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422 Drs. Korteweg and de Vries on the 

at the constant pressures of 100, 102.~ and 104 volts respec- 
tively consisted of specially good specimens. 

In applying the -rule that the economical potential differ- 
ence is about the one which causes the lamp to produce 0"25 
candle per watt, it is important, however, to examine 8-candle 
100-volt Edison-Swan lamps when bought to see whether 
they are really marked" 100 E.F. 8." 1~ or while the result 
of various purchases of 8-candle 100-volt Edison-Swan lamps 
during the past three years has always resulted in lamps 
marked " 100 E.F. 8 "  being sent us, although the marking 
on the lamps was never specified by us, a recent hatch of 
lamps that we have received contained among them certain 
lamps marked " 100 B. 8," which not only differed in the 
marking but also in the filament being of a simple horse-shoe 
shape, and not with a loop at the top as in the case of the 
other lamps. And, on testing these Edison-Swan B lamps, 
we were surprised to find that with no one of them~ when run 
at 100 volts, did the watts per candle exceed 3"9, and in some 
cases the watts per candle were as low as 3"01. We have 
not, however, had these B lamps for a sufficiently long time 
in our possession to be able to express any opinion about their 
life-history. 

XLI.  On the Change of Form of Long Waves advancing in a 
Rectangular Canal, and on a New Type of JLong Stationary 
Waves. B!] Dr. D. J.  KO~TEWEG, Professor of Mathematics 
in the University of Amsterdam, and Dr. G. DE VI~IES*. 

INTRODUCTION. 

I N such excellent treatises on hydrodynamics as those of 
Lamb and Basset, we find that even when friction is 

neglected lon. ,.g waves in a rectangular canal, must neeessaril, y 
change their term as they advance; becoming steeper an front 
and less steep behind t. Yet since the investigations of 
de Boussinesq$, Lord Rayleigh§, and St. Venant II on the 
solitary wave, there has been some cause to doubt the truth 
of this assertion. Indeed, if the reasons adduced were really 
decisive, it is difficult to see why the solitary wave should 

Q Communicated by the Authors. 
t It seems that this opinion was expressed for 

~ ides and Waves," ~En c Metrap 1845 
T cy. lxii" " :~ Comptes l~dus, 1871, vol. . 
§ Phil. Mag. 1876, 5th series~ vol. i. 10. 257. 
II Comptes Rendus, 1885, voL el. 

the first time by Airy~ 
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~l~ange of .Form of Long Waves. 423 

make an exception*; but even Lord Rayleigh and McCowan ¢, 
who have successfully and thoroughly treated the theory of 
this wave, do not directly contradict the statement in question. 
They are, as it seems to us, inclined to the opinion that the 
solitary wave is only stationary to a certain approximation. 

I t  i s the  desire to settle this question definitively which has 
led us into the somewhat tedious calculations which are to be 
found at the end of our paper. We believe, indeed, that from 
them the conclusion may be drawn, that in a frictionless liquid 
there may exist absolutely stationary waves and that the form 
of their surface and the motion of the liquid below it may be 
eXpressed by means of rapidly convergent series. But, in 
order that these lengthy calculations might not obscure other 
results, which were obtained in a less elaborate way, we have 
postponed them to the last part of our paper. 

First, then, we investigate the deformation of a system 
of waves of arbitrary shape but moving in one direction only, 
i. e. we consider one of the two systems of waves, starting in 
opposite directions in consequence of any disturbance, after 
their complete separation from each other. By adding to the 
motion of the fluid a uniform motion with velocity equal 
and opposite to the velocity of propagation of the waves, we 
may reduce the surface of such a system to approximate, but 

t perfect, rest. 
n°If, then, 1T ~ (7 being a small quantity) represent the 
elevation of the surface above the bottom at a horizontal dis- 
tance x from the origin of coordinates, we have succeeded in 
deducing the equation 

3 g .  

where a is a small but arbitrary constant, which is in close 
connexion with the exact velocity of the uniform motion given 

to the liquid, and where o-----½18- T1 depends upon the depth 
Pg 

1 of the liquid, upon the capillary tension T at its surfac% and 
upon its density p. 

On assuming ~t  = 0  we of course obtain the differential 

Though the theory of the solitary wave is duly discussed in the 
treatise of Basset~ the inconsistency of his result with the doctrine of 
the necessary chau~e of form of long waves seems not to have sufficiently 
attracted the attentmn of the author. 

t Phil. l~Iag. 1891~ 5th series~ vol. xxxii. 
2 F 2  
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424 Drs. Korteweg and de Vries on the 

equation for stationary waves, and it is easily shown that the 
well-known equation 

v 4e- 

of the solitary wave is included as a particular case in the 
general solution of this eTlation. But, in referring to this 
kind of wave, we have to notice the result that, taking 
capillarity into account, a negative wave will become the sta- 
tionary one, when the depth of the liquid is small enough. 

On proceeding then to the general solution, a new type of 
long stationary wave is detected, the shape of the surface 
being determined by the equation 

lh+k C,nod. =. l h 
V 4~ \ "V I t + k / "  

We propose to attach to this type of wave the name of 
enoldal waves (in analogy with siuusoidal waves). For k = 0  
they become identical with the solitary wave. For large 
values of k they bear more and more resemblance to sinusoidal 
waves, though their general aspect differs in this respect, that 
their elevations are narrower than their hollows; at least 
when the liquid is not too shallow, in which latter case this 
peculiar feature is reversed by the influence of capillarity. 

For very large values of k these cnoidal waves coincide 
with the train of oscillatory waves of unchanging shape dis- 
covered by Stokes ~, which therefore in the theory of long 
waves t constitutes a particular case of the enoidal form. 
Indeed the equations obtained by Stokes, when written in 
our notation~ becomes 

2~x 3h~X ~ 4~rx 
~/=h cos X 6-4~/3 c°s--~ - ; 

but, as Sir G. Stokes remarks, in oMer that the method of 

approximation adopted by him may be legitimate, ~ -  must 

be a small fraction. Now, when capillarity is neglected, the 
wave-length X of our cnoidal waves is equal to 

4K 

Transactions of the Cambridge Phil. See. vol. viii. (1847), reprinted 
in Stokes, Math. and Phys. Papers, vol. i. p. 197. 

J" Stokes solution is more general in so far as it applies also to those 
eases wherein the depth of the liq.uid is moderate or large in respect 
to the wave-length. 

~: Stokes, Math. and Phys. Papers, vol. i. p. 210. 
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Change of Form of Long Waves. 425 

and therefore 
X~h 16K~h 
1 -s -  -- 3 (h + k) ---- M~K~" 

This is a small fraction only when ~1~ the modulus, is small, 
but the cnoidal waves then resemble sinusoidal waves ; and it 
is obvious that in this case the equation of their surface may 
be developed in a rapidly convergent Fourier-series, of which 
Sir G. Stok'es has given the first two terms. 

After some more discussion about these cnoidal waves~ con- 
cerning their velocity of propagation and the motion of the 
particles of fluid below their surfac% we proceed to a closer 
examination of the deformation of long waves. To this effect 

57 we apply the equation for ~ to various types of non-shationary 

waveg~ and it will appear that~ though sinusoidal waves be- 
come steeper in front when advancing, other types of waves 
may behave otherwise. ° '  

I. The Formula for d~l ~i" 
In our investigations (in accordance with the method used 

by Lord Rayleigh, Phil. Mag. 1876~ vol. i. p. "257~ whose 
paper has been or' great influence on our researches)~ we start 
from the supposition that the horizontal and vertical u and v 
of the fluid may be expressed by rapidly convergent series of 
the form 

~=/+yA +~Y'~+... 
v=y~l  +Y~¢~+ . . . 

where y represents the height of a particle above the bottom 
of the canal, and where f~f1,. • • ~bl~ ~ , . .  • are functions of x 
and t. Of course the validity of this assumption must be 
proved later on by the fact that series of this description can 
be found satisfying all the conditions of the problem. 

From one of these conditions~ viz,  the incompressibility of 
Du Dv 

the liquid~ which is expressed by ~ - ~ + ~  =0,  we may 

deduce 

l~f.-1 @"=-n ~x'  

and from another~ viz, the absence of rotation in the fluid~ 
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4"26 Drs. Korteweg and de Vries on the 

expressed by bu by by Dx = 0 : - -  

fl =0 ; fn-- i b~_1 _ 1 b~f,~_~ 
n bx n(n--1) bx ~ 

In this manner we obtain the following set of equations : - -  

1 ~bY bY u = f - - 2 y  ~ + l ~ ] ' b x ,  . . . . . .  (1) 

bf 1 3bY 1 ~bof 
~ = - Y ~  + ~ b~ ~ ~ o  y b-P + . . . . .  (2) 

and, moreover, if ~b be the velocity potential and ~ the stream- 
function : - -  

~=~fo ~ ~/ b Y _  ~y ~ + ~ 4  . . . . . .  (3) ~ b,T8 

= Y ] - ~  ~-~ + i~oo ~ . . . . . .  (4) 

which set of equations satisfies for the interior of the fluid all 
the conditions of the problem, whilst at Che same time i~ is 
easy to see that for long waves these series are rapidly con- 
vergent. Indeed, for such waves the state of motion changes 
slowly with x, and therefore the successive differential- 
quotients with respect to this variable of all functions re- 
ferring, as f does, to the state of motion, must rapidly 
decrease. 

Passing now to the conditions at the boundary, let Pl (a 
constant) be the atmospheric pressure, pl ~ the pressure at a 
point below the surface where the capillary forces cease to act, 
and T the surface-tension. We then have, distinguishing here 
and elsewhere by the suffix (1) those quantities which refer 
to the surface, 

~v' -*  ~ ,b% - ~ . ~ - ~  ; 

but~ according to a well-known equation of hydrodynamics, 

P'---' =x( t )  - bt - ½ ( ~  + ~ ' ) - g ~ ` '  
P 

therefore 
d¢l T b~yl _ L--g  1 

T ~ y l  +lWy4+ PyS4.... + (5) p Dx~ ' " 
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Change of Form of Long Waves. 427 

where 

~=xttj-j~ - ~ ,  

- 24Jbx " - 8 \ 3 x  ~] +g~-~'~x 3 ~ D x ' b t  

p _  1 ~36.f 1 3~f bar l l'3~f~ ~ 1 3 f  35f 1 3e.f 
- 7 2 o ~ x  ° + ~ 3 P  ~ ,"  - 72 ~ ,~x, !  1 2 o ~ x ' ~ - #  + 720 ~ # ~ t "  

By differentiation with respect to x equation (5) may be 
written 

hb~yxl . by1 T b~yl + 4Nyl ~ + 6P~I ~- + . . .  + ~ ~x~ -- - -0.  (6) 

Moreover, a second equation must hold good a~ the surface, 
viz. 

In order to satisfy equations (6) and (7) by the method of 
successive approximations, we put y~ = l + V, f---- qo + B, where 
l and q0 are supposed to be constants, and V and fl small 
functions depending upon x and t. Dealing, then, with the 
fact that for long waves, whose wave-length is great in com- 
parison with the de.pth of ~o  canal, every new differentiation 
with respect to x gives rise to continually smaller quantities, 
these equations become as afirst approximation:-- 

5f~ 5fl ~ '  o q o ~ +  ~ +g ~ =  , 

go~ + ~ /+~ ~ =o, 

and are satisfied by taking 

dt --- 
and ~o = ~/~, . . . . . . .  (8) 
where a is an arbitrary constant which we will suppose to be 
small, 
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4"28 Drs. Korteweg and de Vries on the 

It is obvious that this solution coincides with the one usually 
given for the case of long waves of arbitrary shape made 
stationary by attributing to the fluid a velocity equal and 
opposite to that of the waves, on the assumption that the 
velocity in a vertical direction may be neglected and that 
the horizontal velocity may be considered uniform across each 
section of the canal. 

But, if we wish to proceed to :a second approximation, we 
have to put 

f = q o -  ~ ( , + a + ~ )  . . . . .  (9) 

where ~/is small compared with ,7 and =. On substituting 
this in (6) and (7) and on writing out the result~ rejecting 
all terms* which are small compared with any one of the 
remaining terms, we find respectively : - -  

9o~ b7 by T\  ~v  - 0  l~ t  +g~-~--'q[(~+a)~-~-- (½-1~g--;)~-2-- , ¢10) 

and 

1 ~t g~-~-- ~ a ) ~  ey~-~ =0.  . (11) 

eliminating ~)~--~xfrOm these equations, we have at last In 

d~ 3qob( ½~ = 
d t -  21 ~x 

where 
= ½l ~ _  T1 

- .  . . . . . .  (13) 
Pg 

This very important equation, to which we shall have fre- 
quently to revert in the course of this paper, indicates the 
deformation of a system of waves of arbitrary shape, but 
moving in one direction only. Before applying it, we may 
point out the close connexion between the constant =, which 
may still be chosen arbitrarily, and the uniform velocity 
given to the fluid. Indeed it is easy to see from (1) and (9) 
how a variation ~= of the constant = corresponds to a change 

D~. 527 (~)s are rejected in corn- * The terms for instance with ~-~ ~ and . 

parison with ~ ~? and ~ ,  which is retained in the equations, those with ~7 

bs~ against d'l 
~x~t dr" 
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Change o)' Form o] Long Waves. 

Sq-- -- ~ a  in this velocity, but, on taking the 

(12) with respect to a, we obtain 

~ =  q0.~ a ~n _~q ~ , ,  . ~ =  . ~  
which equation may be easily verified geometrically. 

429 

variation of 

II.  Stationary Waves. 
dn For stationary waves ~-must be zero. Therefore we have 

fl'om (1-2) 
~(½~,+~+~ ~_~n ? )=0. 

This gives by integration 

cl + ~  + ~  +~°---"~ = 0 ;  . . . . .  (1~) 
Ox 

and by multiplication with 6 d~ and further integration, 

c~+ 6cly +y~ + 2aVe+a ----0. (15) 

I f  now the fluid be undisturbed at infinity, and if l be taken 
equal to the depth which it has there, then equations (14) 

and (:[5) must he satisfied by T----O, ~ ----0, and ~ =0.  

Therefore, in tMs case ct and c~ are equal to zero, and equa- 
tion (15) leads to 

~,1 %/ /  ~ ( ~ +  2~) 
~-~---- _+_ . . . . .  (16) 

O" 

Here, before we can proceed, we have to discriminate between 
(r positive and ~ negative• In the first case 2a is necessarily 

negative because ~-~ must be real for small values of ~/. If~ 

then, we put it equal to --h, we have 

J5 ~- - + • ~ .  ~/h--,1- 

from which, supposing x to be zero for ~=h,  we easily obtain 
the well-known equation of the positive solitary way% viz. ---  

,~--hseeh' ~ V / ~  - -  . . . . .  (17) 
• 4 0 " "  . 
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430 Drs. Korteweg and de Vries on the 

In the second case 2a must be positive. In putting it equal 
to h, and in substituting --7' for 7, we have from (16) 

~ ~ / /  1 ~ = + ~/h-  ~', - L - j ' ~ '  

or, by integration, 

~___~r_  _ h  sech2 x ~ / /  h 
~40"" 

This is the equation of a negative solitary wave~ and we are 
able now to draw the conclusion that whenever ¢ is negative; 

that is whenever the depth of the liquid is less than at//-ST, 
v pgp 

the stationary wave is a negative one. For water at 20°C. 
this limiting depth is equal to 0"47 em. (T=72 ,  g=981~ 
p=0 '998 B.A.U.). 

Now, for a further discussion of equation (15), we drop the 
assumption that the fluid is undisturbed at infinity. If  then 
I be taken equal to the smallest depth of the liquid~ we must 

have ~x = 0  for 7=07 and therefore in virtue of (15)c~=0.  

On supposing then a positive*, cl must be negative in order 
- %  

that ~ may be real for small positive values of ~ but then the 

equation 
v ~ + 2 ~ +  6c1=0 . . . . . .  (18) 

has a positive root h and a negative -k~ and we may get 
from (15) 

i~-~ - + ~ ( h - ~ )  (k + 7). (19) 

By substitution in this equation (19) of ~ = h  eos2x and by 
integrationj we find 

/ 7 ~ + - ~ / M _  / a \ 
' ~ = h c n ' * v - ~ 7 - ~  ( - Vl~%-~.¢)' (~o1 

* When a negative~ let then I be equal to the greatest depth. On 
substituting q = -  (r'~ ~= --~' we have again ot negative~ 

and, finally, 

~=--.'=--h en~ ,~ .~ / /~  
~vhere h and - k are the roots of ~'=--'2~ + 6c~ = 0, 
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Change of Form of Long Waves. 431 

which is the equation of a train of periodic waves whose 
wave-length increases when k decreases. 

For k=  0 this length becomes infinite, and the equation may 
be shown to coincide with (17). 

The following figure (fig. 1) represents such a train of 
stationary waves for the case in which k=$ggh, M=0"8. 

Fig. 1. 

Yi 
I 

I I I .  Stationa~ T Periodie Waves ( Cnoidal Waves). 

Proceeding now to a further investigation of the waves 
determined by equation (20), we calculate from (10) and (11) 
the value of % From these equations we get 

d7 1 ~,/ . [1l~_. T_~ ~3,1 

~Z = -  Y l vS~  + \ a  2go/b.~ ~' 
or by integration, 

,y_- _ ~ , ~  + ~-  ~ ] ~ ,  

where the constant of integration is rejected because its 
retention would only have had the effect of augmenting in 
equation (9) the value of the arbitrary constant a. 

On substituting, then, f from (9) in (1) and (2), observing 
that in virtue of (I4) 

~2~/ 1 (3,/~ + 4a, /+  6cl) = 1 

these equations are replaced by 

T 

} + . . . .  (21) 

v=  , , /g, ( / , - ,__)(k + , ) . s  . . . . . . . . . .  (22) 
V 1¢ 
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432 Drs. Korteweg and de Vries on the 

When k = 0  they determine the motion of the fluid for a 
solitary wave. 

In the first place we now will endeavour to calculate the 
velocity of propagation. For the solitary wave this is simple 
enough. I f  we consider that the liquid at infinity is brought 
to rest when a uniform motion with a horizontal velocity 

is added to the motion expressed by (21) and (22), it is clear 
that this velocity, with reversed sign, must be taken for the 
velocity of propagation of the solitary wave. 

But for a train of oscillatory waves Sir G. Stokes has 
shown * that various definitions of this velocity may be given, 
leading at the higher order of approximation to different 
values. It seemed to us most rational to define it as the 
velocity of propagation of the wave-form when the ]wrlzontal 
momentum of the liquid has been reduced to zero by the 
addition of a uniform motion. This definition corresponds 
to the second one of Sir G. Stokes. According to it, we have 
to solve the equation 

fO h pl-F;~ 
~ o  (.-~)~=o, . . . .  (~4) 

where q denotes the velocity of propagation, and where 

~KJ~ 
X =  . . . . . . . . .  (~5) 

~/h+k 

is equal to the wave-length. 

If, then, 

V= ;ovdx=4~v/]~ { (h+k)E(K)--kK } 
=X { ( h '  , . ,E(K) (26) T ~s  - - - - K -  

denote the volume of a single wave reckoned from above its 
lowest point, we get from (24), retaining only such terms as 
are of the first order compared with ~/, h, and k : - -  

• Math. and Phys. Papers, vo]. i. p. 202. 
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Change of Form of Long Waves. 433 

q___ jo do  

oaXJo @ 

/X+V 

= J  1 +  "21 l . . . . .  

On subtracting this velocity from that expressed by equa- 
tion (2l), we obtain 

and it is obvious at once that in this manner we have annulled 
the velocity of: the particles for which 

V 

This last equation has a simple geometrical meaning. It 
designates those particles E (fig. 1) whose height above the 
bottom of the channel is equal to the height where the surface 
of the liquid would s~and when the waves were flattened. 
Therefore for a first approximation we may say that the 
various particles of the fluid change the direction of their 
horizontal motion at the very moment when one of these 
points E is passing over them. 

We now proceed to the calculation of the path of a single 
particle of fluid. Let Xo, Yo denote the coordinates of such a 
particle at the origin of time, and .vt=Xo+$ I, j]t=~,0+~4 its 
coordinates at the time t, u' and v f its horizontal and vertical 
velocity at that time, l + ~t its elevation above the bottom, then 
we tlaVe 

g= v0 %/'}Jo' dr 
Here •t is equal to the value of 'q for x = x  I +~t; and there-, 

D
ow

nl
oa

de
d 

by
 [

O
hi

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 0
0:

03
 1

5 
Ju

ne
 2

01
2 



434 Drs. Korteweg and de Vries on the 

fore we have d.v=(ul--y)dt, or to a first approximatio~ 
a t = -  !d~= 1 q -- ~ dx ; but then 

pXo+ ~&.t ~,o+ 4~.t 
1 ~  V Vt / ~  h f  ,"2Kx. 

0 ~Xo 

Or, according to a well-known formula ~, 

~'= ( h + / c ) x F z ( 2 K @ ° + J ~ ' t ) ) - Z ( ~ ) ]  ' ~ - K - T  L~\ x . (29) 

At the same time we have 

I ~ D~ldx - h [cn'(xo+ ~/g-l. " / h - + k  
C'= - -i "~' " j _ o ~  - - r . ~ -  o % /  

. . . . .  

Of course, as all fluid particles with the same y describe 
congruent paths, these formulae may be simplified by sup- 
posing xo-O. 

IV. Deformation of _hfon-Stationa~j Waves. 

In order to study the deformation of non-stationary waves, 
we will now apply our formula (1"2) to various types of waves. 

Solitary Waves.--As a first example we choose a solitary 
wave whose surface is given by 

,l"-hsech~px . . . . . . .  (31) 
According to (1"2)~ the deformation ofthi s wave is expressed 

by 
d__v d, = _  3 0ph (4 ¢-10 [-seeh'p  

+ ~ j  s e e h ~ , . t a n h p , ~ .  . . (3~)  

But before we are able to draw any conclusion from this 
d~/ 

expression, it is necessary to separate the two parts of 3-/, of 

f: * Z(u)=u 1- -M sn2u. du. Compare, forinstanee, Cayley, 

tAn Elementary Treatise on Elliptic Functions/18767 ch. vi. § 187. 
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C]~ange of Form of Long Waves. 435 

~vh~ch the first is due to a true change of form of the wave- 
surface, whilst the second may be attributed to a small 
advancing motion of the wave~ which is left after the addition 
of the uniform motion with velocity q0= v / f l  • To this effect 
we have still at our disposal the quantity a, whose close con- 
nexion with the uniform motion, which we have added in 
order to make the wave nearly stationary~ has been indicated 
above. 

One of the best ways to obtain the desired separation is 
certainly to make stationary the highest point of the wave, 
and this is effected by fulfilling the condition 

'~ (a + 2~p ') = 3 (4~p ~ -- 10, 
o r  

~ = 4(rp2--~h ; 

for in that case equation (32) is simplified to 

d~ 
__ _ 3 q ~  (4ap ~ -  h) sech ~ Tx.  tanh ~ px ; . (33) 

and then~ for x =  O, 

~ -  -- - ~ -  is zero together with ~--~. 

In discussing this equation (33), we see at once that a 
solitary wave (31) is stationary when h---4(rp~; and this is in 
accordance with the equation (17) of the stationary solitary 
wave which we have obtained above. When h>4¢p ~, the 
change of form of the wave, calculated from (33), is shown 
by the dotted line in fig. 2. 

:Fig. 2. 

Yl 

o ~ 

t tere  the wave becomes steeper in front*,  whilst for 
h < 4~T ~ the figure would show the opposite change of form, 
when, contrary to the opinion expressed by Airy and others, 
the wave becomes less steep in front and steeper behind. 

• The left side of the figure is the front side of the wave, because the 
wave has been made stationary by the application of a positive velocity 
(i. e. from left to right) to the fluid. 
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436 Drs. Korteweg and de Vries on the 

If, now, we take account of the fact that, as may easily 
be inferred from (31), the wave-surface becomes steeper in 
proportion as p is increased, we are then justified in saying 
that a solitary wave which is steeper than the stationary on% 
corresponding to the same height, becomes less steep in front  
and steeper behind, but that its behaviour is exactly opposite 
when it is less steep than the stationary one. 

Cnoidal Waves.--Applying formula (12) to the cnoidal 
w a v e y  

~ = h  cn~px~ . . . . . .  (34) 
we get 

) 

- a )  sn px  . cnpx  . dnpx .  . (35) 
Supposing then 

2 D - ~P~ (2 -- 4 m )  ] = 3 (4~M'p~ -- h), 
w e  h a v e  

@ 
~ ( 4 o ' M ~ p ~ - - h )  snaTx, c n p x .  dnTx.  (36) 

dt - - -  

gore fig. 3 shows the change of form calculated for the 
case h - - 4 ~ p  ~ > 0. 

Fig. 3. 

i 

0 X 

When h--~r3l~p~=O, the waves are stationary in accord- 
ance with (20), whilst for h - - 4 ~ M ~ <  0 they become steeper 
behind; and this last result~ since/) is inversely proportional 
to the wave-length~ may be stated by saying that cnoidal 
waves become less steep in front and steeper behind when, 
for a given modulus and a given height, their length is smaller 
than the one required for the stationary wave of this modulus 
and height. 

In proportion as M is taken smaller the cnoidal waves 
more and more resemble sinusoidal waves. They would take 
the sinusoidal form for M-- 0, but then an infinitely small wave- 
length would be required for the stationary case. For this 
reason sinusoidal waves may always be considered as enoidal 
waves whose length is too large to be stationary, that is, they 
are always becoming steeper in front. 
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Change of Form of Long Waves. 437 

8inusoidal Waves.~This last result is easily verified by 
direct application of (12) to the equation of a train 0i' sinu- 
soidal waves: 

= A  sin ~ ' ~ ;  */ 

for~ supposing 

we obtain 

~ 7 I ' 2 0  - 

d_~_ 3qo~'A ~ . 47rx 
dt -- 2lX-- sin ~X- ; 

'and from this the change of form indicated in fig. 4 is easily 
calculated. 

Fig. 4. 

t 

More complicated Cases.--For ghe sake of curiosity, we 
represent by means of the following figures the change of form 
for some more complicated cases. 

Fig. 6. 
Yl 

Fig. 6. 

i / /  

Fig. 7. 

Phil. Mag. S. 5. Vol. 39. No. 240. May 1895. 2 G 
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438 Drs. Korteweg and de Vries on the 

Figs. 5 and 6 refer to the equation 

1 " . ~ ' / r 2  9/= A1 sin ~ : ~  + sAx sm X " 

In fig. 5 is supposed to be small compared with ~- , as 

is the case with waves of extremely small height. In fig. 6 

w e s u p p o s e ( / )  0" t o b e s m a l l i n r e g a r d t o ~ .  Generally for 

more complicated forms of wave these two cases have to be 
discriminated. When there is a moderate proportionality 
between the two fractions the result is still more complicated. 

Finally, fig. 7 refers to the equation 
27rx 1~ • 47rx 

=A1 sin - ~ - - -  v~l  sm --~-~ 

in case that ( / ) '  is the smaller fraction. 

It is worthy of remark that all these waves grow steeper 
in front. 

V. Calculation of the Fluid Motion for Stationary Waves to 
the Higher Order of Approximation. 

In order to remove every doubt as to the existence of 
absolutely stationary waves, we will show how by develop- 
ment in rapidly convergent series the state of motion of the 
fluid belonging to such a wave-motion may be calculated. 

Expressing again the horizontal and vertical velocity of a 
particle by means of the series (1)and (2) which fulfil all 
the conditions for the interior of the fluid~ we have only, 
neglecting capillarity, to satisfy the surface-conditions, 

vl =u~ ~ ,  . . . . . . .  (37) 

and uz ~ + vl ~ + 2g~/= constant . . . . .  (38) 

For the case of cnoidal waves, which is the general one, 
we have found as a first approximation, 

i \ B y  ~ 3 
= + 7 )  

But now, to obtain higher approximation% we assure% indi- 
cating by accents differentiation with respect to x, 

,'~ = a~l(h--~l)(k + ~/)(1 + b~/+ c~ ~ + . . . ) ,  . (39) 
and 

f =  q + r~ + s,~ 2 + tn ~ + u~' + . . . . . . . .  (40) 
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Change of Form of Long Waves. 439 

On writing out (39), neglecting such terms as are or' a 
higher order than the fourth compared with 7, h, and k, 
which latter quantities are of the same orde U we obtain 

Vl~=ahkv + {a(h--k) + abhk}v ~ + { --a + ab(h--k) }V "~-ab~; . (41) 
and by differentiation, 

..=½az, k+ {a(z,-k) +~bZ~.kIn+/-~ + ~a'~'(Z'.--~)ln'~- 2a"'t '. (~-:~) 
From (40), by successive differentiations and substitutions, 

retaining all terms up to the third and the 3{ th order, we 
deduce : - -  

f l  = (r + 2s~ + 3t~ ~) 7'; 
f l = ~ a r h k  + {at(h--k) + abrhk + 3ashk}~l 

+ { - ~ ,  + ~ b ~ ( h -  k) + 4~(Z,- k)},~ + ( -  2 ~ , . -  5~),.~; 
f rom [ ar(h--k)i + abrhk + 3ashk 

+ { - -3at  + 3abr (h-k )  + 8as(h--k)}~l + (--6abr--  15as)v~]~'; 

whore yt is ~ quantity of the order 2 a. 
Substituting these values in equation (1), where y-- l+~l ,  

we have, retaining terms of the third order : ~  

+ {t + abrl "z + ~asl '~ + ~arl + i~6a~rl~}~l ~ . . . .  (43) 

We find in the same way, including terms of the 3-} ~h 
order : - -  

= v'V - ~ + ~ X h -  ~) + ~ b r ~  + ~ -- ~ , ~ ( h -  ~)~ 

+ ~oa~#h~ + { -- ~ -  ~ -- ~ + ½ab~ ~ (h-- ~,) 
+ ~? (z~ . -  ~.) + ½ ~  (~ - ~,) + ~ z ~  (h-~)} ,  

+ {- -3 t l - -  2s--abrla--~asla--~arlU--]a~a~rl~}~l~]. . (4~) 
2 G 2  
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440 ]4rs. Korteweg and de Vries on the 

If  now we write, in accordance with (37), 

v~ = A + B ~ + C ~ + D , p +  -., 

we have from (43) and (44):--  

a = ~ - ¼.rZ~hk + ~1~ . - ' r l ,  l ,k (1, - Z~) = - -  ,.~ + ~ . ,4~( / ,  - k)  

+ ~abrVhk + ½aslZhk -- a ½, a~rl5 (h--  k) ~ + & a 2 r P h k . .  (46) 

B - -  r - -  ½arl ~ ( h -  k) - -  ½abrl~hk-- ]asl~hk-- ½arlh k 

+ ~a~r l  a (h --  k)  2 -  ~6a~rl4hk = --  2sl--  r - ~arl ~ 

+ ½abrl'~(h-- k) + ~asl "~ (It --  k) + ~arle(h. - k) + la~rP (It - -  k). (47) 

c = ,  + ~ a z ~ , , -  ~ . b , . l  ~ (/, - k) - 2. .Z~ (1, - k) --,~,.l(,~ - -  k) - -  ~a~,.Z~ ( I , -  ~) 

= - - 3 t Z -  e . - , ~ b ~ Z ~ - ~ a . Z ~ - ~ . , . Z ~ - ? ~ . m ° . .  ( 4 8 )  

D = t +  abrl'~ +~asl~+~arl  + i~6a~rl" . . . . . . .  (49) 

Moreover, since (38) may be written in the form 
u~(1 + ~'~) + 2g~ = (h  + B~ + Cv 2 + D,/~)~(I + ahk~ 

+ a(h-- k)~/~ - -  a*/"~) + 2g~  = constant, . . . . .  (50) 

we readily obtain 
2 A B + a h k A ~ + 2 g = O ,  . . . .  (51) 

2 A C + B ~ + ~ ( ] , - - k ) A ~ = 0  . . . . .  (5~)  

2AD + 2BC--aA~=0 . . . . .  (53) 

From the equations (46), (47), (48), (51), (52),  (53), the 
six quantities q~ r, s, t~ a, and b may be calculated, and if we 
had retained everywhere terms of one higher order, we mi_~ht 
have got eight equations with eight unknown quantities, &c. 

By a first approximation we readily obtain from (46)-(49) : -  

and then from (51)-(53), 
3 b = 3  ~=gl ; a =  ~ : ~2 . . . . .  (5~)  
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Change of Form of Long Waves. 441 

Proceeding to the second approximation, we find 

q ( l + l ~ l k  ) s=q~ ~ h--k A=q;  
; q : ~ a q l + - l - - '  I ; 

+ } • l ; C =  --½a~ll--- ~ l i . - - -  U-; 

and then again from (51) and (52), 

q , = g t ( l + h l  k) 3 15 h--k  (55) 
; a = i ~ -  ¥ . - - t ~  . 

Finally~" a third approximation leads to : - -  

~(~+ ~ k  9 ~7~-k)~ 93 hk~. hk 
20 l ~ ~Ol~], A-----q+~q.~- ; 

r ~  

q ~ h--k 21q (h--k) ~ 12q hk 
B----- + 1 " l 20l l u 5 l-" l -~-; 

~----gl 1 +  l '20 1 ~ 20 " 

By means of these results we may now readily obtain from 
(1) and (2) expressions for u and v including respectively 
the terms of the 2 "a and 2 ltla order. 

They are : - -  

- ~ (  h--k 3 (h--k) ~ 
u~- ~/ 1 +  21 20 l ~ 

7V ~ ( 3 h k  3h- -k ,  
+ ~ ~ -t- . ~- -t- 2 l 1 

- h--k 
v - - - - ~ / ' ~  { ( 1  + l 

w h e r e  

3 (1 

33hk\ ( h--k~n 
40~-) + :+  ~ - ] i  

9 ~]Y } (57) V ~ 2 
4 

( )}  4" Y + - 2--7- + ~ ' ~  y8 ;(58) 

5 ~,7~) (~_,)(~ +.)(1 + 3 
4 

VI. Calculation of the E!tuation of the Surface. 
W e  will now show how for the equation of the surface of a 

stationary train of waves a more correct expression than (20) 
can be deduced• For this purpose we have to integrate 
the differential equation (39)7 or rather we have to prove that 
a series can be given which solves this equation to any desired 
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442 Drs. Korteweg and de Vries on the 

degree of accuracy. Now such a series may be obtained in 
the following manner. Let 

,,=t,~en~½'~Va(h,+k~) ( M = , , /  h, '~ . (60) 
V h l  + kl ] 

represent,the solution of an equation 
,lW~=av,(hl--qql)(kl+vl), . . . .  (61) 

where hi and kl have values which are slightly different from 
those of h and k in (39); then these values and the coefficients 
a~/~ &c., of a series 

may be determined in such a way* that this series (62) 
satisfies the equation (39). 

Indeed, substituting (62) in (39) and taking into account 
(61), equation (39) reduces to 
(~, + ~,e,7, + 3,),,7,' + . . . ) ' (h, - - ,~ , ) (k,  +,1,) 

= (~, +,e,7, + ,,,,,~,' + . . . ) (h  - ~,,~, --,e,,, ~-,,/,,'~ + . . . )  (k + ~,,7, 
+ B , £ '  ÷ ~,,7, ~ + ...)(:1 + b~,7, + (bB + e,,),,* + . . . ) ,  

and it is only necessary to equalize the coefficients of the 
corresponding terms of both members of this equation. 

If  we retain all terms to the fourth order, we find in this 
way~ after some reductions : - -  

ahl~ 1 - -  ~ , ~  : 0 . . . . . . . . . . . .  (63) 

,:,, (t,, - k l ) -  a " (h  - -  k) - -  (ba~-- 3,S)hk = 0 . . . . . .  (6'~) 

_as  + a4_ (ha4_ 2~/~) (h-- k) -- (e~ ~ -- "2ba~/3 + 8 ~ - -  5a~)hk = 0 (65) 

--4a/2 + 3a~f3+ ba 4 -  (ca3+3b¢2tg--3t~--4a~t)(h--k) = 0  (66) 

--419~--6nT+ca'+4ba~t~+3at~+3a~7=O." . . . . . .  (67) 

To a first approximation these equations are satisfied by 
taking 

hi- -h;  k~=k; a----i; /2=hi  7=b~+½o (68) 

If  then we substitute in (63)~ (64), (65)~ and (66) 

hl=h +e~ k l=k  +ae, a = l + a l ~  /~----b+fll 

where a 1 and ~1 are quantities of the first~ e and ~ of the 
second order, we find from these equations by second approxi- 
ma t ion : -  

* The coefficient a in (61) might also have been chosen slightly 
different in value from a in (39), but this would only have introclueed 
an unnecessary indeterminateness ia the solution, 
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Change of Form of Long Waves. 443 

~ = - b h ~ ;  ~ - -bhk;  ~ = - - b ( 1 ~ - - k ) ;  B l = ( - - 2 ~ + ~ ) ( 1 ~ - - k ) . .  (69) 
Substituting as a tMrd approximation :--  
h~=h--bhk + ¢1 ; k l - - k  +bhk +cel, a = l - - b ( h - - k )  +a~, 

we obtain finally~ 

~ = ½~7~k(-1~ + 2k); ~, = ~ ~l~k(~l~-k) ; ~ = (t~-- ~, ~ ) ( l a -  l~k + k~).(T0) 
Hence the equation of the surface of the waves is, including 

all terms of the third order : - -  

, =  [1 - -bq , - -k )  + (b~--~c) ( t~--  1~k + k~)],l  + [b + (--2b ~ 

where 

~]l=hlcn'~,Ja(]~l..{-]¢l)(l~'-~~)., ((,0) 

hi = h -- bhk + ½ch# ( -- h + 2k); k~ = k + bhk + ~ chk (2h -- k). (72) 

I-Iere~ according to (59), 

3 ( S h - k  ) 3 
a=/~ 1 4 l + . , .  ; b - - ~ + . . . ;  . (73) 

whereas the value of c and more correct expressions for a and 
b could only have been obtained by means of s~ill more tedious 
calculations, which we have not executed. 

I f  we confine ourselves to that degree of approximation for 
which all the calculations have been effected~ we may write 
for the equatioa of the wave-surface : - -  

3 ~ /=[1  3 (1~//-- k)]~l + ~ ~/1' . . . . .  (74) 

~,=h ~n~-i(1- 5(I~-k)~. /~h +/~) (751 
8l ] 'V  V ' 

M = ( I  3k'~ / h 
- 8 ~ 7 \ / / ~ ¥ ~  . . . . . .  (76) 

For the solitary wave, when k---O, we have ~ 

V= [ 1 - -  3hi qh+ 3 , ~Yl . . . . .  (77) 

, ,=h seoh  (78) 
January ] 895. 

* Another close approximation of the surface-equation of this wave has 
been deduced by McCowan, Phil. Meg. [5] vol. xxxii. (1891), p. 48. 
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