
XLWrap – Querying and Integrating Arbitrary
Spreadsheets with SPARQL

Andreas Langegger and Wolfram Wöß

Institute of Applied Knowledge Processing
Johannes Kepler University Linz

Altenberger Straße 69, 4040 Linz, Austria
{al,wolfram.woess}@jku.at

Abstract. In this paper a novel approach is presented for generating RDF graphs
of arbitrary complexity from various spreadsheet layouts. Currently, none of the
available spreadsheet-to-RDF wrappers supports cross tables and tables where
data is not aligned in rows. Similar to RDF123, XLWrap is based on template
graphs where fragments of triples can be mapped to specific cells of a spread-
sheet. Additionally, it features a full expression algebra based on the syntax of
OpenOffice Calc and various shift operations, which can be used to repeat similar
mappings in order to wrap cross tables including multiple sheets and spread-
sheet files. The set of available expression functions includes most of the native
functions of OpenOffice Calc and can be easily extended by users of XLWrap.

Additionally, XLWrap is able to execute SPARQL queries, and since it is
possible to define multiple virtual class extents in a mapping specification, it
can be used to integrate information from multiple spreadsheets. XLWrap sup-
ports a special identity concept which allows to link anonymous resources (blank
nodes) – which may originate from different spreadsheets – in the target graph.

1 Introduction

The translation of information stored in various legacy information systems and data
formats to RDF is an important requirement of many Semantic Web applications. While
for the Web of Data relational database management systems (RDBMS) are consid-
ered to be the most important legacy information systems, in case of corporate Se-
mantic Web applications, spreadsheets play a similar important role. Spreadsheets are
frequently used by people in companies, organizations, and research institutions to
share, exchange, and store data. Whenever there is no database in place, spreadsheets
are often the primary fall-back tool for maintaining structured information.

Compared to wrapping a relational database, which has a fixed schema, data types,
and integrity constraints, wrapping spreadsheets is more difficult because the implicit
schema has to be captured first when creating a formal mapping. Currently available
spreadsheet wrappers treat spreadsheets as flat tables like single database relations or
comma-separated value (CSV) files. In this paper we will present a novel mapping
approach for spreadsheets which is based on template graphs similar to RDF123 [5],
which we will explain in the related work part. However, the XLWrap mapping ap-
proach is not based on a simple row oriented iteration of tables. It allows to define

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 359–374, 2009.
© Springer-Verlag Berlin Heidelberg 2009

360 A. Langegger and W. Wöß

template mappings as RDF graphs and to repeat them based on various shift and repeat
operations in order to map arbitrary layouts including multi-dimensional cross tables
and spreadsheets over multiple files. XLWrap supports expressions to reference cells
and ranges from template graphs including sheet ranges and absolute references to other
external spreadsheets such as supported by Microsoft Excel and OpenOffice Calc (the
grammar is printed in Listing 1 on page 368).

Additionally, XLWrap features a server component called XLWrap-Server, which
provides a SPARQL endpoint as well as a linked data browser similar to D2R-Server
[3]. XLWrap-Server observes a configurable directory for mapping files and whenever
a mapping file or one of the referred spreadsheet files of the mapping is added, modi-
fied, or removed, it automatically executes the translation process and caches the gen-
erated RDF data. XLWrap-Server integrates Joseki [6] to provide a SPARQL endpoint
and Snorql, which has been adopted from D2R-Server and allows the user to explore
the wrapped information on-the-fly. Together with the Semantic Web Integrator and
Query Engine (SemWIQ) [7], XLWrap can be used to integrate various spreadsheets
and other data sources such as relational databases and ODBC data sources. A simple
setup procedure and ease of use have been two major requirements for the development
of XLWrap-Server. The setup procedure is a matter of starting the server and putting
mapping files into the observation folder. XLWrap-Server is also considered to become
a practical tool for experimenting with linked data. It can be used to quickly expose
information via SPARQL while editing it in a human-friendly way. XLWrap can be
downloaded from its homepage at http://www.langegger.at/xlwrap

In the next section we will explore different spreadsheet layouts in order to create
a sound mapping framework. In Section 3 related work is discussed. In Section 4 the
XLWrap mapping formalism is presented and in Section 5 the transformation process
is explained. In order to demonstrate XLWrap, an example is discussed as part of these
sections. Section 6 concludes the contribution with some final remarks.

2 Background

In order to develop a generic mapping framework for spreadsheets, the spreadsheet
paradigm has been analyzed and different ways of information representation have been
examined. Some of these findings are presented as part of this section before related
work will be discussed. In the following, we will use the terms workbook to refer to a
file of a spreadsheet application, and worksheet (or just sheet) to denote a single two-
dimensional sheet of a workbook.

2.1 Information Representation in Spreadsheets

Firstly, it is important to distinguish between the information model and the represen-
tation model, which is used to represent information within a spreadsheet. The infor-
mation model is defined implicitly by the semantics of the entailed information. The
resulting RDF graph should as closely as possible reflect the information model, as
for example, expenditures by category, year, and sub-division or personal information
about employees. The actual information representation as an RDF graph is a subject of

http://www.langegger.at/xlwrap

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 361

A1 B1 C1 ... 10 ...
A1 B1 C1 ... 12 ...
A1 B2 C1 ... 23 ...
A1 B1 C1 ... 21 ...
A1 B3 C2 ... 23 ...
A2 B2 C2 ... 12 ...
A2 B3 C1 ... 24 ...
A1 B1 C1 ... 34 ...

A B C ... V1 ...
Dimensions Values

typically only one
value per record,
but multiple values
are also valid

(a) Flat table

B (Columns)

C (Sheets)

A (Rows)

(b) Three-dimensional cross table

B

C

A

D (Files)

...B

C

A
B

C

A

(c) Four-dimensional cross table

C1

C2

C...

B (Columns)A (Rows)

Single
Sheet

(d) Cross table on single sheet

Fig. 1. Information representation in spreadsheets

data modeling and in fact, there are many ways how to represent expenditures in RDF.
A generic wrapper should not enforce any fixed rules and structures that depend on the
representation of the information model in the spreadsheet. Concerning the representa-
tion model, three different layouts could be identified, whereas the third one is a hybrid
approach of the first two:

One-Dimensional Flat Table. In this layout (Figure 1(a)) information is represented,
regardless of its dimensionality, in a flat table with a single column (or row) head-
ing. It is used to represent information such as data lists, e.g. persons with fixed
properties such as name, mailbox, age, etc. Except for RDF123, all existing wrap-
pers create exactly one RDF resource per row as shown in Figure 2(a). Currently
available spreadsheet wrappers, which will be discussed in Section 3, are restricted
to this kind of representation.
However, flat tables can also be used to represent information with multiple dimen-
sions (typically >2) in so-called de-normalized tables which are also the basis of
pivot tables and OLAP programs. Some cells of the header represent dimensions
of the information model, the other header cells represent values specific to each
instance. The domain values of dimensions repeatedly occur in the instance rows
as shown in Figure 1(a). Note that regarding the previous example of a person data
list, no dimensions will be used and each value is regarded as specific to the person
instance. Alternatively, each person property may be regarded as a dimension or
facet (for instance, the dimension first name may have all occurring first names as
its domain).

Cross Tables. In this layout, which is shown in Figure 1(b), the representation of in-
formation is organized in cross tables, which may span multiple columns, rows,

362 A. Langegger and W. Wöß

URI/bnode

cell(C, i)
cell(A, i)

A C
constant rdf:type

cell(B, i)

B

cell(X, i)
X

one statement
per column A, B, C, ...

one resource
per row i

constant statements
...

(as URI resource)

(a) One RDF resource per row

dimensions A, B, C, ...
as statements

URI/bnode

cell value

A B
C

rdf:value

constant
rdf:type

...

one resource
per cellconstant

statements
...

(b) One RDF resource per cell

Fig. 2. Straight-forward translation of spreadsheet data to RDF resources

sheets, and even files and directories (Figure 1(c)). Each cell represents a single
entity or instance. In a straight-forward approach, the translation could be done
as shown in Figure 2(b). Instead of a single column/row header, cross tables have
multiple headers, one for each dimension. Along the sheet axis, the header is de-
fined either by the names of the sheets in the workbook or by text labels placed
into the worksheet. Similarly, when using multiple files, the domain values of the
corresponding axis are either defined by file names or text labels on worksheets.
Because a single sheet is already restricted to columns and rows, cross tables are
often represented by repeating similar table layouts on the same sheet as depicted
in Figure 1(d). Similar to pivot tables or de-normalized tables as mentioned before,
a higher dimensionality is broken down into two dimensions by repeating similar
structures.

Hybrid Layouts. Finally, there is the possibility of combining flat tables with cross
tables (e.g. de-normalized tables can be repeated across several sheets or files).

Independent of the representation model, a wrapper must be able to translate the in-
formation into an RDF graph by best reflecting the source information model. To give
another example, revenues for different products, years, and countries can either be rep-
resented in a de-normalized flat table with the heading (product, year, country, revenue)
or in a cross table with one sheet per product, each one representing revenues per year
and country.

2.2 Definition of Spreadsheet Applications

The following definition for spreadsheet applications is the basis for the mapping frame-
work presented in Section 4.

Definition 1. A spreadsheet application A is defined as a set of named workbooks wi,
i ∈ N0, where name(wi) is the canonical workbook filename denoted by its URI. A
spreadsheet application has at least one workbook w0, called the base workbook and
optionally a set of external workbooks wi, i ≥ 1, which are referenced from w0 by means
of absolute cell references.

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 363

Within companies it is very common that multiple spreadsheets are interlinked by ex-
ternal cell references. To be able to process external references in XLWrap mappings,
this definition takes external workbooks into account. The URI scheme for local files is
file://. Workbook files on the Web can be referenced by means of HTTP URIs.

Definition 2. A workbook wi ∈ A is defined as a set of named worksheets s j, j ∈ N,
where name(s j) is the sheet name as specified in the application (a string).

Beside single worksheets, it is also common to use multiple worksheets. As will be
shown later, XLWrap supports a special sheet shift operation, which allows to repeat-
edly apply template mappings on multiple sheets.

Definition 3. A worksheet s j ∈ wi is defined as a matrix of cell values V = [vc,r]n×m

where c ∈ N0, c < m, is the column index and r ∈ N0, r < n, is the row index of the
corresponding worksheet table. m, n denote the total number of columns and rows used
in worksheet s j.

Although there is a space limit for m and n in practice, there is no limitation enforced
by this definition. The same applies to the number of worksheets in a workbook.

Definition 4. A cell value vc,r has a type annotation denoted as type(vc,r)→ T with T =
{ttext, tnumber, tdatetime, tboolean, tempty}. Additionally, a cell value may have a formatting
(e.g. for number, currency, date/time formatting) and a formula annotation denoted as
formula(vc,r) → E, where e ∈ E is a compositional expression according to a pre-
defined grammar GE.

A cell formula, is not a specific type ∈ T . Instead, it is an annotation defining the
expression which can be evaluated to reproduce or update vc,r. Values with formula an-
notations are explicitly stored in the corresponding workbook files. In our definition of
spreadsheet applications, the grammar GE supports range references denoted as ere f .
Range references are used to refer to other cells of the same spreadsheet, other sheets of
the same workbook, or external workbooks. In Section 4 it will be described, how ex-
pressions and range references are also used for XLWrap mappings to map spreadsheet
cells to RDF graphs. The proper definition of a range reference is given below.

Definition 5. A range reference sub-expression ere f is generally defined as a set of
partial 7-tuples of the form (wi, s j1, c1, r1, s j2, c2, r2). These components specify a
workbook, a start cell consisting of a sheet, column, row, as well as a target cell spec-
ified by a sheet, column, and row. Some tuple components are optional and may be left
empty. If |ere f | > 1, the range reference is called multi range reference, because it con-
tains multiple single range references. In case of OpenOffice Calc, the general lexical
representation of a single range reference is:

((wi “#$”)? s j1 “.”)? c1 r1 (“:” (s j2 “.”)? c2 r2)?

For multi range references, single range references are separated with a semicolon. The
following two sub-types are defined:

364 A. Langegger and W. Wöß

– Cell reference, which has the optional components wi, s j1, the mandatory compo-
nents c1, r1, and the component s j2, c2, r2 left empty (e.g. A3, ’Sheet 1’.A3, or
file:foo.xls#$’Sheet 1’.A3)

– Box reference, which has the optional components wi, s j1, s j2 and the mandatory
components c1, r1, c2, r2 (e.g. A3:B9, or file:foo.xls#$’Sheet 1’.A3:B28.

Whenever the components wi and s j1, s j2 are omitted, the range reference is interpreted
relative to the worksheet of its originating cell formula. Hence, a range reference can
either be absolute or relative its base sheet or workbook file.

2.3 Dumping versus On-the-Fly Processing of SPARQL Queries

Concerning the wrapping approach, a distinction can be made based on the direction of
the mapping formalism, which can either be source/spreadsheet-centric, or target/RDF-
centric. In general, when mapping between two different data models, it is possible to
define one of the data models as a view onto the other data model. Since in our case,
the RDF model acts as the target model, the spreadsheet-centric variant is similar to
the Local-as-View (LaV) approach and the RDF-centric variant is similar to the Global-
as-View approach (GaV) in information integration [8]. Only XLWrap and RDF123,
support the GaV-approach and allow the user to define RDF-centric mappings based
on graphs. All other wrappers are based on a spreadsheet-centric view definition which
map columns or cells to specific properties and do not allow the definition of custom
target graphs.

Another distinction can be made concerning the actual transformation of spreadsheet
data into RDF when executing SPARQL queries. For queries, the wrapping process can
either be based on materialization involving a single data dump into a volatile or persis-
tent RDF store, or it can be an on-the-fly query execution process (e.g. D2R-Server [3]).
Actually, our initial motivation for developing XLWrap have been experiments towards
a generic guideline for the generation of virtual RDF wrappers supporting SPARQL for
the Semantic Web Integrator and Query Engine (SemWIQ). Based on experiences with
D2R-Server while contributing some optimizations like push-down of filters into SQL,
our assumption was, that simple RDF wrappers can be written based on Jena ARQ by
supporting triple patterns and let ARQ process all higher level algebra operations. For
instance, a wrapper providing SPARQL access to the directory structure of a file sys-
tem or an FTP server can be written very easily this way. It only needs to correctly
interpret subsequent triple patterns and generate the necessary variable bindings which
correspond to a virtual RDF graph similar to a database access plan. However, for larger
information sources, low-level index structures such as hash tables or B+ trees are nec-
essary in order to achieve acceptable performance results. They may be managed by
the wrapper in volatile memory caches and will have to be updated by means of a no-
tification mechanism or pre-defined periods. Additionally, a wrapper for a large data
source should provide cardinality estimations for triple patterns in order to support the
re-ordering in a BGP by expected cardinalities. During the evaluation of a BGP, subse-
quent joins over triple patterns are executed by ARQ based on a substitute algorithm:
already obtained variable bindings of triples produced by upper triple patterns are used
as constraints for matching subsequent triple pattern. Thus, triple patterns with a lower
cardinality should be executed first.

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 365

However, experiments have shown that in most situations it is still better to apply a
materialized approach and dump data into an RDF store instead of maintaining separate
index structures and insisting on the virtual approach. In particular, these findings apply
to spreadsheets, because they are typically small in size (compared to databases) and
there is actually no need to process queries on-the-fly. In fact, the dumping process is
so fast, that even if the materialized cache has to be re-generated, it is only a matter of
seconds or milliseconds. XLWrap tracks any changes in mapping files and referenced
workbook files and re-generates caches in the background which is hardly noticed by
end-users.

3 Related Work

Among the currently available spreadsheet wrappers there are two open source projects,
Excel2RDF [4] and RDF123 [5], and there is TopBraid Composer from TopQuadrant1,
which is a commercial ontology development environment integrating support for im-
porting and exporting RDF from/to spreadsheet files. We were unable to find any further
spreadsheet RDF wrapper in the literature and on the Web. There is another notable
software called Anzo for Excel from Cambridge Semantics2, which is actually not a
dedicated RDF wrapper, but which can be used to map information from spreadsheets
to vocabularies for distributed, collaborative work. Because Anzo is targeted to em-
ployees who typically do not know about RDF, it hides any details of the internals.
Although it provides a graphical plugin for Microsoft Excel, which allows to map cells
and ranges to vocabularies, it is unclear how it can be used to map spreadsheets to cus-
tom graphs. As a marginally related project the Aperture3 framework developed for the
Nepomuk Semantic Desktop is mentioned, which is extracting meta data from spread-
sheet files. However, the content of spreadsheets is not processed or wrapped based on
a formalized mapping. Instead, Aperture tries to extract significant features and terms
from spreadsheets in order to support semantic search and interlinking of documents in
the Nepomuk framework.

Unfortunately, nearly all existing dedicated wrappers are rather limited in practice.
The simplest one is Excel2RDF and an extended version called ConvertToRDF, which
supports basic mappings for column headers. As both tools follow the spreadsheet-
centric mapping approach, the output graph is fixed and for each row of only a single
spreadsheet table, one RDF resource is created with property/object pairs for all mapped
columns. Resources as objects or typed literals are not supported. The spreadsheet im-
port feature of TopBraid Composer is similarly basic. Actually, only CSV text files are
supported and the mapping is similar to ConvertToRDF. Typed literals and resource
objects are supported, but target types have to be specified manually.

The most relevant wrapper related to our work is RDF123 [5]. Beside XLWrap, it is
the only wrapper that supports an RDF-centric mapping approach. However, although
with RDF123 it is possible to define arbitrary target graphs, it is restricted to a specific
spreadsheet layout, like all of the other existing wrappers. It only supports flat tables

1 http://www.topquadrant.com
2 http://www.cambridgesemantics.com/
3 http://aperture.sourceforge.net/

http://www.topquadrant.com
http://www.cambridgesemantics.com/
http://aperture.sourceforge.net/

366 A. Langegger and W. Wöß

as shown in Figure 1(a) of the previous section. The available prototype is capable of
reading CSV text files but does not support Excel or OpenOffice spreadsheets. An RDF
mapping in RDF123 is described as part of the spreadsheet itself in a special meta data
section starting with the specific label rdf123:metadata. Among several Dublin Core
metadata, the section specifies the start row, the end row, the start column, whether there
is a row header which has to be skipped, and the URI of the template graph used for
producing the results. When processing a spreadsheet, the execution engine scans the
sheet for the metadata section and if it cannot be found, the complete sheet (only one
worksheet is supported) is wrapped in a similar way as with Excel2RDF. If the metadata
section is found, the execution engine retrieves the template graph from the specified
location. The template graph is an RDF graph which may contain references to the
columns of the current row being processed to generate nodes based on values obtained
from the spreadsheet. Thus, the execution process is fixed to one row by row iteration.
In order to refer to the columns of the active row being processed, expressions can
be specified as special literals and faked URIs as for example "Ex:$1" and <Ex:$1>,
which both refer to the first column. Unfortunately, this approach has the following
severe consequences: all other literals starting with Ex: will be matched as expressions
and cause errors. Furthermore, because expressions may contain spaces and special
characters, encoding them as URIs (with Ex: as a pseudo protocol) will cause further
troubles at runtime and lead to incompatibilities with other systems.

RDF123 provides a GUI which facilitates the process of creating mappings. How-
ever, the tool only provides a viewer for CSV files and a basic graph designer which
both are not combined in any special way. The graph designer uses a proprietary format
to store graphs specific to the Open JGraph library, which has been used. Developing
a powerful graphical support tool is not easy and requires a lot of effort. It would be
desirable for a graphical mapping tool to provide features specific to the mapping pro-
cess such as drag and drop, highlighting of referenced cells, and a simulation feature
for debugging the wrapping process.

Because XLWrap can be used to semantically integrate different spreadsheets and to
query the entailed information based on logical inference, it can also be compared to
the system proposed by [9] which is called LESS for Logic Embedded in SpreadSheets.
Instead of writing typical numerical formulas into the cells of a spreadsheet, LESS
allows to logically annotate facts and use logical functions for calculations.

4 XLWrap Mapping Formalism

XLWrap is based on an RDF-centric mapping approach which allows to map the in-
formation stored in a spreadsheet to arbitrary RDF graphs independent from the rep-
resentation model as discussed in Section 2. Similar to RDF123, the output graph is
defined by means of template graphs which are repeatedly applied during the wrapping
process. With XLWrap expressions it is possible to refer to arbitrary cells and combine
them with expressions like in spreadsheet applications.

4.1 XLWrap Mappings

In the following, XLWrap mappings are defined based on the definitions of Sect. 2.

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 367

Definition 6. An XLWrap mapping M is defined as a set of map templates mk, k ∈ N.

Definition 7. A map template mk = (wk, sk,Ck,Gk, Fk) consists of the following com-
ponents: a base workbook wk ∈ wi, a base worksheet sk ∈ s j, a constant RDF graph Ck,
an RDF template graph Gk, and a sequence of transform operations Fk = (fl), l ∈ N.

Definition 8. A constant graph Ck and a template graph Gk are valid RDF graphs,
according to the W3C specification, which may contain literals of the custom data type
xl:Expr called XLWrap expressions4.

Definition 9. A transform operation fl can modify the template graph Gk and change
range references in expressions.

During the wrapping process, each map template mk ∈ M contributes a sub-graph [[Gk]]
to the overall result similar to RDF123, but with the difference that a graph template is
not moved from the first row to the last one in a fixed direction, instead, it is moved
based on the transformation sequence defined by (fl). The bracket notation [[. . .]] is
used to denote the application of a template graph including the evaluation of all XL-
Wrap expressions. While Ck is evaluated and merged into the target graph once, the
template graph Gk is subsequently transformed by (fl) and evaluated multiple times. If
|Fk| = 0, no transformations are specified and Gk is applied once in its initial form.

Because by definition subjects and predicates cannot be literals, in order to specify
XLWrap expressions for subjects or predicates, they have to be wrapped in blank nodes
as part of the template graph. The special property xl:uri is then used to replace these
blank nodes by URI resources in the target graph. Similarly, the property xl:id can be
used to link blank nodes: XLWrap will produce blank nodes with equal local IDs in the
target graph

Definition 10. An XLWrap expression is defined as a compositional expression of basic
expression symbols similar to spreadsheet formulas (see Definition 4). XLWrap expres-
sions are parsed from the lexical representation by the custom data type implementa-
tion5 according to the grammar defined in Listing 1.

Range references, including cell, box, and multi range references are supported as spec-
ified in Definition 5. Additionally, XLWrap supports the special range types null range,
full sheet range, and any range, which are lexically denoted as the empty string, (s j

“.*”), and “*.*”. Depending on the semantics of operations and functions, only specific
range sub-types are valid6. Optionally, a worksheet s j can be prefixed with “#” and
specified by the sheet number starting with 1 (e.g. “#1.A1”, “#3.*”).

XLWrap supports all standard arithmetic and also logical operators, string concatena-
tion, and an extensible function library (additional implementations can be easily added
at runtime). The most important functions for string manipulation, including SHA-1

4 The full namespace for the prefix xl: is http://langegger.at/xlwrap/vocab#
5 In Jena it is possible to register a custom data type handler by extending BaseDatatype.
6 For example, while SUM() takes any range reference and also numbers as arguments (the

number of arguments is not restricted), the expression "A3:B5" is invalid, since it is only
possible to obtain values from a single cell.

http://langegger.at/xlwrap/vocab#

368 A. Langegger and W. Wöß

XLExpression = "="? OrExpr <EOF> OrExpr = AndExpr (
"||" AndExpr)* AndExpr = Comparable ("&&" Comparable)*
Comparable = Concatable (CompOp Concatable)* Concatable =
Expr ("&" Expr)* Expr = Term (("+"|"-") Term)* Term
= Factor (("*"|"/") Factor)* Factor = Atom ("ˆ" Atom)*
Atom =
("+"|"-"|"!")
(
<NUMBER> ("%")? |
(<TRUE>|<FALSE>) |
<STRING> |
<CELLRANGE> |
"(" Concatable ")" ("%")? |
<FUNCIDENT> "(" (Concatable ((","|";") Concatable)*)? ")" ("%")?

)
CompOp = "<=" | "<" | ">=" | ">" | ("!="|"<>") | ("=="|"=")

Listing 1. Grammar of XLWrap expressions

hashing (which, for instance, is required for foaf:mbox sha1sum property values in
FOAF applications), type casting (to enforce specific literal data types in the RDF out-
put), aggregate functions such as SUM(), which takes cell, box, and multi ranges as
arguments, have already been implemented.

The following transform operations are available in the current implementation:

– column shift: fColumnS hi f t(d, n, z, ec)
– row shift: fRowS hi f t(d, n, z, ec)
– sheet shift: fS heetS hi f t(d, n, z, ec)
– sheet repeat: fS heetRepeat((gi), z, ec)
– file repeat: fFileRepeat((hi), z, ec)

Common to all operations is z, a multi range reference, which can be used to restrict
the transform operation on a set of ranges (default is AnyRange) and ec can be a logical
XLWrap expression, which is evaluated each time before the transformation is applied
(default is true). For all the shift operations d is the amount of columns/rows/sheets to
shift (defaults to 1), n is the number of times to apply the operation (defaults to the
maximum integer value of the runtime system), and for the repeat operations, (gi) and
(hi), respectively, specify the set of sheets or files to apply the template for. In order
to dynamically wrap evolving spreadsheets, n can be omitted and the iteration can be
controlled based on the condition ec. As a consequence, the transform operation will
be repeated until the condition evaluates to false. For convenience, the special function
EMPTY(ere f), which takes a multi range argument and returns true if all cells in ere f are
empty, can be used to detect the end of a data range in the spreadsheet.

As mentioned along with Definition 5, a range reference can be absolute or rela-
tive. Relative range references are extended during the mapping process by the base
workbook wk and base worksheet sk defined in the mapping M. For example, “A3”
may refer to “file:foo.xls#$Sheet1.A3” at runtime. The sheet/file repeat transforma-
tions will override the sheet/file component as needed, but absolute range references are
never modified by transform operations. There are special expression functions which
can be used to track the origin of the generated RDF triple by obtaining the current

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 369

filename, sheet name, sheet number, row and column of a cell at runtime: FILENAME(),
SHEETNAME(), SHEETNUM(), COLUMN(), and ROW(). All these functions take a cell
range as an argument.

4.2 Example Mapping

The source data for the example is printed in Table 1. The workbook w0 used for this
demonstration contains two sheets s1, s2 of information on revenues of a company. For
each country the company operates in, revenues are organized in a cross table containing
sold items and total revenue per product and year. As can be seen, data for 2008 is
missing for Germany, and there is one more product for Germany.

Table 1. Source data for the discussed example (s1, s2 ∈ w0)

Austria
2007 2008 2009

product items sold revenue items sold revenue items sold revenue
Product 1 342 7,866.00 376 8,648.00 490 11,760.00
Product 2 4,333 1,005,256.00 5,655 1,328,925.00 3,493 838,320.00
Product 3 3,312 1,136,016.00 4,566 1,598,100.00 5,993 1,917,760.00
Product 4 45 19,350.00 56 24,304.00 54 23,328.00
Totals 8,032 2,168,488.00 10,653 2,959,977.00 10,030 2,791,168.00

Germany
2007 2009

product items sold revenue items sold revenue
Product1 2,431 55,913.00 3,419 82,056.00
Product2 31,230 7,339,050.00 32,123 7,709,520.00
Product3 23,121 8,092,350.00 31,039 9,932,480.00
Product4 3,423 1,198,050.00 3,412 1,091,840.00
Product5 121 52,514.00 312 134,784.00
Totals 60,326 16,737,877.00 70,305 18,950,680.00

Depending on the desired target graph, Ck,Gk, andFk can be specified differently.
For instance, the target graph could be modeled as one resource per country having
linked resources for all products, and years. A more direct representation of the multi-
dimensional information is defined in the example mapping shown in Listing 2. We
will describe the generation process for this mapping in the next section. A third rep-
resentation using the Statistical Core Vocabulary7 (SCOVO) is provided as part of the
distribution (mappings/iswc09-example.trig). In order to be able to include the
template graphs in the mapping specification, the TriG syntax8, which allows to de-
note named graphs, is used. XLWrap searches for an instance of xl:Mapping in all
graphs and starts parsing the specification. The XLWrap mapping vocabulary, which
is published at http://www.langegger.at/xlwrap/vocab#, corresponds to the
definitions provided in Section 4.1.

7 http://purl.org/NET/scovo
8 http://www4.wiwiss.fu-berlin.de/bizer/TriG/

http://www.langegger.at/xlwrap/vocab#
http://purl.org/NET/scovo
http://www4.wiwiss.fu-berlin.de/bizer/TriG/

370 A. Langegger and W. Wöß

@prefix r d f : < h t t p : / /www. w3 . o rg /1999 /02 /22 − rd f −s yn tax −ns#> .
@prefix x l : < h t t p : / / l a n g e g g e r . a t / x lwrap / vocab#> .
@prefix ex : < h t t p : / / example . o rg /> .
@prefix : < h t t p : / / myAppl i ca t io n / mapping#> .

{ [] a x l : Mapping ;
x l : t e m p l a t e [

x l : f i l eName ” f i l e s / t e s t i n g / i swc09−example . x l s ” ;
x l : sheetNumber ”0” ;
x l : t e m p l a t e G r a p h : Revenues ;
x l : t r a n s f o r m [

a r d f : Seq ;
r d f : 1 [a x l : RowShift ;

x l : r e s t r i c t i o n ”A4 ; B4 : C4” ;
x l : c o n d i t i o n ”LEFT (A4 , 7) == ’ Produc t ’ ” ;
x l : s t e p s ”1”] ;

r d f : 2 [a x l : C o l S h i f t ;
x l : r e s t r i c t i o n ”B2 ; B4 : C4 ” ˆ ˆ x l : Expr ;
x l : c o n d i t i o n ” !EMPTY(B4 : C4) ” ;
x l : s t e p s ”2”] ;

r d f : 3 [a x l : S h e e t S h i f t ;
x l : r e s t r i c t i o n ” # 1 . * ” ˆ ˆ x l : Expr ;
x l : r e p e a t ”2”] ;

]
] .

}

: Revenues {
[x l : u r i ” ’ h t t p : / / example . o rg / revenue ’ & URLENCODE(SHEETNAME(A1) & ’ ’ & B2 &

’ ’ & A4) ” ˆ ˆ x l : Expr] a ex : Revenue ;
ex : c o u n t r y ”DBP COUNTRY(SHEETNAME(A1)) ” ˆ ˆ x l : Expr ;
ex : y e a r ”DBP YEAR(B2) ” ˆ ˆ x l : Expr ;
ex : p r o d u c t ”A4 ” ˆ ˆ x l : Expr ;
ex : i t e m s S o l d ”B4 ” ˆ ˆ x l : Expr ;
ex : r e v e n u e ”C4 ” ˆ ˆ x l : Expr .

}
Listing 2. Example mapping specified in TriG syntax

In our approach, the mapping is stored separately from the actual spreadsheet files
and not as part of them. It is assumed that the creator of the mapping file may not
have the authorization or possibility to modify spreadsheet files to be wrapped. XL-
Wrap is capable of loading local files and downloading spreadsheet files from the Web.
Currently, Excel files, Open Document spreadsheets, and also CSV files are supported
(although they could also be wrapped with other tools). The layout of CSV files (de-
limiters, separators, white spaces) can be specified. CSV files are streamed in order to
support large data files. The implementation simulates a workbook and requests new
rows from the input stream as needed by the execution engine. Because a single tem-
plate graph typically refers to a small section of the whole spreadsheet, it is sufficient
to keep the last n (where n = 1000 by default) rows in a cache.

5 Transformation Process

To give an overview of the transformation process, a flow chart is depicted in Figure
3. For each map template mk ∈ M, Ck and all generated template graphs qi are evalu-
ated based on the current state of the execution context X, which contains a reference
to the currently processed map template mk (activeTmpl) in order to retrieve wk and

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 371

sk. The base workbook wk and the base worksheet sk are required for the evaluation of
relative range references and obtaining values from the cells of the spreadsheets. The
execution context also contains a reference to the target graph (targetGraph) where
the generated statements are inserted. While in Section 4 we used [[Gk]] to denote the
evaluation of Gk including the application of transform operations Fk, the notation of
[[Ck]]X and [[qi]]X in the flow chart only represents the evaluation of XLWrap expres-
sions for the given graphs Ck and qi. The application of Fk is completely hidden by the
TemplateModelGenerator, which subsequently applies the defined transform opera-
tions fl ∈ Fk against Gk and returns multiple template graphs qi.

X := new ExecutionContext()
M := MappingParser.parse(<file>)

M has more
templates?

Gk = templateModel(mk)
Fk = transformOperations(mk)
Q := new TemplateModelGenerator(X, Gk, Fk)

mk := next map template
X.activeTmpl := mk

Q has more
tmpl models?

true

qi := next template model
addStatements([[qi]]X, X.targetGraph)

true

Ck := constantModel(mk)
addStatements([[Ck]]X, X.targetGraph)

false

false

return X.targetGraph

Fig. 3. Overview of the wrapping process

The TemplateModelGenerator is implemented as an iterator which uses a
sequence of stacked instances of TransformationStage – one for each transform
operation fl. Each stage transforms its current stage graph q fl

i1,...,in
according to the cor-

responding transform operation as depicted in Figure 4. Initially, all stage graphs are
equal to the template graph: q fl

0,...,0 = Gk. The blue nodes on the bottom represent fi-
nal template graphs which are returned by TemplateModelGenerator. Each call to
TemplateModelGenerator.hasNext() results in a transformation at the lowest stage
that has more transformations to apply. For example, if there are no more rows to shift
by f1, the corresponding stage triggers its parent stage and tracks back its internal state.
Likewise, if the condition defined for the transform operation does not hold, it is skipped
and the parent stage is triggered.

When a template graph is applied, before its triples are added into the target graph,
any blank node with a xl:uri property is replaced with a URI node, blank node la-
bels with equal xl:id properties are aligned, and any xl:Expr literal is evaluated as
an XLWrap expression e. The result of [[e]] is an instance of XLExprValue, which
can be a URI, blank node, string, long integer, double, boolean, or date value. When
obtaining cell values, the type is automatically detected based on the type annotation
(Definition 4). When creating literals for the target graph, long integers and floats are

372 A. Langegger and W. Wöß

qf3
0

qf2
0,0 qf2

0,1 qf2
0,n2

initial column

qf1
0,0,0 qf1

0,0,1 qf1
0,0,n1

initial row

Gk

initial sheet

f3: sheet shift

f2: column shift

f1: row shift

shift row

shift column

next sheet
parent
stage

parent
stage

null

...
qf1

0,1,0 qf1
0,1,1 qf1

0,1,n1

shift row ...
... qf1

0,n2,n1

...

...
qf1

n3,n2,n1

qf2
n3,n2

qf3
n3...

parent.proceed() parent.proceed() parent.proceed()

parent.proceed()

initial row

parent.proceed()

parent.proceed()

parent.proceed()

parent
stage

Fig. 4. Transform stages for the mapping specification of Listing 2

automatically reduced to the required size as long as they have not been explicitly casted
with a type casting function before. Depending on the type, a matching typed literal is
created.

For the example spreadsheet given in Table 1, after applying the mapping in Listing
2, the following triples are generated:

ex:revenue_Austria_2007_Product1 a ex:Revenue ;
ex:country <http://dbpedia.org/resource/Austria> ;
ex:itemsSold "342"ˆˆ<http://www.w3.org/2001/XMLSchema#short> ;
ex:product "Product1" ;
ex:revenue "7866"ˆˆ<http://www.w3.org/2001/XMLSchema#int> ;
ex:year <http://dbpedia.org/resource/2007> .

ex:revenue_Austria_2007_Product2 a ex:Revenue ;
ex:country <http://dbpedia.org/resource/Austria> ;
ex:itemsSold "4333"ˆˆ<http://www.w3.org/2001/XMLSchema#short> ;
ex:product "Product2" ;
ex:revenue "1005256"ˆˆ<http://www.w3.org/2001/XMLSchema#int> ;
ex:year <http://dbpedia.org/resource/2007> .

ex:revenue_Austria_2007_Product3 ...
ex:revenue_Austria_2007_Product4 ...
ex:revenue_Austria_2008_Product1 ...
...
ex:revenue_Austria_2009_Product1 ...
...
ex:revenue_Germany_2007_Product1 ...
...
ex:revenue_Germany_2009_Product1 ...
...
ex:revenue_Germany_2009_Product5 ...

Range reference sub-expressions of the stage template graph q f 1
0,0,0 = Gk are shifted

down by one row first until the condition LEFT(A4, 7) == ’Product’ is false, pro-
ducing resources for all products sold in Austria in 2007. However, only those range
references within the range restriction z f 1 = "A4; B4:C4" are actually transformed.
For instance, the expression "A4" (literal for ex:product) is subsumed by the restric-
tion range and is therefore changed to "A5", but "DBP YEAR(B2)" remains unchanged.
Next, q f 2

0,1 is calculated by a 2-step column shift of q f 2
0,0. The stage model of the sub-stage

is initialized as q f 1
0,1,0 := q f 2

0,1 for the next execution of f1 (row shift). If both, f1 and f2

XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL 373

have no more transformations (or both stage conditions do not hold), the sheet is shifted
according to f3, producing similar RDF data for Germany.

Transform operations are not only applied to range references in xl:Expr literals of
q fl

i1,...,in
, they must be applied also to the range restrictions z fl and to the conditions e fl

c of
the corresponding transform operations. For instance, the range restriction on the row
shift "A4; B4:C4" has to be shifted to "A5; B5:C5" in the first stage and then to "A4;
D4:E4", "A5; D5:E5", and "A4; F4:G4", "A5; F5:G5", etc. in the second stage.
When proceeding at the second stage, the transformation of the original f1-restriction is
itself restricted by the current range restriction of f2, which is "B2; B4:C4". As visual-
ized in Figure 5, thus only a subset of "A4; B4:C4" is shifted leading to "A4; D4:E4".
Currently, XLWrap is not capable of automatically splitting arbitrary box ranges based
on restrict ranges. This is why, “A4; B4:C4” was not specified as ”A4:C4” in the map-
ping9. However, intersections of box ranges are detected during the initialization of a
map template in order to be corrected.

1
2
3
4
5

A B C D E

shift 2 columns

F
1
2
3
4
5

A B C D E F

Fig. 5. Column shift of range restriction “A4; B4:C4” restricted by “B2; B4:C4”

6 Conclusion

In this contribution we have presented XLWrap, which is an RDF-centric mapping ap-
proach to support the transformation of spreadsheets with different representation mod-
els to arbitrary RDF graphs. The mapping concept has been formally defined and im-
plemented based on the Jena Semantic Web framework. The server component called
XLWrap-Server was not further discussed due to the page limit. It is a stand-alone
Web application based on Joseki and Snorql from the D2R-Server project including a
SPARQL endpoint and a linked data interface.

XLWrap is powerful enough to represent mappings for spreadsheets with different
representation models and target graphs. Because it supports external references, HTTP
URLs, and the wrapping of multiple spreadsheets into a combined cache including
OWL inference, it can be used very easily to semantically integrate multiple spread-
sheets locally or in intranets and extranets. The possibility of adding custom functions
– which is a matter of extending XLExprFunction and providing an implementation
for eval() – can be very practical for end-users. Beside adding custom mathematical
and statistical functions, it is possible to access a database or Web resources by XLWrap
functions. The future support for aggregate functions in SPARQL is a very important
requirement in order to support typical operations on spreadsheet data.

9 Especially in combination with the multi sheet and any range, ranges cannot be split straight-
forward and the implementation would additionally require support for exclusion ranges.

374 A. Langegger and W. Wöß

Future work will include the development of a graphical support tool including some
kind of mapping debugger and auto-detection of cross-tables to facilitate the mapping
specification task. Considerable work regarding auto-detection of headers and units has
already been published [1,2].

Acknowledgements

This work is funded by the Austrian BMBWK (Federal Ministry for Education, Science
and Culture), contract GZ BMWF-10.220/0002-II/10/2007. We would like to thank
Bernhard Haslhofer, Bernhard Schandl, Thomas Leitner, and Berndt Zinnöcker for the
helpful inputs and discussions held during the implementation of XLWrap.

References

1. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spatial analyses.
In: VLHCC 2004: Proceedings of the 2004 IEEE Symposium on Visual Languages - Hu-
man Centric Computing, Washington, DC, USA, pp. 165–172. IEEE Computer Society Press,
Los Alamitos (2004)

2. Chambers, C., Erwig, M.: Dimension inference in spreadsheets. In: VLHCC 2008: Proceed-
ings of the 2008 IEEE Symposium on Visual Languages and Human-Centric Computing,
Washington, DC, USA, pp. 123–130. IEEE Computer Society Press, Los Alamitos (2008)

3. Cyganiak, R., Bizer, C.: D2R Server – Publishing Relational Databases on the Web as
SPARQL Endpoints. In: Developers Track at the 15th International World Wide Web Con-
ference (WWW2006), Edinburgh, Scotland (May 2006)

4. Group, M., Reck, R.P.: Excel2RDF,
http://www.mindswap.org/˜rreck/excel2rdf.shtml (Last visit, June 2009)

5. Han, L., Finin, T.W., Parr, C.S., Sachs, J., Joshi, A.: RDF123: From Spreadsheets to RDF. In:
Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)
ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer, Heidelberg (2008)

6. HP Labs, Bristol, UK: Joseki – A SPARQL Server for Jena,
http://www.joseki.org/ (Last visit, June 2009)

7. Langegger, A., Wöß, W.: SemWIQ – Semantic Web Integrator and Query Engine. In:
Hegering, H.G., Lehmann, A., Ohlbach, H.J., Scheideler, C. (eds.) Beiträge der 38. Jahresta-
gung der Gesellschaft für Informatik e.V (GI), vol. 1. Bonner Köllen Verlag (2008)

8. Maurizio, L.: Data integration: a theoretical perspective. In: PODS 2002: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pp. 233–246. ACM, New York (2002)

9. Valente, A., Van brackle, D., Chalupsky, H., Edwards, G.: Implementing logic spreadsheets in
less. Knowl. Eng. Rev. 22(3), 237–253 (2007)

http://www.mindswap.org/~rreck/excel2rdf.shtml
http://www.joseki.org/

	XLWrap – Querying and Integrating Arbitrary Spreadsheets with SPARQL
	Introduction
	Background
	Information Representation in Spreadsheets
	Definition of Spreadsheet Applications
	Dumping versus On-the-Fly Processing of SPARQL Queries

	Related Work
	XLWrap Mapping Formalism
	XLWrap Mappings
	Example Mapping

	Transformation Process
	Conclusion

