
xmiddle: A Data-Sharing Middleware for Mobile

Computing

Cecilia Mascolo, Licia Capra,
Stefanos Zachariadis and Wolfgang Emmerich
Dept. of Computer Science
University College London
Gower Street, London WC1E 6BT, UK
{C.Mascolo|L.Capra|S.Zachariadis|W.Emmerich}@cs.ucl.ac.uk

Abstract. An increasing number of distributed applications will be written for
mobile hosts, such as laptop computers, third generation mobile phones, personal
digital assistants, watches and the like. Application engineers have to deal with a
new set of problems caused by mobility, such as low bandwidth, context changes or
loss of connectivity. During disconnection, users will typically update local replicas
of shared data independently from each other. The resulting inconsistent replicas
need to be reconciled upon re-connection. To support building mobile applications
that use both replication and reconciliation over ad-hoc networks, we have designed
xmiddle, a mobile computing middleware. In this paper we describe xmiddle and
show how it uses reflection capabilities to allow application engineers to influence
replication and reconciliation techniques. xmiddle enables the transparent sharing
of XML documents across heterogeneous mobile hosts, allowing on-line and off-line
access to data. We describe xmiddle using a collaborative e-shopping case study on
mobile clients.

Keywords: Mobile Computing, Middleware, Data Reconciliation, XML

1. Introduction

According to Mark Squires (Nokia) it took 15 years for the TV to
reach a critical mass of 50 million users, but it took the mobile phone
industry only 18 months to sell 50 million phones in Europe alone.
Mobile phones become increasingly computationally powerful, are inte-
grated with PDA capabilities (e.g., Nokia’s 9210) and are equipped with
ad-hoc networking technologies (e.g. Ericsson’s T36 that implements
Bluetooth (Mettala, 1999)). These enable new classes of applications
to exploit, for example, the ability to form ad-hoc workgroups; but
they also present new challenges to the mobile application developer.
In particular, resources, such as available main memory, persistent stor-
age, CPU speed and battery power are scarce and need to be exploited
efficiently. Moreover, network connectivity may be interrupted instan-
taneously and network bandwidth will remain by orders of magnitude
lower than in wired networks.

c© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

mw.tex; 30/08/2001; 14:26; p.1

2 Mascolo, Capra, Zachariadis, Emmerich

In distributed systems, the complexity introduced through distri-
bution is made transparent to the application programmer by means
of middleware technologies, which raise the level of abstraction. Exist-
ing middleware technologies, such as remote procedure call systems,
distributed object middleware (Emmerich, 2000), and message- or
transaction-oriented systems hide the complexities of distribution and
heterogeneity from application programmers and thus support them
in constructing and maintaining applications efficiently and cost-
effectively. However, these technologies have been built for wired
networks and are unsuitable for a mobile setting (Capra et al., 2001a).
In particular, the interaction primitives, such as remote procedure calls,
object requests, remote method invocations or distributed transactions
that are supported by current middleware paradigms assume a high-
bandwidth connection of the components, as well as their constant
availability. In mobile systems, instead, unreachability and low band-
width are the norm rather than an exception. In Bayou (Petersen et al.,
1997) disconnection was contemplated as a rare and occasional event.
The system hides mobility from the application layer in the same way
as transparency for relocation of object is used in modern middleware
systems.

We rather believe that middleware systems for mobile computing
need to find different kinds of interaction primitives to accommodate
the possibility for mobile components to become unreachable. Many
PDA applications copy, for example, agendas, to-do lists and address
records from a desktop machine into their local memory so that they
can be accessed when the desktop is unreachable. In general, mobile
applications must be able to replicate information in order to access
them off-line. Replication causes the need for synchronization when a
connection is re-established. This need is not properly addressed by
existing middleware systems. The commonly used principle of trans-
parency prevents the middleware to exploit knowledge that only the
application has, such as which portion of data to replicate and which
reconciliation policy to apply. It seems therefore necessary to design
a new generation of middleware systems, which disclose information
previously hidden, in order to make best use of the resources available,
such as local memory and network bandwidth.

Tuple space coordination primitives, that were initially suggested
for Linda (Gelernter, 1985), have been used to facilitate component
interaction for mobile systems. Tuple spaces achieve a decoupling be-
tween interacting components in both time and space by matching the
idea of asynchronicity with the mobile computing embedded concept
of disconnection and reconnection. Tuple spaces do not impose any
data structures for coordination allowing more flexibility in the range

mw.tex; 30/08/2001; 14:26; p.2

xmiddle: A Data-Sharing Middleware for Mobile Computing 3

of data that can be handled. On the other hand, the lack of any data
structuring primitives complicates the construction of applications that
need to exchange highly structured data.

In this paper we present xmiddle, which advances mobile com-
puting middleware approaches by firstly choosing a more powerful
underlying data structure and secondly by supporting replication and
reconciliation. xmiddle’s data structure are trees rather than tuple
spaces. More precisely, xmiddle uses the eXtended Markup Language
(XML) (Bray et al., 1998) to represent information and uses XML
standards, most notably the Document Object Model (DOM) (Appa-
rao et al., 1998) to support the manipulation of its data. This means
that xmiddle data can be represented in a hierarchical structure
rather than, for instance, in a flat tuple space. The structure is typed
and the types are defined in an XML Document Type Definition or
Schema (Fallside, 2000). xmiddle applications use XML Parsers to
validate that the tree structures actually conform to these types. The
introduction of hierarchies also facilitates the coordination between
mobile hosts at different levels of granularity as xmiddle supports
sharing of subtrees. Furthermore, representing mobile data structures
in XML enables seamless integration of xmiddle applications with the
Micro Browsers, such as WML browsers in mobile phones, that future
mobile hosts will include.

The paper is organized as follows: in Section 2 we briefly introduce
xmiddle and the main characteristics of the system. xmiddle makes
extensive use of XML and we sketch how we use XML and related
technologies in Section 3. Section 4 introduces a case study that we use
both to demonstrate and to evaluate the xmiddle concepts. xmiddle

uses versioning to manage updates of replicas and we discuss the under-
lying versioning principles in Section 5. Section 6 contains the details of
the protocols that we use for reconciliation and conflict resolution, tree
linking and disconnection. Section 7 discusses the basic architecture of
xmiddle and presents the primitives that this architecture provides for
mobile applications. In Section 8 we discuss and evaluate the xmiddle

system and in Section 9 we conclude the paper and list some future
work.

2. An Outline of xmiddle

xmiddle allows mobile hosts (i.e., PDAs, mobile phones, laptop com-
puters or other wireless devices) to be physically mobile, while yet
communicating and sharing information with other hosts. We do not
assume the existence of any fixed network infrastructure underneath.

mw.tex; 30/08/2001; 14:26; p.3

4 Mascolo, Capra, Zachariadis, Emmerich

Mobile hosts may come and go, allowing complicated ad-hoc network
configurations. Connection is symmetric but not transitive as it de-
pends on distance; for instance host HA can be connected to host HB,
which is also connected to host HC . However, host HA and host HC may
be not connected to each other. Mobile network technologies, such as
Bluetooth (Mettala, 1999) facilitate these configurations with multiple
so called piconets whose integration forms scatternets in Bluetooth. We
do not consider any multi-hop scenarios where routing through mobile
nodes is allowed, but it is in our agenda to investigate this issue further.

In order to allow mobile devices to store their data in a structured
and useful way, we assume that each device stores its data in a tree
structure. Trees allow sophisticated manipulations due to the different
node levels, hierarchy among the nodes, and the relationships among
the different elements which could be defined. xmiddle defines a set of
primitives for tree manipulation, which applications can use to access
and modify the data.

When hosts get in touch with each other they need to be able to
communicate. xmiddle therefore provides an approach to sharing that
allows on-line collaboration, off-line data manipulation, synchroniza-
tion and application dependent data reconciliation. On each device,
a set of possible access points for the owned data tree are defined
so that other devices can link to these points to gain access to this
information; essentially, the access points address branches of trees that
can be modified and read by peers. In order to share data, a host needs
to explicitly link to another host’s tree. The concept of linking to a
tree is similar to the mounting of network file systems in distributed
operating systems to access and update information on a remote disk.
Access points to a host’s tree are a set that we call ExportLink. Let
us say that host Hi exports the branch A and that hosts Hj and host
Hk link to it, expressing the wish to share this information with host
Hi. The owner of the branch is still host Hi but the data in the branch
can be modified and read by the three hosts. The way sharing and data
replication and reconciliation is allowed in xmiddle depends, however,
also on additional conditions related to the connection status among
the hosts.

In order to share data, hosts need to be connected. Host HA becomes
connected with host HB when it is “in reach” of it1. When two hosts are
connected they can share and modify the information on each other’s
linked data trees. Figure 1 shows the general structure of xmiddle

and the way hosts get in touch and interact. Each host has full control
1 The specific definition of in reach depends on the network protocols and hard-

ware devices used. Considering wireless LAN and Bluetooth in reach means in radio
range.

mw.tex; 30/08/2001; 14:26; p.4

xmiddle: A Data-Sharing Middleware for Mobile Computing 5

a.

b.

Host A

Host B

Host C
Host B

Host A

Host C

Figure 1. a. Host HB and Host HC are not in reach. b. Host HB and Host HC connect
and Host HB receives a copy of the XML tree that it has linked from Host HC .

over its own tree, however it is obliged to notify other connected hosts
that link to the modified part (branch) of its tree about the changes
introduced. If, for instance, host Hk wishes to modify a branch A linked
from the host Hi (owner of the branch), which is in reach, it requests
Hi to perform the desired changes. Hi then notifies the changes to all
the hosts (in reach) that link to the modified branch, including Hi.

The first time that the two hosts Hk and Hi are in reach of each
others, the middleware on the hosts realizes that Hk is linking to the
branch A of host Hi and a download process of the branch is started.
Once downloaded the branch, host Hk may happen to go out of reach.
The host is allowed to make off-line changes to branch A which will
then be reconciled to the changes Hi did, when the two hosts get in
reach again, if ever. While moving, Hk may happen to meet Hj , which
is also linking to branch A of host Hi. Also in this case the reconciliation
of the data takes place. A system of versions of the data in the tree is
kept to allow this data reconciliation and sharing (Section 5).

A host records the branches that it links from other remote hosts
in the set LinkedFrom, and the hosts linking to branches of the
owned tree in the set LinkedBy. These sets contain lists of tuples
(host, branch) that define the host that is linking to a branch, and from
whom a branch is linked, respectively. LinkedFrom does not mirror the
connection configuration, that is, host HA can be in the LinkedFrom

mw.tex; 30/08/2001; 14:26; p.5

6 Mascolo, Capra, Zachariadis, Emmerich

list of HB also if the two hosts are not in reach (specific primitives for
linking and unlinking trees modify these sets). On the contrary, the
LinkedBy set is updated by connection and disconnection operations
and it is used to know to whom to notify changes of parts of the tree.

Hosts may explicitly disconnect from other hosts, even though these
hosts may be “in reach”. xmiddle supports explicit disconnection to
enable, for instance, a host to save battery power, to perform changes in
isolation from other hosts and to not receive updates that other hosts
broadcast. Disconnection may also occur due to movement of a host
into an out of reach area, or to a fault. In both cases, the disconnected
host retains replicas of the last version of the trees it was sharing with
other hosts while connected and continues to be able to access and
modify the data; the versioning system that we will describe later is in
place to allow consistent sharing and data reconciliation.

3. xmiddle and XML

In the previous section we have described the motivation and main
characteristics of xmiddle. We now give the details on how we use XML
for structuring the device information as trees, and how XML related
technologies are exploited in order to achieve linking and addressing.

XML documents can be semantically associated to trees. We there-
fore format the data located on the mobile devices as XML trees. The
applications on the devices are enabled to manipulate the XML infor-
mation through the DOM (Document Object Model) API (Apparao
et al., 1998) which provides primitives for traversing, adding and delet-
ing nodes to an XML tree. The implementation of this API, however,
is xmiddle specific.

Furthermore, XML related technologies, and in particular
XPath (Clark and DeRose, 1999), are used in xmiddle to format
the addressing of points in a tree. LinkedFrom, LinkedBy and
ExportLink sets are formatted using XPath. The XPath syntax is very
similar to the Unix directory addressing notation. For instance, to ad-
dress a node in an XML tree the notation used is /root/child1/child2.
We will give extensive example of use in the Case Study Section
(Section 4).

The reconciliation of XML tree replicas which hosts use to concur-
rently and off-line modify the shared data, exploits the tree differencing
techniques developed in (Tai, 1979). XMLTreeDiff (Alphaworks, 1998)
is a package that implements this algorithm and that xmiddle uses
to handle reconciliation. We note, however, that reconciliation cannot
in all cases be completed by the xmiddle layer alone. Similarly to

mw.tex; 30/08/2001; 14:26; p.6

xmiddle: A Data-Sharing Middleware for Mobile Computing 7

merging text files, tree updates may lead to differences which can be
solved only using application-specific policies or may even need end-
user interaction. The use of XML as an underlying data structure,
however, enables xmiddle to both highlight the differences and define
reconciliation policies specific to particular types of document elements,
and therefore to specific applications (see Section 6).

4. A Case Study

In order to show how xmiddle supports building a mobile application
we describe a collaborative electronic shopping system. Assume that
a family has three members and that the family owns a PC and each
member of the family has a PDA. Assume further that the PC and
the PDAs have embedded Bluetooth technology to establish ad-hoc
networks. The family does its weekly shopping electronically. To do
so, the PC maintains a replica of the shop’s product catalogue that is
encoded in XML, as sketched in Figure 2. The catalogue on the PC is
updated whenever a price or the portfolio of the shop changes. Family
members replicate subsets of the product catalogue on their PDAs.
We suppose that the different members hold replicas of different parts
of the catalogue as they are interested in different product categories.
For example, the mother may have an interest in beauty products, the
father in hardware and the child in sweets and toys. The product cat-
egories however may overlap among the members. To show this in our
example, we assume that MemberA is only interested in dairy products,
MemberB in fruit, while MemberC is interested in both dairy and fruit.
Furthermore, each family member has a replica of a joint shopping bas-
ket. They shop by dragging items of the catalogue into their shopping
basket and by selecting quantities for these items. Reconciliation of
product catalogues and shopping baskets happens whenever the PDAs
establish connection to each other or to the PC.

Both the PC’s catalogue subtrees and the PC’s basket can be linked
using the “link” operation provided by xmiddle. When a PDA gets
within reach of the PC for the first time after the link operation, it
reconciles the PDA’s version with the PC’s version by transferring
catalogue subtrees and the empty basket to the PDA. MemberC , for
example, may decide to link to the whole catalogue in addition to the
empty basket. To link only to the dairy category on MemberA’s PDA, it
specifies the path of the DOM tree of that category and also links to the
empty shopping basket. Figure 3 shows how MemberA and MemberC
link to the categories (i.e., dairy products for MemberA and the whole

mw.tex; 30/08/2001; 14:26; p.7

8 Mascolo, Capra, Zachariadis, Emmerich

<shop lastupdate="2001-01-21"/>
<category name="Dairy">
<product>
<name> Milk</name>
<price> 1.20</price>

</product>
<product>
<name> Cheese</name>
<price> 3.50</price>

</product>
</category>
<category name="Fruit">
<product>
<name> Apple</name>
<price> 2.20</price>

</product>
<product>
<name> Pear</name>
<price> 1.60</price>

</product>
</category>
</shop>

Figure 2. The XML representation of the product catalogue.

catalogue for MemberC) and the empty basket, which the applications
on their respective PDAs will fill with products to be purchased.

The first parameter of link() operation is the server host name, in
this case the PC. The second parameter is the XPath expression (Clark
and DeRose, 1999) for the root of the branch to be linked. Consider
the linking expression for the “Dairy” products branch in Figure 3, for
which we use a predicate XPath expression to select that category ele-
ment, whose value of attribute name equals Dairy. The third parameter
of the link() operation is the “mounting point” on the local host. The
resulting virtual XML trees containing the linked parts are shown in
Figure 4 and Figure 5.

The application on each PDA can now use DOM primitives to tra-
verse the catalogue in order to display different categories and products.
To implement the addition of new items to the shopping basket, DOM
operations are used to create new child nodes of the shopping basket
node. Let us suppose that MemberA begins to put products into the
basket; a sample configuration is shown in Figure 6, where an order

mw.tex; 30/08/2001; 14:26; p.8

xmiddle: A Data-Sharing Middleware for Mobile Computing 9

//MemberA’s link requests
link("PC.home.net","/shop/category[@name="Dairy"],/);
link("PC.home.net","/basket",/);

//MembersC’s link requests
link("PC.home.net", "/shop",/);
link("PC.home.net", "/basket",/);

Figure 3. Use of linking mechanism for MemberA and MemberC .

product

Milk

product

category "Dairy"

1.20 Cheese 3.50

basket

root

Figure 4. The tree representation on MemberA’s PDA.

for one bottle of milk has been added to the basket. If these orders
are entered while the PDA is connected to the PC, the implementation
of the DOM operations will request updates of the DOM tree from
xmiddle middleware on the PC (as the PC is the “owner” of the
branch). Let us now assume that the PDA was either out of reach or
disconnected while these updates occurred.

When the PDA of a family member establishes a connection with
the PC, the reconciliation protocol (details in Section 6) will reconcile
any update that the PC has received via the Internet from the shop.
Likewise, any update that members have introduced to their shopping
basket will be incorporated into the basket on the PC.

The PDA can also establish a connection with other PDAs when
they meet in different rooms of the house or in town. The ability for

shop

product

Milk

productproduct

category "Dairy"

product

Apple 2.20 Pear 1.601.20 Cheese 3.50

basket

root

category "Fruits"

Figure 5. The tree representation on MemberC ’s PDA.

mw.tex; 30/08/2001; 14:26; p.9

10 Mascolo, Capra, Zachariadis, Emmerich

product

Milk

product

category "Dairy"

1.20 Cheese 3.50

basket

root

order

Milk quantity

1 add

Figure 6. The tree representation of the data on MemberA’s PDA after an order
has been entered.

every host to update a replica opens the possibility of conflicting up-
dates. As an example, let us now suppose that MemberC is also buying
milk from the dairy category, this time however ordering two bottles.
When the two hosts MemberA and MemberC connect their PDAs, their
xmiddle middleware realize they are both linking from the same host
(i.e., the PC) common tree branches. The reconciliation process has
to compute a consistent new version of the linked branches, both the
basket and the shop. The PDAs may have two different versions of the
shop catalogue if they synchronized with the PC at different times. The
reconciliation of the catalogue among the PDAs allows the members to
have a more up to date version of the catalogue even without connecting
to the PC. The reconciliation of the basket allows a member to com-
municate his or her part of the shopping list to the other member so
that, if one of them goes home, this is immediately copied into the PC.
Eventually (once a week), the home PC can then fire off the shopping
list to the shop. The shopping basket on the PC is gradually filled
through synchronization with the different members of the family.

We now focus on the basket differences: the reconciliation algo-
rithm (which is described in Section 6 in detail) identifies that a
conflict occurred as the quantities for the milk have different values
in the two basket replicas. Unfortunately, we cannot resolve this con-
flict without using application-specific knowledge: only the application
knows whether the total amount of bottles to be bought must be one
(MemberA), two (MemberC) or three (sum of the two). We show in the
following sections how xmiddle addresses this issue.

5. Versioning

Before giving the details of the reconciliation protocol, we explain
formally how xmiddle manages different versions of DOM trees.

mw.tex; 30/08/2001; 14:26; p.10

xmiddle: A Data-Sharing Middleware for Mobile Computing 11

edition 1.0

version 2.0v

edition 2.0

tree
own

root

tree tree
HostC’s HostB’s

edition 1.0 edition 1.0

edition2.0

Figure 7. Tree of Version History Graph of DOM Trees.

The principal data structure that xmiddle maintains for every host
is a tree where each node contains a directed version graph of DOM
trees from potentially different hosts (Figure 7). A version graph can
contain two types of elements: editions and versions. Informally, an
edition is a stable version that the host has agreed to save on persistent
storage, e.g., in Flash RAM. We refer to the process of establishing a
new edition as releasing a version. A version, on the contrary, is still
subject to changes and it is only kept in main memory. This means that
an edition can have both versions and editions as directed descendents
in the version graph, while a version cannot have descendents at all: a
version can only be derived from an edition. At the moment we assume
that every host has no more than one open version of a tree, either
linked or owned, and that this version has been created from the latest
edition. We also assume that every host X is uniquely identified by an
identifier HX .

For every node in the ExportLink set, that is, for every remotely
linkable point, xmiddle provides an edition identifier EI that uniquely
identifies, in a distributed environment, an edition of the subtree with
this node as root. This identifier is a tuple:

EI(e number, HA, HB),

where HA and HB identify uniquely the at most two hosts2 that
agreed in releasing this edition. The edition number e number is the
increment of the maximum of the two previous edition numbers and it
is used to disambiguate between subsequent editions agreed by the same
couple of hosts. We assume that the sequence of edition numbers always
starts from number 1. The edition number alone is not sufficient to

2 An edition can be created by a single host alone while disconnected or by two
hosts as the final step of a reconciliation process. We assume that the reconciliation
process is point-to-point, so no more than two hosts can be involved.

mw.tex; 30/08/2001; 14:26; p.11

12 Mascolo, Capra, Zachariadis, Emmerich

A B
(2, H , H) A B(2, H , H) C D(2, H , H) C D(2, H , H)

A(3, H , H) C A(3, H , H) C

(1v, H , $) X (1v, H , $) X

H H HHA B C D

(1v, H , $) (1v, H , $) X X

A(2v, H , H) (2v, H , H) C DB

Figure 8. Uniqueness of edition identifiers EI.

distinguish among different editions. Distribution adds new complexity
to the problem of versioning as we lack now a central authority to
issue new edition numbers: it is possible for two hosts to reconcile a
tree they copied from another host, without asking the owner, that
is a central authority, for a new edition number. Let us consider for
instance the scenario depicted in Figure 8: four hosts HA, HB, HC and
HD have edition 1 of a tree T linked from host HX. While disconnected,
they modify their local version independently of each other; when HA
and HB get in touch, they can reconcile this tree, creating a new edition
with e number = 2. The same can happen to HC and HD, leading to
another (but different) edition 2. If now HA and HC connect and look
only at the edition numbers they share, they may wrongly assume their
latest common version of T is number 2. Our approach eliminates the
problem as when HA and HC connect to each other, they recognize
they have different versions of T, namely EI(2, HA, HB) and EI(2, HC, HD);
the only thing they can do now is to reconcile these different editions,
generating EI(3, HA, HC). A letter v attached to an edition number means
that the corresponding node has been modified and that the changes
have not been agreed yet; a symbol $ for the host identifier means that
the agreement did not involve a second host (HA decided to create a
new stable version without reconciling with anyone else).

The basic principle upon which our distributed versioning scheme
relies on is the following.
Versioning principle.
When releasing a subtree T′ of a tree T, for each changed node n ∈ T′

we increase the edition number of all the linkable nodes on the path
from n included towards the root of T. When deriving a version from
an edition, for every changed node n we mark the edition number of all

mw.tex; 30/08/2001; 14:26; p.12

xmiddle: A Data-Sharing Middleware for Mobile Computing 13

HB
HA

(1 , H , $)A

(1 , H , $)A
(1 , H , $) A

A B(4 , H , H)
A

A

(1 , H , $) A

B

(2 , H , $)

B C

(4 , H , H)

(3 , H , H)

Figure 9. Distributed versioning scheme.

the linkable nodes on the path from n included towards the root with a
v.

Figure 9 illustrates what happens to the edition numbers of the
nodes of a tree linked by two different hosts. HB has linked to a subtree
T′ of a tree T owned by HA. While disconnected from the owner, HB has
reconciled with HC , which is linking to the same subtree T′. Once HA
and HB get in reach again, they reconcile. As a result, a new edition
identifier has been created for the root node of T′ and, for the versioning
principle described above, the same happens to the root node of T. This
is necessary in order for other hosts mounting the whole tree T to realize
that it has changed since the last time they reconciled with HA (this will
be clearer when describing the details of the reconciliation process, in
the following section). Nothing happens to the left branch of T instead,
as it has not been affected by any changes during the reconciliation
process.

6. Protocols

In this section we describe the protocols that we use to reconcile the
trees that two hosts share, to link a (sub)tree from one host to another,
and to disconnect an host.

Reconciliation protocol

The aim of reconciliation is to obtain a consistent version of the
replicas of the same tree once two hosts become connected. Our rec-
onciliation approach is composed of two main parts, one of which is
application-independent and one application-specific. The former is
based on general techniques for XML tree comparison and merging,

mw.tex; 30/08/2001; 14:26; p.13

14 Mascolo, Capra, Zachariadis, Emmerich

while the latter allows us to tune reconciliation parameters for resolv-
ing conflicts in an application-specific way. We discuss the two parts
separately.
Application-independent reconciliation.
Without loss of generality, we assume that two hosts HA and HB get in
reach after having worked off-line for a while on the same tree branch.
The following reconciliation protocol is started. We use the symbol
X −→msg Y to mean that message msg has been sent from X to Y.

1. HB −→LinkedFromB,ExportLinkB HA

2. HA −→LinkedFromA,ExportLinkA HB
Each time two hosts get in reach, they exchange their LinkedFrom

and ExportLink sets, in order to see whether they share some infor-
mation. When they realize they share a branch T, they first lock it
and then start the actual reconciliation process. If one of the hosts
is the owner of the branch T, it also flushes the queue of pending
requests for changes (received from the on-line hosts linking that
branch).

3. HB −→T,listOfEI HA
HB sends the list of all the edition identifiers for T starting from the
latest one until the root of the version history graph to HA.

4. HA −→lastSharedEI,listOfChanges HB
HA determines the most recent common edition it shares with HB
(lastSharedEI)3. HA then computes the changes done since then
and sends this list of differences together with lastSharedEI, to HB.

5. HB −→newChanges,newEI HA
HB applies the differences it received in order to establish an up-
to-date copy of HA’s tree T′; it computes the differences between its
own latest version and T′, defining a newly ‘merged’ version of T
that we call T′′; it computes the differences between the newly built
tree T′′ and T′ in order to inform HA of the changes (newChanges)
that it has to apply to its own copy to build the merged one. It
then constructs a new edition identifier newEI and finally sends
back newEI together with newChanges to HA.

6. HA −→ackA HB

7. HB −→ackB HA
The last two messages are needed just to acknowledge the two

3 There is always edition 1 at least, as explained in the following section.

mw.tex; 30/08/2001; 14:26; p.14

xmiddle: A Data-Sharing Middleware for Mobile Computing 15

hosts that the protocol has been successfully completed. When HB
receives ackA, it knows that HA possesses the new edition of T;
it then releases locally the new edition, taking care of adjusting
the edition numbers as described in Section 5. The same actions
happen on HA when receiving ackB from HB. The lock on the trees
is now removed. If one of them is the owner, it also broadcasts the
changes done to the on-line hosts linking to it in order to have a
synchronized version.

In case of a failure before step 5, the reconciliation process simply
stops: both HA and HB re-establish the state they were before the pro-
cess was started. If the protocol is being stopped between steps 5 and
6, a rollback procedure drops the new edition on both hosts, so actually
no reconciliation happens at all. If the protocol fails between steps 6
and 7, HA rolls-back while HB completes ‘successfully’, ignoring the fact
that actually HA failed. This is of no harm: next time the two hosts
get in reach they will reconcile starting from lastSharedEI, because HA
does not possess newEI.
Application-specific reconciliation.
Merging two versions may produce conflicts if both hosts have changed
or deleted the same element or attribute. These conflicts need to
be reconciled. Unfortunately it is not possible to devise generally
applicable conflict resolution strategies that could resolve conflicting
updates between replicas without assuming application specific knowl-
edge. xmiddle therefore provides the mobile application engineer, who
designs the underlying schemas with primitives to specify how conflicts
can be resolved in an application specific way.

<complexType name="Order">
<element name="product" type="string"/>
<element name="quantity" type="Quantity"/>
</complexType>
<complexType name="Quantity">
<element name="howmuch" type="decimal"/>
<element name="resolutor" type="Resolutor"/>
</complexType>

Figure 10. Schema definition of the application-specific reconciliation policy.

xmiddle supports the definition of conflict resolution policies for
reconciliation as part of the XML Schema (Fallside, 2000) definition
of the data structures that are handled by xmiddle itself. This is
achieved through the definition of an element type Resolutor, as shown
in Figure 10. To enable xmiddle to resolve the milk bottles conflict on

mw.tex; 30/08/2001; 14:26; p.15

16 Mascolo, Capra, Zachariadis, Emmerich

<order>
<product> Milk</product>
<quantity>
<howmuch>1</howmuch>
<resolutor> add </resolutor>

</quantity>
</order>

Figure 11. XML Specification of the application-specific reconciliation policy.

the shopping basket (Section 4), the application designer determines
an additional conflict resolution policy in the XML Schema. In partic-
ular, the Schema for this example defines type Resolutor with values
add, last, random, first, greatest. These policies have an associated
priority, defined by the order they appear in the Schema definition.

Figure 11 shows how applications select conflict resolution policies.
Referring to our previous example, add means that the quantities or-
dered by the two reconciling members must be added, therefore three
bottles of milk will be included in the reconciled version of the shopping
basket. The reconciliation of the shop catalogue among the different
PDAs is also performed in a similar way. For the shop catalogue,
resolutor can be set to last, to distribute the latest versions of product
catalogue entries.

During the execution of the merge operation, xmiddle on host HB,
that is the host that possesses the two trees to reconcile, identifies
conflicts by finding changes to attribute or element values. If such
a conflict has been detected, the middleware consults the tree and
identifies the conflict resolution strategy that has been determined for
the attribute or element in question. If the strategy chosen by the two
applications is the same, it is simply applied. Otherwise, the policy
with the highest priority is chosen, and it is also the one who appears
in the merged version on both hosts. If the mobile application designer
has not defined a type-specific conflict resolution strategy, xmiddle

chooses the latest change, otherwise xmiddle determines the attribute
or element value by executing the conflict resolution strategy.

We now revisit the collaborative shopping case study of Section 4
in order to see how the reconciliation process actually works. When
MemberA and MemberC connect, they consider their linking sets
(LinkedFrom and ExportLink) to identify whether they have common
replicas (which they do in our example). The reconciliation method is
called by the initiator of the connection (let us say MemberA). Rec-
onciliation of the shop catalogue is trivial, as the members would only
read, but not modify it: the two members figure out who has the latest

mw.tex; 30/08/2001; 14:26; p.16

xmiddle: A Data-Sharing Middleware for Mobile Computing 17

<basket>
<order>
<product> Milk</product>
<quantity>
<howmuch>2</howmuch>
<resolutor> add </resolutor>
</quantity>

</order>
<order>
<product> Apple</product>
<quantity>
<howmuch>3</howmuch>
<resolutor> add </resolutor>
</quantity>

</order>
</basket>

Figure 12. XML file for MemberC ’s order.

version and the other one simply updates his version copying all the
changes.

Let us focus now on reconciling the basket, and assume that
MemberA has the shopping basket of Figure 11 and that MemberC ’s
basket contains the orders shown in Figure 12. To achieve reconcili-
ation, the host of MemberA starts by sending the list of all edition
identifiers, starting from the current edition until the first one, to
MemberC (in this case we suppose MemberA never reconciled after
having copied the empty basket from the PC, so he has edition identifier
(1.0, HPC, $) only in addition to the current version he is manipulat-
ing). MemberC realizes that edition (1.0, HPC, $) is the last common
one and computes the changes made from that version: she added 2
bottles of milk and 3 apples (as she is also linking to the fruit branch
of the catalogue).

MemberC sends the update done to the first edition of the basket
branch, after calculating them using XMLTreeDiff (Alphaworks, 1998)
and locks the tree. The updates are shown in Figure 14 as XMLTreeDiff
differences. They are returned in such a way that the merge operation
of XMLTreeDiff can take the differences and turn edition (1.0, HPC,

$) into (2.0, HA, HC) on MemberA’s host.
MemberA locks the basket branch and establishes MemberC ’s up-

date in a new successor version of 1.0. It then uses XMLTreeDiff to
compare MemberA’s most recent version (the one shown in Figure 11)
with the newly established version of MemberC ’s basket. XMLTreeDiff

mw.tex; 30/08/2001; 14:26; p.17

18 Mascolo, Capra, Zachariadis, Emmerich

<diff>
<graft match="xfl0" type="1" parent="NoRef"

psib="/*[1]/*[1]">
<order>
<product> Apple</product>
<quantity>
<howmuch>3</howmuch>
<resolutor> add </resolutor>

</quantity>
</order>
</graft>
<replace match="/*[1]/*[1]/*[2]/*[1]/text()[1]"

type="3">
<value>2</value>

</replace>
</diff>

Figure 13. Diff of MemberA’s and MemberC ’s baskets.

<?xml version="1.0"?>
<diff>
<add match="xfl0" type="1" name="order" parent="/*[1]" psib="xfl1"/>
<add match="xfl3" type="1" name="quantity" parent="xfl0" psib="xfl2"/>
<add match="xfl5" type="1" name="resolutor" parent="xfl3" psib="xfl4"/>
<add match="xfl6" type="3" parent="xfl5"> <value> add </value> </add>
<add match="xfl4" type="1" name="howmuch" parent="xfl3"/>
<add match="xfl7" type="3" parent="xfl4"> <value>3</value> </add>
<add match="xfl2" type="1" name="product" parent="xfl0"/>
<add match="xfl8" type="3" parent="xfl2"> <value> Apple</value> </add>
<add match="xfl1" type="1" name="order" parent="/*[1]"/>
<add match="xfl10" type="1" name="quantity" parent="xfl1" psib="xfl9"/>
<add match="xfl12" type="1" name="resolutor" parent="xfl10" psib="xfl11"/>
<add match="xfl13" type="3" parent="xfl12"> <value> add </value> </add>
<add match="xfl11" type="1" name="howmuch" parent="xfl10"/>
<add match="xfl14" type="3" parent="xfl11"> <value>2</value> </add>
<add match="xfl9" type="1" name="product" parent="xfl1"/>
<add match="xfl15" type="3" parent="xfl9"> <value> Milk</value>
</add>

</diff>

Figure 14. Result of TreeDiff between edition 1.0 (i.e., the empty basket) and the
current shopping list of MemberC .

mw.tex; 30/08/2001; 14:26; p.18

xmiddle: A Data-Sharing Middleware for Mobile Computing 19

returns the difference as shown in Figure 13. The merge operation then
analyzes these XMLTreeDiff results and identifies that there are two
differences. The first one graft is a new order that is to be inserted.
This can be merged into MemberA’s basket by XMLTreeDiff without
causing a conflict. The second difference is a replace, which indicates
a conflict. The conflicting node is the howmuch element identified by the
XPath expression of the match attribute. Instead of applying the replace
operation as it is, the merge operation consults the application-specific
conflict resolution strategy in the document and as a resolution changes
the value element of the replace node to 3 (to cater for the additional
bottle of milk that was in the howmuch element of MemberA’s basket).

The merge operation then applies the differences to MemberA’s
shopping list by calling XMLTreeDiff’s merge operation. Finally, it
computes the differences between the result and MemberC ’s list to be
sent back to MemberC together with the new common version number.
In this way we have fully reconciled the two versions on the PDAs.

Linking protocol

This protocol is a simplification of the previously described one. In fact,
we can think of the link operation as a reconciliation between a tree
T and an empty one T0 considered as edition 0 of T. The output of the
reconciliation process causes no changes to the linked tree T, while the
empty tree T0 becomes a full copy of T, with no conflicts to reconcile
at all.

1. HB −→LinkedFromB,ExportLinkB HA

2. HA −→LinkedFromA,ExportLinkA HB
The first two steps are exactly the same as in the reconciliation
protocol: the two hosts exchange their LinkedFrom and ExportLink

sets in order to find out whether they share information. We assume
here that they do not share anything, in order to illustrate this new
case. For example, HB may decide to link a subtree T belonging to
HA after having seen it listed in ExportLinkA, or we may think that
HB already linked to T while disconnected from HA.

3. HB −→T,(0,$,$) HA
This message is exactly the same as in the reconciliation protocol,
but the list of edition identifiers contains only one entry, (0, $, $)4.

4. HA −→(1,HA,$),LastEdition,activeChanges HB
When HA receives the tuple (0, $, $), it knows that HB wishes to link

4 We use the tuple (0, $, $) to identify the empty edition

mw.tex; 30/08/2001; 14:26; p.19

20 Mascolo, Capra, Zachariadis, Emmerich

T, and replies with the latest edition of the tree together with a list
of changes previously broadcasted but not already released in an
edition. HB can now store this latest edition and apply the changes
in order to synchronize with HA. Since now on HB receives all the
changes to T broadcasted by HA. It is worthwhile noticing that HA
sends also the very first edition of T to HB; doing so, HB will be able
to reconcile with any other hosts linking to the same tree, as there
is always at least one common edition, the first one.

Disconnection protocol

The disconnection protocol involves only the host who is disconnecting,
for instance HB, so we could actually call it ‘disconnection procedure’
rather than ‘disconnection protocol’. This protocol is initiated by the
application in case of an explicit disconnection, while it is started by
xmiddle in case of an implicit disconnection. In both cases, for each
version not yet released, the host releases it: the versioning process is
started and finally the tree is stored. All the edition identifiers issued in
this procedure will have the form (editionNumber, HB, $). There is no
need for HB to broadcast a message to notify of its imminent disconnec-
tion: the middleware of the hosts connected (i.e., listed in the InReach

set) will take care of the fault, initiating a disconnection procedure that
releases all the versions of branches linked to the disconnected host.

It is worth noticing that this protocol completely disconnects a host
from the network when it is invoked by the application; on the contrary,
it may disconnect a host HA from another host HB while leaving HA still
connected to HC and HD, when invoked by the middleware of HA as a
consequence, for instance, of a movement.

7. The xmiddle Architecture and Implementation

7.1. The Xmiddle Architecture

We now present an overview of the xmiddle architecture, which follows
the ISO/OSI reference model. Figure 15 shows the protocol stack. As
shown, xmiddle implements the session and presentation layers on top
of standard network protocols, such as UDP or TCP, that are provided
in mobile networks on top of, for instance, a Bluetooth data-link layer
(i.e., Logical Link Control and Adaptation Protocol) and MAC and
physical layer (i.e., Bluetooth core which is based on radio communica-
tion). Our current prototype is however based on UDP upon Wireless
Lan (WaveLan (Technologies, 2000)), which is an other possible option.

mw.tex; 30/08/2001; 14:26; p.20

xmiddle: A Data-Sharing Middleware for Mobile Computing 21

Mobile Application
Application Layer

Xmiddle
Presentation layer

Session Layer

Transport Layer

Network Layer
IP

connect/disconnect
XmiddleDOM API

Bluetooth WaveLan

link/unlink

UDP

Data-link Layer
Physical Layer and MAC

Figure 15. The protocol stack for mobile environments using xmiddle.

Xmiddle_DOM Xmiddle Primitives

Java

ControllerXmiddleXML DOM
XPath Processor

Figure 16. The xmiddle architecture.

The presentation layer implementation maps XML documents to
DOM trees and provides the mobile application layer with the prim-
itives to link, unlink and manipulate its own DOM tree, as well as
replicas of remote trees. The session layer implementation manages
connection and disconnection.

Figure 16 refines the presentation and session layer implementa-
tions of xmiddle. The Xmiddle Controller is a concurrent thread that
communicates with the underlying network protocol and handles new
connections and disconnections, triggers the reconciliation procedures
and handles reconciliation conflicts according to application specific
policies. As xmiddle is entirely implemented in Java, it relies on a
Java Virtual Machine (JVM). A large variety of JVMs have been im-
plemented for mobile devices. The Symbian operating system for the
third generation of mobile phones, for example, has a Java Virtual Ma-
chine built in. Likewise, Sun provides a minimal kernel virtual machine
(KVM) implementation for Palm PDAs.

The Xmiddle Primitives API provides mobile applications with op-
erations implementing the xmiddle primitives, such as link, unlink,
connect and disconnect. The ability to link to trees from other devices
introduces a client/server dependency between mobile hosts. We refer
to the host which a tree is linked from as the server host and the
host that links the tree as a client host. The xmiddle implementation

mw.tex; 30/08/2001; 14:26; p.21

22 Mascolo, Capra, Zachariadis, Emmerich

maintains this client/server relationship in the LinkedFrom and LinkedBy

tables that are kept on each host (they correspond to the sets with the
same names defined in Section 2). The LinkedFrom table also needs
to keep track of the host that owns a subtree in order to allow the
application to be able to request updates from that host; this is done
using XPath. It is also necessary to the hosts that have linked to a tree
for being able to broadcast updates when the hosts are in reach.

The Xmiddle DOM component provides the xmiddle implemen-
tation of the DOM to mobile applications. We now proceed with a
detailed description of the xmiddle primitives.

7.2. Xmiddle Primitives

Connect.
Each entry in the LinkedFrom and LinkedBy tables identifies a re-
mote host as well as a specific branch of that host’s XML tree. The
ExportLink table identifies the branches of the local tree that can be
linked to from remote hosts. The InReach table contains the list of hosts
in reach. The connect primitive allows an application to notify the hosts
in reach that it is re-connected. The notified hosts will then update their
InReach tables. Upon reconnection the host starts the reconciliation
protocol with all the hosts in reach which are linking/linked to some
parts of its tree. After reconciliation, and provided that the connection
is still available, the host maintains the on-line mode update status: it
broadcasts all changes to its tree to other hosts included in the LinkedBy

table and the client hosts send requests for changes to the server.
Disconnect.
The disconnect primitive allows a host HA to explicitly decide to work
off-line. Apart from the explicit disconnection of HA, the unreachability
of a host HB from HA can be obtained implicitly when one of the two
hosts moves away. The disconnection process changes the content of
the InReach table and the disconnection protocol is invoked in order
to handle the tree changes and information caching.
Link.
Linking a tree from a remote host is achieved by calling the xmiddle

operation link. Its arguments indicate the server host and the complete
path to the branch. Furthermore, they identify the local ‘mounting’
point. During execution of the link operation xmiddle records the
linking details in the LinkedFrom table. Note that the link primitive can
be used independently from the connection status in order to indicate
an intention to share some information with another host. When linked
and connected to a remote client host, the server host records the name
of the client host, the branch it is linking to, and the linking point in the

mw.tex; 30/08/2001; 14:26; p.22

xmiddle: A Data-Sharing Middleware for Mobile Computing 23

LinkedBy table. This is used for broadcasting changes from the server
host during connection with the client host.
Unlink.
The unlink primitive modifies the local LinkedFrom table ‘unmounting’
a particular branch of a tree (maybe because the application does not
need it anymore).
DOM Operations.
xmiddle provides all the operations specified for tree traversal and ma-
nipulation in the DOM Level1 Recommendation. All operations access
and manipulate the local XML tree.

For access (i.e., read) operations, such as firstChild, parentNode,
and nextSibling, that return data from either the owned tree of the
host, or any linked tree, the xmiddle DOM interface just accesses the
local DOM tree (or replica) using the Apache DOM implementation. No
remote communication is needed to perform these generally frequently
used access operations.

For update operations of the tree, we have to distinguish several
cases. If a host wants to update its own tree, the update is performed by
calling the underlying Apache DOM implementation and then broad-
casting the changes to all the hosts connected and that are linked to
the changed branch (i.e., the LinkedBy table is interrogated). If an ap-
plication wishes to update a remote branch that is linked from another
host, we again have to distinguish two cases. If the owner is not within
reach we perform the changes on that version locally using the Apache
DOM implementation. The reconciliation protocol upon reconnection
will synchronize the versions of the common branches. If the owner host
is within reach, we request it to perform the update and wait until we
receive the notification of the changes before performing them on its
replica. The update requests that the server host receives are queued
together with the ones issued by itself, and then processed with a FIFO
policy. If a reconciliation protocol is started by a re-connecting host,
this has priority, the request queue is flushed and after reconciliation
the resulting changes are broadcasted to the hosts in reach linking to
the branch.

7.3. Evaluation

8. Discussion and Related Work

We have described xmiddle and shown its architecture. Through a case
study we have illustrated how it is used and shown the details of the
tree reconciliation algorithms and linking used for data synchroniza-
tion among the mobile devices. Synchronization and data locking have

mw.tex; 30/08/2001; 14:26; p.23

24 Mascolo, Capra, Zachariadis, Emmerich

been described as main problems in wireless environments by Imielinski
and Badrinath in (Imielinski and Badrinath, 1994). xmiddle offers a
possible solution.

We focus our interest on ad-hoc networks where host configura-
tions are relative and dynamic. No discovery services are set-up as
in Jini (Arnold et al., 1999) as all the hosts have the same capabilities.
They are able to reconfigure their own connection groups while they
move, through connection and disconnection with the other hosts.

Tuple space based systems for logical and physical mobility such
as JavaSpaces (Freeman et al., 1999), Lime (Murphy et al., 2001),
Limbo (Davies et al., 1997), T Spaces (IBM,), and Mars (Cabri et al.,
1998) exploit the decoupling in time and space of these data structures
in the mobility context where connect and disconnect are very relevant
and frequent operations. However, tuple spaces are very general and
loose data structures, which do not allow complex data organizations
and therefore do not fit all the application domains. XML allows us
to introduce hierarchy of data and to address specific paths in the
structure so that more elaborated operations can be performed by the
applications. The value of XML in structuring data has already been
recognized and some work has also been carried out to integrate tuple
spaces and XML: in (Cabri et al., 2000) a mobile agent system based on
tuple spaces is integrated with XML for the encoding of data. This al-
lows a more structured way of dealing with data communication, while
introducing flexibility in the data treatment. In that paper, however
XML is only used for data formatting. Tuples are translated into XML
files and stored into a data-space. In (Abraham et al., 1999), XML
is used to create a lightweight repository of XML documents, based
on IBM’s T Spaces. This repository supports XML (DOM) oriented
queries. XML documents are somehow stored as tuples in the tuple
space. TSpaces recently offered direct support for storage and indexing
of XML documents. This is done by transforming XML documents into
a tree of TSpaces tuples, linked internally via pointers.

An additional disadvantage of tuple-space based systems is in
term of synchronization capabilities. Tuple-spaces are multi-sets, which
means every tuple can be duplicated in the space. Whenever two or
more devices, which replicate a piece of data (represented as a tuple),
disconnect and modify it the reconciliation process of rejoining the
tuple spaces during reconnection becomes an unnatural operation (due
to the multi-set property of tuple spaces).

The issue of data replication and synchronization has been addressed
in the context of distributed file systems by Coda(Satyanarayanan
et al., 1990), which adopts an application-transparent adaptation tech-
nique, and its successor Odyssey(Satyanarayanan, 1996), which enables

mw.tex; 30/08/2001; 14:26; p.24

xmiddle: A Data-Sharing Middleware for Mobile Computing 25

application-aware adaptation. Compared to these approaches, xmid-

dle firstly defines a different level of granularity of the data that can
be moved across mobile devices, that is, parts of an XML document, as
small as we wish, as opposed to whole files. This may have a relevant
impact when dealing with slow and/or expensive connection. Moreover,
we do not assume the existence of any server that is more capable
and trustworthy than mobile clients, as we target pure ad-hoc network
configurations. Finally, the use of XML adds semantic to the repli-
cated data, against the uninterpreted byte streams of files; this added
semantics can then be exploited to provide better conflict detection
and resolution policies from an application point of view (as shown in
Section 6).

xmiddle uses only XML trees as data structures and exploits the
power of the nature of the data structure with specific operations;
for instance, the linking primitive facilitates off-line sharing of infor-
mation, which is very valuable in mobile computing contexts where
hosts have the need to move away from the source of information
even if they may want to continue to work on the downloaded data.
Reconciliation mechanisms are needed to maintain a certain level of
consistency and to support synchronization. Existing mobile computing
middleware systems do not address this issue and a consortium (i.e,
SyncML (SyncML, 2000)) has been established in order to provide stan-
dards for synchronizing data in mobile computing. SynchML provides
a set of specifications for the standardization of synchronization of data
(in any format) between different devices, using WSP, HTTP, or Blue-
tooth protocols. xmiddle uses tree structures for representing data and
defines protocols that take advantage of this format. SyncML focuses
on peer-to-peer synchronization, where a client/server relationship is
always established among the devices. No ad-hoc networking setting is
supported by SyncML, whereas xmiddle also supports reconciliation
of different clients that possess replicas of specific branches of an XML
tree. SynchML also defines reconciliation policies for data synchroniza-
tion. However, the polices are either on the server or client side. The
case in which the client wants to indicate how to reconcile data to the
server is not supported. As we have shown in the case study analysis,
hosts sometimes need to specify different reconciliation policies and
some priority structure among the policies is needed to actually choose
which policy to apply. Unlike SyncML, xmiddle avoids the need for
application to log every change they apply to shared data. Instead
xmiddle uses a versioning system to make this aspect transparent.
SyncML, on the contrary, leaves the logging to the application level.
Security and authentication aspects are investigated in the SyncML
specification which xmiddle does not tackle yet. However some au-

mw.tex; 30/08/2001; 14:26; p.25

26 Mascolo, Capra, Zachariadis, Emmerich

thentication mechanisms similar to the one of SyncML could we be put
in place in xmiddle, too.

The aim of Globe (v. Steen et al., 1999) is to provide an object based
middleware that scales to a billion users. To achieve this aim, Globe
makes extensive use of replication. Unlike other replication mecha-
nisms, such as Isis (Birman, 1997), Globe does not assume the existence
of an application independent replication strategy. It rather suggests
that replication policies have to be object-type specific, and therefore
they have to be determined by server object designers. In Globe each
type of object has its own strategy that pro-actively replicates objects.
xmiddle policies definition follows this approach.

The xmiddle strategy for data synchronization exploits well es-
tablished techniques and tools for replication and reconciliation on
trees (Tai, 1979; Alphaworks, 1998). In (Shapiro et al., 2000) some
formal work on application-independent reconciliation has been carried
out, which also focuses on a structured way for applications to influ-
ence data reconciliation choices. xmiddle exploits semantic knowledge
about element types; a set of reconciliation primitives is defined in
xmiddle, as described in Section 6, and the mobile application engineer
can specify the way these primitives are combined to determine an
application-specific reconciliation policy. In this way we can ease the
burden of applications, relying as much as possible on the middleware,
while, at the same time, providing for the application semantics and
user policies. This differentiates xmiddle from systems like CVS (Fo-
gel, 1999) and Bayou (Petersen et al., 1997). CVS is a source code
versioning tool that leaves everything in the hands of the user; conflicts
are detected based on updates done in the same line of the file by
different users, and the conflict resolution is left to the user. Bayou rec-
onciles application-specific information in an application-independent
way, preventing the application from influencing the outcome of the
reconciliation process. Bayou’s philosophy is the traditional middleware
one, which calls for complete transparency.

The xmiddle reconciliation algorithm is relying on versioning mech-
anisms. Like text-based versioning systems, such as RCS (Tichy, 1985),
we store and transmit differences as shown in Figures 13 and 14 to mini-
mize the transmission load during reconciliation: only the updates from
the last common version are exchanged between the hosts. Unlike text-
based versioning, however, the differences the xmiddle implementation
is able to obtain from XMLTreeDiff are more precise and semantically
richer. This is because the differencing algorithms are able to take at-
tribute and element, as well as their arrangements in trees into account.
This generally leads to a smaller number of conflicts than in text-based
differencing tools.

mw.tex; 30/08/2001; 14:26; p.26

xmiddle: A Data-Sharing Middleware for Mobile Computing 27

9. Further Work and Concluding Remarks

The growth of the recent mobile computing devices and network-
ing strategies call for the investigation of new middleware that deal
with mobile computing properties such as disconnection, low/expensive
bandwidth, scarce resources and in particular battery power, in a nat-
ural way. xmiddle is one possible answer to these needs that focuses
on data replication and synchronization problems and solves them
exploiting reconciliation strategies and technologies.

The implementation of the current prototype of xmiddle is based
on Wireless LAN and UDP, however we plan to migrate the system
to Bluetooth for more testing. Every host has a unique ID, which is
used for enumerating the tree versions in a consistent way (as de-
scribed in Section 5). In an earlier version of the prototype we used
the XMLTreeDiff tool developed by IBM (Alphaworks, 1998) but later
we decided to implement our own one that does not “optimize” the
results as the IBM version does as this was not needed in xmiddle. The
linking of a tree is currently implemented replicating the linked branch
locally. However, we plan to use different linking policies, depending on
the available bandwidth. That is, avoiding caching of the linked tree
when the two hosts are in reach and good bandwidth conditions are
matched. A weakness of the current reconciliation protocol implemen-
tation is that it does not cover the case when two hosts that link to
the same branch get in reach. The prototype currently reconciles the
two replica, but if further modifications are done by either of the hosts,
these changes are not broadcasted to the other host but instead the
replicas become inconsistent again until either an implicit or an explicit
reconciliation is started. We chose to implement the reconciliation this
way in order to avoid a heavy leader election protocol implementation
but realize that we might have to revisit this decision after we have
gained some practical experience with it.

The reconciliation and linking policies can be refined, especially con-
sidering the case where trees become graphs through XPath expressions
that create links (pointers) inside the tree. We are also considering
more case studies to deal with the conflict resolutions in a mixed
application/non-application oriented fashion. The definition of policies
for inconsistency resolution during the reconciliation process may also
be considered as quality of service specification. By defining the level
of consistency the application needs on specific data it is possible to
specify different “qualities of reconciliation”. We intend to investigate
this approach further.

Security policies can also be established in order to limit the access
of hosts on XML trees. For instance, specific branches of the trees

mw.tex; 30/08/2001; 14:26; p.27

28 Mascolo, Capra, Zachariadis, Emmerich

may be defined as accessible to all the hosts while other branches
may be accessible only to particular hosts. This can be done enriching
the syntax of the LinkExport table which allows a host to make only
some subtrees remotely accessible while retaining exclusive access to
other subtrees. Digital signatures and common security strategies (i.e,
passwords and public/private keys) could be applied as well in order to
guarantee further levels of security. Issues of fault tolerance which we
tackle only partially are in our agenda as well.

The use of XML and XPath for data formatting has advantages not
only at the level of the tree structure and at the use of readily available
technologies, but also at the information rendering level as XSL and
WAP could be integrated in order to customize the display of the data
for different mobile devices.

In (Mascolo et al., 2001) we used XML for the implementation of a
fine-grained code mobility approach which allows single lines of code to
be transferred among hosts in an incremental manner. xmiddle allows
data sharing through XML; however, using the approach presented in
the mentioned paper we could provide code sharing and mobility using
the same XML format. This feature would power xmiddle with more
flexibility and extensibility: we plan to look into this aspect.

Tuple spaces based systems allow notification of events on the tuple
spaces in different ways (e.g., transactions and reactions). We plan to
extend xmiddle by introducing some event notification mechanisms
that allow hosts to register for events on trees. At the moment a basic
event notification mechanism is in place for connected hosts to be noti-
fied about the modification of linked tree branches, but some extensions
can be developed.

In conclusion, xmiddle is an example of a reflective middle-
ware (Eliassen et al., 1999). xmiddle abandons replication trans-
parency as we believe that in the challenging mobile computing en-
vironments middleware systems have to take advantage of application-
specific information to achieve an acceptable performance, usability and
scalability. We consider our effort on xmiddle to be just the first step in
that direction and believe that a number of other forms of transparency
have to be given up, too. Location transparency, for example may have
to be discontinued to provide location aware services. In general, this
will lead to a new class of context-aware applications (Capra et al.,
2001b), which can influence the way middleware implements interac-
tions between mobile components based on the context in which the
components operate.

Moreover, mobile ad-hoc network research is recently investigating
behaviour and routing in a multi-hop scenario, where hosts act as
router allowing transitive communication. We think xmiddle can be

mw.tex; 30/08/2001; 14:26; p.28

xmiddle: A Data-Sharing Middleware for Mobile Computing 29

expanded to deal with these protocol and we plan to investigate this
issue further.

Acknowledgements

We would like to thank Jon Crowcroft, Adam Greenhalgh, Steve Hailes,
Gruia-Catalin Roman, and Vassilis Rizopoulos for the helpful discus-
sions on the topic and their comments on a draft of this paper. We also
thank Christian Nentwich for the non-optimizing XMLTreeDiff code.

References

Abraham, J., H. Le, and C. Cedro: 1999, ‘XML Repository in T Spaces and
UIA Event Notification Application’. http://www.cse.scu.edu/projects/1998-
99/project19.

Alphaworks, I.: 1998, ‘XML TreeDiff’. http://www.alphaworks.ibm.com/tech/xmltreediff.
Apparao, V., S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. L. Hors,

G. Nicol, J. Robie, R. Sutor, C. Wilson, and L. Wood: 1998, ‘Docu-
ment Object Model (DOM) Level 1 Specification’. W3C Recommendation
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001, World Wide Web
Consortium.

Arnold, K., B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath: 1999, The
Jini[tm] Specification. Addison-Wesley.

Birman, K. P.: 1997, Building Secure and Reliable Network Applications. Manning
Publishing.

Bray, T., J. Paoli, and C. M. Sperberg-McQueen: 1998, ‘Extensible Markup Lan-
guage’. Recommendation http://www.w3.org/TR/1998/REC-xml-19980210,
World Wide Web Consortium.

Cabri, G., L. Leonardi, and F. Zambonelli: 1998, ‘Reactive Tuple Spaces for Mobile
Agent Coordination’. In: Proceedings of the 2nd International Workshop on
Mobile Agents (MA 98). Springer.

Cabri, G., L. Leonardi, and F. Zambonelli: 2000, ‘XML Dataspaces for Mobile
Agent Coordination’. In: Proceedings of the 2000 ACM Symposium on Applied
Computing (SAC 2000). Como, Italy, ACM Press.

Capra, L., W. Emmerich, and C. Mascolo: 2001a, ‘Middleware for Mobile Com-
puting: Awareness vs. Transparency ’. Technical Report RN/00/03, University
College London, Dept. of Computer Science. Submitted for Publication.

Capra, L., W. Emmerich, and C. Mascolo: 2001b, ‘Reflective Middleware Solutions
for Context-Aware Applications’. In: Proceedings of REFLECTION 2001. The
Third International Conference on Metalevel Architectures and Separation of
Crosscutting Concerns. Kyoto, Japan. To appear.

Clark, J. and S. DeRose: 1999, ‘XML Path Language (XPath) Version 1.0’. Rec-
ommendation http://www.w3.org/TR/1999/REC-xpath-19991116, World Wide
Web Consortium.

Davies, N., S. P. Wade, A. Friday, and G. S. Blair: 1997, ‘Limbo: A Tuple Space
Based Platform for Adaptive Mobile Applications’. In: Proceedings of the In-

mw.tex; 30/08/2001; 14:26; p.29

30 Mascolo, Capra, Zachariadis, Emmerich

ternational Conference on Open Distributed Processing/Distributed Platforms
(ICODP/ICDP ’97). pp. 291–302.

Eliassen, F., A. Andersen, G. S. Blair, F. Costa, G. Coulson, V. Goebel, O. Hansen,
T. Kristensen, T. Plagemann, H. O. Rafaelsen, K. B. Saikoski, and W. Yu:
1999, ‘Next Generation Middleware: Requirements, Architecture and Proto-
types’. In: Proceedings of the 7th IEEE Workshop on Future Trends in Distributed
Computing Systems. pp. 60–65, IEEE Computer Society Press.

Emmerich, W.: 2000, Engineering Distributed Objects. John Wiley & Sons.
Fallside, D. C.: 2000, ‘XML Schema’. Technical Report

http://www.w3.org/TR/xmlschema-0/, World Wide Web Consortium.
Fogel, K.: 1999, Open Source Development with CVS . Coriolis Group.
Freeman, E., S. Hupfer, and K. Arnold: 1999, JavaSpaces[tm] Principles, Patterns,

and Practice. Addison-Wesley.
Gelernter, D.: 1985, ‘Generative Communication in Linda’. ACM Transactions on

Programming Languages and Systems 7(1), 80–112.
IBM, ‘T Spaces’. http://almaden.ibm.com/cs/TSpaces.
Imielinski, T. and B. R. Badrinath: 1994, ‘Mobile wireless computing: challenges in

data management’. Communications of the ACM 37(10), 18–28.
Mascolo, C., L. Zanolin, and W. Emmerich: 2001, ‘XMILE: an XML based Approach

for Incremental Code Mobility and Update’. Automated Software Engineering.
Accepted with minor revision.

Mettala, R.: 1999, ‘Bluetooth Protocol Architecture’.
http://www.bluetooth.com/developer/whitepaper/.

Murphy, A. L., G. P. Picco, and G.-C. Roman: 2001, ‘Lime: A Middleware for Phys-
ical and Logical Mobility’. In: Proceedings of the 21st International Conference
on Distributed Computing Systems (ICDCS-21). To appear.

Petersen, K., M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers: 1997,
‘Flexible Update Propagation for Weakly Consistent Replication’. In: Proceed-
ings of the 16th ACM Symposium on Operating Systems Principles (SOSP-16).
pp. 288–301, ACM Press.

Satyanarayanan, M.: 1996, ‘Mobile Information Access’. IEEE Personal Communi-
cations 3(1), 26–33.

Satyanarayanan, M., J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere:
1990, ‘Coda: A Highly Available File System for a Distributed Workstation
Environment’. IEEE Transactions on Computers 39(4), 447–459.

Shapiro, M., A. Rowstron, and A. Kermarrec: 2000, ‘Application-independent
Reconciliation for Nomadic Applications’. In: Proceedings of European Work-
shop:”Beyond the PC: New Challenges for the Operationg System”. Kolding,
Denmark, SIGOPS.

SyncML: 2000, ‘Building an Industry-Wide Mobile Data Synchronization Protocol’.
http://www.syncml.org/technical.htm.

Tai, K.: 1979, ‘The Tree-to-Tree Correction Problem’. Journal of the ACM 29(3),
422–433.

Technologies, L.: 2000, ‘WaveLan’. http://www.wavelan.com.
Tichy, W. F.: 1985, ‘RCS – A System for Version Control’. Software – Practice and

Experience 15(7), 637–654.
v. Steen, M., P. Homburg, and A. S. Tanenbaum: 1999, ‘Globe: A Wide-Area

Distributed System’. IEEE Concurrency pp. 70–78.

mw.tex; 30/08/2001; 14:26; p.30

