
XIS – UML Profile for eXtreme Modeling Interactive Systems €

Alberto Rodrigues da Silva, João Saraiva, Rui Silva, Carlos Martins
INESC-ID, Instituto Superior Técnico

{alberto.silva, joao.saraiva, rui.silva}@inesc-id.pt, carlos.martins@srs.pt

€ The work presented in this paper is partially funded by FCT (Portuguese Research and Technology Foundation), project

POSI/EIA/57642/2004 (Requirements engineering and model-based approaches in the ProjectIT research program).

Abstract
The first version of the XIS profile addressed the

development of interactive systems by defining models
oriented only towards how the system should perform
tasks. However, issues such as user-interface layouts,
or the capture of interaction patterns, were not
addressed by the profile, but only by the source-code
generation process. This originated systems that,
although functional, were considered by end-users as
“difficult to use”.

In this paper we present the second version of the
XIS UML profile, which is now a crucial component of
the ProjectIT research project.

This profile follows the “separation of concerns”
principle by proposing an integrated set of views that
address the various issues detected with the previous
version of XIS. In addition, this profile also promotes
the usage of extreme modeling, by relying on the
extensive use of model-to-model transformation
templates that are defined to accelerate the model
development tasks.

1 Introduction
Interactive systems are a sub-class of information

systems that provide a large number of common
features and functionalities, such as user-interfaces to
drive the human-machine interaction, data bases to
keep consistently the involved information, and role-
based access control to manage end-users and related
permissions [1, 2, 3].

The development of such systems is a complex
process that is initiated with the identification and
specification of the requirements of the system to be
developed, and in particular of its software
components. The emphasis in software development
projects should be placed in the project management,
requirements engineering and design activities, and
consequently the effort in production activities, like
software programming, should be minimized and
performed as automatically as possible. However, such
systems are usually developed in a more traditional
manner, by placing more emphasis on low-level

activities (such as source-code development) than on
requirements specification or design activities.

As a result of the experience gathered from previous
research and practical projects, the Information
Systems Group of INESC-ID (http://gsi.inesc-id.pt/)
has recently started an initiative in this area, named
ProjectIT [4]. One of the results of this project is a
UML profile, called XIS (short name for “eXtreme
modeling Interactive Systems”), which was proposed
and validated in previous work [5, 6], but is now
revised, in this paper, as its second version (for text
simplicity, we only refer to this profile as XIS, but
formally it should be referred to as “XIS 2”).

XIS promotes a platform-independent design for
interactive systems. This means that the XIS profile
allows the design of interactive systems at a PIM level
(“Platform-Independent model”, according to the
MDA terminology [7]), so systems can be targeted,
using specific model-to-code transformations, to
different source-code languages and platforms, such as
Web, desktop or mobile platforms (e.g., J2ME, .NET
Compact Framework, or any embedded systems that
are meant to support interactive systems).

The previous version [5] featured a modeling
approach based on the Model-View-Controller (MVC)
pattern [8]. Although model designers considered this
approach as a good practice, they noted some flaws
that they considered very serious: they spent too much
time defining “simple” Controller logic, and they were
not able to specify how the user-interfaces that were to
be generated should look like. This second version of
the profile addresses these flaws, by significantly
improving the way user interfaces are modeled, and by
the exhaustive application of typical interaction
patterns so that they can be easily incorporated into a
system.

XIS adheres strongly to the “separation of concerns”
principle, and provides an integrated set of views,
namely the entities, use-cases and user-interfaces
views. In addition, XIS promotes extreme modeling by
providing a roadmap that designers can follow as well
as model-to-model transformation templates both to
assist and to accelerate their tasks. We call “extreme

modeling” to this approach because it promotes high
levels of productivity through modeling techniques.

This paper describes the scope, principles, and main
elements of the XIS profile. Section 2 briefly
introduces the context of the ProjectIT research
program, in which the XIS is defined and applied.
Section 3 overviews the principles underlining the XIS
architecture, and introduces the “MyOrders” case study
that will be used in the next sections for supporting the
respective explanation. Sections 4, 5, and 6 describe
the Entities, Use-Cases, and User-Interfaces views,
respectively. In these sections, the main concepts and
stereotypes of XIS are discussed based on the referred
case study. Section 7 presents the development
approaches supported by XIS, namely the smart and
dummy modeling approaches. Section 8 discusses
related work. Finally, Section 9 concludes this paper,
summarizing its key points.

2 The Scope of the XIS Profile – ProjectIT
ProjectIT [4] is a research project that provides a

software development workbench with support for
project management, requirements engineering, and
analysis, design and code generation activities [4, 5, 6,
9]. So far, this research project has produced the
following results:

• XIS UML profile: a set of coherent UML extensions
(which are presented in this paper) that allows a
high-level, visual modeling way to design
interactive systems;

• ProjectIT Approach: a software development
approach inspired on a set of best practices,
namely: (1) based on high-level models or
specifications; (2) supported by component-based
software architecture; and (3) using generative
programming techniques. Essentially, the ProjectIT
Approach follows the MDA philosophy combined
with the use of a domain-specific language oriented
towards requirements specification. Figure 1
presents an overview of the ProjectIT Approach, in
particular its main actors and corresponding tasks.

• ProjectIT-Studio platform [10]: a CASE tool to
support the ProjectIT approach. ProjectIT-Studio is
currently in development on top of the Eclipse.NET
platform [11]. This tool supports the definition of
any UML profile (since the ProjectIT approach
does not depend on the XIS profile) and the
application of model-to-model transformations
defined in the context of such profiles.

Generically, the ProjectIT approach receives system
requirements (e.g., functional, non-functional and

Figure 1 – Overview of the ProjectIT Approach.

development requirements) as its main input, and
produces a set of artifacts (e.g., source code,
configuration scripts or data scripts) as its main output.
The tasks performed by the ProjectIT Architect are
critical to the ProjectIT approach. The architect
performs the following tasks: (1) define a suitable
UML profile (in the case of interactive systems, it can
be the XIS profile as proposed in this paper; however,
the ProjectIT approach is profile-independent, which
means other profiles can be used); (2) define
“Model2Model Transformation Templates” to produce
new models; and finally (3) define “Model2Code
Transformation Templates” to produce software and
documentation artifacts from models, using generative
programming techniques. It is important to mention
that all of these templates and profiles can typically be
used in other systems, so there is no need for the
ProjectIT Architect to develop them for each individual
system.

It is the Designer’s responsibility to produce an
integrated set of models (the “Design System” task).
The designer can also apply model-to-model
transformations based on the templates provided by the
ProjectIT Architect, allowing the acceleration of the
design task. After the design of the model,
Programmers apply model-to-code transformations
(i.e., generative code techniques) based on the
templates provided by the ProjectIT Architect.
Afterward, Programmers produce specific components
that are not yet addressed by the profile or the artifact
generator (such as adapters or business logic), as
represented in Figure 1 by the “Complete Software
Code” task. Finally, Testers and Integrators prepare
and perform different tests in order to guarantee system
quality.

3 The XIS Overview
The second version of the XIS UML profile is a

coherent group of UML extensions that allows us to
model interactive systems according to the ProjectIT
Approach (briefly presented in Section 2). In spite of
XIS being a key element of ProjectIT and supported by
the ProjectIT-Studio tool, it should be emphasized that
XIS is just a UML profile [12, 13], and so it can be
used and supported by different CASE tools. However,
using the XIS profile in another CASE tool requires
that developers implement model-to-model and model-
to-code transformations in that tool.

XIS design follows some principles that are
fundamental to model-driven development, namely: (1)
modularization; (2) separation of concerns; (3) use-
case driven approach; and (4) model transformations.

Modularization: Modularization is fundamental when
modeling large systems, and XIS addresses it through
the use of packages, and the concept of “business

entities”, which are compositions of typical domain
entities (please see “Entities View”, Section 4, for
details).

Separation of concerns: Software systems have to
handle different concerns, such as data design issues,
functional concerns, and non-functional concerns (e.g.,
security and performance). In order to face these
concerns, abstraction and isolation are essential. XIS
adopts these best practices by providing multiple views
for interactive systems design, and by minimizing
dependencies among those views.

Use-case-driven approach: XIS addresses the
identification of actors and use cases (which is typical
in traditional model-driven development approaches),
to manage the main functionality of the system and to
obtain information about roles and related permissions.

Model transformations: In order to provide flexibility
and productivity at design time, XIS features two
different design approaches (which are presented in
Section 7) that are based on the extensive use of model
transformations.

Figure 2 shows the multi-view organization proposed
by XIS. There are three main concerns that are
captured through complementary views, namely the
entities, use-cases, and user-interfaces views. Other
concerns (and so other views) could be integrated in
future work (e.g., views for specifying non-functional
requirements such as security, reliability, performance,
scalability or usability).

Figure 2 – The multi-view organization of XIS.

In the following sections we describe and discuss the

relevant aspects of XIS based on these views. For

better understanding and simplicity of the explanation
we use a small case study, the “MyOrders System”
(see table below).

A Small Case Study – The MyOrders System
MyOrders is a system that allows keeping relevant
information for every organization. The MyOrders system
manages business entities such as products, suppliers,
customers and orders.
There is information associated with each entity; for
instance, a product has a name, a price and an indication of
how many units are in stock. An order can cover multiple
products (i.e., it is not necessary to create an order for each
product to be acquired). However, the system keeps the
information regarding an order and an acquired product as
the “order details”.
A supplier and a customer are third-party entities, usually
companies, which can have multiple affiliates (i.e., multiple
contacts). Additionally, each affiliate is of a certain type,
which is identifiable by its name. There are some
differences between a supplier and a customer: (1) a
supplier cannot place orders, as it is only responsible for
supplying products, not for consuming them; (2) a customer
can only acquire products by placing an order; and (3) a
customer is associated with one or more markets (identified
by their name).
[…]

4 Entities View
After specifying the requirements for an interactive

system, a fundamental stage in the creation of the
system is the identification of the problem domain and,
afterward, the modeling of its entities. The XIS profile
addresses this stage by offering the Entities View,
which in turn consists of the Domain View and the
BusinessEntities View. In the Domain View, the
Designer places the classes and relationships that
correspond to the problem domain. In the
BusinessEntities View, the Designer defines business
entities (entities with a higher level of granularity),
which aggregate entities from the Domain View or
even other business entities.

4.1 Domain View
The Domain View is used to model the entities that

are relevant to the problem domain in a traditional
way, by using classes. The relationships between
entities are modeled using simple associations,
aggregations and inheritance. In addition, the designer
defines the state of each class by using attributes; to
support the definition of these attributes, the designer
can also define enumerations.

 The XIS profile provides stereotypes to be applied to
elements in this view, namely: (1) XisEntity and (2)
XisEntityAttribute are applied to classes and their
attributes, respectively; and (3) XisEnumeration and
(4) XisEnumerationValue are only applied to

enumerations (if they exist) and their enumeration
values. The reason for the existence of these
stereotypes, instead of just using a typical UML class
diagram, is that these stereotypes provide a range of
tagged-values that are meant to be used for purposes
such as the generation of documentation (by using a
“description” tagged-value) or the generation of the
source code that will be used by the various layers of
the interactive system.

Figure 3 illustrates the Domain View for the
MyOrders case study, with the relevant stereotypes
applied (the tagged values are not displayed, for
diagram simplicity).

Figure 3 – Domain View.

4.2 BusinessEntities View
The purpose of the BusinessEntities View is to

provide entities of a coarser granularity, known as
business entities. These business entities are the high-
level entities that will be manipulated in the context of
a certain use case (as explained in the next section,
“Use-Cases View”).

A business entity is specified by designating a
domain entity (from the Domain View) as its master
entity, and by possibly designating other domain
entities as its detail entities. The “master entity”
establishes a context to restrict the set of “detail
entities” that will be manipulated in the context of that
business entity. Of course, in the Domain View, these
detail entities should be associated with the master
entity, otherwise providing such a context would not
make sense.

In this view the designer can also specify “detail”
associations between domain entities (depending on
whether the domain entities have associations between
them in the Domain View). Of course, these “detail”
associations only make sense in the context of the
current business entity – just because a certain “detail”
exists in the definition of a certain business entity, does
not mean that there will be a “detail” in every business
entity. To define such a “detail” association in the
context of a business entity, the corresponding
stereotype provides a tagged-value that indicates the
name of the business entity to which it belongs.

A business entity can also be an aggregation of other
business entities. This allows the creation of business
entities that are not directly related to a specific domain
entity (by a “master” or “detail” relationship), but
rather to concepts that have been defined as business
entities. For example, in the context of MyOrders,
suppose an Order would be an higher-level concept
that would only involve a Customer and a Product (or a
group of Products), and that an Order would have no
OrderDetails and no attributes (i.e., an Order would not
have an internal state, so it would not be necessary to
represent it in the Domain View); if this was the case,
then a way to model an Order would be to create a
business entity, OrderBE, that would be composed of a
business entity representing a customer, CustomerBE,
and a business entity representing a Product,
ProductBE, as Figure 4 illustrates. To keep the
Designer from making mistakes while modeling the
system, a business entity cannot be composed of other
business entities and designate master/detail entities.

Figure 4 – A business entity composed by other business

entities.

This view defines the following stereotypes: (1)

XisBusinessMaster is used to identify the “master”
domain entity which the current business entity
represents; (2) XisBusinessDetail is used to indicate a
“detail” domain entity; (3) XisBusinessEntity is
applied to the class that represents the business entity;
and (4) XisBusinessComposition indicates that the
business entity is a composition of other business
entities.

The XisBusinessMaster, XisBusinessDetail and
XisBusinessComposition stereotypes define the

“Operations” tagged-value, typed as a list of strings,
which allows the specification of which operations
make sense in the context of the current business
entity. These operations can be standard operations,
such as “new”, “edit”, “select” or “delete” (which will
be recognized by the ProjectIT-Studio code generator),
or custom operations, which must be later specified by
the Programmer. Note that these operations are not
UML operations.

The concept of business entity exists to provide a
single entity (of a coarser granularity than domain
entities) to be manipulated by one (or possibly
multiple) use cases. It allows the definition of the set of
domain entities that must be accessed and/or
manipulated in the context of a certain use case.

Figure 5 illustrates the definition of the business
entity SupplierBE (tagged-values are not shown for
diagram simplicity). This business entity specifies the
domain element Supplier as its master entity, and
specifies the domain entities Affiliate and Product as
its directly accessible details.

Figure 5 – Definition of the Supplier business entity.

Additionally, it is worth noting the “detail”

association between Affiliate and AffiliateType. This
association means that, in the generated application,
when the user selects an Affiliate, the corresponding
AffiliateType will also be accessible in any use case
that manipulates the SupplierBE business entity.

5 Use-Cases View
The Use-Cases View is used to define the actors (or

roles) of the specific system, as well as to define use
cases, and establish the corresponding permissions.
These aspects are modeled in the Actors View and the
UseCases View.

5.1 Actors View
The Actors View specifies the entities (i.e., actors)

that can perform operations. They are related through
inheritance relationships, so that the child-actor can
perform all operations allowed by the parent-actor.

This view uses a single stereotype: (1) XisActor,
which represents any role that can perform operations.
This stereotype exists because it provides a range of
tagged-values (such as “description” and
“isSuperActor”) that are meant to be used during the
generation of artifacts.

The MyOrders example, from Figure 6, shows that
“UAdmin” and “UManager” can perform all
operations allowed by “URegistered”, and that all
actors can perform the operations of “User”.

Figure 6 – Actors View.

5.2 UseCases View
The UseCases View describes the relationships

between the actors defined in the Actors View and the
operations they are allowed to perform over business
entities.

The Designer can specify use cases by performing
the recommended following steps: (1) creating the use
case; (2) creating the necessary actors and associating
them to the use case; and (3) creating the business
entity (or entities) that will be manipulated by the use
case.

Of course, this view uses the actors defined in the
Actors View and the business entities defined in the
BusinessEntities View. It also defines the following
stereotypes: (1) XisUseCase, which represents a use
case, as a set of operations that an actor can perform

over a business entity while interacting with the
system; and (2) XisOperatesOnAssociation, which
represents an association between a use case and a
business entity, and defines the list of operations that
the use case can perform over that business entity.

The operations of a use case over a business entity
must be a subset of those defined in the business entity
itself (in the “Operations” tagged-value from the
XisBusinessMaster association). This allows the
Designer to reuse business entities between use cases
(if those use cases are relatively similar), by simply
specifying a subset of the operations that the business
entity supports. An example of this is depicted in
Figure 7, in which the “UManager” actor is allowed to
perform the typical CRUD operations over the
“Customer” business entity, while the “URegistered”
actor is only allowed to create new customers; the
range of allowed operations is restricted, but the
business entity is the same, thus avoiding an explosion
of business entities in the BusinessEntities View.

Figure 7 – UseCases View.

6 User-Interfaces View
The User-Interfaces View is used to define the
interaction spaces (i.e., abstract “screens” that receive
and present information to end-users during their
interaction with the system) of a system, and the
navigation flow between them.

The User-Interfaces View consists of the
NavigationSpace View and the InteractionSpace View.
The NavigationSpace View defines the navigation flow
that can occur between any of the interaction spaces.
The InteractionSpace View defines the user-interface
interaction elements that are contained in each
interaction space; this view can also specify access
control between actors and user-interface elements.

6.1 NavigationSpace View
The main purpose of the NavigationSpace View is

to describe the navigation flow between the identified
interaction spaces. This view is useful to support the
documentation of the system structure giving the
chance to easily change and improve the navigability.

 This view defines a single stereotype: (1)
XisNavigationAssociation, which represents a
navigation flow between two interaction spaces
showing the direction of the transition. Although this
stereotype does not currently define any tagged-values,
this situation will probably change in future evolutions
of the XIS profile (e.g., with tagged-values to perform
validation tasks), as we pursue additional avenues of
research.

Figure 8 presents a small example of a Navigation
View representing part of the MyOrders case study
(the XisNavigationAssociation stereotype is applied to
all the associations represented in the figure; however,
the stereotype labels have been removed for diagram
simplicity). Using this model we can describe the
navigation flow between different interaction spaces.

Figure 8 – NavigationSpace View.

This model is used only to define how the end-user

will navigate through the various interaction screens. It
differs from classical navigation models [14] because
all screens must be specified explicitly, otherwise the
artifact generation techniques may not be able to
generate all the source-code to implement the system’s
navigation flow. However, this does not invalidate the
use of such classical navigation models if necessary,
because model-to-model transformation templates
could be defined in order to transform XIS-based
navigation models to classical navigation models and
vice-versa.

The user-interface elements contained in each
interaction space are not specified in this view, to keep
navigation flow diagrams simple. Instead, the

specification of those elements is done in the
InteractionSpace View.

6.2 InteractionSpace View
The main purpose of the InteractionSpace View is

to describe the contents and the overall organization of
the different interaction spaces. This view uses some
sketching techniques, based on the graphical layout of
UML diagrams, to provide hints about the size and
relative position of the elements that belong to each
interaction space. Although an approach based on the
graphical information of a diagram is usually not
recommended (because traditionally each tool saves
and displays diagrams in its own particular way), we
believe that this is no longer an issue, because of the
UML Diagram Interchange specification [15], which
provides a standard way to store the graphical
information of a UML diagram, in a manner that is
independent of tools.

This view defines the following stereotypes: (1)
XisInteractionSpace, which is an interaction space;
(2) XisInteractionCompositeElement, a composite
interaction element which contains other interaction
elements; (3) XisDomainElement, an interaction
element that is associated with a XisEntityAttribute
from the Domain View; (4) XisOtherElement, an
interaction element which is not associated in any way
with a XisEntity (e.g., a label or an image); (5)
XisDataTable, an interaction element which displays a
table with the result of a SQL query; (6)
XisActionElement, an interaction element which is
responsible for invoking an action or an operation (e.g.,
a button or a link); and (7) XisElementRight, which
specifies access control between actors and interaction
elements.

An important aspect in this view is the
XisInteractionCompositeElement. This element allows
the grouping of other interaction elements (including
other XisInteractionCompositeElements), following
the Composite design pattern [16]. This composite
grouping is relevant because it allows the Designer to
specify a particular context for a
XisInteractionCompositeElement, which is then
accessible to the interaction elements contained within
the composite element (e.g., if a
XisInteractionCompositeElement is associated to a
certain domain element, then all interaction elements
contained within the composite element will have that
domain element as context, and they can show
information about that element, such as the value of a
attribute).

Figure 9 illustrates the Order_ISpace interaction
space of our case study MyOrders. Figure 10 illustrates
this same interaction space as a Windows Form,

obtained by using ProjectIT-Studio’s support for
modeling and automatic artifact generation.

7 Design With XIS
After the introduction of the XIS profile’s main

concepts, there are some additional aspects that must
be considered by developers when using this profile:
(1) the dependencies among its views; and (2) the
design approaches that can be supported by XIS.

7.1 Dependencies Among Views
Obviously, the multiple views proposed have

dependencies among themselves, which can influence
the design approaches that can be supported by XIS.

Figure 9 – The Order_ISpace interaction space.

Figure 10 – The Windows Form corresponding to the

Order_ISpace interaction space.

The Domain View, being the first and most important
definition of the problem domain (aside from
requirements, which are not yet regarded in XIS), does
not depend on any other view. However, the
BusinessEntities View depends on the Domain View to
provide the domain entities that are used to create
business entities.

The Actors View is independent of all the other
views. The UseCases View depends on the
BusinessEntities View and the Actors View, as XIS’
use-cases are associated to actors and business entities.

The NavigationSpace View and the InteractionSpace
View depend on each other. The InteractionSpace
View also depends on: (1) the Domain View, because
some UI elements are associated with a domain entity;
and (2) the Actors View, to establish access control
between actors and the UI elements that each actor can
access. Additionally, the NavigationSpace and the
InteractionSpace views can be automatically generated,
based on the other four views (Domain,
BusinessEntities, Actors, and Use-Cases).

7.2 Supported Design Approaches
Because of the optimal usage of model

transformations, XIS proposes two different modeling
approaches: the smart approach and the dummy
approach, which are illustrated in Figure 11 and
Figure 12, respectively.

Figure 11 – XIS’ multi-view organization – the smart way.

According to the smart approach, the Designer only
has to design the Domain, BusinessEntities, Actors,
and UseCases views. Afterward, the time-consuming
design of user-interface models can be avoided through
automatic generation. After generating those models,
the Designer can still customize them in order to
support specific requirements, i.e., requirements not
captured and supported by the involved model-to-
model transformation templates.

On the other hand, according to the dummy
approach, the Designer should produce the Domain,
Actors, NavigationSpace and InteractionSpace views.
The other views, i.e. the BusinessEntities and
UseCases views, can also be produced, which could be
useful from the documentation point of view; however,
they would be useless from the model-to-code
transformations perspective. The dummy approach is
not recommended because it does not follow the
general principles of model-driven development, but
can be necessary if model-to-model transformation
features are not available in the modeling tool.

Figure 12 – XIS’ multi-view organization – the dummy way.

7.3 Recommended Design Approach
The XIS smart approach is naturally recommended,

as its model-to-model transformations considerably
accelerate the modeling task.

Nevertheless, we also recommend the following
sequence of steps when designing the model: (1) create
the necessary use cases, in the UseCases View; (2)
create the necessary actors, in the Actors View, and
associate them to the relevant use cases; (3) create the
domain entities, in the Domain View; and (4) create

the necessary business entities (using business entity
compositions if it helps to re-use business entities
between use cases), in the BusinessEntities View,
associate them with use cases (specifying the
operations that each use case must perform over the
business entities), and also associate them with the
relevant domain entities. Of course, the Designer is
not forced to perform these steps in any particular
order (e.g., the business entities could be created before
the domain entities).

When these four views have been defined, the model-
to-model transformation can be applied to generate the
User-Interfaces View. Afterward, the Designer can
tailor these models, if the obtained results are not
totally satisfactory.

Note that this recommended approach is very similar
to what is suggested by traditional model-driven
development approaches, and so it is not a novelty
introduced by XIS. However, unlike other approaches,
XIS allows the developer to take advantage of these
views to automatically generate (and possibly
customize) the user-interfaces for the system, which
can be a decisive factor for the acceptance of the
system by its end-users.

8 Related Work
XIS is an UML profile for modeling interactive

systems, based on the “separation of concerns”
principle. In that spirit, XIS proposes a minimal set of
views regarding the design of this kind of systems:
Entities, Use-Cases and User-Interfaces views.

In the context of interactive systems and user-
interfaces modeling, based on UML extensions, there
are other initiatives that should also be mentioned, in
particular: User-Experience (UX) [17], Wisdom [18],
UMLi [19], UWE [20], OVID [21], and CUP [22]. The
UX approach defines modeling elements for the
navigation design and discusses the transformations of
UX UML models into code-level models for
specifically the Java Struts framework. The Wisdom
and the UX approaches represent quite well navigation
aspects with some similarities with our
NavigationSpace View, but don’t define any model to
represent each node of the user interface in an abstract
way as we propose in XIS. The Wisdom approach aims
to maintain synchronization between Wisdom and
Canonical Abstract Prototypes [23], which represent
each node of the user interface in an abstract way. The
UMLi approach proposes a profile to capture the
conceptual, presentation and behavior aspects of
systems. The UWE approach focuses particularly on
modeling Web systems. The proposals in UMLi and
UWE, for the presentation design have some
similarities with our InteractionSpace View. The OVID

approach aims to link the OVID UML models to
AUIML language.

Few of these approaches are making real efforts to
develop UML tools to support the design of models
with generative techniques. Additionally, XIS
differentiates itself from the proposals previously
presented, because it considers the trade-off between
simplicity (a driver that justifies keeping models at the
PIM level) and productivity (a driver that justifies the
adoption of models transformation techniques) a
crucial issue, unlike any of those proposals.

9 Conclusions and Future Work
The XIS profile is a key element of the ProjectIT

research program and, in spite of it being theoretically
independent of the CASE tool, it is better understood
and applied in its context. Currently, we are taking
advantage of the XIS profile, on top of the ProjectIT-
Studio CASE tool, to research and develop
productivity features such as model-to-model and
model-to-code transformations, as referred above. In
the near future we will concentrate in the development
of these transformation templates, as well as tuning the
XIS profile accordingly. Aspects concerning
workflows and non-functional requirements
specification would also be research challenges of
great interest.

We also need to provide a common metamodel
definition for the two main components of ProjectIT-
Studio: ProjectIT-MDD and ProjectIT-RSL [9, 24].
The idea is to allow different system specifications
approaches, namely through XIS UML models or RSL
(Requirements Specification Language) specifications,
and to research ways to map XIS UML models into
RSL specifications and vice-versa. Finally, when
ProjectIT and its supporting tools reach a sufficient
maturity level, it is our intention to use them in real
projects, to better test and prove the ideas we are
proposing.

References
[1] Kotonya, G., Sommerville, I., Requirements

Engineering Processes and Techniques, New York.
Jonh Wiley & Sons, 1998.

[2] Constantine, L., and Cockwood, L., Software for Use,
Addison-Wesley Publishing, 1999.

[3] Preece, J., et al., Interaction Design, Wiley, 2002.
[4] Silva, A., O Programa de Investigação “ProjectIT”,

Technical report, V 1.0, October 2004, INESC-ID, in
http://berlin.inesc.pt/alb/uploads/1/193/pit-white-paper-
v1.0.pdf

[5] Silva, A. The XIS Approach and Principles. Proceedings
of the 29th Euromicro Conference, IEEE Computer
Society, 2003.

[6] Silva, A., Lemos, G., Matias, T., Costa, M., The XIS
Generative Programming Techniques, Proceedings of

the 27th Annual Int. Computer Software & Application
Conference, IEEE Computer Society, 2003.

[7] OMG. Model Driven Architecture.
http://www.omg.org/mda/

[8] Fowler, M., Patterns of Enterprise Application
Architecture, Addison-Wesley, 2003.

[9] Videira, C., Silva, A., The ProjectIT-RSL Language
Overview, UML Modeling Languages and Applications:
UML 2004 Satellite Activities, Springer LNCS, 2004.

[10] Saraiva, J., Relatório Final de Curso – Desenvolvimento
Automático de Sistemas, IST, July 2005.

[11] SourceForge.net: Eclipse.NET.
 http://sourceforge.net/projects/eclipsedotnet
[12] OMG. “White Paper on the Profile mechanism”,

Version 1.0, OMG Document ad/99-04-07. OMG UML
Working Group.

[13] Rumbaugh, J., Jacobson, I., Booch, G., The Unified
Modeling Language Reference Manual, Addison
Wesley, August 2004.

[14] Koch, N. and Kraus, A., The Expressive Power of
UML-based Web Engineering. In Proceedings of
IWWOST02, 2002.

[15] OMG. Unified Modeling Language: Diagram
Interchange – Specification Version 1.0, April 2006.
http://www.omg.org/cgi-bin/apps/doc?formal/06-04-
04.pdf

[16] Gamma, E., et al., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley,
1995.

[17] Kozaczynski, W. and Thario, J., Transforming User
Experience Model To Presentation Layer
Implementations, Proceedings of the Second Workshop
on Domain-Specific Visual Languages, OOPSLA 2002.

[18] Nunes, N. J. and Cunha, J. F., Towards a UML profile
for interaction design: the Wisdom approach, In UML
2000, Springer, 2000.

[19] Silva, P. P., and Paton, N., User interface modelling in
UMLi. IEEE Software, 20(4), July–August 2003.

[20] Hennicker, R. and Koch, N., Modeling the User
Interface of Web Applications with UML, Proceedings
of the Workshop pUML-Group at UML 2001.

[21] Azevedo, P., Merrick, R., and Roberts, D., OVID to
AUIML - User-Oriented Interface Modelling,
Proceedings of the Workshop - Towards a UML Profile
for Interactive Systems Development, Tupis, 2000.

[22] Bergh, J. and Coninx, K., Towards Modeling Context-
Sensitive Interactive Applications: the Context-Sensitive
User Interface Profile (CUP). In Proceedings of the
ACM Symposium on Software visualization, 2005.

[23] Constantine, L., Canonical abstract prototypes for
abstract visual and interaction design. In Proceedings of
DSV-IS 2003, Springer, LNCS 2844, 2003.

[24] Videira, C., Silva, A., Patterns and metamodel for a
natural-language-based requirements specification
language, in Proc. of the CaiSE’05 Forum, 2005.

