xlinkit: A Consistency Checking and
Smart Link Generation Service

Christian Nentwich, Licia Capra, Wolfgang Emmerich and Anthony Finkelstein

Department of Computer Science

University College London

Gower Street, London, WC1E 6BT UK
{c.nentwich,l.capra,w.emmerich,a.finkelstein }@cs.ucl.ac.uk

xlinkit is a lightweight application service that provides rule-based link generation and checks the consistency of
distributed web content. It leverages standard Internet technologies, notably XML, XPath and XLink. xlinkit can

be used as part of a consistency management scheme or in applications that require smart link generation, includ-
ing portal construction and management of large document repositories. In this paper we show how consistency
constraints can be expressed and checked. We describe a novel semantics for first order logic that produces links
instead of truth values and give an account of our content management strategy. We present the architecture of
our service and the results of two substantial case studies that use xlinkit for checking course syllabus information
and for validating UML models supplied by industrial partners.

Additional Key Words and Phrases: Consistency management, Constraint checking, Automatic link generation,
XML

1. OVERVIEW

This paper describes xlinkit, a lightweight application service that provides rule-based link
generation and checks the consistency of distributed web content. The paper is supple-
mented by the on-line demonstrations#p://www.xlinkit.com

The operation of xlinkit is quite simple. It is given a set of d|str|buted XML resources
and a set of potentially distributed rules that relate the content of those resources. The
rules express consistency constraints across the resource types. xlinkit returns a set of
XLinks, in the form of a linkbase, that support navigation between elements of the XML
resources. The major contribution of this paper is a new linking semantics for our first order
logic based language, which returns hyperlinks between inconsistent elements instead of
boolean values.

xlinkit leverages standard Internet technologies. It supports document distribution and
can support multiple deployment models. It has a formal foundation and evaluation has
shown that it scales, both in terms of the size of documents and in the number of rules.

With this thumbnail description in mind it is easiest to motivate and to explain xlinkit by

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies
show this notice on the first page or initial screen of a display along with the full citation. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other
works, requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept,
ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-048Ip@missions@acm.org

2 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

reference to a simple example. This example is given in Seftion 3 below. It is preceded by
some essential background on the technologies that we build on.

2. BACKGROUND

The paper assumes some familiarity with XML (Extensible Markup Language) [Bray et al.
2000] and XSLT (Extensible Stylesheet Language Transformatipns) [Ciark 1999]. It also
makes significant reference to technologies related to XML, specifically XLink [DéRose
etal. 20011], the XML linking scheme and XPath [Ciark and DeRose|1999], which supports
addressing of the internal structures of an XML resource. We make some reference in
the paper to the XML DOM (Document Object Modei) [Apparao et ai. 1998], the API
for XML resources though this paper does not require a detailed understanding of it. For
details of XML and related technologies good sources are the World Wide Web Consortium
(W3C) and the Organisation for the Advancement of Structured Information Standards
(OASIS). We will briefly give an overview of the main XML technologies referred to in
this paper.

The Document Object Model (DOM) facilitates the manipulation of XML data through
an application program interface. It specifies a set of interfaces that can be used to manip-
ulate XML content. XML content is represented in the DOM as an abstract tree structure,
consisting of DOMnodes The interfaces contain methods for manipulating nodes in the
tree, such as listing the children of nodes and adding and deleting nodes, traversal and event
handling. The DOM provides a convenient mechanism for representing XML documents
in memory and is implemented by most major XML parsers.

Since the initial specification of XML, several languages have emerged as “core” lan-
guages that provide additional hypertext infrastructure to applications that have to deal
with XML. XPath is one of these core languages. It permits the selection of elements from
XML documents by specifying a tree path in the documents. For example, th&adth
alogue/Product would select alProduct elements contained in aryatalogue
elements in an XML file. XPath also supports the restriction of selected elements by pred-
icates and contains several functions, including functions for string manipulation. We use
XPath for selecting sets of nodes from DOM trees.

XLink is a another core infrastructure language. It is the standard linking language
for XML and provides additional linking functionality for web resources. HTML links
are highly constrained, notably: they are unidirectional and point-to-point; have a limited
range of behaviours; link only at the level of files unless an explicit target is inserted in the
destination resource; and, most significantly, are embedded within the resource, leading to
maintenance difficulties.

XLink addresses these problems allowing any XML element to act as a link, enabling
the user to specify complex link structures and traversal behaviours and to add metadata to
links. Fig.[1 shows some XML markup that uses XLink to turn an element into a link. The
Product element has axlink:type attribute attached to it — XLink aware processors
will now recognise this element as a link. The element contains two elements of type
locator , which will be recognised as link endpoints. This link now links together the
first and secon®roduct element inoldcatalogue.xml . Most importantly, it links
together two elements in a file without inserting any links directly into the file, that is it is
an external link with respect to those files.

Since such “extended links” can be managed separately from the resources they link, it is
possible to compile “linkbases”, XML files that contain a collection of XLinks. Linkbases

xlinkit: A Consistency Checking and Smart Link Generation Service . 3

<Catalogue>
<Product xlink:type="extended">
<Name>Haro Shredder</Name>
<Code>B001</Code>
<Price currency="GBP">349.95</Price>
<Combines xlink:type="locator"
xlink:href="oldcatalogue.xml#/Catalogue/Product[1]"
xlink:label="component 1"/>
<Combines xlink:type="locator"
xlink:href="oldcatalogue.xml#/Catalogue/Product[2]"
xlink:label="component 2"/>
</Product>
</Catalogue>

Fig. 1. Sample XLink

can then be selectively applied to establish hyperlinks between resources. The XLink
language contains further constructs for specifying behaviour during link traversal and
traversal restriction, which we do not currently make use of.

3. EXAMPLE

We now introduce an example which is used throughout the paper. Wilbur’s Bike Shop
sells bicycles and makes information about their company available on the Internet and on
a corporate intranet. Wilbur's use XML for web publication and information exchange.

The information collected by Wilbur’s is spread across several web resources:

—a product catalogue — containing product name, product code, price and description;
—advertisements — containing product name, price and description;

—customer reports — listing the products purchased by particular customers;
—service reports — giving problems with products reported by customers.

Wilbur’s has only one product catalogue, but many advertisements, customer reports and
service reports. The information is distributed across different web servers.

It should be clear that much of this information, though produced independently, is
closely related. For example: the product names in the advertisements and those in the
catalogue; the advertised prices and the product catalogue prices; the products listed as
sold to a customer and those in the product catalogue; the goods reported as defective in
the service reports and those in the customer reports; and so on.

Relationships among independently evolving and separately managed resources can give
rise to inconsistencies. This is not necessarily a bad thing but it is important to be aware
of such inconsistencies and deal with them appropriately. In view of this, Wilbur’s would
like to check their resources to establish their position.

For the example which follows we will concentrate on the relationship between the prod-
uct catalogue and the advertisements. Hig. 2 shows an extract from the product catalogue
and Fig.[B shows a sample advertisement. Samples of the other resources can be found in
Appendix[A.

This relationship requires a check:

—Are all the product names in the advertisements mentioned in the catalogue?

4 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

<Catalogue>
<Product>
<Name>Haro Shredder</Name>
<Code>B001</Code>
<Price currency="GBP">349.95</Price>
</Product>
<Product>
<Name>Dyno NFX</Name>
<Price currency="GBP">119.95</Price>
<Code>B003</Code>
</Product>
</Catalogue>

Fig. 2. Wilbur’s product catalogue extract

<Advert>
<ProductName>Dyno NFX</ProductName>
<Price currency="GBP">119.95</Price>
<Description>BMX Bike. Dyno expert frame.
Coaster brake or freewheel.
</Description>
</Advert>

Fig. 3. Wilbur's sample advertisement

Other checks might include :

—Do the advertised prices and the product catalogue prices correspond?
—Are the products listed as sold to a customer in the product catalogue?
—Did we sell the goods reported as problematic to the customer reporting the problem?

We define these checks as rules and assemble them in a rule set. We describe our rule
language and the assembly of rule sets in the following sections. The document set is the
collection of documents we want to check against the rules. In this example we have a set
of adverts, a set of customers and a set of service reports. Both the document set and the
rule set are identified by URLSs.

We define a transparent semantics for generating hyperlinks depending on the status of
the documents with respect to the rules. Thus:

—Are all the product names in the advertisements the mentioned in the catalogue?
Result: Links between the product advertised and the corresponding product entry in the
catalogue. If there is no corresponding product in the catalogue, the advertisement will
not be linked to anything and a rule reference is included for diagnostic purposes.

—Do the advertised prices and the product catalogue prices correspond?
Result: When the advertised price does not match, link to the offending advert and
include a rule reference for diagnostic purposes.

—Are the products listed as sold to a customer in the product catalogue?
Result: Links between the product entry in the customer record and the corresponding
product entry in the catalogue. If there is no corresponding product in the catalogue,
link to the customer record and include a rule reference for diagnostic purposes.

—Did we sell the goods reported as defective to the customer reporting the problem?

xlinkit: A Consistency Checking and Smart Link Generation Service . 5

{Egaﬁé.driﬁ

Back Forward Reload Home Search Metscape Print Security

D xlinkit.com - Link Engine (Wilbur's Bike Shop)

Please enter the URL of the document set and the rule set that you want to check
below. Please note that your data will be transferred in plaintext via http. In order to
check confidential information, please contact us about an intranet service.

Ducln‘nel%i? I}lttp < fAmme. mlinkit. con/Example /Bike/DocumentSet. smlPnoprocess=true

RuleSet URL I_V(_htt.p S xlinkit. con/Example /Bike /RuleSet. sulrnoprocess=true

) “Raw XML
I.n}kbaset SHTL wanslation
“Anteractive HTRL

=l I =
= [oo | e o ap @ 2|

Fig. 4. Web submission form

Result: Links between the product with the problem and the product entry in the cus-
tomer record. If there is no corresponding product entry in the customer record, link to
the defective product and include a rule reference for diagnostic purposes.

The checks are made by submitting the document set and the rule set URLSs to the check
engine which makes the checks and returns the URL of an XLink linkbase[] Fig. 4 shows
the submission form that is passed to the check engine. Because the linkbase is itself XML
we can apply a stylesheet to render it in HTML for review or deliver in source XML [Fig. 5
shows an HTML representation of a linkbase. Users can click on the consistency links; a
servlet will then retrieve the two XML files that are being linked, convert them to HTML
and highlight the linked elements.

Most “off-the-shelf” browsers do not yet implement support for extended links of the
sort that xlinkit produces, only limited support is available for simple links, that is XLinks
embedded in documents from browsers like Amgya [Consortium| 2000] or the latest re-
leases of Mozilla[fMozilia 2000]. One way to make the linkbase navigable is to first “fold”
it into the resources. This entails applying an XLink processor to fetch the resources refer-
enced in the linkbase, convert the extended links into simple links and integrate them into
the resources in the appropriate place. This task cannot be performed by a stylesheet as
stylesheet languages are typically designed to transform documents into one output doc-
ument. Instead, we use our own XLink processor, XtooX, for this purpose — there are a
number of similar processors available. The resulting XML resources can then be handled
in the familiar manner, that is by applying stylesheets to render into a browsable hyper-
linked HTML presentation. In the case of our example we deliver a product catalogue site
that links to the advertisements.

6 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

/3 xlinkit Linkbase Parser - Microsoft Internet Explorer - —13lx|
Fle Edt View Favortes Tooks Help |

bk - = - D | @search [ElFavorites {AHstory | Eh- &5 = HPR

Address [B] Ciitemplttframeset2 i ~| P ‘
Extended Link 3 -
QA XLink
=3 hitp:/fwww xlinkit. com/Example/Bike/advert2. xml#xpointer(/Advert)
~[8] source
. [# source
=43 http:/fwww. xlinkit. com/Example/Bike/catalogue. xmb#xpointer(‘Catalogue/Product[2)
Extended Link 4 J
‘Q XLink
=3 hitp:/fwww.xlinkit.com/Example/Bike/advert3.xml#xpointer(/Advert)
. (8] source
B hitp:/fwwrw. xlinkit. com/Example/Bike/catalogue. xmb#xpointer (/Catalogue/Product[3]) =
=|[< PIICE CUITENCY = STETNE ™~ 349.95 =7 PIICE =]
<? type="text/xs]l" href="advert.xsl" 2> < Description > Freestyle Bike. </ Description >
<? type="xslt" 7> </ Product > J
Advert > Product >
< ProductName > HARO TR2.1 </ < Name > HARO TR2.1 </ Name >
[ProductName > < Code > B002 </ Code >
< Price currency =" sterling " > 179.95 </ < Price currency =" sterling " > 179.95 </
[Price = [Price >
< Description > BMX / Trail Bike. — < Description = BMX / Trail Bike. </
|Affordable BMX performance! New Track [Description >
and Trail frame design Tektro alloy direct / Product >
pull brakes. </ Description > = |
€] [& my Computer 7

Fig. 5. Sample linkbase in HTML

4. RULE LANGUAGE

This section presents our set-based rule language which serves to express consistency con-
straints between distributed documents. We outline a simple formal basis for the language
and formalise our example rule.

Our rule language uses XPath to select sets of elements which are then related via
constraints. We use a notation for evaluating XPath expressions and for the formalisa-
tion of the DOM which is due to[[Wadler T999]: the functidip], creates a set of
nodes by evaluating the path expressjowith = as the context node. (For example,
S[Price/Q@currency] ;5 4,., IN Fig. § would return a one-element set containing a text
node with the string'GBP”). We will later refine this function to allow for variable
context information, so that variables can be referred to in path expressions.

When specifying a rule, we want to express a relationship of one set of nodes with one
or more other sets of nodes. For example, the set &ditert elements in Wilbur's ad-
vertisements has to be consistent with the set dPadbucts in their product catalogue.

We will rephrase the questiofre all the product names in the advertisement the same
as in the catalogue?” more formally as an assertiofiFor all Advert elements, there exists
a Product element in the Catalogue element where the ProductName subelement of the
former equals the Name subelement of the latter”. If this condition holds, a consistent
relationship exists between the Advert element and the Product element being considered.
Otherwise, the Advert element is inconsistent with respect to our rule.

Fig.[® shows an abstract syntax for our rule language. The language is a restricted form
of first order logic, where no functions are allowed and all sets in the model are finite

xlinkit: A Consistency Checking and Smart Link Generation Service . 7

rule = Yvar € xpath(formula)

formula == Vvar € xpath(formula) |
Jvar € xpath(formula) |
formula and formula |
formula or formula |
formula implies formula |
not formula |
xpath = xpath |
xpath # xpath |

same var var

Fig. 6. Rule language abstract syntax

since they are generated by an XPath processor. We do not make any restrictions on the
path expressions that can be used, so the full range of string manipulation and namespace
functions in XPath is available, as is the support for externally bound variables — which we
use to bind variables from our quantifiers. We can express our sample rule directly in this
language as

Va € “/Advert” (Ip € “/*/Product” (“$a/ProductNameZ“$p/Name”))

The language restrictions imply that we cannot express constraints that require any form
of infinity. For example, the constraifdr all elementse, the children ofr are prime num-
berswould require quantification over the integers to express the latter half of the constraint
and thus cannot be expressed in this language. Nevertheless, its power is great enough to
express a wide range of static semantic constraints, including those of the Unified Model-
ing Language[[Object Management Group 2000a].

Some rules require the added power of a transitive closure operator. For example, if
Wilbur’s bikeshop were to offer composite products such as bikes made from several com-
ponents, they might want to check that composite components are not parts of themselves.
It is then not enough to check whether a part of a component equals the component it-
self, since the part may itself be made up from several parts - the transitive closure of the
part-whole hierarchy has to be computed.

We have enriched the XPath language with a transitive closure operator. The basic form
of the operator islosure(base,transition) , Wherebase andtransition are
both XPath expressions. The operator first evaluatebabe expression to build up a set
of nodes. It then evaluates thransition expression with each node in the previously
built set of nodes as the context node. The resulting node set is added to the base set. This
process continues until the transition expression leads to an empty set or a cycle is found.
The current base set minus the initial base set is then returned as the closure set.

Node 1 | id=1" | child="2’
Node 2 | id="2" | child='3
Node 3 | id="3

Table 1. Sample sets for transitive closure

8 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

As an example, consider the set of nodes shown with their subelements in[JTable 1.
If we invoke closure(id(‘1"),id(./child)) , Whereid(s) is a standard XPath
function that retrieves a node based on an attribute of type ID, the operator constructs the
base set containing node It then executeg(./child) with nodel as the context
node, which leads to node Node2 is added to the base set and the transition expression
is evaluated again, leading to noslewhich is added to the base set. Finally, for ngde
evaluating the transition expression leads to an empty set. N@leow subtracted from
the base set and the set containing nddaed3 is returned as the result.

5. LINK GENERATION

Our approach is always to take a tolerant view of inconsistency — inconsistencies are not al-
ways accidental or undesirable and we do not force their immediate resolution; instead we
aim to provide diagnostic information that enables document owners to decide on further
action, be it the resolution or toleration of inconsistency.

In this scenario, the priority of a consistency management system shifts from preven-
tion of inconsistency, for example through disallowing updates, to strong diagnostics that
pinpoint precisely the elements that cause the inconsistency. We use hyperlinks called
consistency linkso connect consistent or inconsistent elements. If a number of elements
form a consistent relationship they will be connected vimasistent link If they form an
undesirable relationship with respect to some rule, they are connected wieomsistent
link.

We have made the process of link generation transparent to the rule writer by defining
a new semantics for our first order logic. Instead of returning boolean values, we generate
hyperlinks. The remainder of this section will explain this new semantics in detail and
show how links are generated for our example.

A consistency link consists of a setlotators Each locator points to a exactly one node
in a DOM tree. Links, and hence consistency relationships, are not restricted to connecting
two elements in this case, but can form relationships betweelements, where > 1.

Let N be the set of nodes contained in the DOM trees of the documents that are being
checked. We define the set of sets of locatorB@asitors = (V). The set of states a link

can take is defined & = {Consistent, Inconsistent} and finally the set of consistency
links is L = C' x Locators.

In order to support variable bindings in quantifiers and XPath expressions, we need to
define a variable environment. LEtbe our alphabet and = X* be the set of strings
over. The set of all legal variable names, as defined by the XPath specification, is then
V, whereV C S. A variable environment, or a collection of “bindings” is a set of tuples
mapping variable names to sets of DOM nodes. The set of variable environBesisus
defined az = p(V x p(N))

Before defining an evaluation strategy, we also need to introduce some auxiliary func-
tions, shown in Fig] 7flip flips the consistency status of a link to its oppodlitgcartesian
takes two linksy andy, and produces a new link with the statusiadind a set of locators
consisting of the union of the sets of locators franandy. The infix operatorx takes
a link and a set of links and produces a new set by applijigartesianbetween the
single link and every individual link in the set. Finallgind is used to introduce a new
variable into a variable environment. In practice, this function will perform a check to
make sure that no variable is bound twice. There is no function to retrieve variables from
an environment, as this task is implicitly performed by the XPath processor.

xlinkit: A Consistency Checking and Smart Link Generation Service . 9

first(z,y) = =
second(z,y) = y

flip : L—L
flip((Consistent,y)) = (Inconsistent,y)
flip((Inconsistent,y)) = (Consistent,y)

linkcartesian : L — L — L

linkcartesian(z,y) = (first(z), second(x) U second(y))

X : L— (L) — (L)
xz XY = {linkcartesian(z,y) |y € Y}

bind : (Vxp(N)—E—E
bind(z,e) = {z}Ue

Fig. 7. Auxiliary functions

Given this new set of functions, we now modify the functiSrfor evaluating XPath
expressions. We formally define the function&s S — E — p(p(NN)). In words,
the function takes a string, which must be an XPath expression or be rejected at run-time
by a parsing mechanism, and a variable environment, and returns a set of DOM nodes.
The functionS[p], will thus select a set of nodes using the patlgiven the variable
environment.

In practice, the function will evaluate the expression argument on all documents that are
being checked and then compute the union of the set of result nodes, making it possible
to address all documents independent of their location. Note that we have removed the
context node from the function: instead, path expressions in xlinkit must either be relative
to variables, e.g. “$p/Name” in our example, in which case the context node is resolved
by the processor via the variable environment, or be absolute, e.g. “/Advert” in which case
the context node is the root node.

We will now define our evaluation function for thele non-terminal in Fig[]6 and then
progressively define the semantics of the varigusmula productions. Our semantics
will be supported by the standard first order logic truth evaluation semantics shown for
completeness in Fig] 8. We do not define a truth assignment for the toprigehon-
terminal since we are not really interested in the overall truth of the formula - we are
interested in link generation. It should be noted though that when the top level non-terminal
evaluates its subformula, it will pass an initial binding context containing its quantifier
variable and the selected nodes.

Fig. @ shows the complete link generation semantics for our language. The function
R : rule — p(L) takes a rule and returns a set of consistency links. Since a rule consists
of a universal quantifier, the function will build a set of nodes using a path expression,
assign the nodes in the set to the quantifier variable in turn and ask the subformula to return

10 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

F . formula — boolean
F[vvar € xpath(formula)], = F[formulaly;,q((var,{z1}),e) N/
Flformulaly;na((var,{z,}),c) | #i € S[xpath],
F[3var € xpath(formula)], = F[formulaly;,q((var,{z1}),e) V-V
Flformulaly;nq((var,{z,}),c) | #i € S[xpath],
Flformula; and formulaz], = F[formulai], A F[formulaz],
Flformulay or formulaz], = F[formulai], V F[formulaz],
Flformula; implies formulaz], = F[formulai], — F[formulaz],

Flnot formula], = —F[formula],
Flxpath; = xpathz], = S[xpath;] = S[xpathz],
Flxpath; # xpathz], = S[xpath;]_# S[xpathz],

Flsame var; varz], = S[vari], = S[varz],

Fig. 8. Rule language - truth value semantics

a set of links. Depending on the truth value of the subformula for the current assignment,
the function generates a consistent or inconsistent link by prepending its current variable
assignment to all links returned by the subformula.

The quantifiers in theformula productions behave similarly. Both the universal and
existential quantifiers will first evaluate their XPath expression - which may now include
references to variables bound to some node in a parent formula - and then bind each node
in the resulting node set to their variable in turn, calling the subformula evaluation. As far
as link generation is concerned, the existential quantifier generates consistent links if the
subformula is true for the current assignment, prepending its own current node to the links
returned by the subformula. The universal quantifier generates an inconsistent link every
time a subformula is false, again prepending its current node to the links returned by the
subformula.

Advert Product
ProductName=‘a’| Name=‘c’
ProductName='b’| Name='a’
ProductName=‘c’| Name='f

Table 2. Sample sets for rule evaluation

We will discuss this semantics using our example e € “/Advert” (Ip €
“/*IProduct” (“$a/ProductName=“$p/Name”)). Suppose that our documents contain
threeAdvert elements and thrderoduct elements, each shown with their subelement
names and values in Talle 2. We will use the notafignwhereX; € N, to address the
ith element in sefX, for exampleAdvert, will address the element with valleas its
product name.

In the first step, the rule evaluation will bintllvert; to a and call the existential quan-
tifier's evaluation. Stepping through theroduct set, the existential quantifier asks the
equality predicate for a boolean result, comparing the valaearid ‘c’. The result is
false, so the existential quantifier ignores it. On the second entry iPth€uct set, the

xlinkit: A Consistency Checking and Smart Link Generation Service . 11

status : bool — C
status T = Consistent
status L = Inonsistent
R : rule — (L)

R[Vvar € xpath(formula)]

{(Status(f[[fo,rmuza]]bind((var,{m}),{}))’ {CE}) X
E[[formula]]bind«van{z}%{}) |z e Sﬂxpath]]{}}

L : formula — p(L)

L[Vvar € xpath(formula)], = {(Inconsistent, {z}) x L[formula]y;,q(var,{z}),e)
|z € S[xpath], A f[[fm'mula]]bmd((vam{m})’e) =1}

L[3var € xpath(formula)], = {(Consistent, {x}) x L[formula]y;,q((var,{z}),e)

|z € S[xpath]_ A f[[formula]]bmd((varv{z})’g) =T

{z x L[formulaz], | x € L[formulai]_}
L[formulai], U L[formulaz],

if Flformula1], = F[formulaz],
L[formulai],, if F[formula1], =T
L[formulaz],, if F[formulaz], =T
L[formula; implies formulas], = L[formulaz],,

if Flformulai], =T A Fformulaz], =T
{z x L[formulaz], | x € L[formulai]_},

if Flformulai], =T A Fformulaz], = L
{flip(x) | x € L[formulai]_}, otherwise
{flip(z) | x € L[formula] }

L[formula; and formulaz],
L[formulai or formulaz],

L[not formula],

L[xpath; = xpathz], = I8t
L[xpath; # xpathz], = {}
L[same xpath; xpathz], = {}

Fig. 9. Rule language - link generation semantics

equality comparison returns true. In accordance with the semantics, the existential quanti-
fier generates a new link of the for(@onsistent, { Products}). For the third entry, the
subformula returns false so the link generated previously represents the whole set of links
returned. The universal quantifier is now notified that the subformula has come out true
for the current assignment. It prepends the current eleménert; to all links returned
by the subformula, yielding the set of link§Consistent, { Advert,, Products})}. Here
we have our diagnostic that tells us that the first advert is indeed consistent and linking it
to the information it is consistent with.

In the case ofAdverts, the existential quantifier will not find a product with the same
name b'. As a consequence, its truth value will Hfalse and it will return an empty
set of links. The universal quantifier will obtain this truth value and hence generate a
new set of links - prepending its current assignment to the empty set of links returned by
the existential quantifier {(Inconsistent, { Adverto})}. Evaluation of the third node
will proceed similarly to that of the first node. The result is the union of all sets of links
obtained by the universal quantifier:

{(Consistent, { Adverty, Products}),
(Inconsistent, { Adverta}),
(Consistent, { Adverts, Product; })}

12 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

Intuitively, these links make sensgdvert; and Product, form a desirable relationship
with respect to this rule and thus have been linked using a consistent linkddzerts,
we could not find a matching element and have thus created an inconsistemtdin:t,
is inconsistent with the whole of the system rather than a particular element, so it stands
alone.

Productions that contain only terminals, such as the definiti@goélsdo not introduce
new variables nor contain subformulae. Their linking semantics thus is to always return
an empty set, since they would not be able to contribute any link locators. We can now
also explain why these predicates are included in the xlinkit language, while they are also
present in XPath. We could easily rewrite our example rule as:

Va € “/Advert” (3p € “/*/Product[Name=$a/ProductName]”

The semantics of xlinkit'qualsis equivalent to XPath's equality operator, that is it
compares two sets of nodes for equality. In the case of this rule, we would get an equivalent
result by doing all the comparison work in XPath. It is however possible to specify rules
that cannot be rewritten in this way. Take for example a rule, abstractly specified, of the
form Va(z ='5" Vv Jy(o)), whereo is any subformula. In this case it is not possible to
rewrite the equality comparison into an XPath predicate, since it is joined in disjunction
with an existential quantifier. If we want any links to be generated, the formula has to be
make use of xlinkit'ssqualspredicate since only xlinkit's constructs have link generation
semantics.

Discussing the behaviour of all the logical connectives is beyond the scope of this paper.
Suffice it to say at this point that the semantics given here has been tested wittb@ver
rules, involving all of the logical constructs, and produced good results in terms of properly
highlighting the causes of inconsistency.

Our overall goal is to produce a set of links that will make it easy to spot problems.
We are therefore keen to obtain the minimal set of links that completely expresses the
consistency status of the documents that have been checked. Unfortunately it is possible
for a set of links to contain redundant information. Consider the set

{(consistent,{X1,Y1}), (consistent, {Y1, X1})}

Since our links are bidirectional it is obvious that one of the links is redundant. Both
links express the same meaning: The two elements contained within them form a desirable
relationship. As an example of how this kind of redundancy arises in practice, consider a
formula of the formvz € X (Vy € X(z = y — same(z,y))). Suppose we define the set

X asX ={d,d, b} (Note: X seems to be a multiset according to this notation. This

is not the case in practice since a set of nodes will contain nodes with unique identifiers.
We show the values of the nodes rather than their identifiers for paedagogic purposes). If
we evaluate the rule ovex we get the set

{(inconsistent, { X1, X2}), (inconsistent, { X2, X1})}

We deal with this problem by running a check over the resulting set of links which checks
if a link is a permutation of another link. If so, the link is removed. The complexity of this
process i) (n?) but is fast enough in practice.

We conclude the section with some observation about the complexity of our link gen-
eration semantics. First of all we note that the evaluation function will always terminate
since the quantifiers which introduce looping into the scheme only execute theirrdoops

xlinkit: A Consistency Checking and Smart Link Generation Service . 13

times for a node set of size Secondly, the run-time complexity of the system is mainly
influenced by the maximum nesting of quantifiers, i.e. @{%:.*) wherek is the maximum

level of quantifier nesting. Though this exponential behaviour sounds problematic, it is not
a problem in practice. Most of the rule of the Unified Modeling Language, for example,
which represents a complex scenario by our standards, require at most 3 levels of nesting.
In addition, empirical results show that the evaluation is fast enough for the theoretical
complexity to be ineffectual.

6. XML IMPLEMENTATION

To define a concrete syntax for our language, we use an XML encoding. Encoding the
language in XML has the advantage of blending more uniformly into the environment
where it is going to be used. It also allows us to treat the rule files as targets which can be
checked by other rules.

Presenting the encoding of the whole language is beyond the scope of this paper and the
interested reader is referred to Appendix D for the complete DTD. Instead, we will present
two example rules expressing constraints for Wilbur’s Bike Shop.

Our first example will be the now familiar rul&or all Advert elements, there exists
a Product element in the Catalogue element where the ProductName subelement of the
former equals the Name subelement of the latter”. Fig.[L0 shows a rule file which specifies
this rule in XML format.

<consistencyrule id="r1">
<description>
Each advert must refer to a product
defined in the catalogue
</description>

<forall var="a" in="/Adverts">
<exists var="p" in="/Catalogue/Products">
<equal opl="$a/ProductName/text()"
op2="$p/Name/text()"/>
<[exists>
</forall>
</consistencyrule>

Fig. 10. Consistency rule in XML

A rule consists of two main parts: the first entry in a rule @escription element
which is a natural language description of the rule that can be used for diagnosis. The
following forall ~ elements contains the formula that specifies the constraint.

We have written a stylesheet that transforms the rules from XML to HTML to make them
more accessible for reading and browsing. The first order logic formulae are translated
from their XML prefix form back into infix. FigiZ11 shows the translated rules.

The consistency links that are generated as a result of a check are also presented in
XML, in the form of XLink linkbases Fig.[I2 shows a sample linkbase containing only
one XLink. The link indicates that it is connecting twonsistentlements. It contains
two locators that reference the elements using a URL and an XPath expression. Note that
the remaining attributes required in an XLink have been omitted here as they are defined
by default in the linkbase DTD.

14 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

' Netscape: Consistency Rule Set
File Edit View Go Communicator Help
<« < 34 &4 =a + & 8 i
Back Forward — Reload Home Search Metscape Print Security Shop Stap
...... e —|
. 3
Consistency rule set
Global set definitions
adverts Fhdwert
products JCatalogue/Product
Consistency Rule rl
Deseription The product name of an advertised product must be in the cadalogue
Link Generation ~ Consstenton
nconsistent on =
Rule forall a in $adverts { exists p in $products { fia/ProductM ame/text()=5p/Name/tezt()))
Consistency Rule r2
Deseription Al Adverts mest march aproduct in the catalogue with the same price
Link Generation ConsisFent off
Inconsistent on
Rule forall a in $adverts { exists p in $products { §ia/ProductM ameftext()=fp/Mame/text()
and $ia/Price/text!)=fp/Price/text())) i
El 100% [Document: Done. H b S o Fal 2
I T

Fig. 11. Rulesin HTML

The linkbases can be post-processed in several wayd[] Fig. 5 shows our servlet for inter-
active linkbase browsing. The user can click on a pair of locators and the servlet juxtaposes
the documents and linked elements in two frames at the bottom. Using our linkbase pro-
cessor, XtooX, we can aldold the linkbases back into the files, that is we can take the
externally defined links and insert them back into the files that they are pointing to. The

link in Fig. L2 would cause the insertion of a link &lvertl.xml , linking to the first
Product element incatalogue.xml - and conversely a link would be inserted in
catalogue.xml | linking to theAdvert element inadvert.xml . This mechanism

can be used to produce a web of inconsistency information between files. We will also
show in the evaluation how the mechanism can be used for the automatic construction of
linked standard web content in HTML.

<xlinkit:LinkBase
xmins:xlinkit="http://www.xlinkit.com"
docSet="file://DocumentSet.xml"
ruleSet="file://RuleSet.xml">
<xlinkit: ConsistencyLink
ruleid="rule.xml#/id('r1’)">
<xlinkit: State>consistent</xlinkit: State>
<xlinkit:Locator
xlink:href="advert1.xml#/Advert[1]"/>
<xlinkit:Locator
xlink:href="catalogue.xml#/Catalogue/Product[1]"/>
</xlinkit:ConsistencyLink>
</xlinkit:LinkBase>

Fig. 12. Sample linkbase in XML

xlinkit: A Consistency Checking and Smart Link Generation Service . 15

7. CONTENT MANAGEMENT

The selection of documents and rules to be checked against each other has to be managed.
It is not feasible to always check every document against every rule and it is certainly not
necessary to check every document every time. In our bike shop example, marketing peo-
ple may be interested in the status of adverts, whereas a customer relations department may
be interested in the status of customer reports. Some support for partitioning documents
and rules is needed to support flexible consistency management.

We use document sets, which contain a selection of documents taken from resources,
and rule sets which contain several rules. A document set together with a rule set can then
be submitted for checking.

Fig. [L3 shows a sample document set. Document sets form a hierarchy in that they
consist of documents and possibly further document sets. In the figur@aittele
directive is used to add a file directly into the set while &t directive includes further
sets. At check time, the hierarchy is flattened and resolved into a single set. To find out
whether a document needs to be checked against a rule, we check if the XPath expressions
in the rule’s set definition can be applied.

Our method of retrieval of document information is not limited to XML content stored
in files. Instead, we abstract from the underlying data store by providioherclasses. It
is the responsibility of a fetcher to liaise with some data store in order to provide a DOM
tree representation of its content. By default, data are retrieved from XML files using the
FileFetcher class, however user-defined classes can override this behaviour. Using
this mechanism, it is possible to read in content that follows a legacy format and translate
it into a DOM tree, to read data from network sockets or to construct a DOM tree from a
relational or object-oriented database.

As a proof of concept, we provide a JDBC fetcher, which executes a query on a database
and translates the resulting table into a DOM tree. Fifj. 14 shows a version of Wilbur’s
bikeshop document set where the service reports have been put into a relational database.
Thefetcher attribute in theDocFile directory overrides the defautileFetcher
to select thelDBCFetcher class.

The JDBC fetcher class executes the SQL query on the relational database and trans-
forms the resulting table into a DOM tree. F[g] 15 shows a sample table of service re-
ports fetched from Wilbur's database by executing the JDBC query from the document set.
Shown below the table is the XML representation, containingrome element for every
row stored in the table and using the column name data from the data dictionary for the
element names inside the rows.

Rule sets are managed in a similar fashion. A rule set contains references to rules and

<DocumentsSet name="BikeDoc">
<Description>Wilbur's complete collection</Description>

<DocFile href="catalogue.xml"/>
<Set href="Adverts.xml"/>
<Set href="Customers.xml"/>

<Set href="Services.xml"/>
</DocumentsSet>

Fig. 13. Sample document set

16 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

<DocumentsSet name="BikeDoc">
<Description>Wilbur's complete collection</Description>

<DocFile href="catalogue.xml"/>

<Set href="Adverts.xml"/>
<Set href="Customers.xml"/>

<DocFile fetcher="JDBCFetcher"
href="jdbc:mysql://www.xlinkit.com/testdb?user=wilbur#
select * from report"/>

</DocumentsSet>
Fig. 14. Document set with SQL resource
| productname | productcode | description |
| HARO SHREDDER | BOO1 | Found a problem in ... |
| HARO TR2.1 | BOO2 | Found a problem while... |
+ + + +
<rows>
<row>

<productname>HARO SHREDDER</productname>
<productcode>B001</productcode>
<description>Found a problem in ...</description>

</row>

<row>
<productname>HARO TR2.1</productname>
<productcode>B002</productcode>
<description>Found a problem while...</description>

</row>

</rows>

Fig. 15. Relational table XML representation

further rule sets. Fid: 16 shows a sample rule seRubeFile element is used to specify

a rule file to load and ampath attribute specifies which rules from that file to actu-
ally include. The patiiConsistencyRuleSet/ConsistencyRule will match all
ConsistencyRule elements included in the rule file. If that is not desired, a more con-
strained path such d€onsistencyRuleSet/ConsistencyRule[@id="r1"]

could be used, which only loads the rule whaseattribute is equal te1.

<RulesSet name="BikeRules">
<Description>Rules related to the Bike environment</Description>

<RuleFile href="bike_rule.xml"

xpath="/ConsistencyRuleSet/ConsistencyRule"/>
</RulesSet>

Fig. 16. Sample rule set

xlinkit: A Consistency Checking and Smart Link Generation Service . 17

8. ARCHITECTURE

We have implemented a publicly accessible, free to use Internet service. Our architecture
is very simple and its basic structure is shown in Fig. 17.

We have implemented the check engine as a Java Servlet, which is hosted on an Apache
web server running the Apache JServ servlet engine. Users are presented with the form
shown in Fig[} to enter the URL of the document set and rule set to be checked.

.......... |:| |:| |:| 8 Lﬁur;ﬁ
E sets & rule
sets

F'y
document set & linkbase
ruleset URL URL
generated xlinkit
linkbases web
server

Y
xlinkit lﬁ servlet
serviet engine

Fig. 17. Architecture overview

When the form is submitted, a new servlet instance is created to deal with the request.
The servlet itself uses the Xerces XML parser from the Apache XML project to parse
the documents and rule files. After checking the rules, the servlet writes an XML file
containing the generated links to the web server’s local storage. The servlet then generates
a result page that contains the URL of the link base and returns it back to the browser
client. The input form also gives the user a choice whether to return the raw XML file
containing the links or to add a processing directive for it to be translated into HTML
using a stylesheet. Please refer back to [fig. 5 for an example of the latter.

9. EVALUATION

This section presents two case studies that we used to evaluate the expressiveness of our
rule language and the scalability of our implementation. Our major goal was to find out
if xlinkit can be applied to a real-world example. In addition, we also wanted a “stress-
test” scenario for performance, scalability and expressiveness. Our first study checks the
consistency of course syllabus information and the second study performs a validation of
multiple software engineering documents.

The Department of Computer Science at University College London recently introduced
a new curriculum and associated course syllabi. In order to provide high quality informa-
tion in the wide variety of different representations required, it decided to adopt XML as
a common format. The system has to hold a curriculum and provide links to the syllabi

18 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

<syllabus>
<identity>
<title>Concurrency</title>
<code>3C03</code>
<summary>The principles of concurrency
control and specification</summary>
</identity>
<teaching>
<normal_year>3</normal_year>
<term>1</term>
<taught_by>
<name>Wolfgang Emmerich</name>
<pct_proportion>100</pct_proportion>
</taught_by>
</teaching>
<subject>

<pre_code>1B11</pre_code>
</prerequisites>
</subject>
</syllabus>

Fig. 18. Sample shortened syllabus file in XML

for students, depending on which degree programme they are pursuing.]Fig. 18 shows a
sample abbreviated syllabus file for a course. Each course is held in a separate XML file.
The curricula for degree programmes are kept in a single file. For each degree programme,
the mandatory and optional courses are listed, grouped by the year in which they can be
selected. Fig19 shows a fragment from the curricula file.

The process of syllabus development is highly decentralised, with different people pro-
viding additions and corrections to course syllabi. Curriculum files contain information
related to the individual syllabus files. For example, course codes mentioned in the cur-
riculum files have to be part of a syllabus definition. Altogether, ten rules were identified
as necessary to preserve the consistency of the system. The complete list of rules can be
found in AppendiX{B.

Itis desirable for navigation purposes to provide hyper-links from the curriculum to indi-
vidual courses. However, manually adding links from the curriculum file to all 48 syllabus
files would be error prone as files get deleted and courses renamed. It is preferable to use
the semantically equivalent information in the files (e.g. the course codes) to generate the
hyperlinks automatically. We used xlinkit to achieve both goals.

Fig. 20 shows the time used for checking each rule against all 52 documents. The syl-
labus files were all around kilobytes in size and the curriculum 140 kilobytes in size.
Checking was performed on a 700 Mhz Intel machine with 128Mb of RAM, running Man-
drake Linux8.0 with kernel2.4.9 and the IBM JDK 1.3. The total checking time whk 1
seconds, with the most complex rule taki®igeconds to check. In total,10 consistent
and11 inconsistent links were generated.

The exceptional checking time on rulewas caused by a transitive closure operation.
Our current implementation of this operator, outlined in Sedfjon 4, is still a proof of con-
cept. It uses a rather naive algorithm and has not been optimised for efficiency.

Our second goal in the case study was to provide a fully linked HTML version of the

xlinkit: A Consistency Checking and Smart Link Generation Service . 19

<Curricula>
<Curriculum>
<Programme>
<Title>CS</Title>
<Award>BSc</Award>
</Programme>
<Year number="1">
<Constraint>6 compulsory half-units,
2 optional half-units, no more than 1
optional half-unit can be non-programme.
</Constraint>
<Course value="Standard">
<Name>Computer Architecture I</Name>
<Code>1B10</Code>
<Theme>Architecture</Theme>
<Type requirement="C" level="F"/>
<Dept>CS</Dept>
</Course>

</Year>
</Curriculum>
</Curricula>

Fig. 19. Curriculum fragment

department’s curriculum to be browsed by staff and students. One of the rules for the
curriculum is that every course listed in the curriculum must have a syllabus definition. If
the rule is satisfied, a consistent link is generated from the course entry in the curriculum
to the syllabus defining the course. We used XtooX, as in the example section, to fold all
consistent links from this rule back into the XML file containing the curriculum. We then
only had to provide a simple XSL stylesheet that transforms the XML file and simple links

9000

8000
7000 +
6000 +

5000
4000 +

Time (msec)

3000

2000
1000 ~

O H ; Ij ; I:I ; — — —
1 2 3

4 5 6 7 8 9 10
Rule

Fig. 20. Syllabus study timings

20 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

I

Year 1 BSc Computer Science

[eic Choose 6 compulsory half-units, 2 optional half-units, no more than 1 optional
« CS with EE alf—unit can be non-programme.
« O3S with Maths
« TS with

CogSci
MSci

Course Code Theme Requirement
Computer Architecture [1B10 Architecture Compulsory
Programming | 1B11a Programming Compulsory
Programming Il 1B11h Programming Compulsory
Theory | 1B12 Theory Compulsory
Software Engineering 1 1B14 Desigh Compulsory
Discrete Mathematics MathsB45 Mathematics Compulsory
Digital Circuits ElecE655 Electronic Engineering Option
Fundamentals of Electronics ElecE662 Electronic Engineering Option
Introduction to Cognitive Science 1B50 Cognitive Science Option

Mathamatics

| acs

 C5 with EE

a CS5 with Maths

= CS with
CogSci

Year 2
lBSc

G5
* CSwith EE

CS Home | Research |Departmental Information |Events |Search

i

[MMozills =

Fig. 21. Automatically generated links in the curriculum

into an HTML representation. Fi@.]21 shows the “production version” of the curriculum
website, as generated by xlinkit.

Our second case study uses our rule language to express some of the static semantic con-
straints of the Unified Modeling Language (UML) [Object Management Group 2000a] and
checks them against several models stored in XMIT [Object Management Group 2000b], an
XML-based meta-model interchange format that supports the UML. The typical scenario
for this study is a distributed development team working on the same model and produc-
ing their own additions and copies of documents. If frequent merging of the documents
is not feasible, for example due to geographical separation, checks can be used to ensure
consistency.

We have expressed all but three constraints of the URdundation.Core package,
the package dealing with static information such as classes, they are listed in Appendix C.
Of the three that were not expressed, two are enforced by the XMI DTD and do not have to
be checked, and one requires information that is not supplied by XMI[Hig. 22 shows one
constraint for Associations as expressed in the xlinkit XML format.

We have applied these constraints to several UML models: a small design model of a
meeting schedulef [Feather et al. 1997], a medium size model shipped as an example with
Rational Rose and9 industrial size models provided by an investment bank. We use the
number of ModelElement objects contained in each model as a measure of scale since
almost everything in the UML meta-model derives from ModelElement. Our small model
contains93 elements, the medium size model 16a6 elements. The number of elements
contained in the industrial models ranges fréinto 2834 elements. In terms of file size,
the models range from around0 kilobytes to6 megabytes.

All results listed below were obtained on a 600 Mhz Intel machine with 384Mb of RAM,

xlinkit: A Consistency Checking and Smart Link Generation Service . 21

<consistencyrule id="al">
<description>
The AssociationEnds must have a unique name within the Association
</description>
<linkgeneration>
<consistent status="off"/>
<eliminatesymmetry status="on"/>
</linkgeneration>

<forall var="a" in="$associations">
<forall var="x" in="$a/Foundation.Core.Association.connection/
Foundation.Core.AssociationEnd">
<forall var="y" in="$a/Foundation.Core.Association.connection/
Foundation.Core.AssociationEnd">
<implies>
<equal opl="$x/Foundation.Core.ModelElement.name/text()"
op2="$y/Foundation.Core.ModelElement.name/text()"/>
<same opl="$x" op2="$y"/>
</implies>
</forall>
</forall>
</forall>
</consistencyrule>

Fig. 22. Sample rule from the UML Foundation/Core package

running Redhat Linux.1 with kernel2.2.19 and the IBM JDK 1.3. We will discuss the
results obtained by checking the UML Core constraints against the industrial models. It
took a total of4 minutes to check all rules against all files, counting only the time taken
to check individual rules and ignoring parsing overhead. While parsing takes morg than
minutes in total over all files, the variation in performance between XML parsers means
that including it would introduce unnecessary noise into the evaluation[Fig. 23 shows the
time taken for each rule over all files.

We can observe several interesting properties from the figure. Most rules take roughly

140000
120000 +
100000 +

80000

60000

Time (msec)

40000 -

20000
o all I n n a [) l-l

L O I B O B
I < N~ O M O O
D B B |

Fig. 23. Rule totals for UML Core rules

22 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

<xlinkit:ConsistencyLink ruleid="assoc.xml#//consistencyrule[@id="r1"]">
<xlinkit: State>inconsistent</xlinkit: State>

<xlinkit:Locator xlink:href="meeting2.xml#/XMI/XMI.content[1]/
Model_Management.Model[1]/Foundation.Core.Namespace.ownedElement[1]/
Foundation.Core.Association[1]"/>

<xlinkit:Locator xlink:href="meeting2.xml#/XMI/XMI.content[1]/
Model_Management.Model[1]/Foundation.Core.Namespace.ownedElement[1]/
Foundation.Core.Association[1]/Foundation.Core.Association.connection[1]/
Foundation.Core.AssociationEnd[1]"/>

<xlinkit:Locator xlink:href="meeting2.xml#/XMI/XMI.content[1]/
Model_Management.Model[1]/Foundation.Core.Namespace.ownedElement[1]/
Foundation.Core.Association[1]/Foundation.Core.Association.connection[1]/
Foundation.Core.AssociationEnd[2]"/>

</xlinkit:ConsistencyLink>

Fig. 24. Sample consistency link generated from UML model

the same amount of time to check, but three rules stand out as taking much longer. This
is due to two factors: These rules apply to more files than others, for example almost
every model has classes whereas few have association classes, i.e. the association class
rules do not apply in many cases. Secondly, the complexity of the XPath expressions in
the rules varies greatly. Some expressions use straightforward tree paths whereas others
require expensive functions like id lookup. This is a feature of the rather complex design
of XMI. XPath selection is the single most expensive process in rule checking and hence
the complexity of the path has the greatest impact - far greater than the complexity of the
formula in terms of nested quantifiers! The rule that takes longest to check makes use of
features in XPath — theame function and the union operator — that do not seem to be well
implemented in the XPath processor that we use and hence take longest to check.

In total, over all files, more tha®000 inconsistent links were generated. Consistent link
generation was turned off since we were only interested in finding inconsistencies] Fig. 24
shows one of the consistency links generated by the rule shown previously [nJFig. 22. It
shows clearly how the association has been linked to the two association-ends with equal
names, thus exhaustively specifying the ternary relationship that has caused the inconsis-
tency.

Although the number of inconsistencies seems large, given that the models were ex-
ported from a CASE tool, it can be explained. Some of the models included in the check
were analysis or high-level design models, so they were incomplete with respect to defi-
nition of fundamental data types, had operation parameter types missing and similar prob-
lems. If this system were to be used in practice, developers could identify a suitable subset
of rules and assemble them into a “high-level model” ruleset that would be more permis-
sive.

While we believe the timing results in our two case studies were satisfactory for stan-
dalone consistency checks, they may not be if frequent checks are necessary. A downside
of our current implementation is that it checks all documents against all rule every time a
check is invoked. In an interactive environment, an incremental scheme that performs a
smaller check depending on the changes made to documents would be preferable.

Another problem we have encountered is that of memory usage. Our check engine
needs to retain the DOM trees for all documents in memory in order to be able to execute
XPath queries on them. In the case studies, this was not a problem, however we have

xlinkit: A Consistency Checking and Smart Link Generation Service . 23

checked some software engineering documents that required a considerable amount of
memory. We are investigating a number of strategies to address this problem: A distributed
supervisor-worker architecture for very large datasets, where individual workers handle a
number of documents and send back results of XPath queries, the use of an XML database
with caching features to avoid retaining the entire DOM tree in memory, and a scheduling
system that loads documents on demand when they need to be queried.

10. APPLICATIONS

xlinkit is a highly generic technology. It can be applied wherever one wants to establish
links between web resources, broadly construed, where those links reflect relationships
between resource types. In particular, rather than directly authoring and maintaining links
xlinkit can provide semantically aware link generation.

Our principal interest derives from our software engineering background. Thus we have
worked on applications largely in this area, most notably managing the consistency of
complex development models produced by distributed teams.

A large range of other applications primarily focusing on link generation and content
management have been worked on by us or our partners. For example, information about
important customers can be found in many places in sales files, service agreements, prob-
lem reports, logistics and supply records. xlinkit can be used to build a web-based cus-
tomer relationship management system that allows you to navigate between all the pieces
of information which reflect the interests of a single customer.

eCRM (Electronic Customer Relationship Management) of this form is an example of a
broad class of lightweight intranet portals. Many organisations have information in many
different databases scattered across different sites. xlinkit can be used to build portals that
can deliver coordinated access to this information and diagnose consistency problems.

The idea of delivering web content on multiple channels such as web-TV, phones, PDAs
etc. is now common. Unfortunately content has to be adapted for each channel to make
a high value service. Content adaptation risks inconsistency with its attendant problems.
xlinkit can be used to support navigation between information presented in different chan-
nels and identify problems. Web sites which aggregate content can use xlinkit to add value
by providing content-relevant navigation without directly authoring links.

We are investigating applications of xlinkit in the financial domain, in particular for
checking the consistency of financial trading information. We have used xlinkit both to
validate derivative trading data encoded in FpNIL [Gurdel 2001] and also to match trading
data between counterparties.

Other applications which have not been fully evaluated but appear promising are: consis-
tency of information in service-level agreements, security policy and network management

policy.
11. RELATED WORK

This account of related work is not intended to be a survey of work on consistency man-
agement, for which we refer t¢g [Nuseibenh et al. 2000]. Below we highlight some key
comparison points and work which has had a particular influence on xlinkit.

Consistency management has been recognised as an important issue by the programming
language and software engineering communities. Early work in this area can be found
in publications on programming environments such as the Cornell Synthesizer Genera-
tor [Reps and Teiteibaum 1984], Gandaif [Habermann and Notkin 1986] or Centaur [Bor-

24 N C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

ras et al. 1988]. These environments typically provide syntax-directed editors. When
the user has finished entering a construct, incremental consistency checks related to the
static programming language semantics being used are carried out. These semantic checks
are typically carried out on a centralized data structure such as an abstract syntax tree.
Later work on Software Development Environments (SDESs) such as IPSEN [Nagl 1996],
Arcadia [Taylor et al. 1988], ESK [Safer and Weber 1989], ATMOSPHERE [Boatder
etai. 19809] and GOODSTEP [Emmerich 1996] raised the complexity by integrating tools
for different languages. The latter in particular allowed the specificatiosembintic

rules [Emmerich 1996]. Checks for semantic integrity between documents could be trig-
gered by user actions. Our approach represents a generalisation in that it builds on the open
model of XML rather than specific programming formalisms. In addition, we allow for the
distribution of the documents and provide diagnostics in the form of links.

A viewpoint [Finkeistein et ai. 1992] allows developers to express a design fragment in
some specification language, together with additional attributes describing the viewpoint.
Multiple viewpoints can describe the same design fragment, leading to overlap and hence
the possibility of inconsistency. The issues involved in inconsistency handling of multi-
perspective specifications are outlined [in [Finkeistein et al.]|1994]. Research in the view-
points area also introduces the ideaohsistency rulefcasterbrook et ai. 1994] between
distributed specifications. The work on viewpoints has spun off our continuing interest in
consistency management and in particular our tolerant view in which consistency is not
always enforced. For a detailed discussion §ee JFinkeistein 2000]. Although a lot of theo-
retical work on viewpoints and the associated consistency checking scheme has been done,
no generic implementation was ever provided. Our work realises these ideas by providing
a concrete implementation on top of which a viewpoint framework can be built.

Traditional database integrity notions have been extended to cope with semistructured
data [Buneman et al. 2000] and XML content in particular [Fan and Simeon 2000]. The
fundamental goal of this work and hence the approach is different. Integrity constraints
are present in databasespreventinconsistency, from occurring. In many application
domains, most notably software engineering, inconsistency cannot be prevented and is not
necessarily undesirable —for a discussion of this approach in a database conlext see [Balzer
1991]. Hence the focus is not on the language as such but on producing good diagnostics.
The hyperlinks that we offer as diagnostics establish a clear relationship between incon-
sistent elements. We note also that traditional integrity constraints and the restricted path
constraints in the first paper are not sufficient to express some of the constraints required
in software engineering notations such as the UML.

The problem of verifying constraints on websites is discussed in [Fernandez et al. 1999]
and applied in[[Fernandez et ai. Z000]. It is important to distinguish between the goals of
these approaches and our own goals: Our constraints check if a set of data is consistent,
whereas the approaches in the paper cheahyifinstance of a schema graph will satisfy
the constraint. If the schema graph does not satisfy the property, modifications are sug-
gested that will lead to valid instance graphs. Since we wish to tolerate inconsistency to
introduce flexibility and because it is sometimes not possible to change the schemas of doc-
uments, for example when standardised schemas are used, we cannot adopt this approach
but instead focus on detecting inconsistencies in instance documents.

Standard query languages can and have been used to specify integrity constraints [Hen-
rich and [aberitz 1996]. In the context of XML, such an approach would be feasible by
using an XML query language such as XQuery [Chamberiin et ai. 2001]. We regard such

xlinkit: A Consistency Checking and Smart Link Generation Service . 25

an approach as lower level than xlinkit since the user would have to “manually implement”
the linking semantics for each query, rather than achieving the desired goal of specifying
a declarative constraint. The user would, for example, have to write two queries for each
constraint in xlinkit, one that selects the combination of consistent elements and one that
selects the combination of inconsistent elements.

Even if only inconsistent elements are to be selected, xlinkit's semantics for logical
constructs has been defined very carefully to discard locators in links that do not add any
information, the goal being to maximise the diagnostic value by discarding noise. For
example in the formula — b, wherea andb are subformulae, i is trueandb is alsotrue
then we include the links returned bynto our results. Since a change in the truth value of
a would not change the overall result, we discard the links returnedasyirrelevant. This
semantics has been extensively tested and produced good results in all our case studies.
If XQuery were to be used directly, the user would have to handcode the combination of
elements to be included into links for all combinations of truth values afidb, leading
to huge queries — and that is without removing permutations of links. We also note that
we would have to wait for a framework based on XQuery that includes proper document
management so as to achieve the distribution transparency that our service provides.

The hypertext community has worked on the problem of automatic link generation. For
a survey of this topic we refer t¢ [Wilkinson and Smeaton 1999]. Much work in the area
has focused on textual documents and many approaches based on information retrieval
techniques such as similarity measures can be found. We exploit the structure afforded
by XML, and its widespread use for storing data rather than textual information in our
approach to provide a much richer and more fine-grained expression of linking semantics.

There is a growing body of work concerned with applications of hypertext in software
engineering. The CHIMERA project JAnderson et ai. 1994] demonstrates multiple docu-
ment views and the capability of separating linking information from the underlying docu-
ments. It does not support consistency checking. CHIME [Devanbu et al. 1999] provides a
framework for folding links into legacy software documents using information from soft-
ware analysis tools. The work provides a strong case for the sort of browsing which our
approach provides.

Our work has some analogies with Schematfon [Jeliiffe 2000], an XML structure valida-
tor which employs XSL and XPath to traverse documents and check constraints. Schema-
tron was built as an alternative to traditional, grammar based systems for document valida-
tion. The focus of our work is clearly different as we are interested in relationships between
distributed documents. Checking constraints between multiple documents can be achieved
in Schematron using the XPattocument function, which would however hardcode the
names of documents. Our strict distinction between rule sets and document sets, and the
transparency of our rules with respect to underlying storage, allows the same set of rules to
be applied to multiple sets of documents. Schematron also does not generate hyperlinks,
one of the important components of our approach.

Finally, xlinkit builds on two previous prototype consistency checking schemes [Elimer
et al. 199P] which have substantially influenced the ideas on which it is based. In both
cases these were standalone applications and used a rule language based on a much more
restricted form of first-order logic. The language, architecture and content management
framework are novel and the genericity, scaleability and performance of the xlinkit ap-
proach distinguish it from the earlier prototypes.

26 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

12. FUTURE WORK

A “static” application service such as ours does more work than is really necessary be-
cause it has to recheck all documents against all rules upon request. When documents are
changed, we would like to recheck only those rules that are affected by the changes. Such
anincremental checkingcheme is certainly a barrier we have to overcome if our approach

is to scale to very large datasets that need regular checking. We have already devised and
prototyped an algorithm for determining the set of rules to be checked after changes and
are planning to implement the scheme for testing and benchmarking.

Conflict resolution is a logical back-end of a consistency check and has not been dis-
cussed in this paper. It is assumed that the user will refer to our linkbases as a diagnostic
tool and then take action in accordance with some real-world process. While we believe
that conflict resolution can never be fully automated, it should still be possible to set cer-
tain default actions for handling trivial inconsistencies. Integration with a workflow man-
agement system may prove valuable in this respect and we will investigate this option.
Achieving this goal without compromising the light-weight characteristics of xlinkit will
however be a challenge.

The evaluation section has already mentioned the problem of maintaining a DOM tree
for all documents in memory during a check. We are currently investigating both archi-
tectural styles and implementation mechanisms to address this problem. On the architec-
tural side, a distributed architecture can be used to spread the memory load over several
machines, whereas on the implementation side, a scheduling mechanism for document
loading together with an XML database with XPath support may provide some benefits.

Our rule language has a rather limited range of predicates, basically consisting of equal-
ity operations. Even for such a simple operation as equality, a wide range of requirements
can be found depending on the application domain — for example inclusion of a particular
business date in a cash flow. We are currently adding mechanisms to our evaluation engine
that allow the dynamic definition of new predicates in Javascript to address this problem.

13. CONCLUSION

This paper has described xlinkit, a lightweight application service that provides rule-based
link generation and checks the consistency of distributed web resources. xlinkit leverages
standard Internet technologies. It supports document distribution and can support multiple
deployment models. It has a formal basis and evaluation has shown that it scales, both
in terms of the size of documents and in the number of rules. We have identified some
important applications and pointed to future directions for our work.

xlinkit is the product of long-standing research looking at consistency management. Itis
available as an open source package. Several research groups and industrial partners have
already started to use xlinkit and we are keen to see it applied further. The open source
package and examples can be founttgd://www.xlinkit.com

Acknowledgements

We would like to thank Zeeshawn Durrani, who wrote the linkbase stylesheet, and our
colleagues from earlier incarnations of this project, Danila Smolko, Ernst Ellmer, Andrea
Zisman and Torbjorn Revheim, for their contributions. We would also like to thank the

Ixlinkit is protected by PCT 9914232.5

xlinkit: A Consistency Checking and Smart Link Generation Service . 27

Apache Software Foundation and its volunteers for its continued and free provision of
high-quality tools such as Xerces and Xalan, which have greatly simplified our work. The
XLink working group also deserves thanks, in particular we are grateful to Eve Maler
for technical feedback. We thank the anonymous reviewers, who have produced detailed
reviews and helped to improve this paper a lot. Finally, we gratefully acknowledge the
financial support from Zuhlke Engineering for Licia Capra and Christian Nentwich.

REFERENCES

ANDERSON K. M., TAYLOR, R. N., AND WHITEHEAD, E. J. 1994. Chimera: Hypertext for Hetero-
geneous Software Environments.Rroc. of the European Conference on Hypermdéidinburgh, UK,
Sept. 1994).

APPARAO, V., BYRNE, S., (HAMPION, M., ISAACS, S., ACOBS, |., HORS, A. L., NicoL, G., RoBIE, J.,
SUTOR, R., WILSON, C.,AND WooOD, L. 1998. Document Object Model (DOM) Level 1 Specifica-
tion. W3C Recommendation http://www.w3.0rg/TR/1998/REC-DOM-Level-1-19981001 (Oct.), World
Wide Web Consortium.

BALZER, R. 1991. Tolerating Inconsistency. RProceedings of the 13th International Conference on
Software Engineerin¢Austin, TX USA, May 1991), pp. 158-165. IEEE Computer Society Press.

BOARDER, J., BBINK, H., SCHMIDT, M., AND VOLKER, A. 1989. Advanced techniques and meth-
ods of system production in a heterogeneous, extensible, and rigorous environment. KDNAMI,

W. SCHAFER, AND H. WEBER Eds.,Proc. of the 1st Int. Conf. on System Development Environments
and FactorieqBerlin, Germany, 1989), pp. 199-206. Pitman Publishing.

BORRAS, P., Q_EMENT, D., DESPEYROUX T., INCERP|, J., KAHN, G., LANG, B., AND PASCUAL, V.
1988. CENTAUR: The SystenACM SIGSOFT Software Engineering Notes 8314-24. Proc. of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, Boston, MA, USA.

BrAY, T., ProLl, J., SPERBERGMCQUEEN, C. M., AND MALER, E. 2000. Extensible Markup
Language. Recommendation http://www.w3.0rg/TR/2000/REC-xmI-20001006 (Oct.), World Wide Web
Consortium.

BUNEMAN, P., AN, W., AND WEINSTEIN, S. 2000. Path Constraints in Semistructured Databases.
Journal of Computer and System Sciences26146-193.

CHAMBERLIN, D., FLOREscy, D., RoBIE, J., SMEON, J., AND STEFANESCU M. 2001. XQuery:

A Query Language for XML. Working draft (Feb.), World Wide Web Consortium (W3C).
http://lwww.w3.org/TR/xquery/.

CLARK, J. 1999. XSL Transformations (XSLT). Technical Report http://www.w3.0org/TR/xslt (Nov.),
World Wide Web Consortium.

CLARK, J. AND DEROSE, S. 1999. XML Path Language (XPath) Version 1.0. Recommendation
http://www.w3.0rg/TR/1999/REC-xpath-19991116 (Nov.), World Wide Web Consortium.

CONSORTIUM, W. W. W. 2000. Amaya. http://www.w3.org/Amaya/.

DEROSE, S., MALER, E., AND ORCHARD, D. 2001. XML Linking Language (XLink) Version 1.0.
W3C Recommendation http://imww.w3.org/TR/xlink/ (June), World Wide Web Consortium.

DEVANBU, P., GHEN, Y.-F., GANSNER, E., MULLER, H., AND MARGIN, J. 1999. CHIME - Customiz-
able Hyperlink Insertion and Maintenance Engine for Software Engineering Environmefsdnof
the 215t Int. Conf. on Software Engineerin@os Angeles, CA, USA, May 1999), pp. 473-482. ACM
Press.

EASTERBROOK, S., ANKELSTEIN, A., KRAMER, J., AND NUSEIBEH, B. 1994. Coordinating Dis-
tributed ViewPoints: The Anatomy of a Consistency Chdok. Journal of Concurrent Engineering:
Research & Applications, 3, 209-222.

ELLMER, E., BMMERICH, W., FINKELSTEIN, A., SMOLKO, D., AND ZISMAN, A. 1999. Consistency
Management of Distributed Documents using XML and Related Technologies. Research Note 99-94,
University College London, Dept. of Computer Science.

EMMERICH, W. 1996. GTSL — An Object-Oriented Language for Specification of Syntax Directed
Tools. InProc. of the 8th Int. Workshop on Software Specification and Dg4ig®6), pp. 26—-35. IEEE
Computer Society Press.

28 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

FAN, W. AND SIMEON, J. 2000. Integrity Constraints for XML. I8ymposium on Principles of Database
System$2000), pp. 23-34.

FEATHER, M., FICKAS, S., ANKELSTEIN, A., AND VAN LANSWEERDE A. 1997. Requirements and
Specification Exemplardiutomated Software Engineering

FERNANDEZ, M., FLORESCU D., LEVY, A., AND Suclu, D. 1999. \Verifying Integrity Constraints on
Web Sites. IrProceedings of the 16th International Joint Conference on Atrticial Intellig€h®89), pp.
614-619.

FERNANDEZ, M., FLORESCU, D., LEVY, A., AND Suciu, D. 2000. Declarative Specification of Web
Sites with StrudelVLDB Journal 9 1, 38-55.

FINKELSTEIN, A. 2000. A Foolish Consistency: Technical Challenges in Consistency Management. In
Proceedings of the 11th International Conference on Database and Expert Systems Applications (DEXA)
(London, UK, September 2000), pp. 1-5. Springer.

FINKELSTEIN, A., GABBAY, D., HUNTER, H., KRAMER, J.,AND NUSEIBEH, B. 1994. Inconsistency
Handling in Multi-Perspective Specification&EE Transactions on Software Engineering 80 569—

578.

FINKELSTEIN, A., KRAMER, J., NUSEIBEH, B., FINKELSTEIN, L., AND GOEDICKE, M. 1992. View-
points: a framework for integrating multiple perspectives in system developmerournal of Software
Engineering and Knowledge Engineeringl2 21-58.

GURDEL, G. 2001. FpML Version 1.0. http://www.fpml.org.

HABERMANN, A. N. AND NOTKIN, D. 1986. Gandalf: Software Development EnvironmetiE&EE
Transactions on Software Engineering, 12, 1117-1127.

HENRICH, A. AND DABERITZ, D. 1996. Using a Query Language to State Consistency Constraints for
Repositories. IDatabase and Expert Systems Applicati(t@96), pp. 59-68.

JELLIFFE, R. 2000. The Schematron Assertion Language 1.5. Technical report (October), GeoTempo Inc.

Mozilla. 2000. Mozilla. http://www.mozilla.org.

NAGL, M. Ed. 1996. Building Tightly Integrated Software Development Environments: The IPSEN Ap-
proach Volume 1170 ol ecture Notes in Computer Scien&pringer Verlag.

NUSEIBEH, B., EASTERBROOK, S.,AND RUssQ, A. 2000. Leveraging Inconsistency in Software De-
velopmentlEEE Computer 334 (April), 24-29.

Object Management Group. 2000a.Unified Modeling Language Specificatio@bject Management
Group.

Object Management Group. 2000b.XML Metadata Interchange (XMI) Specification 14B2 Old Con-
necticut Path, Framingham, MA 01701, USA: Object Management Group.

REPS T. W. AND TEITELBAUM, T. 1984. The Synthesizer Generath€CM SIGSOFT Software Engi-
neering Notes 93, 42—-48. Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh, PA, USA.

SCHAFER, W. AND WEBER, H. 1989. European Software Factory Plan — The ESF-Profile. In P.GA. N
AND R. T. YEH Eds.,Modern Software Engineering — Foundations and current perspectlespter 22,
pp. 613-637. NY, USA: Van Nostrand Reinhold.

TAYLOR, R. N., &LBY, R. W., YOUNG, M., BELZ, F. C., QARCE, L. A., WILEDEN, J. C., GSTERWEIL,

L., AND WOLF, A. L. 1988. Foundations of the Arcadia Environment Architectdl&M SIGSOFT
Software Engineering Notes 18, 1-13. Proc. of thé!® ACM SIGSOFT Symposium on Software
Development Environments, Irvine, Cal.

WADLER, P. 1999. A formal semantics of patterns in XSLT. Markup Technologies.

WILKINSON, R.AND SMEATON, A. 1999. Automatic Link GeneratioACM Computing Surveys 34es
(December). Article No. 27.

xlinkit: A Consistency Checking and Smart Link Generation Service

APPENDIX
A. WILBUR’S BIKE SHOP SAMPLE FILES

A.1 Product catalogue sample

<Catalogue>
<Product>
<Name>HARO SHREDDER</Name>
<Code>B001</Code>
<Price currency="sterling">349.95</Price>
<Description>Freestyle Bike.</Description>
</Product>
<Product>
<Name>HARO TR2.1</Name>
<Code>B002</Code>
<Price currency="sterling">179.95</Price>
<Description>BMX / Trail Bike.</Description>
</Product>
</Catalogue>

A.2 Sample advert file

<Advert>
<ProductName>HARO SHREDDER</ProductName>
<Price currency="sterling">349.95</Price>
<Description>Freestyle Bike. Super versatile frame
for dirt, street, vert or flat. New full cromoly
frame. Fusion MegaTube axle extenders.
</Description>
</Advert>

A.3 Sample service report file

<ServiceReport>
<Customerldentity reg_number="3645"/>
<Report>
<ProductName>HARO SHREDDER</ProductName>
<ProductCode>B001</ProductCode>
<ProblemDescr>Found a problem in ...</ProblemDescr>
</Report>
</ServiceReport>

A.4 Sample customer report file

<CustomerReport>
<Customerldentity>
<FirstName>Licia</FirstName>
<FamilyName>Capra</FamilyName>
<Reg_Number>3645</Reg_Number>
</Customerldentity>
<Purchase>
<ProductName>HARO SHREDDER</ProductName>
<ProductCode>B001</ProductCode>
</Purchase>
<Purchase>
<ProductName>Shimano LX Mountain Bike
Crank Set</ProductName>
<ProductCode>A102</ProductCode>
</Purchase>
</CustomerReport>

29

30 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

B. CURRICULUM CASE STUDY RULES

Each course (of the CS department) must have a syllabus

The year of the course in the curriculum corresponds to the year in the syllabus
There must not be two courses with the same code

Each course listed as a pre-requisite in a syllabus must have a syllabus definition
A course cannot be a pre-requisite of itself

Each course in a studyplan is identified in the curricula

A student cannot take the same course twice

1st year BSc/CS and MSci: 6 compulsory half-units

1st year BSc/CS and MSci: 2 optional half-units

0 | 1styear BSc/CS and MSci: no more than 1 optional half-units can be Non-progrdmme

P O|o|N[O g W N

Table 3. Curriculum study rules

C. UML FOUNDATION.CORE RULES
C.1 Association

[1] The AssociationEnds must have a unigue name within the Association

[2] At most one AssociationEnd may be an aggregation or composition

[3] If an Association has three or more AssociationEnds, then no AssociationEnd may be
an aggregation or composition

[4] The connected Classifiers of the AssociationEnds should be included in the Names-
pace of the Association

C.2 AssociationClass

[1] The names of the AssociationEnds and the StructuralFeatures do not overlap
[2] An AssociationClass cannot be defined between itself and something else
C.3 AssociationEnd

[1] The Classifier of an AssociationEnd cannot be an Interface or a DataType if the asso-
ciation is navigable from that end
[2] An Instance may not belong by composition to more than one composite Instance

C.4 BehavioralFeature

[1] All parameters should have a unique name

[2] The type of the Parameters should be included in the Namespace of the Classifier
C.5 Class

[1] If a Class is concrete, all the Operations of the Class should have a realizing method
in the full descriptor

C.6 Classifier

[2] No Attributes may have the same name within a Classifier

[3] No opposite AssociationEnds may have the same name within a Classifier

[4] The name of an Attribute may not be the same as the name of an opposite Associatio-
nEnd or a ModelElement contained in the Classifier

xlinkit: A Consistency Checking and Smart Link Generation Service . 31

[5] The name of an opposite AssociationEnd may not be the same as the name of an
Attribute or ModelElement contained in the Classifier

[6] Foreach Operation in a specification realized by a Classifier, the Classifier must have
a matching Operation

C.7 Component

[1] A Component may only contain other Components

C.8 Constraint
[1] A Constraint cannot be applied to itself

C.9 DataType

[1] A DataType can only contain Operations, which all must be queries
[2] A DataType cannot contain any other model elements

C.10 GeneralizableElement

[1] A-root cannot have any Generalizations

[2] No GeneralizableElement can have a parent Generalization to an element which is a
leaf

[4] The parent must be included in the namespace of the GeneralizableElement

C.11 Interface

[1] An Interface can only contain Operations

[2] An Interface cannot contain any ModelElements
[3] All Features defined in an Interface are public
C.12 Method

[1] If the realized Operation is a query, then so is the method

[2] The signature of the Method should be the same as the signature of the realized
Operation

[3] The visibility of the Method should be the same as for the realized Operation

C.13 Namespace

[1] If a contained element, which is not an Association or Generalization has a name,
then the name must be unique in the Namespace

[2] All Associations must have a unique combination of name and associated Classifiers
in the Namespace

C.14 StructuralFeature

[1] The connected type should be included in the owner's Namespace

C.15 Type
[1] A Type may not have any methods
[2] The parent of a type must be a type

D. RULE LANGUAGE XML DTD

<IELEMENT consistencyruleset (globalset*,consistencyrule+)>

32 . C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein

<IELEMENT globalset EMPTY>
<IATTLIST globalset
id ID #REQUIRED
xpath CDATA #REQUIRED>
<I[ELEMENT consistencyrule (description?,linkgeneration?,forall)>
<IATTLIST consistencyrule
id ID #REQUIRED>
<I[ELEMENT description (#PCDATA)>
<IELEMENT linkgeneration (consistent?,inconsistent?,
eliminatesymmetry?)>
<IELEMENT consistent EMPTY>
<IATTLIST consistent
status (on | off) "on">
<IELEMENT inconsistent EMPTY>
<IATTLIST inconsistent
status (on | off) "on">
<I[ELEMENT eliminatesymmetry EMPTY>
<IATTLIST eliminatesymmetry
status (on | off) "off">
<IELEMENT forall (exists|forall|and|or|implies|not|equal|
notequal|same|subset|intersect)?>
<IATTLIST forall
var CDATA #REQUIRED
in CDATA #REQUIRED
mode (exhaustive | instance) “"exhaustive">
<IELEMENT exists (exists|forallland|or|implies|not|equal|
notequal|same|subset|intersect)?>
<IATTLIST exists
var CDATA #REQUIRED
in CDATA #REQUIRED
mode (exhaustive | instance) “"exhaustive">
<IELEMENT and (exists|forallland|or|implies|not|equal|
notequal|same|subset|intersect)*>
<IELEMENT or (exists|forallland|or|implies|not|equall
notequal|same|subset|intersect)*>
<IELEMENT implies (exists|forallland|or|implies|not|equall
notequal|same|subset|intersect)*>
<I[ELEMENT not (exists|forallland|or|implies|not|equal|
notequal|same|subset|intersect)>
<IELEMENT equal EMPTY>
<IATTLIST equal
opl CDATA #REQUIRED
op2 CDATA #REQUIRED>
<I[ELEMENT notequal EMPTY>
<IATTLIST notequal
opl CDATA #REQUIRED
op2 CDATA #REQUIRED>
<IELEMENT same EMPTY>
<IATTLIST same
opl CDATA #REQUIRED
op2 CDATA #REQUIRED>
<IELEMENT subset EMPTY>
<IATTLIST subset
opl CDATA #REQUIRED
op2 CDATA #REQUIRED
size CDATA "0">

xlinkit: A Consistency Checking and Smart Link Generation Service

<IELEMENT intersect EMPTY>
<IATTLIST intersect
opl CDATA #REQUIRED
op2 CDATA #REQUIRED
size CDATA "0">

33

	Overview
	Background
	Example
	Rule Language
	Link Generation
	XML Implementation
	Content Management
	Architecture
	Evaluation
	Applications
	Related Work
	Future Work
	Conclusion
	Appendix
	Wilbur's Bike Shop sample files
	Product catalogue sample
	Sample advert file
	Sample service report file
	Sample customer report file

	Curriculum case study rules
	UML Foundation.Core rules
	Association
	AssociationClass
	AssociationEnd
	BehavioralFeature
	Class
	Classifier
	Component
	Constraint
	DataType
	GeneralizableElement
	Interface
	Method
	Namespace
	StructuralFeature
	Type

	Rule language XML DTD

