the σ operator in the
Path Algebra to support similarity search:

Definition 17 We augment the definition of the selection operation (see Defini-
tion 11) as follows:

σ[≈c](S) := {(p, r, w) | ∃p′, c′, w′ : (p′, r, w′) ∈ S ∧p ∈ proj(c′, p′)

∧w = w′ ∧ ζ̂(c, c′)} ✷

Note that the above definition needs a function which returns an event key, instead
of just a real number as returned by ζ. The definition of ζ̂ raises the question
which events should be identical. Assume that ζ(a,b) = 0.8 and consider the Path
Algebra expression σ[≈a](σ[≈a](S)) together with the two paths /b[1]/b[1] and
/a[1]/b[1]. Intuitively, it seems clear that the second path is “more similar” to
the query than the first path. This could be achieved by specifying that the events
returned by the two σ[≈a] operators are independent: the weight of /a[1]/b[1]

would be 0.8 and the weight of /b[1]/b[1] would be 0.8 · 0.8 = 0.64. The alterna-
tive, specifying that both events are identical, would lead to the weight 0.8 in both
cases.

On the other hand, consider a query against INEX documents specifying σ[≈item](.)
as a shorthand for all the different types of items (item-bold, item-both, item-
bullet, item-diamond, item-letpara, item-mdash item-numpara, item-roman,
item-text, li), and assume that the similarity values for item and item-bold

and so on are less than one. In this case, nested lists (and thus, list items) should
probably not lead to a lower weight.

Since we introduce the feature of vague structural conditions to account for the
vocabulary mismatch between the query and the documents, it seems more appro-
priate to choose the second alternative. Thus, the events should only depend on
the two element names to be compared, not on the paths for which this is done.
Hence the following definition of ζ̂:

Definition 18 Given a document class Si and its ζi function as in Definition 16,
we define a function ζ̂ : N × N → EK with the following properties:

—The event keys returned by ζ̂ are disjoint from the events returned by the event
function as defined in Definition 9.

—ζ(a, b) = 0 =⇒ ζ̂(a, b) = ⊥

—ζ(a, b) = 1 =⇒ ζ̂a, b) = ⊤

—The probability of ζ̂(a, b) is equal to ζ(a, b), that is, P (ζ̂(a, b)) = ζ(a, b). ✷

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · XIRQL

Vague ancestor/descendant condition. For the last concepts of structural vague-
ness, we define the notion of prefix similarity of paths as follows:

Definition 19 Let p = (e0, . . . , en) and p′ = (e′0, . . . , e
′
m) be two paths.

We define a function ϕ : Ni → [0; 1] that indicates the structural importance of
an element name. The database administrator is expected to configure the values
of this function for each element name. Based on this function, we define the prefix
similarity of two paths by way of a function Φ : Ci × Ci → [0; 1] as follows:

—If p′ ⊆ p is not true, then Φ(p′, p) := 0.

—If p′ = p, then Φ(p′, p) := 1.

—Otherwise, m < n and

Φ(p′, p) :=

n
∏

j=m+1

(

1 − ϕ(ν(ej))
)

Based on this function, we define Φ̂ : Ci × Ci → EK by requiring that the weight
of Φ̂(p′, p) be equal to Φ(p′, p) and the event keys be disjoint from the event keys

returned from the event function and from those returned by the ζ̂i function. We
further require that Φ̂(p′1, p1) be independent from Φ̂(p′2, p2) if p1 6= p2 or p′1 6= p′2.✷

Based on the prefix similarity of paths, we define the Path Algebra operator for the
vague ancestor/descendant condition:

Definition 20 We augment the definition of the selection operation (see Defini-
tion 11) as follows:

σ[°](S) := {(p, r, w) | ∃p′, w′ : (p′, r, w′) ∈ S ∧ p ∈ proj(¯, p′) ∧ w = w′ ∧ Φ̂(p, p′)}

✷

Referring back to the chapter/title example from page 16, assume that ϕ(head) =
0 and ϕ(chapter) = ϕ(section) = ϕ(subsection) = 1. Further assume a query R
which returns the following paths p1, p2, p3, and p4, all with weight one.

/book[1]/chapter[1]/title[1]

/book[2]/chapter[1]/head[1]/title[1]

/book[3]/chapter[1]/section[1]/title[1]

/book[4]/chapter[1]/section[1]/subsection[1]/title[1]

In this case, σ[chapter°title](R) will find p1 and p2 with weight one, whereas p3

and p4 will get weight zero.
With a different definition of the structural importance, as ϕ(section) =

ϕ(subsection) = 0.9, say, then p3 will get weight 0.1 and p4 will get weight 0.01.

Simplified structural view. Together, the two operations can be used to present
a simplified structural view of the document structure to the user. The level of
structural complexity is not predetermined; it can be chosen differently for each
query without reconfiguring the system. (In fact, queries might refer to the full
structure in one area of the documents, while referring to a simplified structural
view in another area.)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 29

We implement the structural simplification by query rewriting at the algebra
level. Each σ[x] operator in the query (where x is an element name) is replaced
with σ[°]σ[≈x]. Additionally, σ[∗] is replaced with σ[°]σ[∗].

We illustrate the effect of rewriting with an example. Consider the following
XIRQL query:

/book[au sounds_like ”jones” and ti cw ”multimedia”]

This is converted to the following Path Algebra expression:

σ[/]σ[book]
(

Π[.]σ[au](J) ∩ Π[.]σ[ti](M)
)

Here, F and M are abbreviations for (the obvious) ω expressions. Rewriting it
according to the above rule results in the following expression:

σ[/]σ[°]σ[≈book]
(

Π[.]σ[°]σ[≈au](F) ∩ Π[.]σ[°]σ[≈ti](M)
)

It is easy to see that this will achieve the desired effect: Paths fulfilling the original
query also fulfill the rewritten query, with the same probabilities, and the rewrit-
ten query additionally finds paths where the structural conditions are not fulfilled
exactly.

This approach requires that the database administrator configure the ζ function
depending on the vocabulary (on element names) that the users are used to, and
also the ϕ function needs to be set up, but other than this, no configuration is
required. The ϕ function does not depend on the schema used in the queries. It
also would be possible to do specific query rewriting based on the user vocabulary
and the simplified structure, without similarity search on element names or the
σ[°](.) operator. But this specific query rewriting has to be configured for each
simplified structural view, and for specific user vocabularies. Our approach adapts
to the structural complexity present in the queries, and different user vocabularies
can be taken into account at the same time. The price we pay is that query results
may contain undesired answers, but these are given a low score, so that this is not
a problem in practice.

5. TRANSFORMING XIRQL INTO PATH ALGEBRA

For describing the transformation process, we first specify the complete syntax of
XIRQL, and then we show how the transformation into path expressions follows
the syntactic structure.

5.1 XIRQL Syntax

Table I gives a specification of the XIRQL syntax using EBNF, which is derived
from the grammar for XPath. In addition to literal character strings, the grammar
uses the following terminal symbols: ELEMENT matches XML element names,
ATTRIBUTE matches XML attribute names, CLASS_NAME matches document
class names, STRING matches single-quoted and double-quoted strings, and PRED-
ICATE matches predicate names such as cw or clsim. The concrete list of predicate
names is not given here, as it depends on the implementation in use. Our imple-
mentation is designed to be extensible, making it easy to add new datatypes and
predicates. (See Section 6 for a list of datatypes implemented in HyREX.)

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · XIRQL

Table I. EBNF for XIRQL Syntax

Query ::= Sequence
Sequence ::= Disjunction

| Disjunction ("before" | "after") Sequence
Disjunction ::= Conjunction | Conjunction "or" Disjunction
Conjunction ::= Negation | Negation "and" Conjunction
Negation ::= Union | "not" Negation
Union ::= Intersection | Intersection ("union" | "|") Union
Intersection ::= Comparison

| Comparison "intersect" Intersection
Comparison ::= Path | LValue CompOp RValue
CompOp ::= PREDICATE
LValue ::= Path
RValue ::= Path | Number | Text
Path ::= AbsolutePath | RelativePath
AbsolutePath ::= Root

| ("/" | "//" | "\\") RelativePath
| Class AbsolutePath

Class ::= "class(" CLASS_NAME ")"

RelativePath ::= Filter
| Filter ("/" | "//" | "\\") RelativePath

Filter ::= Grouping
| Filter "[" IndexList "]"

| Filter "[" Subquery "]"

| Filter "=>" NameTest
NameTest ::= Class Element | Class | Element
IndexList ::= IndexArg | IndexArg "," IndexList
IndexArg ::= Integer | Range
Range ::= Integer "-" Integer
Subquery ::= Sequence
Grouping ::= RelativeTerm | "(" Sequence ")"

RelativeTerm ::= "." | "..." | Element | Attribute | ElemAttr
Element ::= ELEMENT | "*" | "~" ELEMENT
Attribute ::= "@" ATTRIBUTE | "@*" | "~@" ATTRIBUTE
ElemAttr ::= "=" ELEMENT | "=" ATTRIBUTE
ParameterList ::= Parameter

| Parameter "," ParameterList
Parameter ::= Sequence | Number | Text
Text ::= STRING

5.2 Conversion to logical algebra

In most cases, the mapping from XIRQL queries to path algebra expressions is fairly
obvious, but in some cases, complex transformations are needed. Some examples
for the relationship between XIRQL and the path algebra are presented in the other
sections of this article; this section contains a set of rules for converting any XIRQL
query to an equivalent path algebra expression. The XIRQL query should be parsed
according to the EBNF given in Table I, then the top-level element of the parse
tree should be matched against the rules shown in Table II, in turn, until one of
them matches. From there, subtrees of the parse tree should be matched, and so
on, until the whole query is converted.

For example, the query /book/au = "Smith" would be parsed as an instance
of the rule “Comparison ::= LValue CompOp RValue”, which can be found in the
transformation rules as x opV, so that line 16 of Table II applies.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 31

The transformation is specified as a function “cvt” of three arguments. The
first argument is the query fragment to process, the second argument is a “source
specification”, and the last argument is a Boolean value which says whether we
are inside a XIRQL ‘filter’ operator (square brackets [], EBNF rule “Filter ::=
Filter "[" Subquery "]"”). We will use the variable infilter when talking about
this Boolean value. When converting a full XIRQL query, that is, an expression
satisfying the “Query” nonterminal given in the EBNF, the value of infilter should
be false.

The source specification can be an arbitrary path algebra expression, or it can
be a class name Mi, which is identified with ε(Ci), Ci being the set of paths in
that document class. The implementation assures that some class name is always
passed to the cvt function; the user can choose which class name that should be.

For notational convenience, we also introduce some shortcuts. It turns out that
some rules come in pairs; the only difference is that one rule uses Π where the other
uses σ, and the value of infilter is different. To avoid having to write (almost) the
same rule twice, we will write θ which is understood to mean Π if the value of
infilter is true, whereas it means σ if the value of infilter is false.

The same principle applies to dealing with links. We will write which is
understood to mean >= if infilter is true, whereas it means => if infilter is false.

The same rules often apply to ¯ as well as °, so we will write ‖ when a rule
applies to both.

And finally, some variables on the left hand side of a rule have a restricted set
of values. We use a, b, l, r, and x, for arbitrary XIRQL (sub-)queries, but elem
is restricted to element names (or attribute names or wildcards). So for example
the rule for elem / r only applies if the left hand side of the / operator is indeed an
element name. Additionally, we allow elem to represent element names preceded
by an equals sign, as in =author. In this case, the equals sign in XIRQL is replaced
by an ≈ sign in the Path Algebra. For example, =author is transformed into
σ[≈author](.) by the rules. The vague predicates op from XIRQL (e.g., cw or
clsim) are mapped onto the corresponding predicate ⊙ of the algebra.

Most of these rules are fairly straight-forward, but there are two areas of dissim-
ilarity between XIRQL and the path algebra that require special treatment. The
first area concerns the class(X) syntactical element and the second one concerns
the treatment of links.

From a high-level point of view, a XIRQL query can be viewed as a sequence of
‘steps’, separated by slashes (or double slashes, as the case may be). In the simple
case, where each step is just an element name, the query is converted into a se-
quence of σ operators. For example, the query /a/b/c is parsed as /(a/(b/(c))).
However, if the XIRQL query specifies a document class via class(X) on the
very left, then the class name needs to be used as the input of the right-most
σ operator. The conversion rules are designed in such a way that a class name
from the class(X) operator is passed down the chain of slashes until it reaches
the right-most element name, which can then be directly converted to a σ opera-
tor. In the example, class(X)/a/b/c would be parsed as class(X)/(a/b/c), and
cvt(class(X)/(a/b/c), src, false) is evaluated by evaluating cvt(/(a/b/c),X,
false). This is then evaluated as σ[/](x) where x = cvt(a/b/c,X, false), and so

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · XIRQL

Table II. Rules for transforming a XIRQL expression into Path Algebra. Note that there are
no rules for union and intersection; they are treated the same as and and or, respectively.

cvt(., src, infilter) = src

cvt(..., src, infilter) = Π[.](σ[/\](src))

cvt(elem, src, false) = σ[elem](src)

cvt(/x, src, false) = σ[/](cvt(x, src, false))

cvt(¯x, src, infilter) = cvt(x, src, infilter)

cvt(°x, src, infilter) = σ[°](cvt(x, src, infilter))

cvt(class(Mi) / x, src, infilter) = cvt(/x, Mi, infilter)

cvt(class(Mi) ‖ x, src, infilter) = cvt(‖ x, Mi, infilter)

cvt(l and r, src, infilter) = cvt(l, src, infilter) ∩ cvt(r, src, infilter)

cvt(l or r, src, infilter) = cvt(l, src, infilter) ∪ cvt(r, src, infilter)

cvt(l and not r, src, infilter) = cvt(l, src, infilter) − cvt(r, src, infilter)

cvt(not x, src, infilter) = src − cvt(x, src, infilter)

cvt(l before r, src, infilter) = cvt(l, src, infilter) < cvt(r, src, infilter)

cvt(l after r, src, infilter) = cvt(l, src, infilter) > cvt(r, src, infilter)

cvt(x opV, src, false) = cvt(x, ω[T ⊙ V](src), false)

cvt(x op y, src, false) = cvt(x, src, false) ✶[T⊙] cvt(y, src, false)

cvt(elem / r, src, infilter) =

8

>

<

>

:

θ[elem](cvt(a, src, infilter)) b

if cvt(r, src, infilter) = (a b)

θ[elem](cvt(r, src, false)) otherwise

cvt(elem ‖ r, src, infilter) =

8

>

<

>

:

θ[‖](θ[elem](cvt(a, src, infilter))) b

if cvt(r, src, infilter) = (a b)

θ[‖](θ[elem](cvt(r, src, infilter))) otherwise

cvt(. / r, src, infilter) = cvt(r, src, infilter)

cvt(. ‖ r, src, infilter) =

8

>

<

>

:

θ[‖](cvt(a, src, infilter)) b

if cvt(r, src, infilter) = (a b)

θ[‖](cvt(r, src, infilter)) otherwise

cvt(fl[fr] / r, src, infilter) =

8

>

>

>

>

<

>

>

>

>

:

(cvt(fl[fr], src, infilter) / cvt(a, src, infilter)) b

if cvt(r, src, infilter) = (a b)

(cvt(fl[fr], src, infilter) / cvt(r, src, infilter))

otherwise

cvt(fl[fr] ‖ r, src, infilter) =

8

>

>

>

>

<

>

>

>

>

:

(cvt(fl[fr], src, infilter) / θ[‖](cvt(a, src, infilter))) b

if θ[‖](cvt(r, src, infilter)) = (a b)

cvt(fl[fr], src, infilter) / θ[‖](cvt(r, src, infilter))

otherwise

cvt(x=>class(Mi)elem / r, src, infilter) = cvt(x, src, true) θ[elem](cvt(r, Mi, infilter))

cvt(x, src, true) = Π[.](cvt(x, src, false))

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 33

on.
The XIRQL syntax for dealing with links was adopted from the XQuery specifi-

cation. According to this specification, a link is an edge in the XML “tree”, similar
to the edges from a parent node to a child node. Just as the "/" operator can be
used to follow an edge from a parent node to a child node, the "=>" operator can be
used to follow a link from one node to the other. Thus, the "=>" operator is simply
part of a ‘step’. But in the path algebra, the operators Π and σ which are used
for parent/child edges are unary operators whereas the operators >= and => for
links are binary operators. Additionally, the "=>" operator in XIRQL binds rather
tightly, whereas the >= and => path algebra operators have low precedence. This
difference needs to be accommodated in the transformation rules.

Consider as an example a document base comprising two document classes, one
class for documents and one for person descriptions. Suppose that the author is
stored, in the ‘document’ class, as a link to one of the ‘person’ documents. Then
the query class(document)/article/author=>class(person)/name/family will
result in a list of all family names of article authors. This can be thought of as
navigating from the article root node to the author child, from there to follow
the link to the ‘person’ class, to go to the name child node in that class, and from
there to the family child node. But the corresponding path algebra expression
would be σ[article](σ[author](document)) => σ[name](σ[family](person)).

The rules are designed in such a way that the algorithm first ‘looks’ to see if a
"=>" operator appears. This is achieved by having all rules that deal with slash-like
operators ‘look ahead’ at the right hand side to see if the conversion produces a
(=> or >=) expression. If that is the case, these operators ‘pull’ the link operator
 ‘up’ in the result.

6. IMPLEMENTATION AND APPLICATION

Based on the concepts described before, we have implemented a retrieval engine
named HyREX (Hypermedia Retrieval Engine for XML). In order to set up
a document base with HyREX, first the XML Schema descriptions (along with
the HyREX-specific application information) for the documents must be specified.
Given the document base schema, the system accepts XML documents, indexes
them and creates its internal index structures. (Currently, we use B∗-trees and
variants of inverted lists for this purpose.) Following this step, the HyREX server
accepts XIRQL queries and returns pointers to the elements retrieved.

In order to use HyREX as a standalone retrieval system, we have developed a
simple (Web-based) user interface (HyGate) that accepts query formulations either
in XIRQL or based on application-specific forms, sends the query to the server
and receives result lists as well as single result elements. For presenting the out-
put in HyGate, the document base administrator has to specify appropriate XSLT
stylesheets, both for the results survey page(s) and the display of single result
elements. We also have implemented a more user-friendly interface for query for-
mulation as well as two variants for result presentation ([Großjohann et al. 2002]).

HyREX is designed as an extensible IR architecture. The whole system is open
source, written in Perl (with minor parts in C). For specific applications, new
datatypes can be added to the system, possibly together with new index struc-

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · XIRQL

tures. The current implementation provides a minimum set of datatypes needed
for performing experiments (numeric, name, text, and English text). The numeric
datatype also supports date values by mapping them onto a Unix-style number
of seconds since epoch. The name datatype provides phonetic similarity search in
addition to exact search. The text datatype provides a ‘contains word’ predicate,
whereas English text also provides stemming.

HyREX has been evaluated within INEX, the INitiative for the Evaluation of
XML retrieval [Fuhr et al. 2003]. This initiative provides an infrastructure for
evaluating the effectiveness of content-oriented XML retrieval systems. In the first
round of INEX, in 2002, a test collection of real world XML documents along with a
set of topics and respective relevance assessments was created with the collaboration
of 36 participating organisations.

The INEX document collection consists of the full texts of 12,107 articles from
18 journals of the IEEE Computer Society’s publications, covering the period of
1995–2002, and totalling 494 megabytes in size. Although the collection is relatively
small compared with TREC2, it has a suitably complex XML structure (the DTD
comprises 192 different content models (rules)). On average, an article contains
1,532 XML nodes, where the average depth of a node is 6.9.

There were two tracks in INEX 2002, which are both variants of ad-hoc retrieval:

— The CO track centers around content-only (CO) queries, which are IR-style
user requests that ignore the document structure. So queries are viewed as bags
of words here. In this task, it is left to the retrieval system to identify the most
appropriate XML elements to return to the user.

— The CAS track is based on content-and-structure queries, which are requests
that contain explicit references to the XML structure, either by restricting the
context of interest or the context of certain search concepts. So a CAS query
contains a list of conditions, each comprising a structural condition and a search
concept (that should be matched within the specified context). In addition, each
query specifies the type of XML elements to be returned.

For the 30 topics of each track, relevance judgements were performed by the par-
ticipating groups, each being responsible for 2–3 topics. As evaluation measures,
recall-precision curves and average precision were used.

The INEX results of HyREX are described in detail in [Gövert et al. 2003]. Here
we want to describe only the major findings:

— For the CO track, we used our methods for specificity-oriented search de-
scribed in this article. We submitted two runs with constant augmentation weights,
one with a weight of 0.6 and one with 0.3. Contrary to our expectation, the
lower weight gave better results. (Additional experiments showed that the opti-
mum choice for the constant augmentation weight is in the range of [0.2 . . . 0.3].)
In comparison to the runs submitted by the other participants, our two runs per-
formed best. Given the fact that this was the first round of INEX, this result
should not be overemphasized. However, at least this outcome shows that our
augmentation-based approach is very well suited for performing specificity-oriented
retrieval.

— For the CAS track, we translated the INEX topics literally into XIRQL

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 35

queries. Since our official CAS results reported in [Fuhr et al. 2003, p. 215] suffered
from a bug in HyREX detected later, we repeated these runs with a corrected ver-
sion of HyREX. This way, we achieved an average performance (in comparison to
the CAS runs submitted by other groups). As shown in [Carmel et al. 2003], top
performnce in the CAS task can be achieved by interpreting structural conditions
very loosely. Also, there has been a lengthy discussion among the INEX partici-
pants about the interpretation of the CAS task, thus leading to a revision of this
task in the INEX 2003 round. So we still think that XIRQL is a good language for
referring to both structure and content of XML documents; however, the transfor-
mation of an information need into a XIRQL query seems to be a non-trivial task
requiring further research.

7. RELATED WORK

The XQuery proposal [Boag et al. 2002] by the W3C working group on XML query
languages is heavily biased towards the the data-centric view only, thus ignoring
most issues related to IR. Following earlier proposals for XML query languages like
XML-QL [Deutsch et al. 1998] or Quilt [Chamberlin et al. 2000], XQuery draws
heavily on concepts from query languages for object-oriented databases (e.g., OQL)
or semistructured data (e.g., Lorel [Abiteboul et al. 1997]). Due to this origin,
XQuery has a much higher expressiveness than XPath. XPath (and XIRQL) offer
only selection operators, thus results are always complete elements of the original
documents. In contrast, XQuery also provides operators for restructuring results
as well as for computing aggregations (count, sum, avg, max, min).

A typical XQuery expression has the following structure:

FOR PathExpression
WHERE AdditionalSelectionCriteria
RETURN ResultConstruction

Here PathExpression may contain one or more path expressions as in XPath, where
each expression is bound to a variable. Thus, the FOR clause returns ordered lists
of tuples of bound variables. The WHERE clause prunes these lists of tuples by
testing additional criteria. Finally, the RETURN clause allows for the construction
of arbitrary XML documents by combining constant text with the content of the
variables.

As a simple example illustrating the expressiveness of XQuery, assume that we
have a whole class of documents of type book, and we would like to have a kind of
excerpt documents, containing only the titles and headings of each book. This can
be expressed with the following query:

FOR $ a in class(”book”)
RETURN
<excerpt> <title> $ a/title </title>
FOR $ b in $ a//heading
RETURN <heading> $ b </heading>
</excerpt>

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · XIRQL

In contrast, the XPath query /book/(title|heading) would return single title

and heading elements only, without the possibility of collecting them in excerpt

documents.
XPath is a subset of XQuery, supporting only the FOR clause with a single

path expression. Thus, an XPath query can be rewritten in XQuery as FOR $a in

XPathQuery RETURN $a.7 Since XIRQL is based on XPath, it can be seen as an
extension of a subset of XQuery in order to support IR.

As the only feature supporting information retrieval in XML, XQuery supports
querying for single words in texts. There is no possibility for weighting or ranking,
no support for vague query conditions, and no operator for specificity-oriented
search. XIRQL fills this gap for a subset of the XQuery language.

The XQuery initiative within the W3C started the Full-Text Search working
group defining extensions for XQuery. The working group has published a require-
ments working draft in May, 2003 [Buxton and Rys 2003] and a use cases working
draft in February, 2003 [Amer-Yahia and Case 2003]. It is a stated goal to provide
weighting and ranking. However, most of the current discussion is centered around
providing specific search predicates for text. These predicates mostly operate on a
syntactic level; facilities for more semantic operations are scarcely addressed. For
example, under the heading of phrase search, various proximity search predicates,
with and without word order, with and without counting stopwords, are proposed.
As of July, 2003, the use of linguistic parsing to identify phrases is not discussed
at all. However, for single-word searching, stemming is provided in addition to
various wildcard operations. Vague predicates for data types other than text are
not discussed at all. However, integration of uncertainty and vagueness in XQuery
in a general form is conceptually very difficult. Due to the reconstruction operators
of XQuery, uncertainty would require the possibility of probabilistic weighting of
any XML element of a result document (whereas XIRQL assigns weights to the
top-level element only). The benefit of such an approach is at least questionable.

In information retrieval, previous work on structured documents has focused on
two major issues:

— The structural approach enriches text search by conditions relating to the
document structure, for example, that words should occur in certain parts of a
document, or that a condition should be fulfilled in a document part preceding the
part satisfying another condition. The paper [Navarro and Baeza-Yates 1997] gives
a good survey on these approaches. However, all these approaches are restricted to
Boolean retrieval, so no weighting of index terms and no ranking are considered.

— Content-based approaches aim at the retrieval of the most relevant part of a
document with respect to a given query. In the absence of explicit structural infor-
mation, passage retrieval has been investigated by several researchers (see [Hearst
and Plaunt 1993], [Callan 1994], [Kaszkiel and Zobel 1997]). Here the system de-
termines a sequence of sentences from the original document that fit the query
best.

Only a few researchers have dealt with the combination of explicit structural in-

7Actually, the XPath query itself is already a valid XQuery statement, so the FOR. . . RETURN
is not strictly needed.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 37

formation and content-based retrieval. The paper [Myaeng et al. 1998] uses belief
networks for determining the most relevant part of structural documents, but allows
only for plain text queries, without structural conditions. The FERMI multime-
dia model [Chiaramella et al. 1996] mentioned before is a general framework for
relevance-based retrieval of documents. [Lalmas 1997] and [Fuhr et al. 1998] de-
scribe refinements of this approach based on different logical models.

— The tree-matching approaches view both XML documents and queries as trees
and so retrieval from XML documents becomes a tree matching (or tree embedding)
problem. For the support of vagueness and uncertainty, it is necessary to consider
approximate tree matching or tree embedding. The paper [Schlieder 2002] presents
an approach which provides for vague conditions on the structure. In [Schlieder
and Meuss 2000] and [Schlieder and Meuss 2002], term weights also are considered.

Comparing the different approaches described above, it turns out that they ad-
dress different facets of the XML retrieval problem, but there is no approach that
solves all the important issues: The data-centric view as well as the structural ap-
proach in IR only deal with the structural aspects, but do not support any kind of
weighting or ranking. On the other hand, the content-based IR approaches address
the weighting issue, but do not allow for structural conditions.

Only a few researchers have tried to combine structural conditions with weighting.
The paper [Theobald and Weikum 2000] extends XML-QL by weighted document
indexing; however, this approach is not based on a consistent probabilistic model.
As another approach based on XML-QL, [Chinenyanga and Kushmerik 2001] intro-
duces an operator for text similarity search on XML documents; so this extension
supports only a very specific type of query.

The tree matching approach provides a nice theoretical concept for vagueness
with respect to both value conditions and structural conditions (as proposed in
[Schlieder and Meuss 2000] and [Schlieder and Meuss 2002]); however, the underly-
ing query language is rather restricted. It provides for term search (with weighting)
as the only kind of content-oriented condition. Different datatypes with different
search predicates are not considered. A search result is always a tree embedding
instead of a single element; this is a generalization of the task considered here.
However, links are not considered, and value joins are also not possible.

Latest results and reports of ongoing work in the area of XML IR can be found
in the annual proceedings of the INEX initiative (e.g. [Fuhr et al. 2003]).

The path algebra approach for processing XIRQL is similar to the proximal
nodes model described in [Navarro and Baeza-Yates 1997]. (The close relationship
between XQL (XPath) and proximal nodes is discussed in [Baeza-Yates and Navarro
2002].) However, we give a more formal specification of the semantics of the different
operators and we also consider hyperlinks. Furthermore, we extend this model by
dealing with datatypes and weighting.

8. CONCLUSIONS AND OUTLOOK

In this article, we have described a new query language for information retrieval in
XML documents. Current proposals for XML query languages lack most IR-related
features, which are weighting and ranking, specificity-oriented search, datatypes
with vague predicates, and structural vagueness. We have presented the new query

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · XIRQL

language XIRQL which integrates all these features, and we have described the con-
cepts that are necessary in order to arrive at a consistent model for XML retrieval.
For processing XIRQL queries, we have specified a path algebra, which also serves
as a starting point for query optimization.

In order to use XIRQL for retrieval, there are a number of open issues. At
the system level, there is the question of appropriate access methods and query
processing strategies. For the user interface, it is not clear in which form end
users should formulate their queries. Currently, we are investigating both menu-
based strategies as well as methods based on the concept of query by example.
Also, the presentation of results poses a number of problems. Since several result
elements may belong to the same document (some results even may contain others),
presentation as a simple ranked list may not be appropriate. For a single result
element, there is the question if this element should be shown out of context, or
within the context of the document it belongs to. In the latter case, there is
the question how this context should be displayed (logical structure vs. layout
structure). First results are reported in [Großjohann et al. 2002].

The ideal XML query language would be a combination of XIRQL and XQuery.
However, such an approach would lead to a very complex language that is both
hard to implement and difficult to use. Thus, a more reasonable perspective may
be the existence of two different, but similar query languages which support different
kinds of uses. For this purpose, we are working on the integration of some XQuery
features into XIRQL.

APPENDIX

Nomenclature

+ used for weighted sum (path algebra), page 25

− difference of two query results (path algebra), page 25

/ binary path algebra operation, page 25

/ matches root element when used as argument for σ or Π, also used there as
abbreviation for a parent/child relation, page 23

< “before” operation for query results (path algebra), page 25

< document order for paths, page 20

=> right link join, page 25

> “after” operation (path algebra), page 25

>= left link join, page 25

≈ element name similarity, used as argument for σ (path algebra), page 27

⊥ event that is always false, member of EK, page 20

∩ intersection of two query results (path algebra), page 25

· used for weighted sum (path algebra), page 25

∪ union of two query results (path algebra), page 25

δ δ(e) = δi(e) if e ∈ Ei, page 19

δi mapping δi : Ei → D yielding the content of an element from document
class instance Ci, page 19

∧ conjunction of event expressions, page 20

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 39

¬ negation of event expressions, page 20

∨ disjunction of event expressions, page 20

event function generating an event key, page 21

Φ̂ mapping Φ̂ : Ci × Ci → EK giving prefix similarity of two paths, returns
event keys (path algebra), page 28

ζ̂ mapping ζ̂ : N×N → EK giving the similarity between two element names,
returns an event key, page 27

head(p) all but last element in path; if p = (e0, . . . , en), then head(p) = (e0, . . . , en−1),
page 20

✶ value join operator, page 26

κ κ(e) = κi(e) if e ∈ Ei, page 19

κi mapping κi : Ei → IN that describes the sequential order among elements
from document class instance Ci that are children of the same parent ele-
ment, page 19

λ λ(e) = λi(e) if e ∈ Ei, page 19

λi mapping λi : Ei → IN that gives the relative index among children with the
same name that belong to the same parent element from document class
instance Ci, page 19

lst(p) last element in path; if p = (e0, . . . , en), then lst(p) = en, page 20

Ci document class instance, page 19

D document base, D = (S, I), where S is schema and I is instance, page 18

EE set of event expressions, superset of EK, page 20

EK set of event keys, page 20

I document base instance, I = (C1, . . .Cm,H), page 19

S schema of a document base, S = (S1, . . . , Sm) where Si are class schemata,
page 18

ν ν(e) = νi(e) if e ∈ Ei, page 19

νi mapping νi : Ei → Ni that gives the name of each element from document
class instance Ci, page 19

ω value selection, page 21

R shorthand for ε(R), page 21

° vague ancestor/descendant condition, when used as argument for σ, page 28

¯ recursive descent operation; when used as argument for σ or Π, expresses
ancestor/descendant operation, page 23

Φ mapping Φ : Ci × Ci → [0; 1] giving prefix similarity of two paths (path
algebra), page 28

Π structural projection operator, page 23

≺i aggregative relation on Ei that specifies the hierarchical composition be-
tween elements from document class instance Ci, page 19

¹T subtype relationship for datatypes, page 18

/\ when used as argument for σ, expresses specificity-oriented search, page 24

σ structural selection operator, page 23

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · XIRQL

⊆ path prefix relation, page 20

τi mapping τi : Ni → T specifying the datatype of each element name in class
schema Si, page 18

|T | domain of datatype T , page 18

c̃ name of predicate c, page 21

⊤ event that is always true, member of EK, page 20

ε transformation operator from a set of paths into a query result, page 21

ϕ mapping ϕ : Ni → [0; 1] that indicates the structural importance of an
element name, page 28

ζ mapping ζ : N × N → [0; 1] giving the similarity between two element
names, returns a number, page 26

c predicate name, page 21

Ci set of all paths that can be formed from document class instance Ci, page 20

Ei set of XML elements from document class instance Ci, page 19

ei element, page 20

H hyperlink relation, page 19

Mi class name of class schema Si, page 18

Ni set of element names occurring in the DTD of class Si, page 18

p path, p = (e0, e1, . . . , en), page 20

PT set of predicates of data type T , page 18

Q query result, page 21

R query result, page 25

Ri set of semantic constraints of class schema Si, page 18

S query result, page 23

Si class schema, part of document base schema, page 18

T data type, T = (|T |, PT) where |T | is the domain and PT is the set of (vague
comparison) predicates, page 18

T⊤ top element, all datatypes are subtypes of this, page 18

v comparison value, used with event, page 21

Xi set of element names of index node roots of class schema Si, page 18

C set of all paths that can be formed from document base instance, page 20

D union of all domains of all datatypes, page 18

T set of all datatypes, page 18

* wildcard, matches any element name when used as argument for σ or Π,
page 23

REFERENCES

Abiteboul, S., Buneman, P., and Suciu, D. 1999. Data on the Web. Morgan Kauffman,
Chapter 7: Typing semistructured data.

Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. 1997. The Lorel query
language for semistructured data. International Journal on Digital Libraries 1, 1 (May), 68–88.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Norbert Fuhr, Kai Großjohann · 41

Alon, N., Milo, T., Neven, F., Suciu, D., and Vianu, V. 2001. XML with data values:
typechecking revisited. In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM, 138–149.

Amer-Yahia, S. and Case, P. 2003. XQuery and XPath full-text use cases.
Tech. rep., World Wide Web Consortium. Feb. http://www.w3.org/TR/2003/

WD-xmlquery-full-text-use-cases-20030214/.

Baeza-Yates, R. and Navarro, G. 2002. XQL and proximal nodes. Journal of the American

Society for Information Science and Technology 53, 6, 504–514.

Belkin, N. J., Narasimhalu, A. D., and Willet, P., Eds. 1997. Proceedings of the 20th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, New York.

Billingsley, P. 1979. Probability and Measure. Wiley Series in Probability and Mathematical
Statistics. John Wiley & Sons, Inc, New York.

Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D., Robie, J., and Siméon,

J. 2002. XQuery 1.0: An XML query language. Tech. rep., World Wide Web Consortium.
http://www.w3.org/TR/xquery/.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E. 2000. Extensible markup
language (XML) 1.0 (second edition). http://www.w3.org/TR/REC-xml.

Buxton, S. and Rys, M. 2003. XQuery and XPath full-text requirements. Tech. rep., World
Wide Web Consortium. Feb. http://www.w3.org/TR/xmlquery-full-text-requirements/.

Callan, J. P. 1994. Passage-level evidence in document retrieval. In Proceedings of the Seven-

teenth Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, B. W. Croft and C. J. van Rijsbergen, Eds. Springer-Verlag, London, et al.,
302–310.

Carmel, D., Maarek, Y., Mandelbrod, M., Mass, Y., and Soffer, A. 2003. Searching
XML documents via XML fragments. In Proceedings of the 26st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM, New York,
151–158.

Chamberlin, D., Robie, J., and Florescu, D. 2000. Quilt: An XML query language for
heterogeneous data sources. See Suciu and Vossen [2001], 53–62. ISBN 3-540-41826-1.

Chiaramella, Y., Mulhem, P., and Fourel, F. 1996. A model for multimedia information
retrieval. Tech. rep., FERMI ESPRIT BRA 8134, University of Glasgow. Apr.

Chinenyanga, T. and Kushmerik, N. 2001. Expressive retrieval from XML documents. In
Proceedings of the 24th Annual International Conference on Research and development in
Information Retrieval, W. Croft, D. Harper, D. Kraft, and J. Zobel, Eds. ACM, New York,
163–171.

Clark, J. and DeRose, S. 1999. XML path language (XPath) version 1.0. Tech. rep., World
Wide Web Consortium. Nov. http://www.w3.org/TR/xpath20/.

Croft, W. B., Moffat, A., van Rijsbergen, C. J., Wilkinson, R., and Zobel, J., Eds.
1998. Proceedings of the 21st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval. ACM, New York.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., and Suciu, D. 1998. XML-QL: A
query language for xml. Tech. rep., World Wide Web Consortium. http://www.w3.org/TR/

NOTE-xml-ql.

Fallside, D. C. 2001. XML schema part 0: Primer. W3C recommendation, World Wide Web
Consortium. May. http://www.w3.org/TR/xmlschema-0/.

Fuhr, N. 1999. Towards data abstraction in networked information retrieval systems. Information
Processing and Management 35, 2, 101–119.

Fuhr, N., Gövert, N., Kazai, G., and Lalmas, M. 2002. INEX: INitiative for the Evalua-
tion of XML retrieval. In Proceedings of the SIGIR 2002 Workshop on XML and Informa-
tion Retrieval, R. Baeza-Yates, N. Fuhr, and Y. S. Maarek, Eds. http://www.is.informatik.

uni-duisburg.de/bib/xml/Fuhr_etal_02a.html.

Fuhr, N., Gövert, N., Kazai, G., and Lalmas, M., Eds. 2003. INitiative for the Evaluation
of XML Retrieval (INEX). Proceedings of the First INEX Workshop. Dagstuhl, Germany,

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 · XIRQL

December 8–11, 2002. ERCIM Workshop Proceedings. ERCIM, Sophia Antipolis, France. http:
//www.ercim.org/publication/ws-proceedings/INEX2002.pdf.

Fuhr, N., Gövert, N., and Rölleke, T. 1998. DOLORES: A system for logic-based retrieval
of multimedia objects. See Croft et al. [1998], 257–265.

Fuhr, N. and Rölleke, T. 1997. A probabilistic relational algebra for the integration of in-
formation retrieval and database systems. ACM Transactions on Information Systems 14, 1,
32–66.

Gövert, N., Fuhr, N., Abolhassani, M., and Großjohann, K. 2003. Content-oriented XML
retrieval with HyREX. See Fuhr et al. [2003], 26–32. http://www.ercim.org/publication/

ws-proceedings/INEX2002.pdf.

Großjohann, K., Fuhr, N., Effing, D., and Kriewel, S. 2002. Query formulation and re-
sult visualization for XML retrieval. In Proceedings ACM SIGIR 2002 Workshop on XML

and Information Retrieval. ACM. http://www.is.informatik.uni-duisburg.de/bib/xml/

Grossjohann_etal_02.ht%ml.

Hearst, M. and Plaunt, C. 1993. Subtopic structuring for full-length document access. In
Proceedings of the Sixteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, New York, 59–68.

Kaszkiel, M. and Zobel, J. 1997. Passage retrieval revisited. See Belkin et al. [1997], 178–185.

Lalmas, M. 1997. Dempster-shafer’s theory of evidence applied to structured documents: Mod-
elling uncertainty. See Belkin et al. [1997], 110–118.

Marchiori, M., Ed. 1998. QL’98 – The Query Languages Workshop. http://www.w3.org/

TandS/QL/QL98/pp.html.

Myaeng, S., Jang, D.-H., Kim, M.-S., and Zhoo, Z.-C. 1998. A flexible model for retrieval
of SGML documents. See Croft et al. [1998], 138–145.

Navarro, G. and Baeza-Yates, R. 1997. Proximal nodes: a model to query document databases
by content and structure. ACM Transactions on Information Systems 15, 4, 400–435.

Robertson, S. E., Walker, S., Jones, S., and Hancock-Beaulieu, M. M. 1995. Okapi at
TREC-3. In Proceedings of the 3rd Text Retrieval Converence (TREC-3). NTIS, Springfield,
Virginia, USA, 109–126.

Robie, J., Derksen, E., Fankhauser, P., Howland, E., Huck, G., Macherius, I., Mu-

rata, M., Resnick, M., and Schöning, H. 1999. XQL (XML query language). http:

//www.ibiblio.org/xql/xql-proposal.html.

Robie, J., Lapp, J., and Schach, D. 1998. XML query language (XQL). See Marchiori [1998].
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

Schlieder, T. 2002. Schema-driven evaluation of approximate tree-pattern queries. In Advances
in Database Technology - EDBT 2002, Proceedings of the 8th International Conference on

Extending Database Technology, Prague, Czech Republic, March 25-27, C. S. Jensen, K. G.
Jeffrey, J. Pokorný, S. Saltenis, E. Bertino, K. Böhm, and M. Jarke, Eds. Lecture Notes in
Computer Science, vol. 2287. Springer, Heidelberg et el., 514–532. url.

Schlieder, T. and Meuss, H. 2002. Querying and ranking XML documents. Journal of the
American Society for Information Science and Technology 53, 6 (Apr.), 489–503.

Schlieder, T. and Meuss, M. 2000. Result ranking for structured queries against XML
documents. In DELOS Workshop: Information Seeking, Searching and Querying in Dig-
ital Libraries. ERCIM, Sophia Antipolis, France. http://www.ercim.org/publication/

ws-proceedings/DelNoe01/.

Suciu, D. and Vossen, G., Eds. 2001. The World Wide Web and Databases: Third International

Workshop WebDB 2000, Dallas, Texas, USA, May 18-19, 2000. Lecture Notes in Computer
Science, vol. 1997. Springer, Heidelberg et el. ISBN 3-540-41826-1.

Theobald, A. and Weikum, G. 2000. Adding relevance to XML. See Suciu and Vossen [2001],
105–124. ISBN 3-540-41826-1.

Received September 2002; revised September 2003; accepted October 2003.

ACM Journal Name, Vol. V, No. N, Month 20YY.

