
XML Access Control Using Static Analysis

Makoto Murata
IBM Tokyo Research Lab/IUJ

Research Institute
1623-14, Shimotsuruma,

Yamato-shi,
Kanagawa-ken 242-8502,

Japan

mmurata@trl.ibm.com

Akihiko Tozawa
IBM Tokyo Research Lab
1623-14, Shimotsuruma,

Yamato-shi,
Kanagawa-ken 242-8502,

Japan

atozawa@trl.ibm.com

Michiharu Kudo
IBM Tokyo Research Lab
1623-14, Shimotsuruma,

Yamato-shi,
Kanagawa-ken 242-8502,

Japan

kudo@jp.ibm.com

ABSTRACT
Access control policies for XML typically use regular path
expressions such as XPath for specifying the objects for ac-
cess control policies. However such access control policies
are burdens to the engines for XML query languages. To
relieve this burden, we introduce static analysis for XML
access control. Given an access control policy, query expres-
sion, and an optional schema, static analysis determines if
this query expression is guaranteed not to access elements
or attributes that are permitted by the schema but hidden
by the access control policy. Static analysis can be per-
formed without evaluating any query expression against an
actual database. Run-time checking is required only when
static analysis is unable to determine whether to grant or
deny access requests. A nice side-effect of static analysis
is query optimization: access-denied expressions in queries
can be evaluated to empty lists at compile time. We have
built a prototype of static analysis for XQuery, and shown
the effectiveness and scalability through experiments.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; D.4.6 [Operating
Systems]: Security and Protection—Access controls

General Terms
Algorithms,Performance,Experimentation,Security,Theory

Keywords
XML, XQuery, XPath, schema, automaton, access control,
query optimization, static analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03, October 27–31, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

1. INTRODUCTION
XML [5] has become an active area in database research.

XPath [6] and XQuery [4] from the W3C have come to be
widely recognized as query languages for XML, and their
implementations are actively in progress. In this paper,
we are concerned with fine-grained (element- and attribute-
level) access control for XML database systems rather than
document-level or collection-level access control. We be-
lieve that access control plays an important role in XML
database systems, as it does in relational database systems.
Some early experiences [21, 10, 3] with access control for
XML documents have been reported already.

Access control for XML documents should ideally provide
expressiveness as well as efficiency. That is, (1) it should be
easy to write fine-grained access control policies, and (2) it
should be possible to efficiently determine whether an ac-
cess to an element or an attribute is granted or denied by
such fine-grained access control policies. It is difficult to ful-
fill both of these requirements, since XML documents have
richer structures than relational databases. In particular,
access control policies, query expressions, and schemas for
XML documents are required to handle an infinite number
of paths, since there is no upper bound on the height of
XML document trees.

Existing languages (e.g. [21, 10]) for XML access con-
trol achieve expressiveness by using XPath [6] as a simple
and powerful mechanism for handling an infinite number of
paths. For example, to deny accesses to name elements that
are immediately or non-immediately subordinate to article

elements, it suffices to specify a simple XPath expression
//article//name as part of an access control policy.

However, XPath-based access control policies are addi-
tional burdens for XML query engines. Whenever an el-
ement or attribute in an XML database is accessed at run
time, a query engine is required to determine whether or not
this access is granted by the access control policies. Since
such accesses are frequently repeated during query evalua-
tion, naive implementations for checking access control poli-
cies can lead to unacceptable performance.

In this paper, we introduce static analysis as a new ap-
proach for XML access control. Static analysis examines ac-
cess control policies and query expressions as well as schemas,
if present. Unlike the run-time checking described above,
static analysis does not examine actual databases. Thus,
static analysis can be performed at compile time (when a
query expression is created rather than each time it is eval-

73

uated). Run-time checking is required only when static anal-
ysis is unable to grant or deny access requests without ex-
amining the actual databases. In addition, static analysis
facilitates query optimization, since access-denied XPath ex-
pressions in queries can be rewritten as empty lists at com-
pile time. In Section 5, we will demonstrate effectiveness of
static analysis using examples.

The key idea for our static analysis is to use automata for
representing and comparing queries, access control policies,
and schemas. Our static analysis has two phases. In the
first phase, we create automata from queries, access con-
trol policies, and (optionally) schemas: (1) automata cre-
ated from queries, called query automata, represent paths
to elements or attributes as accessed by these queries; (2)
those created from access control policies, called access con-
trol automata, represent paths to elements or attributes as
exposed by these access control policies; and (3) those cre-
ated from schemas, called schema automata, represent paths
to elements or attributes as permitted by these schemas. In
the second phase, we compare these automata while apply-
ing the following rules: (1) accesses by queries are always-
granted if the intersection of query automata and schema
automata is subsumed by the access control automata; (2)
they are always-denied if the intersection of query automata,
schema automata, and access control automata is empty;
and (3) they are statically indeterminate, otherwise.

1.1 Related Works
Fine-grained access control for XML documents has been

studied by many researchers [2, 21, 3, 10, 15]. Their access
control policies are similar to ours. They all provide run-
time checking of access control policies, but do not consider
static analysis. Their algorithms for run-time checking as-
sume that XML documents are in the main memory and can
be examined repeatedly.

Access control for an RDBMS is driven by views, which
hide some information (typically attributes in relations) in
the RDBMS. Queries written by users do not access actual
databases, but rather access these views. View-driven ac-
cess control is typically efficient, since view queries and user
queries are optimized together and then executed. In other
words, access control is provided partly by optimization at
compile-time and partly by checking at run-time.

Object-oriented database systems (OODBMS) provide richer
structures than RDBMSs or XML. In fact, an OODBMS
provides network structures and class hierarchies. Access
control frameworks for the OODBMS have appeared in the
literature [1, 28]. Such frameworks typically rely on run-
time analysis and do not use static analysis.

Our static analysis for XML access control is made possi-
ble by the tree-structured nature of XML. First, the schemas
for XML are regular tree grammars, from which we can gen-
erate automata that represent the permissible paths. Sec-
ond, both access control policies and queries for XML use
regular path expressions (XPath) for locating elements or
attributes. We can thus use automata for uniformly han-
dling schemas, queries, and access control policies.

Implementation techniques for XQuery and XPath are be-
ing actively studied. However, when compared to SQL en-
gines, XQuery engines are far from mature. To the best of
the authors’ knowledge, none of the existing XQuery engines
provide competitive optimization as well as access control.

The use of automata for XML is not new. Many re-

searchers have used automata (string automata or tree au-
tomata) for handling queries, schemas, patterns, or integrity
constraints. Furthermore, recent works apply boolean op-
erations (typically the intersection operation) to such au-
tomata. These works include type checking (e.g., [20, 12]),
query optimization using schemas (e.g., [14]), query opti-
mization using views (e.g., [27, 11, 23, 25, 30]), consistency
between integrity constraints and schemas (e.g., [13]). Our
static analysis uses similar techniques. However, to the best
of our knowledge, our static analysis is the first application
of automata for XML access control.

XPath containment [11, 23, 25, 30] is similar to our static
analysis, since we compare XPath expressions for queries
and those for access control policies. However, denial rules
(shown in Section 3) in access control policies require that
our static analysis apply the negation operation to automata
and use both over- and under-estimation of access control
automata.

1.2 Outline
The rest of this paper is organized as follows. After re-

viewing the fundamentals of XML, schemas, XPath, and
XQuery in Section 2, we introduce access control policies
for XML documents in Section 3. We introduce static anal-
ysis in Section 4 and further demonstrate the effectiveness
and scalability of static analysis in Section 5. We discuss fu-
ture extensions for handling value-based access control and
the advanced features of XPath and XQuery, and conclude
in Section 6.

2. PRELIMINARIES
In this section, we introduce the basics of XML, schema

languages, XPath, and XQuery.

2.1 XML
An XML document consists of elements, attributes, and

text nodes. These elements collectively form a tree. The
content of each element is a sequence of elements or text
nodes. An element has a set of attributes, each of which has
a name and a value. We hereafter use ΣE and ΣA as a set
of tag names and that of attribute names, respectively. To
distinguish between the symbols in these sets, we prepend
’@’ to symbols in ΣA.

An XML document representing a medical record is shown
in Figure 1. This XML document describes diagnosis and
chemotherapy information for a certain patient. Several
comments are inserted in this document. For the rest of
this paper, we use this document as a motivating example.

2.2 Schema
A schema is a description of permissible XML documents.

A schema language is a computer language for writing schemas.
DTD, W3C XML Schema [29], and RELAX NG [7] from
OASIS (and now ISO/IEC) are notable examples of schema
languages.

We do not use particular schema languages in this paper,
but rather use tree regular grammars [9] as a formal model
of schemas. Murata et al. [24] have shown that tree reg-
ular grammars can model DTD, W3C XML Schema, and
RELAX NG.

A schema is a 5-tuple G = (N, ΣE , ΣA, S, P), where:

• N is a finite set of non-terminals,

74

<record>
<diagnosis>
<pathology type="Gastric Cancer">

Well differentiated adeno carcinoma
</pathology>
<comment>This seems correct</comment>

</diagnosis>
<chemotherapy>
<prescription>5-FU 500mg</prescription>
<comment>Is this sufficient?</comment>

</chemotherapy>
<comment>How was the operation?</comment>

</record>

Figure 1: An XML document example

• ΣE is a finite set of element names,

• ΣA is a finite set of attribute names,

• S is a subset of ΣE × N ,

• P is a set of production rules X → r A, where X ∈ N ,
r is a regular expression over ΣE×N , and A is a subset
of ΣA.

Production rules collectively specify permissible element
structures. We separate non-terminals and element names,
since we want to allow elements of the same name to have
different subordinates depending on where these elements
occur. Although examples in this paper can be captured
without separating non-terminals and element names, W3C
XML Schema and RELAX NG require this separation. Un-
like the definition in [24], we allow production rules to have
a set of permissible attribute names1 .

For the sake of simplicity, we do not handle text as values
of elements or attributes in this paper. In the case of DTDs,
this restriction amounts to the confusion of #PCDATA and
EMPTY.

Example 1 A schema for our motivating example is G1 =
(N1, Σ

E
1 , ΣA

1 , S1, P1), where

N1 = {Record, Diag, Chem, Com, Patho, Presc},
ΣE

1 = {record, diagnosis, chemotherapy,
comment, pathology, prescription},

ΣA
1 = {@type},

S1 = {record[Record]},
P1 = {Record → (diagnosis[Diag]∗ ,

chemotherapy[Chem]∗ ,
comment[Com]∗, record[Record]∗) ∅,

Diag → (pathology[Patho], comment[Com]∗) ∅,
Chem → (prescription[Presc]∗ ,

comment[Com]∗) ∅,
Com → ε ∅, Patho → ε {@type}, Presc → ε ∅}.

An equivalent DTD is shown below.

<!ELEMENT record (diagnosis*,chemotherapy*,
comment*,record*)>

<!ELEMENT diagnosis (pathology,comment*)>
<!ELEMENT chemotherapy (prescription*,comment*)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT pathology (#PCDATA)>
<!ATTLIST pathology type CDATA #REQUIRED>
<!ELEMENT prescription (#PCDATA)>

1RELAX NG provides a more sophisticated mechanism for
handling attributes [19].

A schema is said to be recursive if it does not impose any
upper bound on the height of XML documents. The above
schema is recursive, since record elements are allowed to
nest freely. Since most schemas (e.g., XHTML and Doc-
Book) for narrative documents are recursive, our static anal-
ysis must handle recursive schemas and an infinite number
of permissible paths.

2.3 XPath
Given an XML document, we often want to locate some el-

ements by specifying conditions on elements as well as their
ancestor elements. For example, we may want to locate
all anchors (e.g., <a ...> of XHTML) elements occurring
in paragraphs (e.g., <p ...> of XHTML). In this example,
“anchor” is a condition on elements and “occurring in para-
graphs” is a condition on ancestor elements. Such condi-
tions can be easily captured by regular path expressions,
which are regular expressions describing permissible paths
from the root element to elements or attributes.

XPath provides a restricted variation of regular path ex-
pressions. XPath is widely recognized in the industry and
used by XSLT [8] and XQuery. We focus on XPath in this
paper, although our framework is applicable to any regular
path expression.

XPath uses axes for representing the structural relation-
ships between nodes. For example, the above example can
be captured by the XPath expression //p//a, where // is
an axis called “descendant-or-self”. Although XPath pro-
vides many axes, we consider only three of them, namely
“descendant-or-self” (//), “child” (/), and “attribute” (@)
in this paper. Extensions for handling other axes are dis-
cussed in Section 6. Namespaces and wild-cards are outside
the scope of this paper, although our framework can easily
handle them.

XPath allows conditions on elements to have additional
conditions. For example, we might want to locate foo el-
ements such that their @bar attributes have "abc" as the
values. Such additional conditions are called predicates.
This example can be captured by the XPath expression
//foo[@bar = "abc"], where [@bar = "abc"] is a predi-
cate.

2.4 XQuery
Several query languages for XML have emerged recently.

Although they have different query algebras, most of them
use XPath for locating elements or attributes. Our frame-
work can be applied to any query language as long as it uses
regular path expressions for locating elements or attributes.
However, we focus on XQuery in the rest of this paper.

FLWR (FOR-LET-WHERE-RETURN) expressions are of
central importance to XQuery. A FLWR expression consists
of a FOR, LET, WHERE, and RETURN clause.

The FOR or LET clause associates one or more variables
with XPath expressions. By evaluating these XPath ex-
pressions, the FOR and LET clauses in a FLWR expression
create tuples. The WHERE clause imposes additional con-
ditions on tuples. Those tuples not satisfying the WHERE
clause are discarded. Then, for each of the remaining tuples,
the RETURN clause is evaluated and a value or sequence of
values is returned.

The following query lists the pathology-comment pairs for
the Gastric Cancer.

75

<TreatmentAnalysis>
{

for $r in document("medical_record")/record
where $r/diagnosis/pathology/@type

= "Gastric Cancer"
return
$r/diagnosis/pathology, $r//comment

}
</TreatmentAnalysis>

3. ACCESS CONTROL FOR XML DOCU-
MENTS

In this paper, access control for XML documents means
element- and attribute-level access control for a certain XML
instance. Each element and attribute is handled as a unit
resource to which access is controlled by the corresponding
access control policies. In the following sections, we use
the term node-level access control when there is no need to
separate the element-level access control from the attribute-
level access control.

3.1 Syntax of Access Control Policy
In general, the access control policy consists of a set of

access control rules and each rule consists of an object (a
target node), a subject (a human user or a user process), an
action, and a permission (grant or denial) meaning that the
subject is (or is not) allowed to perform the action on the
object. The subject value is specified using a user ID, a role
or a group name but is not limited to these. For the object
value, we use an XPath expression. The action value can be
either read, update, create, or delete, but we deal only with
the read action in this paper because the current XQuery
does not support other actions. The following is the syntax
of our access control policy2:

(Subject, +/-Action, Object)

The subject has a prefix indicating the type of the sub-
ject such as role and group. “+” means grant access and “-”
means deny access. In this paper, we sometimes omit spec-
ifying the subject if the subject is identical with the other
rules.

Suppose there are three access control rules for the docu-
ment described in Section 2.1:

Role: Doctor
+R, /record

Role: Intern
+R, /record
-R, //comment

Each rule is categorized by the role of the requesting sub-
ject. The first rule says that “Doctor can read record ele-
ments”. The second rule says that “Intern can read record

elements”. The third rule says that “Intern cannot read any
comment elements” because comment nodes may include con-
fidential information and should be hidden from access by
Intern. Please refer to Section 3.2 for more precise seman-
tics.

2The syntax of the policy can be represented in a standard-
ized way using XACML[16] but we use the above syntax for
simplicity.

<record>
<diagnosis>
<pathology type="Gastric Cancer">

Well differentiated adeno carcinoma
</pathology>

</diagnosis>
<chemotherapy>
<prescription>

5-FU 500mg and CDDP 10mg
</prescription>

</chemotherapy>
</record>

Figure 2: The XML document that Intern can see

3.1.1 Using XPath for XML Access Control
Many reports[21, 10, 3, 15] on the node-level access con-

trol for XML document use XPath to locate the target node
in the XML document.

There are a couple of reasons why we use XPath for our
access control policy. First, XPath provides a sufficient num-
ber of ways to refer to the smallest unit of an XML document
structure such as an element, an attribute, a text node, or a
comment node. Therefore it allows a policy writer to write
a policy in flexible manner (e.g. grant access to a certain
element but deny access to the enclosing attributes). In
this paper, for simplicity, we limit target nodes of the pol-
icy only to elements and attributes. We assume that other
nodes such as text and comment nodes are governed by the
policy associated with the parent element.

Second, it is often the case that the access to a certain
node is determined by a value in the target XML document.
For a medical record, a patient may be allowed to read his or
her own record but not another patient’s record. Therefore
the access control policy should provide a way to represent
a necessary constraint on the record. By using an XPath
predicate expression, such a policy could be specified as
(Role:patient, +R, /record[@patientId = $userid3]

/diagnosis). This policy says that the access to a diagnosis

element below the record element is allowed if the value of
the patientId attribute is equal to the user ID of the re-
questing subject. We use the term value-based access control
to refer to an access control policy (or rule) that includes
such an XPath predicate that references a value.

3.2 Semantics of Access Control Policy
In general, an access control policy should be designed to

satisfy the following requirements: succinctness, least priv-
ilege, and soundness. Succinctness means that the policy
semantics should provide a way to specify a smaller number
of rules rather than to specify rules on every single node
in the document. Least privilege means that the policy
should grant the minimum privilege to the requesting sub-
ject. Soundness means that the policy evaluation must al-
ways generate either a grant or a denial decision in response
to any access request.

In this paper, we consider another requirement called de-
nial downward consistency, which is a new requirement spe-
cific to XML access control. It requires that whenever a
policy denies the access to an element, it must also deny the
access to its subordinate elements and attributes. In other

3We use a variable $userid to refer to the identity of the
requesting user in the access control policies.

76

words, whenever access to a node is allowed, access to all
the ancestor elements must be allowed as well. We impose
this requirement since we believe that elements or attributes
isolated from their ancestor elements are meaningless.

For example, if an element or attribute specifies a relative
URI, its interpretation depends on the attribute xml:base

[22] specified at the ancestor elements. Another advantage
of the denial downward consistency is that it makes imple-
mentation of runtime policy evaluation easier.

To satisfy the above requirements, the semantics of our
access control policy is defined as follows:

1. An access control rule with +R or -R (capital letter)
propagates downward through the XML document struc-
ture. An access control rule with +r or -r (small letter)
does not propagate and just describes the rule on the
specified node.

2. A rule with denial permission for a node overrules any
rules with grant permission for the same node.

3. If no rule is associated with a certain node, the default
denial permission “-” is applied to that node.

Now we informally describe an algorithm to generate an
access decision according to the above definitions. First, the
algorithm gathers every grant rule with +r and marks “+”
on the target nodes referred to by the XPath expression. If
the node type is an element, the algorithm marks “+” on
immediate children nodes (e.g. a text and comment nodes)
except for the attributes and the elements. It also marks
a “+” on all the descendant nodes if the action is R. Next,
the algorithm gathers the remaining rules (denial rules) and
marks “-” on the target nodes in the same way. The “-”
mark overwrites the “+” mark if any. Finally, the algorithm
marks “-” on every node that is not yet marked. This opera-
tion is performed for each subject and action independently.

For example, the access control policy in Section 3.1 is
interpreted as follows: The first rule marks the entire tree
with “+” and therefore Doctor is allowed to read every node
(including attributes and text nodes) equal to or below any
record element. The second and third rules are policies for
Intern. The second rule marks the entire tree with “+” as
the first rule does and the third rule marks comment elements
and subordinate text nodes with “-”, which overwrites +

marks. Thus, three comment elements and text nodes are
determined as “access denied”. The XML document that
Intern can see is shown in Figure 2.

Note that the above algorithm does not always force a
policy to satisfy the denial downward consistency. For ex-
ample, if a rule with +R is specified on a certain node and a
rule with -R is specified on an ancestor element of the explic-
itly access-granted node, the denial rule revokes the grant
permission intended by the policy writer. Policy authoring
tools (or analysis tools) can assist policy writers to detect
such cases.

A rule that uses +R or -R can be converted to the rule with
+r or -r. For example, (Sbj,+R,/a) is semantically equiv-
alent to a set of three rules: (Sbj,+r,/a), (Sbj,+r,/a//*)
and (Sbj ,+r,/a//@*). Thus, +R and -R are technically
syntactic sugar, but enable a more succinct representation
of the policy specification.

Access
Control
Policy

Schema

Analysis Result

Step 2

Query

Access
Control

Automata

Step 1 Step 3

Step 4

Query
Automata

Schema
Automata

Figure 3: Framework of the analysis

3.3 Run-time Access Control
For the integration of access control and query processing,

we assume that if there exist access-denied nodes in a target
XML document, the query processor behaves as if they do
not exist in the document. We believe that the node-level
access control will greatly benefit by returning only autho-
rized nodes without raising an error 4.

We explain how the semantics described above are en-
forced by the access control system at run-time. A sample
scenario is the following: Whenever an access to a node
(and its descendant nodes) is requested, the node-level ac-
cess controller makes an access decision on each node. The
controller first retrieves access control rules applicable to
the requested node(s). Then, the controller computes the
access decision(s) according to the rules and returns grant
or denial for each node. Obviously, a naive implementation
of this scenario can lead to poor performance by repeating
evaluations of the rules per node.

4. STATIC ANALYSIS
In this section, we introduce our framework for static

analysis. The key idea is to use automata for comparing
schemas, access control policies, and query expressions.

Figure 3 depicts an overview of our static analysis. Static
analysis has four steps as below:
Step 1: creating schema automata from schemas
Step 2: creating access control automata from access con-
trol policies
Step 3: creating query automata from XQuery queries
Step 4: comparison of schema automata, query automata,
and access control automata

When schemas are not available, we skip Step 1 and do
not use schema automata in Step 4.

4.1 Automata and XPath expressions
In preparation, we introduce automata and show how we

capture XPath expressions by automata.

4Another semantic model is to raise an access violation
whenever the query processor encounters the “access de-
nied” node.

77

A non-deterministic finite state automaton (NFA) M is
a tuple (Ω, Q, Qinit, Qfin, δ), where Ω is an alphabet, Q is
a finite set of states, Qinit ⊆ Q is a set of initial states,
Qfin ⊆ Q is a set of final states, and δ is a transition function
from Q × Ω to the power set of Q [18]. The set of strings
accepted by M is denoted L(M).

Recall that we have allowed only three axes of XPath (see
Section 2.3). This restriction allows us to capture XPath
expressions with automata. As long as an XPath expression
contains no predicates, we can easily construct an automa-
ton from it. We first create a regular expression by replac-
ing “/” and “//” with “·” and “·Ω∗·”, respectively, where
“·” denotes the concatenation of two regular sets, and then
create an automaton from this regular expression. The con-
structed automaton accepts a path if and only if it matches
the XPath expression.

When an XPath expression r contains predicates, we can-
not capture its semantics exactly by using an automaton.
However, we can still approximate r by constructing an
over-estimation automaton M [r] and an under-estimation
automaton M [r]. To construct M [r], we assume that predi-
cates are always satisfied. That is, we first remove all predi-
cates from r and then create an automaton M [r]. Obviously,
M [r] accepts all paths matching r and may accept other
paths (over-estimation). For example, if r is /record[...],
then L(M [r]) = {/record}.

Meanwhile, to construct M [r], we assume that predicates
are never satisfied. That is, if a step in r contains one or
more predicates, we first replace this step with an empty
set, and then create an automaton M [r]. Obviously, M [r]
does not accept any paths if r contains predicates (under-
estimation). For example, if r is /record[...], then L(M [r])
is an empty set.

As a special case, when r does not contain any predicates,
M [r] is identical to M [r] and we simply write M [r] for de-
noting both.

4.2 Step 1: Creating schema automata
Since we are interested in permissible paths rather than

permissible trees, we construct a schema automaton from
a schema. A schema automaton accepts permissible paths
rather than permissible documents.

Let G = (N, ΣE , ΣA, S, P) be a schema. To construct a
schema automaton from G, we use all non-terminals (i.e.,
N) of G as final states. We further introduce an additional
final state qfin and a start state qini. Formally, the schema
automaton for G is

MG = (ΣE ∪ ΣA, N ∪ {qini, qfin}, {qini}, N ∪ {qfin}, δ),

where δ is a transition function from (N∪{qini, qfin})×(ΣE∪
ΣA) to the power set of N ∪ {qini, qfin} such that

δ(x,e) = {x′ | for some x → rA in P, e[x′] occurs

in r} ∪ {x′ | x = qini, e[x′] ∈ S},
δ(x, a) = {qfin | a ∈ A for some x → r A in P},

where e is an element name in ΣE and a is an attribute
name in ΣA.

For example, consider the example schema in Section 2.
The schema automaton for this schema is

MG = (ΣE ∪ ΣA, N ∪ {qini, qfin}, {qini}, N ∪ {qfin}, δ)

where

ΣE = {record, diagnosis, chemotherapy, comment,
pathology, prescription},

ΣA = {@type},
N = {Record, Diag, Chem, Com, Patho, Presc},
δ(qini, record) = {Record},
δ(Record, diagnosis) = {Diag},
δ(Record, chemotherapy) = {Chem},
δ(Record, comment) = {Com},
δ(Record, record) = {Record},
δ(Diag, pathology) = {Patho},
δ(Diag, comment) = {Com},
δ(Chem, prescription) = {Presc},
δ(Chem, comment) = {Com},
δ(Patho, @type) = {qfin}.

Observe that this automaton accepts the following paths.

/record,
/record/comment,
/record/diagnosis,
/record/diagnosis/pathology,
/record/diagnosis/pathology/@type,
/record/diagnosis/comment,
/record/chemotherapy,
/record/chemotherapy/prescription,
/record/chemotherapy/comment,
/record/record,
/record/record/comment,...
/record/record/record,
/record/record/record/comment,...

Since the example schema in Section 2 allows record ele-
ments to nest freely, this automaton allows an infinite num-
ber of paths.

4.3 Step 2: Creating access control automata
An access control policy consists of rules, each of which

applies to some roles. For each role, we create a pair of au-
tomata: an under-estimation access control automaton and
an over-estimation access control automata. This pair cap-
tures the set of those paths to elements or attributes which
are exposed by the access control policy.

In preparation, we replace +R and -R rules with +r and
-r rules, respectively (see Section 3.2). Let r1, ..., rm be the
XPath expressions occurring in the grant rules (+r), and let
r′1, ..., r

′
n be the XPath expressions occurring in the denial

rules (-r).
We first assume that none of r1, ..., rm, r′1, ..., r

′
n contain

predicates. Recall that we interpret the policy according to
the “denial-takes-precedence” principle. MΓ accepts those
paths which are allowed by one of r1, ..., rm but are denied
by any of r′1,, r

′
n. Formally,

L(MΓ) = (L(M [r1]) ∪ · · · ∪ L(M [rm]))

\ (L(M [r′1]) ∪ · · · ∪ L(M [r′n]))

where Σ = ΣE ∪ ΣA and “\” denotes the set difference.
We can construct MΓ by applying boolean operations to
M [r1], ..., M [rm], M [r′1], ..., M [r′n].

We demonstrate this construction for the access control
policy in Section 3.1. For the role Intern, this policy con-
tains a grant rule and a denial rule, both of which propa-
gate downward. The grant rule contains an XPath /record,
while the denial rule contains an XPath //comment. Thus,

L(MΓ) = {record}· (ΣE)∗· (ΣA ∪ {ε})
\ (ΣE)∗· {comment}· (ΣE)∗· (ΣA ∪ {ε})

78

Now, let us consider the case that predicates occur in
r1, ..., rm, r′1, ..., r

′
n. Since predicates cannot be captured by

automata, we have to construct an over-estimation access
control automaton MΓ as well as an under-estimation access
control automaton MΓ. Rather than exactly accepting the
set of exposed paths, the former and latter automata over-
estimates and under-estimates this set, respectively. Ob-
serve that L(M [r1]), ..., L(M [rm]) are positive atoms and
L(M [r′1]), ..., L(M [r′n]) are negative atoms in the above equa-
tion. To construct an under-estimation access control au-
tomaton MΓ, we under-estimate positive atoms and over-
estimate negative atoms. On the other hand, to construct
an over-estimation access control automaton MΓ, we over-
estimate positive atoms and under-estimate negative atoms.
Formally,

L(MΓ) = (L(M [r1]) ∪ · · · ∪ L(M [rm]))

\ (L(M [r′1]) ∪ · · · ∪ L(M [r′n])),

L(MΓ) = (L(M [r1]) ∪ · · · ∪ L(M [rm]))

\ (L(M [r′1]) ∪ · · · ∪ L(M [r′n])).

Again, we can construct MΓ and MΓ by applying boolean
operations to automata occurring in the right-hand side of
the above equations.

Suppose that the grant rule and denial rules in the exam-
ple policy, use /record[...] and //comment[...], respec-
tively. Then,

L(MΓ) = ∅· (ΣE)∗· (ΣA ∪ {ε})
\ (ΣE)∗· {comment}· (ΣE)∗· (ΣA ∪ {ε})

= ∅,
L(MΓ) = {record}· (ΣE)∗· (ΣA ∪ {ε})

\ (ΣE)∗· ∅· (ΣE)∗· (ΣA ∪ {ε})
= {record}· (ΣE)∗· (ΣA ∪ {ε})

4.4 Step 3: Creating query automata
Given a FLWR expression of XQuery, we first extract the

XPath expressions occurring in it. If an XPath expression
contains variables, we replace each of them with the XPath
expression associated with that variable.

It is important to distinguish XPath expressions in RE-
TURN clauses and those in other (FOR, LET, and WHERE)
clauses. XPath expressions in FOR-LET-WHERE clauses
examine elements or attributes, but do not access their sub-
ordinate elements. On the other hand, XPath expressions
in RETURN clauses return subtrees including subordinate
elements and attributes.

As an example, consider the XQuery expression given in
Section 2.4. From this XQuery expression, we extract the
following XPath expressions. Observe that the variable $r

is expanded.

FOR-LET-WHERE
/record

/record/diagnosis/pathology/@type

RETURN
/record/diagnosis/pathology

/record//comment

Next, we create a query automaton Mr for each r of the
extracted XPath expressions. If r occurs in a FOR-LET-
WHERE clause, then Mr is defined as M [r]. Observe that
we over-estimate r, since we would like to err on the safe
side in our static analysis. When r occurs in a RETURN
clause, Mr is defined as an automaton that accepts a path
if and only if some of its sub-paths matches r. Formally,

L(Mr) = L(M [r])· (ΣE)∗· (ΣA ∪ {ε}).
This automaton can easily be constructed from M [r].

As an example, let r be /record//comment, which is the
last XPath expression occurring in the RETURN clause.
Then, Mr accepts /record/comment, /record/comment/@type,
/record/comment/record, /record/comment/diagnosis, and
so forth.

4.5 Step 4: Comparison of automata
We are now ready to compare schema automata, access

control automata, and query automata. For simplicity, we
first assume that predicates do not appear in the access con-
trol policy.

The path expression r is always-granted if every path ac-
cepted by both the schema automaton MG and query au-
tomaton Mr is accepted by the access control automaton
MΓ; that is,

L(Mr) ∩ L(MG) ⊆ L(MΓ).

When schemas are unavailable, we assume that MG allows
all paths and examine if

L(Mr) ⊆ L(MΓ).

The path expression r is always-denied if no path is ac-
cepted by all of the schema automaton, query automaton,
and access control automaton; that is,

L(Mr) ∩ L(MG) ∩ L(MΓ) = ∅.
When schemas are unavailable, we examine if

L(Mr) ∩ L(MΓ) = ∅.
The path expression r is statically indeterminate if it is

neither always-granted or always-denied.
As an example, we use the XQuery expression in Section 2.4,

the DTD in Section 2.2, and the access control policy in
Section 3.1. We have already constructed a schema automa-
ton in Section 4.2, an access control automaton in Section 4.3,
and a query automaton for /record//comment in Section 4.4.
It can be easily seen that L(Mr)∩L(MG) is a singleton set
containing /record/comment and that L(MΓ) does not con-
tain this path. Thus, the last XPath expression ($r//comment)
in the example query is always-denied.

When predicates appear in the access control policy, we
have to use MΓ and MΓ rather than MΓ. We use an under-
estimation MΓ when we want to determine whether or not
a query is always-granted. That is, we examine if

L(Mr) ∩ L(MG) ⊆ L(MΓ).

When schemas are unavailable, we examine if

L(Mr) ⊆ L(MΓ)

Likewise, we use an over-estimation MΓ when we determine
whether or not a path expression is always-denied. That is,
we examine if

L(Mr) ∩ L(MG) ∩ L(MΓ) = ∅.

79

role name rule semantics

1 M (Maintainer) Access to all information is
granted.

2 MM (Member Mgmt.) Access to all member info. is
granted, but access to item
info. is not.

3 IM (Item Mgmt.) Access to all item info. is
granted.

4 S (Seller) A seller cannot see privacy
info., and personal info. (credit
card info. and profiles). A
seller can see who bought his
item. Otherwise, access to
anonymous bidder info. and
buyer info. is denied.

5 B (Buyer) A buyer cannot see privacy
info., and personal info. A
buyer can see his own bids and
purchases. Otherwise, access
to anonymous bidder info. and
buyer info is denied.

6 V (Visitor) A visitor cannot see privacy
info., and personal info. A vis-
itor cannot see who sells, bids
and buy an item.

7 UB (Buyer: US only) The same access permission as
Buyer except that access to for-
eign items is denied.

8 US (Seller: US only) The same access permission as
Seller except that access to for-
eign items is denied.

9 UV (Visitor: US only) The same access permission as
Visitor except that access to
foreign items is denied.

Table 1: The sample access control policy

When schemas are unavailable, we examine if

L(Mr) ∩ L(MΓ) = ∅.
4.6 Query Optimization

When an XPath expression r in a XQuery expression is
always-denied, we can replace r by an empty list. This
rewriting makes it unnecessary to evaluate r as well as to
perform run-time checking of the access control policy for r,
and may trigger further optimization if we have an optimizer
for XQuery.

Recall our example XQuery expression in Section 2.4.
When the role is Doctor, static analysis reports that ev-
ery XPath expression is always-granted. Run-time checking
is thus unnecessary. If the role is Intern, static analysis re-
ports that the last XPath expression is always-denied. We
can thus rewrite the query as follows. Observe that com-
ments are not returned by this rewritten query.

<TreatmentAnalysis>
{

for $r in document("medical_record")/record
where $r/diagnosis/pathology/@type="Gastric Cancer"
return
$r/diagnosis/pathology

}
</TreatmentAnalysis>

5. EXPERIMENTS
We have implemented our static analysis algorithm in

Java (see Appendix A). In this section, we present two ex-

Role: Maintainer
+R, /

Role: Seller
+R, /
-R, //person[@id != $userid]/creditcard
-R, //person[@id != $userid]/profile
-R, //bidder/personref
-R, //closed auction[seller/@person != $userid]/buyer
-R, //privacy

Role: Visitor
+R, /
-R, //person
-R, //bidder/personref
-R, //seller
-R, //buyer
-R, //privacy

Figure 4: The definition of sample policy

periments based on this implementation. In the first exper-
iment, we evaluate how much the cost of query evaluation
will be reduced by our static analysis and query optimiza-
tion. In the second experiment, we measure the scalability
of our static analysis for very large policies and schemas.

5.1 Effectiveness of Static Analysis
We wish to show the percentage of queries that are made

more efficient, for average, real-world cases. For each query,
we also benchmark the performance increase. First, using a
well-known collection of queries, we show which queries are
made more efficient. Second, using an example document
and the same collection of queries, we measure the number
of nodes exempted from access or runtime access checks.

Settings. We use the sample queries and the DTD devel-
oped by the XMark project5, which is a well-known bench-
mark framework for XQuery based on an auction scenario.
An auction document consists of a list of auction items, par-
ticipants information., etc. The benchmark has 20 sample
queries. For example, the following is Query #4.

for $b in document("auction.xml")//open_auction
where $b/bidder/personref[@person="person18829"]

before $b/bidder/personref[@person="person10487"]
return <history>{$b/reserve/text()}</history>

There are 77 element types defined by the DTD. We wrote
a sample access control policy in which 9 roles are defined.
Each role is associated with 1 through 15 access control
rules. Their semantics are summarized in Table 1. We list a
part of the policy definitions in Figure 4. Take, for example,
the rules associated with the role Seller. The first rule says
that a Seller is allowed to read the document root (/). Fur-
thermore, this grant permission (+R) propagates downward,
i.e., from the document root (/) to all other nodes. However,
there are other rules with denial permission. Recall that the
$userid variable represents the id of the user requesting the
access. Therefore, a buyer can read the contents of his own
//person/creditcard and //person/profile, but not the
credit cards and profiles of other users.

Note that the sample policy is a value-based policy, i.e.,
XPath predicates appear in the rules. As described in Sec-

5The XMark project page is available at http://monetdb.
cwi.nl/xml/.

80

DGDDDDGGDDDDD-GDDDDDIM

D--D---D--D--------DUV

---G---D-----------GUB

---G---D-----------GUS

DGGDDGGGDDDDDDGGDGGDV

-GGGGGGG-----GGG-GGGB

-GGGGGGG-----GGGDGGGS

GDGGGGDDGGGDG-DGGGGGMM

GGGGGGGGGGGGGGGGGGGGM

2019181716151413121110987654321Query #

DGDDDDGGDDDDD-GDDDDDIM

D--D---D--D--------DUV

---G---D-----------GUB

---G---D-----------GUS

DGGDDGGGDDDDDDGGDGGDV

-GGGGGGG-----GGG-GGGB

-GGGGGGG-----GGGDGGGS

GDGGGGDDGGGDG-DGGGGGMM

GGGGGGGGGGGGGGGGGGGGM

2019181716151413121110987654321Query #

-G-----G------G-----IM

D--D------D--------DUV

-------------------GUB

-------------------GUS

D-GD-G--DDDDD--GDGGDV

--G--G---------G-GGGB

--G--G---------GDGGGS

G-GGGG--GGGDG--GGGGGMM

GGGGGGGGGGGGGGGGGGGGM

2019181716151413121110987654321Query #

-G-----G------G-----IM

D--D------D--------DUV

-------------------GUB

-------------------GUS

D-GD-G--DDDDD--GDGGDV

--G--G---------G-GGGB

--G--G---------GDGGGS

G-GGGG--GGGDG--GGGGGMM

GGGGGGGGGGGGGGGGGGGGM

2019181716151413121110987654321Query #

(a) With the DTD (b) Without the DTD

Table 2: Results of Static Analysis of XMark Queries

tion 4, we over- and under-estimate the access control au-
tomata in order to perform the static analysis.

Queries Made Efficient. For each query/role pair, we check
whether or not our static analysis removes the runtime ac-
cess check. We perform the experiment for two cases: one
case with the DTD and the other case without the DTD. We
statically analyze all the XPath expressions for each query.
Recall that if an XPath expression in the query is always-
denied, we rewrite the query.

Tables 2(a) and 2(b) show the results of our static analysis
with and without the DTD, respectively. Each entry in the
table indicates the result by either “G”, “D”, or “−”.

• “G” indicates that all XPath expressions in the query
are always-granted.

• “D” indicates that at least one of the XPath expres-
sions in the query is always-denied, while all other ex-
pressions are always-granted.

• “−” indicates that at least one XPath expression in
the query is statically indeterminable.

A query marked by “G” contains no XPath expressions re-
quiring the runtime access check. If a query is marked by
“D”, it contains XPath expressions that always fail their
runtime access checks. However, in this case, we rewrite
such expressions as null lists in advance. As a result of this
rewrite, the runtime access check becomes unnecessary. Fi-
nally, if queries are marked by “−”, the result of the runtime
check is not predictable, and must be performed.

For example, we can read from Table 2(a) that the mark
of Query #4 for role IM is “D”. This means that when a
user filling a role IM makes Query #4, we first rewrite the
query so that it can be evaluated without the runtime access
check.

Tables 2(a) and 2(b) show that 65% and 40% of the que-
ry/role pairs, respectively (i.e., “G” + “D”), do not require
the runtime access check. Furthermore, for 25% and 10% of
the query/role pairs (i.e., “D”), we can optimize queries by
rewriting.

From Table 2(b), we conclude that even when no DTDs
are available, our static analysis can result in significant op-
timization of the query. From from Table 2(a), we conclude
that the analysis can be further refined by exploiting DTD
information. Note that the sample policy contains XPaths
with predicates, which cause over- and under-estimation of
the access control automata. Even in such a case, our static

0

500

1000

1500

2000

2500

3000

3500

M
M
M IM

S B V
U
S

U
B

U
V

role

n
u
m
b
e
r
o
f
re
le
v
a
n
t
n
o
d
e
s

no access

access without

runtime access check

access with runtime

access check

Figure 5: Nodes Exempted from Access or Runtime
Access Check

analysis frequently makes runtime access checks unneces-
sary.

Nodes Exempted from Access or Runtime Access Check.
Here we consider how much cost of query evaluation is re-
duced by our static analysis and query optimization. As
the metric of reduced cost, we count the number of nodes
exempted from access or runtime access check by our static
analysis and query optimization.

As an example document, we use an auction document
of the XMark project. This document has 250,000 nodes,
and is generated by specifying factor =0.05 (see the XMark
project page).

When a query is evaluated against this document, some
nodes in this document are accessed by the XPath expres-
sions in this query. We classify these nodes into three groups,
which are defined as follows:

no access These nodes are exempt from access. In other
words, the original query accesses these nodes but the
rewritten query does not.

access without runtime access check These nodes are
exempt from the runtime access control check, but
they must still be read.

access with runtime access check These nodes are not
exempt from runtime access check or access. In other
words, the rewritten query accesses these nodes and
this access requires runtime access check.

81

Role: ROLE10
+R,/
-R,/spec/body/div1/constraintnote/definitions
-R,/spec/header/latestloc/xtermref
-R,/spec/body/div1/definitions/exception
-R,//copyright
-R,/spec/header/prevlocs
-R,/spec/header/revisiondesc
-R,/spec/body/div1/vcnote/definitions/reference
-R,/spec/header/authlist/author
-R,/spec/back/div1/ulist/item/vcnote/glist

/gitem/def/table/tbody/tr/td/wfcnote
-R,//inform-div1/wfcnote

Figure 6: Random policy example

The bar chart (Figure 5) shows, for each role, the number
of nodes in the three categories. It shows the average for
Queries #1 through #20.

We observe that the cost of query evaluation for roles M,
MM, IM and V is reduced significantly, because the third
portion is very small. In particular, in the case of Maintainer
(M) we do not require runtime access checks at all, because a
maintainer has an access to all nodes. On the other hand, for
IM and V, we have a large number of skipped nodes that do
not even need to be examined during the query evaluation.

5.2 Scalability of Static Analysis
In the scalability test, we measure the running-time of our

analysis itself. We use real-world DTDs and random policies
with large sets of rules.

In this test, we distinguish two phases of the analysis, and
examine each phase independently. The first phase is an ini-
tialization phase, where we first compute a schema automa-
ton MG, then compute an access control automaton MΓ

for each role in the policy. The second phase is the anal-
ysis phase, where we statically analyze XPath expressions
in each query, i.e., we determine whether they are always-
denied or always-granted. When there are many queries,
we cache MG and MΓ which are computed in the initial-
ization phase, and later in the analysis phase we repeatedly
use them.

Settings. Three large DTDs are used, that is, the xmlspec-
v21.dtd from W3C XML Working Group [5], which has
157 element types, the HL7.dtd from Health Level Seven6,
which has 621 element types (as far as we know, this is the
biggest DTD publicly available), and the docbookx.dtd by
OASIS DocBook technical committee7, which has 393 ele-
ment types.

We use access control policies with different sizes, i.e., 1
through 500 rules per role. For each of the given DTDs,
10 access control policies are randomly generated by using
element names or attribute names defined in the DTD. As an
example, Figure 6 shows an access control policy generated
from the xmlspec-v21.dtd.

For each of the DTDs, we statically analyze a query with
12 XPath expressions. Each query is derived from the Query
#10 of XMark, in which each XPath expression has one //
and several /. We chose element names appearing in these
XPath expressions according to the corresponding DTDs.

6http://www.hl7.org
7http://www.oasis-open.org/committees/docbook

Results. Our test environment was a 2.4 GHz Pentium 4
machine with 512 Mbytes memory and the J2RE 1.4.0 IBM
build for Linux. The JIT-compiler is fully warmed up before
each run.

Figure 7(a) shows the running-time of the initialization
phase. Each point indicates the time required to compute
an access control automaton for each role in the randomly
generated policies. The running-time does not include the
time required to compute schema automata MG, which is
63.7ms, 57.5ms, and 249.3ms for xmlspec-v21.dtd, HL7.dtd,
and docbookx.dtd, respectively. The sizes of states of MG

are 214, 623, and 501 for xmlspec-v21.dtd, HL7.dtd, and
docbookx.dtd, respectively. The size of the access control
automaton MΓ is about 1,200 in the worst case.

Figure 7(b) shows the running-time for the analysis phase,
where each point indicates the average time required for
analyzing each XPath expression in the query.

In both phases, the performance is much better in the
case of HL7.dtd than in the case of xmlspec-v21.dtd or
docbookx.dtd. This is because xmlspec-v21.dtd and doc-
bookx.dtd contain many recursive definitions and thus are
more complicated than HL7.dtd.

The initialization phase (computing MΓ) takes more than
10 seconds for large policies and the running-time increases
non-linearly. On the other hand, in the analysis phase, the
running-time increases almost linearly with the number of
rules. In the real world, we perform the initialization phase
just once per policy, while we perform the analysis phase
once per XPath expression in queries. Therefore, we con-
clude that our static analysis scales with respect to the size
of schemas and access control policies.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have attempted to ease the burden of

checking access control policies for XML documents by dis-
tributing the burden to static analysis and run-time checks.
The key idea for our static analysis is to use automata
for representing and comparing queries, access control poli-
cies, and schemas. We have built a prototype of our static
analysis, demonstrated its effectiveness, and experimented
with its performance. Our experiment (shown in Section 5)
reveals that (1) static analysis frequently makes run-time
checks unnecessary and further provides significant opti-
mizations, and (2) our prototype scales nicely when schemas,
access control policies, and queries are large.

However, our static analysis has some limitations. We
summarize these limitations and sketch future extensions
for overcoming them.
Value-based access control: Value-based access con-
trol requires that the XPath expressions in the access con-
trol policies contain predicates. Query expressions may also
use XPath predicates. We have approximated such access
control policies and query expressions by creating under-
estimation automata and over-estimation automata. These
approximations make some queries statically indeterminate.

However, when an access control policy and query expres-
sion specify the same value, we can capture predicates by
incorporating them into the underlying alphabet (e.g., by
handling record[@patientId = $userid] as a “symbol”).
Such automata help to statically perform value-based access
control. For example, if a query expression and an access
control policy use record[@patientId = $userid], we can
statically grant this access.

82

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250 300 350 400 450 500

tim
e

[m
s]

of rules per role
xmlspec-v21.dtd

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250 300 350 400 450 500

tim
e

[m
s]

of rules per role
HL7.dtd

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250 300

tim
e

[m
s]

of rules per role
docbookx.dtd

(a) Initializing MΓ

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

tim
e

[m
s]

of rules per role
xmlspec-v21.dtd

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400 450 500

tim
e

[m
s]

of rules per role
HL7.dtd

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

tim
e

[m
s]

of rules per role
docbookx.dtd

(b) Analysis of each XPath expression

Figure 7: Results of Scalability Tests

Backward axes of XPath: Our static analysis does not
cover all axes (e.g., backward axes) of XPath. Although
we can use tree automata (rather than string automata)
to capture all the axes of XPath, tree automata are more
complicated and make implementations significantly harder.
However, as a special case, we can easily handle some of the
backward axes by rewriting backward axes as forward ones
[26].
Advanced features of XQuery: We have significantly
simplified XQuery here, but XPath allows arbitrary nesting
of FLWR expressions and even allows recursive queries. We
cannot handle recursive queries and are forced to rely on
run-time checking. However, we can handle nested FLWR
expressions by extracting XPath expressions.

Our next step is to incorporate static analysis as part of
an XML database system and seek a good balance between
run-time checking and static analysis.

7. ADDITIONAL AUTHORS
Additional author: Satoshi Hada (IBM Tokyo Research

Lab, 1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken
242-8502, Japan, email: satoshih@jp.ibm.com)

8. REFERENCES
[1] E. Bertino. Data hiding and security in

object-oriented databases. In ICDE 92, 1992.

[2] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti.
Controlled access and dissemination of XML
documents. In WIDM’99. ACM, Nov. 1999.

[3] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti.
Author-X: a Java-based system for XML data
protection. In IFIP WG 11.3 Working Conference on
Database Security, 2000.

[4] S. Boag, D. Chamberlin, M. F. Fernandez,
D. Florescu, J. Robie, and J. Simeon. XQuery 1.0: An

XML query language. W3C working draft 16 august
2002. http://www.w3.org/TR/xquery/, August 2002.

[5] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. W3C
Recommendation. http://www.w3.org/TR/REC-xml,
February 1998.

[6] J. Clark and S. DeRose. XML Path Language
(XPath) version 1.0. W3C Recommendation.
http://www.w3.org/TR/xpath, Nov 1999.

[7] J. Clark and M. Murata (Eds). “RELAX NG
Specification”. OASIS Committee Specification, Dec.
2001.

[8] J. Clark (Eds). “XML Transformations (XSLT)
Version 1.0”. W3C Recommendation, Nov. 1999.
http://www.w3.org/TR/xslt.

[9] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications. Available at
http://www.grappa.univ-lille3.fr/tata, 1997.

[10] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and
P. Samarati. Securing XML documents. In EDBT
2000, LNCS 1777, Mar. 2000.

[11] A. Deutsch and V. Tannen. Containment of regular
path expressions under integrity constraints. In
KRDB, 2001.

[12] D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra,
K. Rose, M. Rys, J. Simeon, and P. Wadler. XQuery
1.0 and XPath 2.0 formal semantics. W3C working
draft 16 august 2002, August 2002.

[13] W. Fan and L. Libkin. On XML integrity constraints
in the presence of DTDs. J. ACM, 49(3), 2002.

[14] M. F. Fernandez and D. Suciu. Optimizing regular
path expressions using graph schemas. In ICDE, 1998.

[15] A. Gabillon and E. Bruno. Regulating access to XML
documents. In IFIP WG 11.3 Working Conference on

83

Database Security, Jul. 2001.

[16] S. Godik and T. Moses (Eds). “eXtensible Access
Control Markup Language (XACML) Version 1.0”.
OASIS Standard, Feb. 2003.

[17] J. E. Hopcroft. An n log n algorithm for minimizing
states in a finite automaton. Theory of Machines and
Computations, 1971.

[18] J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

[19] H. Hosoya and M. Murata. Validation and boolean
operations for attribute-element constraints. In
Programming Languages Technologies for XML
(PLAN-X), October 2002.

[20] H. Hosoya and B. C. Pierce. “XDuce: A Typed XML
Processing Language”. In WebDB, 2000.

[21] M. Kudo and S. Hada. XML document security based
on provisional authorization. In CCS-7. ACM, Nov
2000.

[22] J. Marsh (Eds). XML Base. W3C Recommendation,
June 2001.
http://www.w3.org/TR/2001/REC-xmlbase-20010627/.

[23] G. Miklau and D. Suciu. Containment and equivalence
for an XPath fragment. In PODS, 2002.

[24] M. Murata, D. Lee, and M. Mani. “Taxonomy of XML
Schema Languages using Formal Language Theory”.
In Extreme Markup Languages, Aug. 2001.
http://www.idealliance.org/papers/extreme02/

titles.html.

[25] F. Neven and T. Schwentick. XPath containment in
the presence of disjunction, DTDs, and variables. In
ICDT, 2003.

[26] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking forward. In Proceedings of Workshop on XML
Data Management (XMLDM), LNCS. Springer, 2002.

[27] Y. Papakonstantinou and V. Vassalos. Query rewriting
for semistructured data. In SIGMOD 1999, 1999.

[28] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A
model of authorization for next-generation database
systems. TODS, 16(1), 1991.

[29] W3C. “XML Schema”. W3C Recommendation, May
2001.

[30] P. T. Wood. Containment for XPath fragments under
DTD constraints. In ICDT, 2003.

APPENDIX

A. IMPLEMENTATION
Here we present a few techniques for improving the per-

formance of our implementation.
Our automata library provides boolean operations (∩, ∪,

\) as well as the determinization and minimization opera-
tions. Our static analysis is built on top of these operations.

From our experience, the performance of our static anal-
ysis largely depends on the minimization operation. To im-
prove the performance of this operation, we use a very ef-
ficient algorithm by Hopcroft [17]. Furthermore, we avoid
minimization when we can make automata small enough
by removing redundant states (i.e., unreachable states and
deadend states). We use this technique when we compute
intersection (∩) and difference (\) automata.

On the other hand, we heavily use the determinization
operation. While computing MΓ and MΓ in Step 2 (Sec-
tion 4.3), we always determinize intermediate automata as

well as MΓ and MΓ. By doing so, we can efficiently test ⊆
by applying \ in Step 4 (Section 4.5). If MΓ and MΓ were
large non-deterministic automata, \ (which requires the de-
terminization) would be prohibitively expensive.

In computing automata in Step 4 (Section 4.5), we first
use Mr, which is typically compact, and then use MG,
which can be very large and complex. More precisely, in
checking L(MΓ) ∩ L(MG) ∩ L(Mr) = ∅, we first compute

L(MΓ)∩L(Mr) and then compute its intersection with MG;
in checking L(Mr) ∩ L(MG) ⊆ L(MΓ), we first compute
L(Mr) \ L(MΓ) and then check whether or not (L(Mr) \
L(MΓ)) ∩ L(MG) is empty. In our experience, L(MΓ) ∩
L(Mr) and L(Mr) \ L(MΓ) are reasonably compact, but

L(MΓ)∩L(MG) and L(MG)\L(MΓ) can be very complex.

84

