
CERIAS Tech Report 2004-65

XML-BASED SPECIFICATION FOR WEB SERVICES DOCUMENT SECURITY

by R.Bhatti, E. Bertino, A.Ghafoor, J.B.Joshi

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

0018-9162/04/$20.00 © 2004 IEEE April 2004 41

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

XML-Based
Specification for
Web Services
Document Security

T
he Internet and related technologies have
seen tremendous growth in distributed
applications such as medicine, education,
e-commerce, and digital libraries. As
demand increases for online content and

integrated, automated services, various applications
employ Web services technology for document
exchange among data repositories. Web services
provide a mechanism to expose data and function-
ality using standard protocols, and hence to inte-
grate many features that enhance Web applications.

XML, a well-established text format, is playing
an increasingly important role in supporting Web
services. XML separates data from style and format
definition and allows uniform representation, inter-
change, sharing, and dissemination of information
content over the Internet.1,2 It is thus a natural
contender as a standard for marking up the data
that distributed Web-based applications exchange.

This interoperability paradigm lets businesses
dynamically publish, discover, and aggregate a
range of Web services through the Internet to more
easily create innovative business processes and value
chains.3 This advantage, however, is accompanied
by security concerns related to disseminating secure
documents. Security has become a primary concern
for all enterprises exposing sensitive data and busi-
ness processes as Web services.

XML and Web services provide a simplified
application integration framework that drives
demand for models that support secure informa-
tion interchange. Examples of secure Web services
that require stricter access controls include search-
ing digital library contents based on user privileges,
retrieving results from a medical center’s patient
database based on user status, and exchanging sen-
sitive financial data between institutions based on
user membership levels.

Providing document security in XML-based Web
services requires access control models that offer
specific capabilities. Our XML-based access con-
trol specification language addresses a new set of
challenges that traditional security models do not
address.

CONTENT-BASED CONTEXT-AWARE ACCESS
Information access may require restrictions based

on the content and context related to the access
requests. For example, a digital library can contain
images depicting scenes inappropriate for children,
and a Web service that provides access to such a
resource should deny access to users in a certain age
group. Similarly, for Web services in the healthcare
industry, relevant parties, including physicians,
should have access to selective content-based
patient information.

Document security in XML-based Web services has become increasingly

important for managing secure business transactions over the Web. The

authors propose an XML-based access control specification language to

address this security challenge.

Rafae Bhatti

Elisa Bertino

Arif Ghafoor
Purdue University

James B.D.
Joshi
University of

Pittsburgh

42 Computer

The access control model should also cap-
ture security-relevant environmental context
and incorporate it in its access control deci-
sions. The model can make access request
decisions based on user domains, which are
classified by IP addresses. For example, a Web
service that provides digital library content
can make certain resources always available
to users who belong to certain domains.

A practical example of such a service is an
online digital library, which lets students of
subscribing universities access the library
from within the university intranet. In this

case, the necessary context information is that the
access request comes from an authorized IP address.

Subject and object heterogeneity
The secure documents that XML-based Web ser-

vices disseminate encompass diverse subjects and
objects related to the applications. Object hetero-
geneity can exist either as abstract concepts or as
knowledge embodied in the information that
requires protection. For example, the enormous
volume of data in a digital library Web service
makes exercising access control for high-level con-
cepts rather than for individual objects highly
desirable. Further, information content can evolve
with time as the library adds new documents and
removes or updates old ones, introducing scalabil-
ity problems in privilege management.

Subject heterogeneity complicates access control
specification. It implies that users have diverse
activity profiles—characteristics or qualifications
that may not be known a priori. Activity profiles
are necessary to dynamically transfer authenticated
users from one Web service to another. Consider a
user who subscribes to Yahoo but does not sub-
scribe to Yahoo’s Web services partner, Travelocity.
However, during a login session on Yahoo, the sys-
tem can grant the user access to resources on
Travelocity based on the current login information.
Another example of dynamically changing subject
profiles is a mobile user communicating over a
wireless network.

Role-based access control model
Our XML-based specification language incor-

porates these content- and context-based dynamic
security requirements for documents in XML-
based Web services. Our approach provides access
control with an element-level granularity for Web
services with specific document security require-
ments and enforces concept-level access control on
the underlying data repositories. We base our spec-

ification on the role-based access control (RBAC)
model, which is particularly suitable for Web appli-
cations4 because it can define a diverse set of access
control policies.5,6

A key advantage of the RBAC model is that it
simplifies authorization administration by assign-
ing permissions to users through roles. Thus, it
adds a layer of abstraction between users and their
permissions.

Researchers have proposed various access-control
models for securing XML documents.1,2,7 A closely
related work, the OASIS XACML (Extensible Ac-
cess Control Markup Language; xml.coverpages.
org/xacml.html) standard, uses an extension of
XML to define an access-control language specifi-
cation.

Although previous work, including XACML,
supports the notion of content-based context-
aware access,1 it does not provide explicit support
to manage subject and object heterogeneity. This
work lacks notions of conceptual-level access con-
trol on objects or for maintaining and updating
dynamically changing user profiles. Hence, these
schemes would not be suitable for Web services
environments that face subject- and object-hetero-
geneity challenges. Also, all of these schemes assign
permission directly to users rather than assigning
roles to abstract permission, which violates the
principles of scalability and manageability that
motivates developers to use RBAC.5

To the best of our knowledge, an XML-based
RBAC language for document security in XML-
based Web services has not been investigated pre-
viously. Our work aligns with the existing work
related to Web services security frameworks, such
as Microsoft HailStorm (www.microsoft.com/
presspass/features/2001/mar01/03-19hailstorm.
asp) and a service architecture that IBM and
Microsoft jointly proposed (www-106.ibm.com/
developerworks/security/library/ws-secmap/).

Our approach does not substitute for the features
these frameworks already incorporate, such as Web
services security specifications or the passport
authentication system. Instead, it complements
them by providing a policy specification and en-
forcement mechanism that could be implemented
using existing standards, such as WS-Policy, then
incorporated within these XML-based frameworks
to meet the target organization’s specific needs.
Thus, the model we propose is both modular
enough for use with existing Web services security
frameworks and extensible enough for development
into a complete Web services security framework.

The RBAC model

simplifies

authorization

administration

by assigning

permissions to

users through roles.

April 2004 43

RBAC EXTENSIONS
The RBAC model has five primary elements:

users, roles, permissions, operations, and objects.
These elements are related through set-relations
and functions. Permissions are composed of an
object-to-operations mapping. Our specification
captures both the core RBAC model semantics and
extensions to the core model, including role hier-
archies and separation of duty constraints.8,9

Our model uses a location-based approach to
capture the context information. A session para-
meter records the domain from which the user
requests access. In addition to the requesting user’s
domain, the session schema also contains attrib-
utes that capture the user’s activity profile such as
login_time, login_date, and the session’s duration.
The model processes such information dynamically
and incorporates it into access decisions in which
context information can be an important decision
parameter.

For example, consider a continuation of the
online digital library example in which the library
offers a collaborative subscription to a group of
small universities that cannot afford an exclusive
membership. In such a scenario, although access is
available to students from the group of smaller sub-
scribing universities, this access may be restricted
based on either prespecified access slots or the
access duration for each university that shares the
infrastructure. The restriction arises from a need to
achieve a balanced system load. Maintaining such
context information, and constantly updating it,
can be a challenging task in distributed environ-
ments, especially those with mobile users under-
going domain transfers due to reasons such as
handoff. Correctly restoring valid connections
becomes critical, and it is an issue our software
architecture addresses.

Our framework allows content-based specifica-
tion at four levels: conceptual, schema, instance,
and element. Grouping information content into
concept clusters reduces the complexity of the spec-
ification process and security administration.

This approach uses a similarity-based function
for content classification.10 The similarity-based
function analyzes the content-related metainfor-
mation or schema information available in XML
documents, then groups related XML schemas and
their instances into a cluster. The classification cre-
ates document clusters and assigns roles related to
the concept to these clusters. The classification
process can organize such roles as a hierarchy that
satisfies the aggregate relation.

As Figure 1 shows, a cluster can contain an arbi-

trary number of XML schemas, XML instances, or
their elements and attributes. Once the classifica-
tion process has created document clusters, the sys-
tem administrator generally specifies additional
fine-grained access restrictions within valid XML
document instances. Our approach, however,
assumes that the administrator has not specified
any negative permissions. Thus, once an adminis-
trator at a higher level has granted access, there is
no need for an overriding policy specification at a
lower level. If a user with new credentials needs a
predetermined role, the system might need to cre-
ate a virtual cluster dynamically based on the new
credential information.

XML-BASED SPECIFICATION LANGUAGE
Our XML-based specification language models

the RBAC elements and incorporates the functional
specifications according to the NIST RBAC
standard.9

Modeling RBAC elements
Our specification models the five basic RBAC ele-

ments and their relationships. We use XML to gen-
erate schema definitions for the user, role, and
permission elements. Schema definition is unnec-
essary for the operation and object elements
because the specification includes them in a per-
mission definition according to the NIST standard,
so the permission schema captures their relation-
ship with other RBAC elements.

User credentials. To evaluate a particular user’s
role, the specification language uses the notion of
credentials.1 To group users, an administrator
defines a credential type by identifying a common
set of attribute-value pairs. Consider, for example,
the following user credential based on a general cre-
dential expression of the form (cred_type_id,
{cred_expr}), where cred_type_id is a unique cre-
dential type identifier and cred_expr is a set of
attribute-value pairs:

(Nurse, {(user_id, John, mand), (age, 30, opt),
(level, fifth, mand)})

Clusters
Valid XML
instances

(a)

(b)

(c) Data repository

Role
hierarchies

XML
schemas

XML
documents

XML
documents

Figure 1. XML

document clustering

and associated

roles. (a) The

schema and all of

its XML document

instances fall under

the cluster; (b) the

XML document falls

under the cluster;

(c) the XML

document element

falls under the

cluster.

44 Computer

Here, mand indicates a mandatory attribute and
opt indicates an optional one. The administrator
enforces the specified requirements on the available
attributes when it forms the attribute-value pairs.

The XML representation for the above credential
information is an XML user sheet (XUS). Figure
2a shows an XUS instance. The max_roles tag indi-
cates the maximum number of roles a user can
have. Capturing the user’s activity profile might
require updating the user credentials dynamically.

Roles. The system administrator also creates roles.
A role has an associated set of credentials that the
users assigned to that role must satisfy. Figure 2b
shows an XML role sheet. The XRS is an XML
instance document describing the Doctor and DBA
roles along with the corresponding static separa-
tion of duty (SSD) and dynamic separation of duty
(DSD) role sets.

The role_name is a unique role identifier. The
optional SSD_Role_Set_id and DSD_Role_Set_id
tags refer to the set of roles that are in the static and
dynamic separation of duty categories, respec-
tively.9 Each set has a cardinality attribute that gives
the maximum number of roles it can assign to a

user or that it can activate from the set. The
optional junior and senior tags capture hierarchical
relationships by referring to junior and senior
roles.9 The cardinality is the maximum number of
users associated with a role at any time. The admin-
istrator can specify a cardinality to limit the num-
ber of users assigned to a role. However, if no
cardinality is explicitly supplied, the number of
users is assumed to be unlimited.

In Figure 2b, the Doctor role belongs to the
SSDRoleSet identified by SSD1, with cardinality 1,
so any user cannot be assigned to more than one
role from within this set. Similarly, the DBA role
belongs to the DSDRoleSet identified by DSD1,
with cardinality 2, and so a user cannot activate
more than two roles from within this set at once.

Permissions. Our specification defines the per-
missions for a given system in terms of objects and
associated operations. The permission component
usually consists of system-dependent operations
such as read, write, delete, or modify. Figure 2c
shows an XML permission sheet (XPS), which the
system administrator creates to define the objects
and corresponding operations in a given system.

<credentials>
 <credential>
 <cred_type
 cred_type_id = 'C100'>
 Nurse
 </cred_type>
 <cred_expr>
 <attribute_value_list>
 <attribute_value_pair>

<attribute_name>
 user_id

</attribute_name>
<attribute_value>
 John
</attribute_value>

</attribute_value_pair>
<attribute_value_pair>

<attribute_name>
 age
</attribute_name>
<attribute_value>
 30
</attribute_value>

</attribute_value_pair>
<attribute_value_pair>

<attribute_name>
 level
</attribute_name>
<attribute_value>
 5
</attribute_value>

</attribute_value_pair>
 </attribute_value_list>
 </cred_expr>
 <max_roles>2</max_roles>

 </credential>

</credentials>

<roles>
 <role>
 <role_name>Doctor
 </role_name >
 <SSD_Role_Set_id>SSD1
 </SSD_Role_Set_id>
 <junior>Resident</junior>
 <cardinality>8</cardinality>
 </role>
 <role>
 <role_name>DBA</role_name>
 <SSD_Role_Set_id>SSD1
 </SSD_Role_Set_id>
 <DSD_Role_Set_id>DSD1
 </DSD_Role_Set_id>
 </role>
</roles>
<SSD_Role_Sets>
 <SSD_Role_Set
 SSD_Role_Set_id = 'SSD1'
 SSD_cardinality = '1'>
 <SSD_Role>Nurse</SSD_Role>
 <SSD_Role>Doctor</SSD_Role>
 <SSD_Role>Dispenser</SSD_Role>
 <SSD_Role>DBA</SSD_Role>
 </SSD_Role_Set>
</SSD_Role_Sets>
<DSD_Role_Sets>
 <DSD_Role_Set
 DSD_Role_Set_id = 'DSD1'
 DSD_cardinality = '2'>
 <DSD_Role>DBA</DSD_Role>
 <DSD_Role>Accountant
 </DSD_Role>
 <DSD_Role>Cashier</DSD_Role>
 </DSD_Role_Set>
<DSD_Role_Sets>

<permissions>
 <permission>
 <perm_id>P1</perm_id>
 <object_type>Cluster
 </object_type>
 <object_id>CL100
 </object_id>
 <operation>read
 </operation>
 </permission>
 <permission>
 <perm_id>P2</perm_id>
 <object_type>Schema
 </object_type>
 <object_id>XS101
 </object_id>
 <operation>all
 </operation>
 </permission>
 <permission>
 <perm_id>P3</perm_id>
 <object_type>Instance
 </object_type>
 <object_id>XI100
 </object_id>
 <operation>all
 </operation>
 </permission>
 <permission>
 <perm_id>P4</perm_id>
 <object_type>Element
 </object_type>
 <object_id>/EyeCareMedic
 alHistory/Patient/Name
 </object_id>
 <operation>navigate
 </operation>
 </permission>
</permissions>

 (c) (b) (a)

Figure 2. XML

instances. (a) XML

user sheet, (b) XML

role sheet for the

Doctor and DBA

roles, and (c) XML

permission sheet,

which defines

permissions for

objects and

associated

operations in a

given system.

April 2004 45

The perm_id is a unique permission identifier. An
object can represent either a cluster, schema,
instance document, or document element to which
the system administrator assigns permission. Our
specification introduces the notion of an object type
to distinguish the associated resource. The system
administrator provides IDs that identify clusters,
schemas, and documents. When the accessed
objects are elements within an XML document, the
system uses XML Path Language (XPath) expres-
sions to identify them. Having access privileges to
a cluster implies having access to all schemas and
instance documents within that cluster’s scope, and
having access privileges to a schema implies hav-
ing access to all conforming instance documents.

For example, Figure 3a shows a healthcare Web
service cluster hierarchy in which a user with access
privileges on either the medical histories cluster or
the eye schema could view all instances of eye care
medical history, such as the one that Figure 3b
shows. The associated operations define the extent
of this access.

A permission can have a propagation option that
indicates whether or not it propagates down the
object hierarchy. Our specification allows the prop-
agation options no_prop, first_level, and cascade.1

In Figure 3a, a first_level propagation option on
the patient documents cluster means that the user
is authorized to view the documents within the two
immediate descendant clusters, namely payments
and medical histories—the latter including all
instance documents conforming to the eye and skin
schemas—but not within the confidential cluster.

Similarly, in Figure 3b, a user who has access
privileges to a patient element could also view the
contents of the corresponding history element if the
permission offers a cascade propagation option. In
general, if the permission does not explicitly spec-
ify the option, it is assumed to be no_prop, that is,

there is no propagation. However, the administra-
tor can specify a different propagation option at
the time of permission-to-role assignment if a role
demands sufficient privileges.

In Figure 2c, P1 identifies a permission that
allows a read operation on all documents within
the cluster’s scope that CL100 identifies with the
default propagation option. Similarly, P2 and P3
identify permissions that allow all operations on all
document instances conforming to the schema that
XS101 identifies and the document instance that
XI100 identifies, respectively, with the default prop-
agation option. P4 identifies a permission that
allows the navigate operation on the XML name
element, also with the default propagation option.

The associated XPath expression that identifies
the element imposes a specific structure on the con-
tainer document. In this case, the permission applies
to the name element contained in the instance doc-
ument in Figure 3b.

Policy administration
The policy administration process uses the infor-

mation about users, roles, and permissions available
from the corresponding XML documents. The sys-
tem administrator uses these XML sheets to specify
the policy base for the protected documents from cri-
teria that system designers specify. The documents
that the system generates in this phase include an
XML user-to-role mapping (XURM) and an XML
permission-to-role mapping (XPRM). Our model
captures these mappings through XML schemas that
describe the user-role and permission-role assign-
ments. Keeping the user, role, and permission speci-
fications separate from their mappings allows
independent design and administration of the policy.

Once the system generates these XML documents,
they constitute a part of the policy base. The infor-
mation from the policy base then enforces the autho-

Figure 3.

Permissions and

their propagation

options. (a) An

object hierarchy

of clusters and

schemas; (b) an XML

instance of eye care

medical histories.

<EyeCareMedicalHistory>
 <Patient id='1'>
 <Name>Jason</Name>
 <Age>64</Age>
 <History>
 <Disease>Glaucoma</Disease>
 <Date_Operated>12/09/78</Date_Operated>
 <Dues>15000</Dues>
 </History>
 </Patient>
 <Patient id='2'>
 <Name>Mary</Name>
 <Age>29</Age>
 <History>
 <Disease>Cataract</Disease>
 <Date_Operated>12/09/78</Date_Operated>
 <Dues>15000</Dues>
 </History>
 </Patient>
</EyeCareMedicalHistory>

Medical histories

Patient documents

Payments

Confidential
Eye

Skin

Schema

Cluster

 (b) (a)

46 Computer

rization constraints. More specifically, users have
access to resources based on the roles that XURM
assigns and the permissions that the XPRM specifies.

Figure 4a shows an XML instance document for
mapping users to a role based on user credentials.
Here, the access control processor parses and rec-
ognizes the condition part of the credential to eval-
uate the operation. This example associates a set
of credentials to the Doctor role. It states that the
administrator can assign all users with the Nurse
credential type to the Doctor role only if level is
greater than 5 and age is less than 80.

The associated XML schema can accommodate
nested Boolean expressions as well, and a predicate
within a condition expression can itself contain
another condition.

Mapping permissions to corresponding roles
reflects the policy specifications at the conceptual,
schema, instance, and element levels. Implicitly,
such an association generates a permission-role
assignment. Our schema specifies these associations
in an XPRM.

Conceptual-level access-control policies use roles
related to XML document clusters. This leads to the
schema specification for assigning permissions to
XML objects that represent clusters. Figure 4b
shows an instance of such a schema specification.
Here, PRM1 identifies a mapping that associates the
Eye_Doctor role with permission P1, which refers
to the object cluster on the XPS that Figure 2c shows.
In this case, an Eye_Doctor role is authorized to read
all the documents within the cluster identified by
cluster ID CL100. This cluster contains all informa-
tion relevant to the eye care concept.

The system uses the same mechanism to implement
schema, instance, and element level access control.
For instance, the mapping that PRM2 identifies in

Figure 4b associates the DBA role with permissions
P2 and P3, which refer to a schema object and an
instance document, respectively. From Figure 3c, per-
missions P2 and P3 authorize one to read/write/
navigate all instance documents conforming to the
schema that XS101 identifies and also the instance
document that XI100 identifies. Similarly, PRM3
identifies a mapping that associates the Dispenser
role with permission P4, which refers to a Name ele-
ment (in some XML instance document) that an
XPath expression identifies. Thus, the Dispenser
role is authorized only to navigate the Name ele-
ment in all conforming instance documents, such as
the document in Figure 3b.

SOFTWARE ARCHITECTURE
Figure 5 depicts a proposed software architec-

ture for a single-enterprise Web-service-enabled
application that disseminates secure documents.
The proposed architecture meets all the RBAC
functional specifications of the NIST standard.9

Document composition module
The XML document composition module

(XDCM) provides the main graphical interface for
composing XML schemas for RBAC elements and
policy administration documents. The same inter-
face composes both sets of documents, which the
policy base stores. This module provides all the
administrative functions as part of RBAC func-
tional specifications.

Access control module
The access control module (ACM), the archi-

tecture’s key component, interfaces with various
other functional modules and information repos-
itories to extract relevant information while mak-

<xurm>
 <urm urm_id='URM1' />
 <role_name>Doctor</role_name>
 <cred_type>Nurse</cred_type>
 <conditions>
 <condition>
 <mode value='AND'>
 <predicate>
 <operation>gt</operation>
 <parameter1>level</parameter1>
 <parameter2>5</parameter2>
 </predicate>
 <predicate>
 <operation>lt</operation>
 <parameter1>age</parameter1>
 <parameter2>80</parameter2>
 </predicate>
 </mode>
 </condition>
 </conditions>
 </urm>
</xurm>

<xprm>
 <prm prm_id='PRM1'>
 <role_name>Eye_Doctor</role_name>
 <permissions>
 <perm_id>P1</perm_id>
 </permissions>
</prm>
<prm prm_id='PRM2'>
 <role_name>DBA</role_name>
 <permissions>
 <perm_id>P2</perm_id>
 <perm_id>P3</perm_id>
 </permissions>
</prm>
<prm prm_id='PRM3'>
 <role_name>Dispenser</role_name>
 <permissions>
 <perm_id>P4</perm_id>
 </permissions>
</prm>
</xprm>

 (b) (a)

Figure 4. Role and

permission assign-

ment. (a) XURM and

(b) XPRM capture

the user-to-role and

permission-to-role

mappings through

XML schemas that

describe assignment

conditions on users

and permissions.

April 2004 47

ing authorization decisions. The ACM extracts the
policy information from the policy base and works
closely with the XML instance generator (XIG)
module to enforce authorization constraints.

The XIG module gets information from the
ACM about the access permissions allowed on
XML documents associated with an access request
and generates XML views accordingly in response
to that request. The XML instance base (XIB)
caches these views. XIG can simply be an exten-
sion of an XML document processor. Along with
the session management module (SMM), the ACM
manages the supporting system functions listed in
the NIST RBAC functional specifications.

Session management module
The SMM monitors session activities, capturing

relevant, dynamic context information that updates
user credentials and thus might affect future access
control decisions. The system maintains this infor-
mation in an XML session sheet (XSS) and com-
municates it to the ACM. The ACM then updates
the user credential information in the policy base.
ACM, XIG, and SMM together form the XML
access control processor.

SMM’s flexible session management capability
is particularly significant. For example, in a mobile

Web services environment, a user could start a ses-
sion that might later be suspended by a user request
or due to a handoff.

Here, SMM must store the current context infor-
mation to support the user’s reconnection. By the
time the user requests reconnection, some context
conditions may have changed. SMM must take these
changes into account when granting reconnection
requests, possibly with a new set of authorizations.
SMM’s ability to capture dynamic context informa-
tion allows the system to incorporate this feature.

Document classification module
The document classification/clustering module

(DCM) manages classification and clustering of all
documents. It organizes the concept clusters hier-
archically. The role mapper associates roles with
concepts and generates the XRSs for these roles and
their hierarchy. This module provides functional-
ity to add or delete clusters, as well as to create vir-
tual clusters based on a new set of user credentials.
Additionally, this module also handles the classifi-
cation of new documents entering the source. The
module can assign a new document to an existing
cluster based on its conformance to the schemas
that compose the cluster. Previous work proposed
similar approaches for document classification.1

Figure 5. Framework

for a single-

enterprise Web-

service-enabled

application that

disseminates

secure documents.

The numbered

arrows show the

steps in the

authorization

process.

XML
schemas

and
instances

XML document
presentation details

XML instance base

User
credentials

Concept role
hierarchy

Environmental
context

information

XML document composition module

XML document editor
(create XML documents with
access control specification)

Document
classification clustering

module

Referenced object base

ImagesText

XML policy base

XUS
XRS
XPS

XURM
XPRM

Access control module

XML instance
generator

Session
management module

Credential
evaluator

Context
extractor

Role mapper

XML
ACP

XSS

2

3

4

5

Document
presentation

User
request

XAS

1

48 Computer

Credential evaluator, context extractor,
and role mapper

The credential evaluator module (CEM) evalu-
ates the credentials the ACM presents. It also
assigns the user to an existing credential type or
creates a new credential type if the user credentials
do not match any existing credential specification.
With the help of the role mapper, the CEM maps
the credentials to a role using the assigned creden-
tial type. The context extractor evaluates the con-
textual information the ACM provides and sends
back relevant information for access decision after
consulting the policy base.

Repositories
The referenced object base constitutes the phys-

ical objects present in the system from which the
system administrator composes the XML docu-
ments. The XML schemas and instances contain
actual XML sources to which the user will be
requesting access. The XML policy base contains
all policy-related XML documents that XDCM
composes. The system can retrieve the information
content necessary for all review functions, as stip-
ulated by the RBAC functional specifications, from
the policy base, with support from SMM and role
hierarchy components as necessary.

The numbered arrows in Figure 5 show the steps
involved in the authorization process. In step one,
the user sends a request to the ACM in the form of
an XML access sheet (XAS) that contains the user’s
login information and a list of access requests. In
step two, the ACM generates a set of authoriza-
tions based on the policy after identifying the XML
sources. In step three, the XIG generates the docu-
ment instance according to the authorizations the
ACM generates. In step four, the XIG applies the
presentation formats, and in step five the XIB pre-
sents the authorized document view. Other arrows
indicate the retrieval of information needed for
access control decisions.

Although our framework and the corresponding
system architecture act as a policy specification and
enforcement mechanism within a Web services envi-
ronment, users can extend the framework to incor-
porate a more complete set of features from the
Web services security specifications. To do so, the
framework employs any XML-based standard mes-
saging protocol, such as SOAP, between a set of cas-
caded modules, each implementing a specific set of
specifications, such as WS-Security or WS-Privacy.

Our proposed mechanism ties into the specifica-
tions at the WS-Policy level. The end user request-
ing access to the target system would need to

interact only with a top-level interface, and the user
credentials and queries would be passed as SOAP-
encoded XML messages between the various mod-
ules. The extension mechanism will likely be
investigated in the future.

VALIDATION AND IMPLEMENTATION
We validated our proposed model in two steps:

We used XML Schema to check the policy docu-
ments for conformance with the model, and we
used the XML access control processor to evaluate
the XML documents for conformance to domain-
specific constraints. A preliminary version of our
proposed software architecture has been imple-
mented and tested using a Java-based XML-
enabled application.8 The prototype includes a
policy validation module that verifies and validates
all the XML files that compose the policy base. An
XML parser module maps the XML syntax to
lower-level language constructs and supplies the
policy information to the ACM. Access requests
are received and authorization decisions are
returned as HTTP requests over the Web.

A
key feature of our framework is that it sepa-
rates language schemas, which allows speci-
fying multiple components of the access

control policy independently and in an interoper-
able manner. The implementation of our model
shows that our software architecture can be
applied to a single-enterprise Web-service-enabled
application that disseminates secure documents.

We are now working on a scheme to extend this
framework to incorporate a more complete set of
features from the Web services security specifica-
tions. In other research, we plan to extend our
XML specification language to allow specification
of policies in a distributed, multiple-enterprise
environment. �

Acknowledgments
Portions of this work have been supported by

the sponsors of the Center for Education and
Research in Information Assurance and Security
(CERIAS) at Purdue University and the National
Science Foundation under NSF grant no. IIS-
0242419.

References
1. E. Bertino et al., “Controlled Access and Dissemina-

tion of XML Documents,” Proc. Workshop Web

April 2004 49

Information and Data Management, ACM Press,

1999, pp. 22-27.

2. E. Damiani et al., “A Fine-Grained Access Control

System for XML Documents,” ACM Trans. Infor-

mation and System Security (TISSEC), vol. 5, no. 2,

ACM Press, 2002, pp. 169-202.

3. J.Y. Chung, K.J. Lin, and R.G. Mathieu, “Guest Edi-

tor’s Introduction—Web Services Computing:

Advancing Software Interoperability,” Computer,

Oct. 2003, pp. 35-37.

4. J.B.D. Joshi et al., “Security Models for Web-Based

Applications,” Comm. ACM, Feb. 2001, pp. 38-72.

5. R.S. Sandhu et al., “Role-Based Access Control

Models,” Computer, Feb. 1996, pp. 38-47.

6. S.L. Osborn, R. Sandhu, and Q. Munawer, “Config-

uring Role-Based Access Control to Enforce Manda-

tory and Discretionary Access Control Policies,”

ACM Trans. Information and System Security (TIS-

SEC), vol. 3, no. 2, ACM Press, 2000, pp. 85-106.

7. S. Hada and M. Kudo, “XML Access Control Lan-

guage: Provisional Authorization for XML Docu-

ments,” 16 Oct. 2000, Tokyo Research Laboratory,

IBM Research.

8. R. Bhatti et al., Access Control in Dynamic XML-

Based Web Services with X-RBAC, CERIAS tech.

report 2003-36.

9. D.F. Ferraiolo et al., “Proposed NIST Standard for

Role-Based Access Control,” ACM Trans. Informa-

tion and System Security (TISSEC), vol. 4, no. 3,

ACM Press, 2001, pp. 224-274.

10. H. Chen, “A Machine Learning Approach to Docu-

ment Retrieval: An Overview and an Experiment,”

Proc. 27th Hawaii Int’l Conf. System Sciences, vol.

3, IEEE CS Press, 1994, pp. 631-640.

Rafae Bhatti is a PhD candidate in electrical and
computer engineering at Purdue University. His
research interests include information systems secu-
rity and distributed systems. Bhatti received an MS
in electrical and computer engineering from Pur-
due University. He is a student member of the
IEEE. Contact him at rafae@purdue.edu.

Elisa Bertino is a professor of computer science and
director of research at CERIAS at Purdue Univer-
sity. Her research interests include security, privacy,
and database systems. Bertino received a PhD in
computer science from the University of Pisa, Italy.
Contact her at bertino@cs.purdue.edu.

Arif Ghafoor is a professor of electrical and com-
puter engineering at Purdue University. His
research interests include multimedia systems,
information security, distributed systems, and
broadband multimedia networking. Ghafoor
received a PhD in electrical engineering from
Columbia University. Contact him at ghafoor@
ecn.purdue.edu.

James B.D. Joshi is an assistant professor in the
Department of Information Sciences and Telecom-
munications at the University of Pittsburgh. His
research interests include information systems secu-
rity, distributed systems, multimedia systems, and
systems survivability. Joshi received a PhD in com-
puter engineering from Purdue University. Contact
him at jjoshi@mail.sis.pitt.edu.

Join a community that targets your discipline.

In our Technical Committees, you’re in good company.

www.computer.org/TCsignup/

L
ooking for a community targeted to your

area of expertise? IEEE Computer Society

Technical Committees explore a variety

of computing niches and provide forums for

dialogue among peers. These groups influence

our standards development and offer leading

conferences in their fields.

JOIN A
THINK
TANK

