

Edinburgh Research Explorer

XML data exchange

Citation for published version:
Arenas, M & Libkin, L 2008, 'XML data exchange: Consistency and query answering', Journal of the ACM,
vol. 55, no. 2, 7, pp. 1-72. https://doi.org/10.1145/1346330.1346332

Digital Object Identifier (DOI):
10.1145/1346330.1346332

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of the ACM

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 21. Aug. 2022

https://doi.org/10.1145/1346330.1346332
https://doi.org/10.1145/1346330.1346332
https://www.research.ed.ac.uk/en/publications/0afa1814-a284-4c1d-96e4-f46f64bdd8c5

XML Data Exchange: Consistency and
Query Answering

MARCELO ARENAS

Pontificia Universidad Católica de Chile

and

LEONID LIBKIN

University of Edinburgh

Data exchange is the problem of finding an instance of a target schema, given an instance of a
source schema and a specification of the relationship between the source and the target. Theoret-
ical foundations of data exchange have recently been investigated for relational data.

In this paper, we start looking into the basic properties of XML data exchange, that is, restruc-
turing of XML documents that conform to a source DTD under a target DTD, and answering
queries written over the target schema. We define XML data exchange settings in which source-
to-target dependencies refer to the hierarchical structure of the data. Combining DTDs and de-
pendencies makes some XML data exchange settings inconsistent. We investigate the consistency
problem and determine its exact complexity.

We then move to query answering, and prove a dichotomy theorem that classifies data exchange
settings into those over which query answering is tractable, and those over which it is coNP-
complete, depending on classes of regular expressions used in DTDs. Furthermore, for all tractable
cases we give polynomial-time algorithms that compute target XML documents over which queries
can be answered.

Categories and Subject Descriptors: []:

General Terms:

Additional Key Words and Phrases:

1. INTRODUCTION

Data exchange is the problem of finding an instance of a target schema, given an in-
stance of a source schema and a specification of the relationship between the source
and the target. Such a target instance should correctly represent information from
the source instance under the constraints imposed by the target schema, and should
allow one to evaluate queries on the target instance in a way that is semantically
consistent with the source data.

Data exchange is an old problem [Shu et al. 1977] that re-emerged as an active
research topic recently due to the increased need for exchange of data in various
formats, typically in e-business applications [Amer-Yahia and Kotidis 2004]. A
system Clio for data exchange was built [Miller et al. 2001; Popa et al. 2002] and

This is an expanded version of [Arenas and Libkin 2005].
Authors’ email addresses: marenas@ing.puc.cl (Marcelo Arenas) and libkin@inf.ed.ac.uk

(Leonid Libkin).
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–74.

2 ·
<!ELEMENT db (book*)>

<!ELEMENT book (author*)>

<!ATTLIST book

title CDATA #REQUIRED>

<!ELEMENT author (EMPTY)>

<!ATTLIST author

name CDATA #REQUIRED

aff CDATA #REQUIRED>

(a) Source DTD

db

@name
“Papadimitriou”

@title
“Combinatorial
Optimization”

author

@aff
“UCB”

author

book

“Steiglitz”
@name @aff

“Princeton”
@aff@name

“Papadimitriou” “UCB”

author@title
“Computational

Complexity”

book

(b) Source XML document

Fig. 1. Source information.

partly incorporated into the latest release of IBM’s db2 product. At about the
same time, papers [Fagin et al. 2003; Fagin et al. 2003] by Fagin, Kolaitis, Miller,
and Popa laid the theoretical foundation of exchange of relational data, and several
followup papers studied various issues in data exchange such as schema mapping
composition [Fagin et al. 2005] and query rewriting [Arenas et al. 2004; Yu and
Popa 2004]. And even though practical systems such as Clio handle non-relational
data (in particular, nested relations [Popa et al. 2002]), all theoretical investigation
so far has concentrated on the relational case.

Our goal is to start the investigation of basic theoretical issues of data exchange
for XML documents.

Example 1.1. We illustrate XML data exchange by the following example. Sup-
pose we have the source document shown in Figure 1 (b) conforming to the DTD
shown in Figure 1 (a). This DTD says that the document consists of several book
elements, each having a title attribute and several author subelements; each author
has attributes name and aff(iliation).

Suppose we want to restructure this document under the target schema shown in
Figure 2 (a). This DTD says that a document has several writer elements, each hav-
ing a name attribute, and several work subelements with attributes title and year.
Intuitively, a restructured document should look like the XML document shown in
Figure 2 (b). Note that the original document provides no data about publication
year, and hence we have to invent new values for the document structured under
the target schema. In data exchange terminology, these are nulls, denoted here by
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 3

⊥1 and ⊥2. The new document forces two of them to be the same, even though
their values are not known.

Even in the relational case there could be different target databases that satisfy
all the constraints of a data exchange setting [Fagin et al. 2005]. So if we are given
source document shown in Figure 1 (b) and a query over the new DTD, shown in
Figure 2 (a), how can we answer it? If our query is, for example, Who is the writer
of the work named “Computational Complexity”?, the answer is Papadimitriou re-
gardless of a particular document that was created for the target DTD. Notice that
even though the answer would be the same in every correctly constructed docu-
ment that conforms to the new DTD, we can deduce this just by looking at a single
document shown above. As another example, consider a query What are the works
written in 1994?. This query cannot be answered with certainty in this scenario.

Our main goals here are the following:

—We propose a formalism for XML data exchange settings, and investigate its
basic properties, and

—We study the problem of query answering in XML data exchange contexts, and
analyze its complexity, and develop query evaluation algorithms.

Before we describe the main contributions of the paper, we recall briefly the setting
of relational data exchange and query answering [Fagin et al. 2005; Fagin et al.
2005]. A relational data exchange setting is a triple (S, T, ΣST), where S is a source
schema, T is a target schema, and ΣST is a set of source-to-target dependencies,
or STDs, that express the relationship between S and T. Sometimes a set of
constraints on the target schema is also added to the setting. Such a setting gives
rise to the data exchange problem: given an instance I over the source schema S,
find an instance J over the target schema T such that I together with J satisfy the
STDs in ΣST (when target dependencies are used, J must also satisfy them). Such
an instance J is called a solution for I. STDs are usually of the form

ψT(x̄, z̄) :– ϕS(x̄, ȳ), (1)

where ϕS and ψT are conjunctions of atomic formulae over S and T, respectively.
The pair 〈I, J〉 satisfies this dependency if whenever ϕS(ā, b̄) is true in I, for some
tuple c̄, ψT(ā, c̄) is true in J .

In general, there may be many different solutions for a given source instance I,
and under target constraints, there may be no solutions at all [Fagin et al. 2005; Fa-
gin et al. 2005]. If one poses a queryQ over the target schema, and a source instance
I is known, the usual semantics in data exchange uses certain answers [Abiteboul
et al. 1991; Imielinski and Lipski 1984]: we let certain(Q, I) be the intersection
of all Q(J)’s over all possible solutions J . A key problem in data exchange is to
find a particular solution J0 so that certain(Q, I) can be obtained by evaluating
some query (a rewriting of Q) over J0. Some answers to this question were given
in [Fagin et al. 2005; Fagin et al. 2005]: e.g., if Q is a union of conjunctive queries,
certain(Q, I) can be computed by evaluating Q over a special kind of solution called
canonical that can be constructed in polynomial time. In general, however, work on
query rewriting and incomplete information tells us that the complexity of finding

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 ·
<!ELEMENT bib (writer*)>

<!ELEMENT writer (work*)>

<!ATTLIST writer

name CDATA #REQUIRED>

<!ELEMENT work (EMPTY)>

<!ATTLIST work

title CDATA #REQUIRED

year CDATA #REQUIRED>

(a) Target DTD

writer

@year

writer

bib

@name @name
“Papadimitriou” “Steiglitz”

work

@title
“Combinatorial
Optimization”

⊥1 ⊥1

work

@title
“Combinatorial
Optimization”

@year @title
“Computational

Complexity”

work

@year
⊥2

(b) Target XML document

Fig. 2. Target information.

certain answers can be intractable [Abiteboul and Duschka 1998; Abiteboul et al.
1991].

Coming back to XML data exchange, we have to define XML data exchange
settings. By analogy with the relational case, they should have source and target
schemas, and source-to-target dependencies. We shall use DTDs as schemas, but
it is not immediately clear what formalism to use for STDs, although intuitively
they should correspond to conjunctive queries in some relational representation of
XML. This intuition gives rise to a very natural question whether we can “reduce”
XML data exchange problem to relational data exchange by using some relational
representation of XML documents [Krishnamurthy et al. 2003] (for example, as
trees with the child and next-sibling relations, as well as attribute values). The
problem with this naive approach is that DTDs impose rather expressive constraints
on target trees, that can talk about reachability as well as regular expressions.
Therefore, their expressiveness is well beyond first-order logic, and yet results on
relational data exchange have only considered limited first-order constraints on the
target so far.

Thus, as is often the case with transferring results from relational databases to
XML, we do have to reinvent most basic notions and prove new results. We now
summarize our main results and outline the structure of the paper.

—Basic definitions (XML documents, DTDs) are given in Section 2.
—In Section 3, we define data exchange settings based on STDs which show how
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 5

patterns in the source tree translate into patterns in the target tree.
—In Section 4, we study the consistency problem of XML data exchange. We

want to exclude inconsistent data exchange settings, in which target instances
cannot be constructed. Our first result, Theorem 4.1, shows that the complexity
of checking consistency of XML data exchange settings is EXPTIME-complete.
In addition, we show that many reasonable restrictions remain computationally
hard (complete for PSPACE or NP). However, for a practically relevant class,
which subsumes non-relational data exchange settings handled by Clio, consis-
tency can be checked in O(nm2), where n is the size of the DTDs, and m is the
size of the STDs (Theorem 4.5) .

—In Section 5, we study the problem of query answering in XML data exchange.
Since for a given source document T there could be many documents T ′ that
satisfy all the STDs (solutions), we define query answers as those that are true in
all solutions, i.e. certain answers. We look at queries that produce sets of tuples
of values so that the notion of certain answers be well-defined.
Our first result (Theorem 5.5) is a coNP upper bound on the complexity of query
answering. For XML data exchange, this bound is much harder to achieve than
for relational data exchange.
Our next result delineates the boundary of intractability for query answering in
data exchange. We show that if tree patterns over the target in STDs use one
of three features – the descendant relation, the wildcard, or patterns that do not
start at the root – then query answering could be coNP-hard even for very simple
DTDs (Theorem 5.11). Thus, from that point on, we deal with target patterns
that start at the root, use only the child relation, and do not use the wildcard.

—For such patterns, called fully-specified, in Section 6, we prove a dichotomy theo-
rem which says that depending on the class of regular expressions used in DTDs,
query answering is either tractable or coNP-complete (Theorem 6.2). Regular
expressions in the class that guarantees tractability are called univocal. It is de-
cidable if a regular expression is univocal (Proposition 6.10). For tractable cases,
which subsume nonrelational data exchange handled by Clio [Popa et al. 2002],
we provide algorithms for constructing target documents over which queries can
be answered.

2. NOTATIONS

We view XML documents as node-labeled unranked trees. We assume countably
infinite sets El of names of element types and Att of attribute names, as well
as a domain Str of possible attribute values (normally considered to be strings).
Attribute names are preceded by a “@” to distinguish them from element types.
Given finite sets E ⊂ El and A ⊂ Att , an XML tree T over (E,A) is a finite
ordered directed tree (N , <child, <sib, root) where N is the set of nodes, <child

is the child relation, <sib is the next-sibling relation (for each node v it orders its
children v1 <sib . . . <sib vm), and root is the root, together with

—a labeling function λT : N → E (if λT (v) = �, we say that � is the element type
of v);

—a partial function ρ@a : N → Str for every @a ∈ A assigning some nodes of T
values of attribute @a.

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 ·
A DTD (Document Type Definition) over (E,A) is defined as a triple (P,R, r)
where

—P is a function from E to regular expressions over E defined by the grammar

e ::= ε
∣∣ �, � ∈ E

∣∣ e|e
∣∣ ee

∣∣ e∗,

(ε is the empty string, and e|e, ee and e∗ stand for the union, concatenation and
the Kleene star);

—R : E → 2A associates with each element type a (possibly empty) set of attribute
names; and

—r ∈ E is the distinguished element type of the root, which cannot be used in
regular expressions P (�) and cannot have any attributes (R(r) = ∅).

We also use the standard shorthands e+ for ee∗ and e? for ε|e, and we often write
� → e instead of P (�) = e as is common for DTDs. Furthermore, we do not
consider PCDATA elements in XML documents since they can always be represented
by attributes.

Example 2.1. For the source DTD shown in Figure 1 (a), E = {db, book ,
author}, A = {@title, @name, @aff }, P is given by P (db) = book∗ (that is, db →
book∗), P (book) = author∗, P (author) = ε; and R(db) = ∅, R(book) = {@title},
and R(author) = {@name, @aff }. Furthermore, db is the element type of the
root.

An XML tree T conforms to D = (P,R, r), denoted by T |= D, if:

(1) for every node v in T with children v1, . . . , vm such that v1 <sib . . . <sib vm, if
λT (v) = �, then the string λT (v1) . . . λT (vm) is in the language defined by the
regular expression P (�);

(2) for every node v in T with λT (v) = �, ρ@a(v) is defined iff @a ∈ R(�);
(3) λT (root) = r.

We write SAT(D) for the set of XML trees T that conform to D. It is a folklore
result that checking whether SAT(D) 	= ∅ can be done in linear time. We say
that a DTD D is consistent if for every element type � in D, there exists a tree T
conforming to D and having a node of type �. From now on, we assume that every
DTD is consistent. This can be done without loss of generality due to the following
easy observation.

Lemma 2.2. Given a DTD D with SAT(D) 	= ∅, one can construct, in polyno-
mial time, a consistent DTD D′ such that SAT(D) = SAT(D′).

Proof. Let AD be an unranked nondeterministic finite tree automaton (UN-
FTA) that accepts SAT(D) (see Appendix A for some basic facts about ranked
and unranked tree automata). We assume that each transition is represented by an
NFA, that is, δ(q, a) is an NFA over Q. For each � in E, let A� be a constant-size
UNFTA that tests if � occurs in a tree. Then L(AD ×A�) is nonempty iff there is
a tree that conforms to D in which an �-node occurs. Furthermore, this test can
be done in polynomial time in the size of AD (and hence of D).

When this procedure is applied to all symbols � ∈ E, we have them partitioned
into two classes E = E1 ∪ E2, where element types from E1 appear in trees in
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 7

SAT(D) and those from E2 do not. Then, for each regular expression r, construct
an expression r′ by replacing each � ∈ E2 with the symbol ∅. Then define the
following function ρ on regular expressions expanded with the ∅ symbol: ρ(∅) = ∅,
ρ(ε) = ε, ρ(�) = �, and

ρ(r1r2) =

{
ρ(r1)ρ(r2) if ρ(r1) 	= ∅, ρ(r2) 	= ∅
∅ otherwise;

ρ(r∗) =

{
ρ(r)∗ if ρ(r) 	= ∅
ε otherwise;

ρ(r1|r2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρ(r1)|ρ(r2) if ρ(r1) 	= ∅, ρ(r2) 	= ∅
ρ(r1) if ρ(r1) 	= ∅, ρ(r2) = ∅
ρ(r2) if ρ(r2) 	= ∅, ρ(r1) = ∅
∅ if ρ(r1) = ρ(r2) = ∅.

Now in D we eliminate all symbols � ∈ E2 and for each � ∈ E1, replace r = P (�)
with ρ(r′). Let D′ be the resulting DTD. A straightforward induction shows that
SAT(D) = SAT(D′), and the transformation was polynomial-time. Since D′ only
uses symbols from E1, for each element type that occurs in D′ there is a tree in
SAT(D′) that uses it, proving consistency.

3. XML DATA EXCHANGE SETTINGS

Recall [Fagin et al. 2005; Fagin et al. 2005] that a relational data exchange setting
is a triple (S,T,ΣST), where S and T are source and target relational schemas, and
ΣST is a family of source-to-target dependencies, that is, expressions of the form1

ψT(x̄, z̄) :– ϕS(x̄, ȳ), where ψT (resp., ϕS) is a conjunction of atomic formulae
over T (resp., S). Instances I of S and J of T satisfy this dependency if whenever
ϕS(ā, b̄) holds in I, one can find a tuple c̄ such that ψT(ā, c̄) holds in J .

Now we need to extend this setting to XML data. Instead of source and target
schemas S and T, we shall use source and target DTDs DS and DT. But what do
we have in place of relational STDs? A natural idea is to extend relational source-
to-target dependencies to XML trees considered as relational structures. But one
needs to add the descendant relation, which is not FO-definable from the child
relation and, worse yet, make the logical formalism two-sorted in order to deal
with both nodes and values. This would make the formalism rather cumbersome.
Instead, we present XML source-to-target dependencies in a formalism that is much
closer to XML languages such as tree patterns and XPath [Amer-Yahia et al. 2002;
Benedikt et al. 2003].

Essentially our STDs say that if a certain pattern occurs in the source, another
pattern has to occur in the target. Thus, formulae used in STDs will be very
similar to those used, for example, in [Amer-Yahia et al. 2002; Benedikt et al.
2003; Neven and Schwentick 2003; Deutsch and Tannen 2001; Wood 2003]. One
difference though is that while XPath formulae select nodes from a tree, we also
need to collect values of attributes that need to be assigned to nodes in the target
trees. Thus, as in [Deutsch and Tannen 2001; Neven and Schwentick 2003], we shall
use variables; in our case, they will range over possible attribute values.

1In [Fagin et al. 2005; Fagin et al. 2005], STDs are written as FO sentences but here we prefer a
rule-based formalism.

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 ·
3.1 Tree-pattern formulae

The basic component of our language for source-to-target dependencies is attribute
formulae. Assume that is a wildcard symbol not included in El ∪Att. Given sets
E ⊂ El of element types and A ⊂ Att of attributes, attribute formulae over (E,A)
are defined by

α := � | �(@a1 = x1, . . . ,@an = xn),

where � ∈ E ∪ { }, @a1, . . . ,@an ∈ A and x1, . . ., xn is a set of (non necessarily
distinct) variables. In the second case, variables x1, . . . , xn are the free variables of
α. For example, the formula �(@a = x,@b = y) has free variables x and y, while
the formula �(@a = z,@b = z) has z as its only free variable. An attribute formula
is evaluated in a node of a tree, and values for free variables come from Str. If T is
an XML tree over (E,A) and v a node of T , then

—(T, v) |= ;
—(T, v) |= � iff λT (v) = �, for � ∈ E;
—if σ : {x1, . . . , xn} → Str assigns to each variable xi a string value (i ∈ [1, n]), then

(T, v) |= �(@a1 = σ(x1), . . . ,@an = σ(xn)) iff (T, v) |= � and ρ@aj (v) = σ(xj),
for every j ∈ [1, n].

Tree-pattern formulae over (E,A) are defined by

ϕ := α | α[ϕ, . . . , ϕ] | //ϕ,

where α ranges over attribute formulae over (E,A). The free variables of a tree-
pattern formula ϕ are the free variables in all the attribute formulae that occur
in it. For example, the formula db[book (@title = x)[author (@name = y)]] has free
variables x and y. We write ϕ(x̄) to indicate that free variables of ϕ are x̄. We
evaluate tree-pattern formulae in an XML tree. Given a tree T , a tree-pattern
formula ϕ(x̄), and a tuple s̄ from Str, ϕ(s̄) is true in T (written T |= ϕ(s̄)) if there
is a witness node v for ϕ(s̄). Intuitively, the witness node is the node at which the
pattern is satisfied, with s̄ being the values of attributes. Formally, we define v in
T to be a witness node for ϕ(s̄) as follows:

—v is a witness node for α(s̄), where α is an attribute formula, iff (T, v) |= α(s̄).
—v is a witness node for α(s̄)[ϕ1(s̄1), . . . , ϕk(s̄k)] iff (T, v) |= α(s̄) and there are k

(not necessarily distinct) children v1, . . . , vk of v such that each vi is a witness
node for ϕi(s̄i), for every i ≤ k.

—v is a witness node for //ϕ(s̄) if there is a descendant v′ of v in T which is a
witness node for ϕ(s̄).

For example, let ψ(x, y) be the formula book (@title = x)[author(@name = y)],
referring to the example from the introduction (see DTD in Figure 1 (a)). Then
ψ(s, s′) is true iff s is a title of a book and s′ is one of its authors, with the
corresponding book element being the witness.

Notice that every tree-pattern formula can be translated into a conjunctive query
in a two-sorted logic over XML trees considered as structures in the language of
<child and <∗

child (descendant), being the second sort values of attributes. Thus,
we are in principle in the same category of formulae for defining data exchange
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 9

setting as in the relational case; however, we avoid the two-sorted formalism by
using tree-pattern formulae.

3.2 Data exchange settings

We now define XML data exchange settings using tree-pattern formulae. Essen-
tially, a data exchange setting consists of source and target DTDs, and source-to-
target dependencies, which are rules of the form (1) in which both ϕ and ψ are
tree-pattern formulae.

Definition 3.1. (Source-to-target dependencies). Given finite sets
ES, ET ⊂ El of elements types and AS, AT ⊂ Att of attributes, a source DTD
DS over (ES, AS) and a target DTD DT over (ET, AT), a source-to-target depen-
dency (STD) between DS and DT is an expression of the form:

ψT(x̄, z̄) :– ϕS(x̄, ȳ), (2)

where ϕS(x̄, ȳ) and ψT(x̄, z̄) are tree-pattern formulae over (ES, AS) and (ET, AT),
respectively, and tuples ȳ and z̄ have no variables in common.

Given XML trees T and T ′ conforming to DS and DT, respectively, we say that
the pair 〈T, T ′〉 satisfies this STD if whenever T |= ϕS(s̄, s̄′), there is a tuple s̄′′

such that T ′ |= ψT(s̄, s̄′′).

Definition 3.2. (Data Exchange Setting). An XML data exchange setting
is a triple (DS, DT, ΣST), where DS is a source DTD, DT is a target DTD, and
ΣST is a set of STDs between DS and DT.

Definition 3.3. (Solutions). Given a data exchange setting (DS, DT, ΣST)
and an XML tree T conforming to DS, a tree T ′ conforming to DT such that 〈T, T ′〉
satisfies all STDs in ΣST is called a solution for T .

Example 3.4. Referring again to the data exchange scenario from the introduc-
tion (see Figures 1 and 2), the STD that specifies how to transform book/author
pairs into writer/work pairs is given by ψT(x, y, z) :– ϕS(x, y) where ϕS(x, y) and
ψT(x, y, z) are

db[book (@title = x)[author (@name = y)]] and
bib[writer(@name = y)[work (@title = x,@year = z)]],

respectively. For example, we know that the source document from the introduction
satisfies

ϕS(Combinatorial Optimization,Papadimitriou).

Thus, in a solution T ′ for T , we would have a writer child of the root with the
@name attribute Papadimitriou, and a work child with two attributes @title and
@year. The value of @title is Combinatorial Optimization, but the source document
provides no information about the value of the @year attribute. In a solution
therefore one has to invent a null value (shown as ⊥1 in the example) for this
attribute.

As in other papers on data exchange [Fagin et al. 2005; Fagin et al. 2005], we
assume that the domain Str of attributes is partitioned into two countably infinite

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 ·
sets Const and Var. The set Const contains all values that may occur in source
trees, and, following data exchange terminology, we call them constants. Elements
of Var are called nulls, and they are used to populate target trees.

4. CONSISTENT DATA EXCHANGE SETTINGS

It is known that even in the relational case some data exchange settings are in-
consistent due to constraints on the target instance [Fagin et al. 2005; Fagin et al.
2005]. DTDs, being very close in expressiveness to monadic second-order logic
[Vianu 2001], may impose a variety of restrictions on possible solutions, some-
times making data exchange settings inconsistent. For example, consider an STD
r[�1[�2(@a = x)]] :– r. If the target DTD is r → �1|�2, �1, �2 → ε, then there is no
source XML tree T for which a solution exists. In other words, no matter what the
source DTD is, the data exchange setting would be inconsistent.

In this section, we investigate consistency of XML data exchange settings. We
impose an additional restriction on tree patterns over the source that all variables
used in each tree pattern formula are distinct2. The intuition behind this restriction
is that we collect values of attributes that occur in patterns that only specify a tree
structure, not statements about equality of attributes. For example, a tree pattern
formula ϕ = �(@a1 = x,@a2 = x) is satisfied in a node with attributes @a1 and
@a2 that have the same value. Since our goal for source patterns is to collect
values, we disallow formulae of this kind over the source, instead using formulae
like ϕ′ = �(@a1 = x1,@a2 = x2), saying that the value of @a1 should be recorded
in x1, and the value of @a2 in x2. Patterns like ϕ are essentially a conjunction of ϕ′

and an equality statement x1 = x2, and we do not consider those over the source.
We do, however, allow them over the target: while our goal is to collect values over
the source, in populating target documents we can use values more than once. For
example, ϕ could be used as a target formula: �(@a1 = x,@a2 = x) :– �′(@a = x)
says that for each value x of an attribute @a of element type �′ in the source, we
must have a node of type � where both attributes @a1 and @a2 are assigned the
same value x.

The proviso that variables in source tree-pattern formulae are distinct only applies
in this section; we shall not need it when we deal with query answering.

We call a data exchange setting (DS, DT,ΣST) inconsistent if no tree T |= DS

has a solution. Otherwise, the setting is consistent. Obviously one should only
work with consistent settings. But how hard is it to test consistency? To answer
this, we study the following problem:

PROBLEM: Data-Exchange-Consistency

INPUT: Data exchange setting (DS, DT,ΣST).
QUESTION: Is (DS, DT,ΣST) consistent?

A particular case of this problem is satisfiability of tree-pattern formula which asks
whether there exists a tree T that conforms to a DTD D and satisfies a tree pattern

2To avoid any potential confusion with the conference version of the paper caused by a slight
notational difference, we should point out that in the conference version [Arenas and Libkin
2005], the distinct variables assumption was not spelled out as directly as here, and was enforced
by using distinct variables in patterns.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 11

formula ψ. Indeed, this happens iff the setting (Dr, D, {ψ :– r}) is consistent, where
Dr has only one rule r → ε. It is known that satisfiability of tree-patterns may be
intractable [Lakshmanan et al. 2004] although precise complexity was not known.
Results on XPath containment in the presence of DTDs [Neven and Schwentick
2003; Wood 2003] also suggest high complexity for data exchange consistency. We
now determine its exact complexity.

Theorem 4.1. The problem Data-Exchange-Consistency is EXPTIME-
complete.

Proof. For membership, we first show that it suffices to consider STDs in which
all attribute formulae are of the form � with � ∈ E ∪ { }. Then for each STD
ψ :– ϕ we construct an unranked tree automaton that accepts a tree whose root
has two children iff whenever the subtree rooted at the left child satisfies ϕ, then
the subtree rooted at the right child satisfies ψ. We show that the product of all
these automata can be constructed in exponential time. Then we take the product
of this automaton with automata defining the DTDs; the setting is consistent iff
such an automaton accepts a tree. The latter can be done in polynomial time in
the size of the automaton [Neven 2002].

More precisely, suppose we are given a data exchange setting (DS, DT,ΣST). For
each attribute formula α, define a formula α◦ as follows:

—if α = � with � ∈ El ∪ { }, then α◦ = α;
—if α = �(@a1 = x1, . . . ,@an = xn), then α◦ = �.

For a tree formula ϕ, we let ϕ◦ denote a formula obtained from ϕ by replacing
each attribute subformula α with α◦. We define Σ◦

ST as the result of replacing each
ψ :– ϕ in ΣST with ψ◦ :– ϕ◦. Notice that formulae of the form ϕ◦ do not have free
variables.

Claim 4.2. A data exchange setting (DS, DT,ΣST) is consistent iff
(DS, DT,Σ◦

ST) is consistent.

Proof. One direction is immediate from the observation that T |= ϕ◦ iff T |=
ϕ(s̄) for some values s̄. For the other direction, suppose (DS, DT,Σ◦

ST) is consistent,
with T ′ |= DT being a solution for T |= DS. Fix a string s0 and assign it as
values of all attributes in T and T ′, resulting in trees T (s0) and T ′(s0). Clearly,
〈T (s0), T ′(s0)〉 witness the consistency of (DS, DT,ΣST). This proves the claim.

We remark that the restriction on source tree-pattern formulae is essential here.
Consider for example, a source DTD r → �0, �0 → �1, �1 → ε, with �i’s all having
an attribute @a, a target DTD with just the root r, and an STD r[b] :– r[�0(@a =
x)[�1(@a = x)]]. This setting is consistent: for example, a source tree with different
values of @a at �0 and �1 makes a witness, together with the only possible target.
But Σ◦

ST is not consistent: it has a single STD r[b] :– r[�0[�1]], and since every
tree that conforms to the source DTD satisfies the pattern r[�0[�1]], the resulting
setting is inconsistent.

Since the transformation from ΣST to Σ◦
ST is linear-time, we can assume without

loss of generality that in our data exchange settings all attribute subformulae are
of the form � with � ∈ El ∪ { }. To prove membership in EXPTIME, we need

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 ·
the following result. Recall that an UFTA(DFA) is a unranked deterministic tree
automaton where all transitions are represented by deterministic tree automata (see
Appendix A for some basic facts about ranked and unranked tree automata).

Claim 4.3. For every tree-pattern formula ϕ without free variables, one can
compute in exponential time a deterministic UFTA(DFA) Aϕ with a set F of ac-
cepting states such that for every tree T and a node v,

runAϕ(v) ∈ F ⇔ v is a witness for ϕ in T.

Proof. We construct Aϕ inductively on the structure of ϕ. If ϕ = , the au-
tomaton has one state which is accepting. If ϕ = �, then it has an accepting state qa
and a rejecting state qr and transitions δ(qa, �) = {qa, qr}∗, δ(qr, �) = ∅, δ(qa, �′) = ∅
and δ(qr , �′) = {qa, qr}∗ for every �′ 	= �.

Now assume we have an automaton Aϕ = (Q, δ, F) for ϕ. The set of states of
A//ϕ will be Q× {q//ϕa , q

//ϕ
r , q

//ϕ
∗ }. The set of accepting states will be Q× {q//ϕa }.

Intuitively, each run of the new automaton simulates a run of Aϕ with the extra
component being:

—q
//ϕ
r until an accepting state of Aϕ has been seen;

—q
//ϕ
∗ once the run of Aϕ enters an accepting state, assuming that the last com-

ponent was q//ϕr ;

—q
//ϕ
a once the last component q//ϕ∗ has been seen.

It is straightforward to define this transition function; since it involves constructing
products of given DFAs with a fixed automaton, it is done in polynomial time.

The last case is that of ψ = �[ϕ1, . . . , ϕm]. Assume that we have already con-
structed Ai = Aϕi = (Qi, δi, Fi) for each ϕi. The set of states of Aψ will be
Q = Q1 × . . .×Qm × {qψa , qψr }; the accepting states are those where the last com-
ponent is qψa . The transition function of Aψ is defined as follows. Let Am be a
deterministic string automaton over the alphabet Q which accepts strings s such
that for each i ≤ m, there is a letter (q1, . . . , qm, q) ∈ s with qi ∈ Fi. We make it de-
terministic so that we could use both Am and its complement. Then we simply let
δ((q̄, qa), �) be given by Am, δ((q̄, qr), �) be given by Am’s complement, δ((q̄, qa), �′)
be empty, and δ((q̄, qr), �′) be Q∗ for all �′ 	= �.

Clearly Aψ enters a state (q̄, qa) iff ψ holds in a given node. Thus, we have to
show how to compute Am. Notice that our inductive construction shows that the
number of states of each Aϕ is 3 at most 3‖ϕ‖. The set of states of Am is qY for Y
ranging over subsets of {1, . . . ,m}. Being in qY means that so far ϕi with i ∈ Y ,
and only them, have been witnessed. If Am is in qY and reads a letter q̄ in which
precisely qj , j ∈ Y ′, are in Fj ’s, then it enters qY ∪Y ′ . Such a transition table would
have size O(2m × 3m) and clearly can be computed in exponential time by simply
enumerating appropriate subsets. This concludes the proof of the claim.

Suppose we have an automaton Aϕ for a tree-pattern formula. Then we can
straightforwardly transform Aϕ into a UFTA(DFA) A(ϕ) such that T |= ϕ iff

3We shall often use notation ‖ · ‖ applied to trees, automata, formulae, etc., referring to their size
in some reasonable encoding (the exact encoding, up to a linear factor, is irrelevant).

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 13

T ∈ L(A(ϕ)). This is done by letting A(ϕ) stay in an accepting state once an
accepting state of Aϕ has been seen; this can be done in polynomial time. Thus,
A(ϕ) can also be constructed in exponential time in the size of ϕ.

We now show how to solve Data-Exchange-Consistency in EXPTIME. Let
ΣST be {ψi :– ϕi | 1 ≤ i ≤ n}. Recall that these formulae are assumed not to have
free variables. Let AS and AT be automata for source and target DTDs; those
can be computed in polynomial time (see Appendix A). Then, for every subset
I ⊆ {1, . . . , n} we do the following:

(1) Check if the product automaton

AS ×
∏
i∈I
A(ϕi)×

∏
j �∈I
Ā(ϕj)

accepts a tree. Here Ā refers to the automaton that accepts the complement
of L(A). This product automaton accepts a tree T iff T |= DS, T |= ϕi for all
i ∈ I, and T 	|= ϕj for j 	∈ I.

(2) Check if the product automaton

AT ×
∏
i∈I
A(ψi)

accepts a tree. This product automaton accepts a tree T ′ iff T ′ |= DT and
T ′ |= ψi for all i ∈ I.

Then the data exchange setting (DS, DT,ΣST) is consistent iff for some I, both
of the above automata accept a tree (the pair of trees accepted by them witnesses
consistency). Hence, it remains to verify that steps 1 and 2 above can be carried
out in exponential time. It is known that checking nonemptiness of a product
A1 × . . . × Ak can be done in time O(‖A1‖ × . . . × ‖Ak‖) [Comon et al. 2007].
We saw that each A(ϕ) can be constructed in time O(c‖ϕ‖) for some constant
c. Furthermore, Ā(ϕ) can also be constructed in time O(c‖ϕ‖) because A(ϕ) is
deterministic and we simply have to reverse accepting and rejecting states. Thus,
testing nonemptiness of the automaton in 1. can be done in time bounded by

c1 · ‖DS‖ ·
∏
i≤n

c‖ϕi‖ = O
(
2(‖DS‖+‖ΣST‖)k)

for some appropriately chosen constants c1 and k. Likewise, step 2. is also expo-
nential in the size of DT and ΣST, thus proving membership in EXPTIME.

Next, we move to proving EXPTIME-hardness. For this, it suffice to reduce to
the following problem: Given a nondeterministic finite tree automaton (NFTA) A,
is there a tree T 	∈ L(A) [Seidl 1990]. The idea of the encoding is that DS codes
both a tree T and a run. In the target document we copy rejecting states of A. The
STDs ensure that our coding is correct, and consistency would tell us that every
run on T has to end in a rejecting state.

Let Γ = {a1, . . . , ak} be the alphabet, and let A = (Q, q0, δ, F) where
Q = {q0, . . . , qn}, and qi1 , . . . , qim enumerate states in Q \ F (rejecting states).
Source and target DTDs are constructed by using the set of element types

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 ·
Γ ∪ Q ∪ {r, vr , label , right , left , leaf , yes ,no, f}. The source DTD DS has no at-
tributes and the regular expressions are as follows:

r → vr
vr → label q0 . . . qn left right | label q0 . . . qs leaf

left → vr
right → vr
label → a1 | a2 | . . . | ak
ai → ε, i ≤ k
qj → yes | no, j ≤ n

leaf → ε

The target DTD DT is simply r → qi1? · · · qim?, with all the productions qij → ε.
The intuition is that vr -nodes of a tree that conforms to DS form a binary tree
over which we run A; then qi for a given node will lead to a yes if there is a run in
which this node is in qi. This is ensured by STDs saying that if we have two nodes
in which states qi and qj respectively have children yes , and their parent node has
label a, and qk has no as its child while qk ∈ δ(a, qi, qj), then we enforce r[f] in the
target which is inconsistent with the target DTD. That is, ΣST has an STD:

r[f] :– vr
[
qk[no], label [a], left [vr [qi[yes]]], right [vr [qj [yes]]]

]
.

Similarly we handle the case of leaves so that the yes-states are those in which a
leaf with a given label can be in a run of A, that is, for every qi ∈ δ(a, q0, q0), ΣST

has an STD:

r[f] :– vr
[
qi[no], label [a], leaf

]
.

Finally, ΣST has an STD

r[qi] :– r
[
vr [qi[yes]]

]
.

that copies every “yes” state of the root into the target.
Assume that the setting is consistent, and we have a pair (T, T ′) that witnesses

its consistency. Let T be the binary tree of nodes of type vr extracted from T. For
each node of T , the corresponding qi sibling that can be assigned to that node of
T in some run of A will always have a yes child (otherwise an inconsistent f child
would have been forced in the target). Thus, the yes-states of the root include
all the possible states in which A is when it reaches the root, and since there is a
solution for T, we conclude that they all are rejecting. Hence, every run on T ends
in a rejecting state, meaning that T 	∈ L(A).

Conversely, suppose we have a tree T 	∈ L(A). Then extend it to a tree T that
conforms to DS simply by annotating T with all the runs of A on T . But then such
a T has a solution in the data exchange setting: since T 	∈ L(A) every run coded in
T ends in a rejecting state and, thus, a target tree that has all the rejecting states
as children of the root is a solution for T. Therefore, our data exchange setting,
which was constructed in polynomial time from A, is consistent iff there is a tree
not accepted by A. This completes the proof of the hardness case.
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 15

The proof of Theorem 4.1 shows that Data-Exchange-Consistency remains
EXPTIME-complete even if all formulae in all STDs have no free variables. In
fact, this problem remains intractable under some other strong restrictions. Re-
call that a DTD D is recursive if there is a cycle in the graph G(D) defined as
{(�, �′) | �′ is mentioned in P (�)}, and non-recursive otherwise. We define path-
pattern formulae as restrictions of tree-pattern formulae given by the grammar:

ϕ := α | α[ϕ] | //ϕ.

In other words, in such formulae one can talk only of one child or one descendant of
a given node. They are closely related to the child-descendant fragment of XPath.

For each fixed DTD DT, we consider the restriction
Data-Exchange-Consistency(DT) of Data-Exchange-Consistency,
whose input is (DS,ΣST) with all formulae in ΣST being path-pattern formulae.
The question is whether (DS, DT,ΣST) is consistent. The next proposition shows
that checking consistency remains intractable even with a fixed target DTD and
restricted source DTDs (the proof of this proposition is given in Appendix B.1).

Proposition 4.4. Fix an arbitrary nonrecursive DTD DT that does not use the
Kleene star. Then:

a) The problem Data-Exchange-Consistency(DT) for non-recursive source
DTDs DS that do not use the Kleene star is PSPACE-complete.

b) The problem Data-Exchange-Consistency(DT) for non-recursive source
DTDs DS in which all regular expressions are of the form � → �1| . . . |�m or
�→ ε is NP-complete.

We finally identify a class for which consistency is tractable. This class is relevant
in practical applications of data exchange such as those addressed by Clio [Miller
et al. 2001; Popa et al. 2002]. One extension of relational data exchange that is
enabled by Clio is to nested relational schemas. Nested relations can naturally be
represented by XML documents. In that case all the rules in DTDs are of the form
� → �1 . . . �m�

∗
m+1 . . . �

∗
m+k, with all the �i’s distinct. We shall extend this, and

consider nested-relational DTDs defined as non-recursive DTDs in which all rules
are of the form

� → �̃0 . . . �̃m,

where all �i’s are distinct, and each �̃i is one of the following: �i, or �∗i , or �+i , or
�i? = �i | ε. Such DTDs have also been looked at in the context of handling partial
information in XML [Abiteboul et al. 2001].

Theorem 4.5. Data-Exchange-Consistency is solvable in polynomial time
if both source and target DTDs are nested-relational. Specifically, it can be solved
in time O(nm2), where n is the size of the DTDs and m is the size of the source-
to-target dependencies.

Proof. As in the proofs of Theorem 4.1 and Proposition 4.4, we assume without
loss of generality that the DTDs do not have attributes and all formulae in STDs
have no free variables (see Claim 4.2). We consider two linear-time transformations
of DTDs. Recall that �̃ is one of �, or �?, or �+, or �∗. For each nested-relational

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 ·
DTD D, we define DTDs D◦ and D∗ in which each �̃ is replaced according to the
following rules:

In D �̃ is replace in D◦ by replace in D∗ by
� � �
�? ε �
�+ � �
�∗ ε �

We now need the following result.

Claim 4.6. If DS and DT are nested relational, then (DS, DT,ΣST) is consis-
tent iff (D◦

S, D
∗
T,ΣST) is consistent.

Proof. If D is nested relational and T |= D◦ or T |= D∗, then T |= D. Hence,
if (D◦

S, D
∗
T,ΣST) is consistent, then (DS, DT,ΣST) is consistent.

For the opposite direction, assume that (DS, DT,ΣST) is consistent, and let
〈T1, T2〉 witness it: that is, T1 |= DS, T2 |= DT, and 〈T1, T2〉 |= ΣST. Let T |= DS

and let T ◦ be the tree obtained from T as follows: if v is a node of T labeled �, its
parent is labeled �′, and � occurs in P (�′) as �? or �∗ (one of two cases corresponding
to replacement by ε in the definition of D◦), we delete the entire subtree rooted
at v. This transformation results in a tree T ◦ that conforms to D◦

S. Furthermore,
if T ◦ |= ϕ, where ϕ is a tree formula, then T |= ϕ (tree formulae are monotone
which can be shown by a straightforward inductive argument or by translation into
conjunctive FO queries). This implies that 〈T ◦

1 , T2〉 |= ΣST: if ψ :– ϕ is an STD
from ΣST and T ◦

1 |= ϕ, then T1 |= ϕ and from 〈T1, T2〉 |= ΣST we conclude T2 |= ψ.
Hence, we proved that (D◦

S, DT,ΣST) is consistent.
Next, let D� denote the restriction of D to element types reachable from � in

G(D); in particular, � becomes the root of D�. (Recall that G(D) is the graph of
D: there is an edge from � to �′ iff �′ occurs in a string in the language given by
P (�).) We write cons(D,ϕ) if there is tree T |= D such that T |= ϕ. We now show
that if D is nested relational, then for every tree-pattern formula ϕ and every �,

cons(D�, ϕ) iff cons(D∗
� , ϕ). (3)

Notice that this implies that (D◦
S, D

∗
T,ΣST) is consistent since (D◦

S, DT,ΣST) is
consistent and there is only one tree conforming to D∗

T.
We prove (3) by induction on � starting with those that do not have outgoing

edges in G(D), and in each step using another inner induction on ϕ. Notice that
since T |= D∗ implies T |= D, one has to verify only the implication cons(D�, ϕ)⇒
cons(D∗

� , ϕ). Suppose � does not have any outgoing edges in G(D); that is, D
contains �→ ε. In this case D� = D∗

� . Now assume that we have an element type
� such that D contains

�→ �11? . . . �
1
n1

? (�21)
+ . . . (�2n2

)+ (�31)
∗ . . . (�3n3

)∗ �41 . . . �
4
n4
,

such that the equivalence (3) holds for all the �ij’s. In the DTD D∗ we have

�→ �11 . . . �
1
n1
�21 . . . �

2
n2
�31 . . . �

3
n3
�41 . . . �

4
n4
,

The proof of the equivalence (3) is now by induction on the formulae. For for-
mulae and �′, where �′ ∈ El , this is immediate. For formulae //ϕ this follows from
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 17

the induction hypothesis and the observation that the regular expressions corre-
sponding to � in D and D∗ contain exactly the same element types. Now let ϕ be
�′[ϕ1, . . . , ϕk]. Assume that �′ 	= � and �′ 	= . Then �′ must be one of �ij ’s or a
descendant of one of these nodes to ensure consistency and the statement is true
by the induction hypothesis. The case of �′ = is simply a disjunction of the cases
�′ = � (proved below) and �′ = �ij or �′ is a descendant of �ij . Thus, the remaining
case to consider is �′ = �. Suppose T is a tree that witnesses cons(D�, ϕ). Then
the root v of T is of type �, and it has children v1, . . . , vk (not necessarily distinct)
that witness ϕ1, . . . , ϕk, respectively. Let vm be labeled by �m (where �m is one of
�ij , i ≤ 4, j ≤ ni). Since we have cons(D�m , ϕm), by the induction hypothesis we
have cons(D∗

�m
, ϕm). But D∗

�m
has only one tree that conforms to it. Thus, if in T

we replace each subtree rooted at a child of v of type �m by the tree that conforms
to D∗

�m
, we obtain a tree T1 which satisfies ϕ. But now subtrees of T1 rooted at any

two children of v that are labeled �m are identical and hence we can keep only one
of them for each label, and still satisfy ϕ. This results in a tree T2 that satisfies ϕ.
We note that T2 does not necessarily conform to D∗

� since it could be the case that
for some element type �ij, the root of T2 does not have any children of type �ij . It
is easy to solve this problem to generate from T2 a tree T3 conforming to D∗

� and
satisfying ϕ. Hence, we proved cons(D∗

� , ϕ).
This concludes the proof of (3) and thus proves the claim.

Using this lemma, we can prove the theorem as follows. First, construct D◦
S and

D∗
T in linear time. In them, all the rules are of the form � → �1 . . . �k, where all

�i’s are distinct, or � → ε, and hence each admits only one tree (since they are
non-recursive).

If D is an arbitrary DTD of the above form, T is the only tree that conforms to
it, and ϕ is a tree-pattern formula, then one can check T |= ϕ in time O(‖D‖·‖ϕ‖2).
This can be seen by induction on the structure of ϕ. Specifically, as in the proof
of Proposition 4.4, we enumerate all the subformulae ϕ′ of ϕ and for each element
type � that occurs in D we verify that the formula is true in the subtree whose root
is that element.

That is, we keep, with each node, an array of m Boolean values, where m is the
number of subformulae of ϕ. For the basis step, formulae � and are true in a node
labeled �. If we have a formula //ϕ′, we search the graph of the DTD G(D) and
for each node from which a node with ϕ′ being true is reachable we put a 1 into
the array position corresponding to //ϕ′. This takes linear time in the size of D.
For the formula �[ϕ1, . . . , ϕk], we compute, for each element type �′, the Boolean or
of the arrays associated with the element types �1 . . . �s where �′ → �1 . . . �s is the
rule in the DTD for �′. If the result has 0 in at least one position corresponding
to ϕ1, . . . , ϕk, we put 0 in the position corresponding to ϕ in the array for �′.
Otherwise, if the result has 1 in all positions corresponding to ϕ1, . . . , ϕk, we put 1
in the position corresponding to �[ϕ1, . . . , ϕk] in the array associated with �′ if �′ = �
or � = , and 0 otherwise. Thus, for each subformula of ϕ of the form �[ϕ1, . . . , ϕk],
we have to take a disjunction of k arrays. Hence, the complexity is quadratic in
the size of the formula.

Let TS be the tree that conforms to D◦
S and TT the tree that conforms to D∗

T.
To verify consistency of (D◦

S, D
∗
T,ΣST), we check for each STD ψ :– ϕ in ΣST if

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 ·
TS |= ϕ and TT |= ψ. This is done in time O

(
(‖DS‖ + ‖DT‖) · (‖ϕ‖2 + ‖ψ‖2)

)
.

The setting is consistent iff there is no STD such that TS |= ϕ and TT 	|= ψ. Hence
consistency is checked in O

(
(‖DS‖+ ‖DT‖) · ‖ΣST‖2

)
.

5. QUERY ANSWERING

Our goal is to define the concept of query answering in the XML data exchange
scenario. Since we need to compute certain answers (which are defined as intersec-
tions of query results over all solutions), we consider queries which return tuples of
values as opposed to arbitrary trees.

We already know from results on relational data exchange that answering general
FO queries over target instances is problematic [Arenas et al. 2004; Fagin et al.
2005], and most positive results have been proved for conjunctive or monotone
queries [Fagin et al. 2005; Fagin et al. 2005]. Thus, for our query language, we
shall use the closure of tree-pattern formulae under conjunction and existential
quantification. This is similar to conjunctive queries over child and descendant as
defined in [Gottlob et al. 2006], again with the main difference being the use of free
variables to collect attribute values, as opposed to outputting nodes of trees. A
query language CTQ// is defined by

Q := ϕ | Q ∧Q | ∃xQ,

where ϕ ranges over tree-pattern formulae. The semantics of ∧ and ∃, as well as the
definition of free variables, is standard. We note that as in the case of tree-pattern
formulae, CTQ//-formulae are evaluated in an XML tree.

Notation CTQ// stands for “conjunctive tree queries with descendant.” If we
do not allow descendant in queries, we obtain a fragment denoted by CTQ. For
example, consider a CTQ query ψ(x) given by ∃y book (@title = x)[author (@name =
y)]. Then the source document from the introduction, shown in Figure 1 (b),
satisfies ψ(Computational Complexity). We shall also consider unions of conjunctive
queries. By CTQ//,∪ we denote the class of queries of the form Q1(x̄)∪ . . .∪Qm(x̄),
where each Qi is a query from CTQ//. By disallowing descendant in the Qi’s we
obtain a restriction denoted by CTQ∪.

5.1 Certain answers

Assume that we are given a data exchange setting (DS, DT, ΣST), a source XML
tree T that conforms to DS, and a CTQ//,∪ query Q(x̄). What does it mean to
answer Q? As in the case of relational data exchange [Fagin et al. 2005; Fagin et al.
2005], since there may be many possible solutions to the data exchange problem,
we define the semantics of Q in terms of certain answers:

certain(Q, T) =
⋂

T ′ is a solution for T

Q(T ′).

Thus, a tuple s̄ of strings is in certain(Q, T) if s̄ ∈ Q(T ′) for every solution T ′ for
T . If Q is a Boolean query (a sentence), then certain(Q, T) = true if and only if
for every solution T ′ for T , we have T ′ |= Q.

Let (DS, DT, ΣST) be a data exchange setting. The main problem we study is:
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 19

PROBLEM: Certain-Answers(Q).
INPUT: An XML tree T conforming to DS and a tuple s̄ of strings.
QUESTION: Is s̄ ∈ certain(Q, T)?

If Q is a Boolean query (m = 0) then the input to the problem is an XML tree T
and the problem is to verify whether certain(Q, T) = true. Notice that as in the
relational case, only tuples from Const could belong to certain(Q, T).

5.2 Unordered trees

Our query answering algorithms take advantage of temporarily “forgetting” about
the sibling order. That is, we construct a target tree which does not conform to the
target DTD but could be rearranged into one conforming to the DTD simply by
imposing a correct sibling order. To capture this, we introduce a class of languages
which are permutations of regular languages, and the notion of satisfaction of DTDs
by unordered trees.

Given a regular expression r over an alphabet Γ, we let L(r) stand for the lan-
guage denoted by r. Then we define π(r) ⊆ Γ∗ as the set of all strings w which are
permutations of strings in L(r). For example, if r = (ab)∗, then π(r) has strings in
which the number of a’s equals the number of b’s. Thus, π(r) need not be regular;
in fact it may not even be context-free because π((abc)∗) ∩ L(a∗b∗c∗) = {anbncn |
n ≥ 0}.

An unordered XML tree is defined as a directed tree (N , <child, root) (that is, it
excludes the sibling order <sib). Given an unordered XML tree T and a DTD D,
we say that T conforms to D, denoted by T |≈ D, if for every node v in T with
children v1, . . . , vm and λT (v) = �, the string λT (v1) . . . λT (vm) is in π(P (�)), and
items 2 and 3 of the definition of T |= D are true. That is, λT (v1) . . . λT (vm) is a
permutation of some string in the language of P (�).

We say that an unordered XML tree T ′ is a solution for an XML tree T in a data
exchange setting (DS, DT, ΣST) if T ′ |≈DT and 〈T, T ′〉 satisfies4 all the STDs from
ΣST. As in the case of ordered trees, we define the semantics of CTQ//,∪-queries
in terms of certain answers, that is, given an XML tree T |= DS, a CTQ//,∪-query
Q(x̄) over DT and a tuple s̄ of strings, we say that s̄ ∈ certainun(Q, T) if and only if
s̄ ∈ Q(T ′) for every unordered solution T ′ for T . The following proposition allows
one to forget about the sibling ordering while computing certain answers and, in
particular, it allows one to use unordered trees when proving lower bounds for this
problem.

Proposition 5.1. Given an XML data exchange setting (DS, DT, ΣST), an
XML tree T |= DS and a CTQ//,∪-query Q(x̄), we have

certain(Q, T) = certainun(Q, T).

Furthermore, tractable query answering algorithms in this paper will be construct-
ing a certain unordered solution T ∗ satisfying certainun(Q, T) = Q(T ∗). This can
be done without loss of generality since every unordered solution can be turned

4The notion of satisfaction of a tree-pattern formula by an unordered tree is defined exactly as in
the case of (ordered) XML trees.

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 ·
into an ordered solution, and this can be done in polynomial time, as the following
result shows. Given an unordered tree T and a sibling ordering ≺sib, let T≺sib be
the resulting ordered tree. Then:

Proposition 5.2. Suppose T |≈ D. Then one can compute, in polynomial time
in the size of T , a local sibling ordering ≺sib on T such that T≺sib |= D.

Before proving this proposition, we need to establish complexity bounds for checking
whether a string w is in π(r). Since the Parikh image of a regular language is
a semilinear set, this reduces to integer linear programming, which is in NP in
general, and in polynomial time if dimension is fixed [Lenstra 1983]. This gives us
the following.

Proposition 5.3. The problem of checking whether w is in π(r) for a string w
and a regular expression r is NP-complete. For each fixed r, checking whether w is
in π(r) can be done in polynomial time.

Proof. Clearly checking if w ∈ π(r) is in NP: we simply guess a permutation w′

of w and verify if it is in L(r). For NP-hardness, we reduce from a simplified version
of Integer Linear Programming (ILP), which is known to be NP-complete [Garey
and Johnson 1979]. The input consists of an n × m matrix A and an n-vector �b
of 0s and 1s; the question is whether there is an m-vector �x of 0s and 1s such that
A�x = �b. More precisely, let Γ be an n-element alphabet σ1, . . . , σn. With the ith
column (a1,i, . . . , an,i) of A we associate a string

ri = σj1 · · ·σj� ,
where {j1, . . . , j�} is the set of all indexes j ∈ [1, n] for which aj,i = 1. Then we
define

rA = r∗1 · · · r∗m.
As the string w, we choose

w = ak1 · · ·ak� ,

where {k1, . . . , k�} is the set of all indexes k ∈ [1, n] for which bk = 1. Then A�x = �b
implies w ∈ π(rx1

1 · · · rxmm) ⊆ π(rA). Conversely, if w ∈ π(rA), then for some �x we
have w ∈ π(rx1

1 · · · rxmm) ⊆ π(rA) and thus A�x = �b. Hence the instance of ILP has
a solution iff w ∈ π(r), proving NP-hardness.

Finally, we show that if r is fixed, then checking whether w is in π(r) can be done
in polynomial time. To prove this we need to use what is known as Pilling normal
form [Kozen 2002]:

Lemma 5.4. For every regular expression r over an alphabet Γ, there exist reg-
ular expressions s1, . . ., sn such that π(r) = π(s1| · · · |sn) and each si (i ∈ [1, n]) is
of the form w0(w1)∗ · · · (wm)∗, where each wj ∈ Γ∗ (j ∈ [0,m]).

If r is fixed, then we can compute in polynomial time the regular expressions s1,
. . ., sn mentioned in Lemma 5.4. Thus, if we show that it is possible to check
in polynomial time whether w ∈ π(s) with s being of the form w0w

∗
1 . . . w

∗
k, then

we conclude that it is possible to check in polynomial time whether w ∈ π(r).
Let #a(w) be the number of occurrences of symbol a in a string w. Then w ∈
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 21

π(w0w
∗
1 . . . w

∗
k) if there exist nonnegative integers x1, . . . , xk such that for every

alphabet symbol a:

#a(w) = #a(w0) +
k∑
i=1

xi ·#a(wi).

Thus, to check w ∈ π(w0w
∗
1 . . . w

∗
k) we need to solve an instance of ILP, but in this

time the dimension k is fixed. But it is well-known that ILP is solvable in PTIME
in fixed dimension [Lenstra 1983].

Proof of Proposition 5.2. Clearly it suffices to show that for each fixed
regular expression r, the following can be solved in polynomial time in the size of
string w: assuming that w ∈ π(r), find a permutation w′ of w such that w′ ∈ L(r).
Let Γ = {σ1, . . . , σm} be the alphabet of r. Let Ar be an NFA for r, with Q being
its set of states. Let rq be the regular expression such that L(rq) consists of exactly
the strings which are accepted by Ar in which q becomes the new initial state. It
follows from Proposition 5.3 that there is a polynomial p such that for every string
w′ and every q ∈ Q one can test whether w′ is in π(rq) in time p(|w′|).

Let n be the length of w. The algorithm works as follows. At each step i of the
algorithm, we have a string wi of length i, a string wi of length n− i, and a state
qi of A such that

(1) wiwi is a permutation of w;
(2) there is a run of A on wi that ends in qi, and
(3) Aqi accepts a permutation of wi.

The algorithm starts with w0 = ε, w0 = w, and q0 being the initial state of A.
Then Aq0 = A accepts a permutation of w by the assumption that w ∈ π(r). At
the end, we have a permutation wn of w and a run of A on it that ends in a state
qn such that Aqn accepts ε: that is, qn is a final state of A. In other words, wn is
a permutation of w that belongs to L(r). Thus, an algorithm satisfying 1, 2, and 3
will correctly compute a permutation of w.

At each step of the algorithm, we do the following. For each letter σj present in
wi, we check if there is a state q such that q ∈ δA(qi, σj) and a string wiσj obtained
from wi by eliminating one occurrence of σj belongs to π(rq). By assumption 3,
for at least one state q this condition will be satisfied. We then take wi+1:=wiσj ,
wi+1 = wiσj , and qi+1 = q. Conditions 1, 2, 3 are clearly satisfied. It remains to
check the complexity. For each i, we have to check whether wiσj is in π(rq). This
by the assumption can be done in time p(n). The number of such tests is at most
|Γ| × |Q| and hence does not depend on n. Therefore the overall running time is
O(np(n)). This proves the proposition.

5.3 First complexity results: upper bound and some hard cases

Our goal is to determine the complexity of computing certain answers. A priori it
is not even clear if the problem is decidable, but we can prove the following upper
bound.

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 ·
Theorem 5.5. If Q is a CTQ//,∪-query, then Certain-Answers(Q) is in

coNP.

Proof. Fix a data exchange setting (DS, DT,ΣST) and a query Q. To prove
that the complexity of finding certain answers is in coNP it suffices to show that
there exists a polynomial p that depends only on the data exchange setting and
on Q such that the following is true. If for a tree T and a tuple s̄ of strings
from Const it is the case that s̄ 	∈ certain(Q, T), then there exists a solution T ′

for T such that s̄ 	∈ Q(T ′) and the size of T ′ is at most p(‖T ‖) where ‖T ‖ is the
size of T . Indeed, then checking whether s̄ 	∈ certain(Q, T) is in NP, and hence
Certain-Answers(Q) is in coNP. In fact, by Proposition 5.1, it suffices to show
that there exists an unordered tree T ′ that weakly conforms to DT and such that
〈T, T ′〉 |= ΣST, ‖T ′‖ ≤ p(‖T ‖) and s̄ 	∈ Q(T ′). We prove the existence of such a
polynomial-size tree in two steps: we first show that all the paths in the tree are of
polynomial size and then we reduce the size of a tree without long paths.

Now for an arbitrary tree T , a node v, a tree-pattern formula ϕ(x̄) and a tuple
ā, we inductively define a set witnessv(T, ϕ, ā) of witnesses to ϕ(ā) starting at v as
follows.

—If v does not witness T |= ϕ(ā), then witnessv(T, ϕ, ā) = ∅.
—Otherwise:

—if ϕ is an attribute formula, then witnessv(T, ϕ, ā) = {v};
—if ϕ = //ϕ′ and v′ is an arbitrarily chosen descendant of v such that v′ witnesses
ϕ′, then witnessv(T, ϕ, ā) = {v, v′, v′′}∪witnessv′(T, ϕ′, ā), where v′′ is the child
of v lying between v and v′;

—if ϕ = α[ϕ1, . . . , ϕk] with each ϕi being witnessed by a child vi of v, then

witnessv(T, ϕ, ā) = {v} ∪
k⋃
i=1

witnessvi(T, ϕi, ā).

Intuitively, we collect all the nodes at which ϕ and its subformula are witnessed,
and with each descendant subformula, we also include the child on the way to that
descendant. Clearly the cardinality of witnessv(T, ϕ, ā) is linear in the size of ϕ. We
then define witness(T, ϕ, ā) as witnessv(T, ϕ, ā) for an arbitrarily chosen witness v
for T |= ϕ(ā) (and ∅ if no witness exists). Note that the definition of witness(T, ϕ, ā)
is nondeterministic but it suffices to pick an arbitrary one.

Let T ′ be a solution to T in the data exchange setting (DS, DT,ΣST). For each
STD ψ(x̄, z̄) :– ϕ(x̄, ȳ) in ΣST, and for each ā, b̄ such that T |= ϕ(ā, b̄), we have a
tuple c̄ϕ(ā,b̄) such that ψ(ā, c̄ϕ(ā,b̄)) holds in T ′. We then define

witnessΣST,T (T ′) =
⋃

ψ(x̄,z̄) :– ϕ(x̄,ȳ) ∈ ΣST

⋃
ā,b̄ : T |=ϕ(ā,b̄)

witness(T ′, ψ, āc̄ϕ(ā,b̄)).

If ΣST and T are clear from the context we write just witness(T ′). This set collects
all the witnesses to satisfaction of all the formulae that have to hold in the solution
T ′ due to the source-to-target constraints. We finally define witness∗(T ′) to contain
witness(T ′) and all the greatest lower bounds for all the subsets of witness(T ′).
Since T ′ is a tree, the size of witness∗(T ′) is at most quadratic in the size of
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 23

witness(T ′). Furthermore, the size of witness(T ′) is polynomial in the size of T ,
and hence the size of witness∗(T ′) is polynomial in the size of T .

Let T and T ′ be two XML trees, V a subset of nodes of T . We call a map h :
T → T ′ a V -preserving embedding if h is one-to-one map that preserves labels and
all attribute values of nodes, preserves the descendant relation, and, furthermore,
preserves the child relation restricted to V . That is, if v′ is a child of v in T and
v, v′ ∈ V , then h(v′) is a child of h(v) in T ′.

From now on, when we say “solution”, we mean a weak solution, that is a tree
T ′ that weakly conforms to the target DTD and satisfies all STDs. The following
claim is immediate from the definitions and will be used several times in the proof.

Claim 5.6. Suppose T ′ is a solution for T . Assume that a tree T ′′ conforms to
DT and has a subset V of nodes and a V -preserving embedding h : T ′′ → T ′ such
that h(V) = witness∗(T ′). Then T ′′ is a solution for T .

Notice that Claim 5.6 holds because V witnesses right-hand sides of all the STDs.
In particular, V = witness∗(T ′′).

Suppose s̄ 	∈ certain(Q, T) for a tuple s̄ from Const. Then there is a solution
T0 such that s̄ 	∈ Q(T0). Our first lemma lets us restrict the length of paths in a
solution.

Lemma 5.7. There exists a polynomial p0 that depends on the data exchange
setting (DS, DT,ΣST) and the query Q such that, for every tree T and a solution
T0 satisfying s̄ 	∈ Q(T0), one can construct another solution T1 satisfying s̄ 	∈ Q(T1)
in which all paths have length at most p0(‖T ‖).

Proof. Since Q(x̄) is a CTQ//,∪ query, it is a union of queries of the
form ∃ȳ

∧
i ψi(x̄, ȳ), with all the ψi’s being tree-pattern formulae. We let

β1(x̄, ȳ), . . . , βm(x̄, ȳ) enumerate all the tree-pattern formulae and their subformu-
lae that occur in Q. Let m′ be the number of element types used in the target
DTD. We define M to be 2m · m′ + 1. Let V0 = witness∗ΣST,T (T0). Construct a
tree T ′

0 in which all nodes except those in V0 are given new attribute values, which
are fresh and distinct values from Var. Clearly T ′

0 is still a solution because V0 wit-
nesses all the STDs. Also notice that s̄ 	∈ Q(T ′

0). Indeed, otherwise we would have
T ′

0 |= ∃ȳ
∧
i βi(s̄, ȳ) for some collection of βi’s and thus T ′

0 |=
∧
i βi(s̄, c̄

′
0) for some

tuple c̄′0. Then, if c̄0 is a tuple obtained by changing, in c̄′0, newly created attribute
values in T ′

0 to those they replaced, we would have T0 |=
∧
i βi(s̄, c̄0), contradicting

s̄ 	∈ Q(T0).
Now consider an arbitrary path v1 . . . vp of length p ≥M + 5 in T ′

0 such that the
only descendants of v1 that belong to V0 are also descendants of vp. In other words,
all nodes from V0 in the subtree rooted at v1 are descendants of the last node on
the path, vp. For each node vi, let B(vi) ⊆ {1, . . . ,m} be the set of indexes j such
that vi has a child at which ∃ȳβj(s̄, ȳ) holds. Because of the bound on M , there
exist two indexes 2 < i1 < i2 < p− 2 such that:

λT ′
0
(vi1) = λT ′

0
(vi2) and B(vi1) = B(vi2).

Let T ′
0(vi1 ← vi2) be the tree that results from replacing the tree rooted at vi1

with the tree rooted at vi2 . Because of our assumption on the path, we have that
V0 = witness∗(T ′

0(vi1 ← vi2)). Furthermore, T ′
0(vi1 ← vi2) still conforms to DT

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 ·
since λT ′

0
(vi1) = λT ′

0
(vi2) and, hence, it is a solution for T . Finally, s̄ 	∈ Q(T ′

0(vi1 ←
vi2)). Indeed, if v is a witness for some tree-pattern formula βi(s̄, ȳ0), i ≤ m, in the
tree T ′

0(vi1 ← vi2), then v would be a witness for βi(s̄, ȳ1) in T ′
0, where ȳ1 differs

from ȳ0 only in positions corresponding to values from Var that appear only once
in T ′

0. A simple induction on formulae then shows that s̄ ∈ Q(T ′
0(vi1 ← vi2)) would

imply s̄ ∈ Q(T ′
0).

Thus, every path v1 . . . vp in T ′
0 satisfying the conditions that p ≥M + 5 and the

only descendants of v1 that belong to V0 are also descendants of vp can be shortened
in such a way that the resulting tree is still a solution and s̄ is not in the output of
Q on it. Applying this inductively, we obtain a tree in which every path of length
≥M+5 has an intermediate node with a descendant in V0 that is not a descendant
of the last node on the path. Since M does not depend on T , this shows that we
can have a solution T1 such that s̄ 	∈ Q(T1) and all paths in T1 are of length at
most linear in |V0|, and thus polynomial in ‖T ‖. This proves the lemma.

Now we need the last two ingredients to complete the proof of membership in
coNP. Recall that #a(w) is the number of occurrences of symbol a in a string w.
Given strings w1 and w2, we say that w1 � w2 if #a(w1) ≤ #a(w2), for all alphabet
symbols a. Furthermore, given a regular expression r, we define ‖r‖ as follows. If
r = ε, then ‖r‖ = 0. If r = a, where a is an element type, then ‖r‖ = 1. If either
r = r1|r2 or r = r1r2, then ‖r‖ = ‖r1‖+ ‖r2‖. Finally, if r = r∗1 , then ‖r‖ = ‖r1‖.

Lemma 5.8. Let r be a regular expression of the form r1| . . . |rm, where each ri
(i ∈ [1,m]) is of the form w0(w1)∗ · · · (wn)∗, being wj a string (j ∈ [0, n]), and let
pr(x) be polynomial ‖r‖ · (x+1). If w0 � w and w ∈ π(r), then there exists a string
w′ such that w0 � w′ � w and |w′| ≤ pr(|w0|).

Proof. Assume without loss of generality that w ∈ π(r1) and r1 = u0u
∗
1 · · ·u∗n.

Since w ∈ π(r1), there exist natural numbers �1, . . ., �n such that w = u0u
�1
1 · · ·u�nn .

Define qi as min{�i, |w0|}, for every i ∈ [1, n], and w′ as u0u
q1
1 · · ·uqnn . It is easy to

see that w0 � w′ � w. Furthermore, w′ ∈ π(r1) and |w′| ≤ |u0|+
∑n
i=1 |ui| · |w0| ≤

|u0| · (|w0| + 1) +
∑n

i=1 |ui| · (|w0| + 1) ≤ ‖r1‖ · (|w0| + 1) ≤ ‖r‖ · (|w0| + 1). This
concludes the proof of the lemma.

Since in this proof the target DTD DT is assumed to be fixed, in what follows
we assume, by Lemma 5.4, that every regular expression in DT is of the form
mentioned in the statement of Lemma 5.8.

Notice that in the absence of elements of V0 = witness∗ΣST,T (T0), the proof of
Lemma 5.7 and Lemma 5.8 imply the following statement.

Lemma 5.9. Let D be an arbitrary DTD, and βi(x̄, ȳ), i ∈ I, a collection of
tree-pattern formulae. Then one can find a number N that depends on D and the
collection {βi} such that for every tuple s̄′ from Str, if there is a tree T such that
T |= D and T 	|= ∃ȳβi(s̄′, ȳ) for all i ∈ I, then there is a tree T ′ with this property
such that the size of T ′ is at most N .

Proof. Let T be a tree such that T |= D and T 	|= ∃ȳβi(s̄′, ȳ) for all i ∈ I. If we
just disregard points in the witness set in the proof of 5.7, then we obtain a tree T ′′

such that T ′′ |= D, T ′′ 	|= ∃ȳβi(s̄′, ȳ) for all i ∈ I, and all paths in T ′′ are of length
at most N ′, where N ′ is a constant that depends only on D and the collection {βi}.
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 25

Then in T ′′ we look at every node v to construct tree T ′. Let v1, . . ., vp be the
children of v, w = λT ′′(v1) · · ·λT ′′ (vp) and w0 = a1 · · ·at, where {a1, . . . , at} is the
set of alphabet symbols mentioned in w. By Lemma 5.8, we can assume, without
loss of generality, that there is t′ ≤ pr(t) = ‖r‖ · (t+ 1) ≤ (‖r‖+ 1)2, where r is the
regular expression corresponding to λT ′′ (v), such that

w0 � λT ′′ (v1) · · ·λT ′′(vt′) ∈ π(r).

Thus, if we remove subtrees rooted at vt′+1, . . . , vp, the resulting tree still conforms
to D. Let T ′ now denote the tree obtained by applying this procedure to all nodes
in T ′′. It is easy to see that T ′ conforms to D. Furthermore, by monotonicity of
each formula βi, we conclude that T ′ 	|= ∃ȳβi(s̄′, ȳ) for all i ∈ I (otherwise we would
have T ′′ |= ∃ȳβi(s̄′, ȳ)).

Given that for each node v in T ′, the number of children of v is at most (‖r‖+1)2,
where r is the regular expression in D corresponding to λT ′(v), and given that the
length of each path in T ′ is at most N ′, we conclude that there exists a constant N
that depends only on D and the collection {βi} such that the size of T ′ is at most
N . This concludes the proof of the lemma.

We now prove the existence of a polynomial-size solution (in the size of T) that
witnesses T ′ 	|= Q(s̄). Suppose a solution T0 is given in which Q(s̄) does not hold.
Then, by Lemma 5.7, we replace it by a solution T1 in which all paths are of length
at most p0(‖T ‖) such that s̄ 	∈ Q(T1). Let V1 = witness∗(T1). We know that the
size of V1 is polynomial in ‖T ‖. Next, by Lemma 5.9, we replace every subtree
rooted at a node v that does not contain an element of V1 by a fixed-size subtree in
such a way that for the resulting tree, say T2, it is still the case that s̄ 	∈ Q(T2). This
can be done simply by making sure that none of subformulae used in Q becomes
true in the new fixed-size tree. Finally, in T2 we look at every node v such that
the subtree rooted at v contains elements of V1. Let v1, . . ., vp be the children
of v and assume, without loss of generality, that v1, . . . , vt, t ≤ p, are the only
children of v having as descendants nodes in V1. Let w0 = λT2(v1) · · ·λT2(vt) and
w = λT2(v1) · · ·λT2(vp). By Lemma 5.8, we can assume, without loss of generality,
that there is t′ ≤ pr(t), where r is the regular expression corresponding to λT2(v),
such that

w0 � λT2(v1) · · ·λT2(vt′) ∈ π(r).
Thus, if we remove subtrees rooted at vt′+1, . . . , vp, the resulting tree still conforms
to DT. Let T3 now denote the tree obtained by applying this procedure to all nodes
in T3 that are in V1 or have a descendant in V1.

The set V1 still belongs to T3, and T3 conforms to DT, and thus it is a solution
for T . Furthermore, by monotonicity of Q we have s̄ 	∈ Q(T3) (otherwise we would
have s̄ ∈ Q(T2)). Thus, it remains to calculate the size of T3.

In T3, the following holds: (1) every path is of length at most p0(‖T ‖); (2) every
node that is in V1 or has a descendant in V1 has at most pT(|V1|) children, where
pT is the maximum of pr given by Lemma 5.8 over all regular expressions r used
in DT, and (3) every subtree rooted at a node that is not in V1 and does not have
a descendant in V1 has size bounded by a fixed number N . Thus, the size of T3 is
bounded by

O
(
|V1| · p0(‖T ‖) · pT(|V1|) ·N

)
,

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 ·
and hence is polynomial in ‖T ‖ since so is the cardinality of V1 = witness∗ΣST,T (T3).
Thus, we have a solution T3 of polynomial size which witnesses s̄ 	∈ certain(Q, T),
which shows that Certain-Answers is in coNP. This concludes the proof of The-
orem 5.5.

We would like to identify tractable cases of the Certain-Answers problem.
We note that in a a source-to-target dependency ψT(x̄, z̄) :– ϕS(x̄, ȳ), the source
formula ϕS is used to extract data from a source tree T , while the target formula
ψT shows how to structure data under the target DTD. Hence, the complexity of
computing certain answers is mostly affected by target formulae in STDs and target
DTDs, since in the definition of certain answers we take the intersection over all
instances satisfying target formulae and the target DTD.

We now identify a necessary restriction for tractability. We define a class
of STDs and show that outside of this class we get coNP-hard instances of
Certain-Answers even for very simple DTDs.

Definition 5.10. A source-to-target dependency ψT(x̄, z̄) :– ϕS(x̄, ȳ) is fully-
specified if ψT is of the form r[ϕ1, . . . , ϕk], where r is the type of the root and ϕi’s
do not use descendant // and wildcard .

For example, the following source-to-target dependency is fully-specified:

bib[writer (@name = y)[work (@title = x)]] :–
book (@title = x)[author (@name = y)].

The definition of fully-specified STDs puts three restriction on target formulae: they
are witnessed at the root, there is no descendant, and no wildcard. By relaxing
those, we can get three classes of STDs, in which target formula satisfy only two of
the three restrictions. We denote them by STD(, //) (wildcard and descendant are
forbidden), STD(r, //) (formulae r[ϕ1, . . . , ϕk] in which descendant is forbidden),
and STD(r,) (formulae r[ϕ1, . . . , ϕk] in which wildcard is forbidden).

We call a regular expression r simple if either r = ε or r = (a1|a2| · · · |an)∗, where
n ≥ 1 and a1, a2, . . ., an are pairwise distinct symbols. Simple regular expressions
are the simplest expressions that can be used in DTDs, as they impose restrictions
neither on the cardinalities nor on the ordering of children, they just specify their
types.

Theorem 5.11. For each of the three classes STD(, //), STD(r, //), and
STD(r,), one can find a data exchange setting in which all STDs belong to that
class, and a CTQ-query Q such that Certain-Answers(Q) is coNP-complete, even
if all regular expressions used in source and target DTDs are simple.

Proof. For the sake of readability, here we consider only the case of STD(, //),
and the other two cases are considered in Section B.2.

We define a data exchange setting (DS, DT,ΣST) and a Boolean CTQ-query Q
such that both DS and DT are simple DTDs, ΣST is a set of source-to-target de-
pendencies in STD(, //) and 3SAT can be reduced to the complement of Certain-

Answers(Q), that is, for every propositional formula θ in 3-CNF, there exists a
PTIME constructible XML tree Tθ conforming to DS such that θ is satisfiable if
and only if certain(Q, Tθ) = false. Simple DTD DS is defined as follows. Let
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 27

B

@p @n

L

@p @n

L

@p @n

L

@p @n

L

“1” “2” “3” “4” “5” “6” “7” “8”
@f @s @t

C

“4” “5” “8”
@f @s @t

C

“1” “6”“3”

Fig. 3. XML tree Tθ, defined in the proof of Theorem 5.11, representing propositional formula
θ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4).

ES = {K, C, L} be a set of element types and AS = {@f , @s, @t, @p, @n} be
a set of attributes. Then DS = (PS, RS,K) is a DTD over (ES, AS), where PS is
defined as:

PS(K) = C∗L∗, PS(C) = ε, PS(L) = ε.

and RS is defined as:

RS(K) = ∅, RS(C) = {@f,@s,@t}, RS(L) = {@p,@n}.

XML trees conforming to DS are used to represent propositional formulae. Let θ
be 3-CNF formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4). To construct tree Tθ, first
we assign a distinct natural number to each literal, say

x1 �→ 1, x2 �→ 3, x3 �→ 5, x4 �→ 7,
¬x1 �→ 2, ¬x2 �→ 4, ¬x3 �→ 6, ¬x4 �→ 8.

Then we represent each clause of θ as a node of type C, being the values of attributes
@f , @s, @t the first, second and third literal of that clause, respectively. For each
propositional variable x in θ, we use the attributes @p, @n of a node of type L to
store the values assigned to x and ¬x, respectively. Tree Tθ is shown in Figure 3.

Simple DTD DT is defined as follows. Let ET = {K, L, G1, G2, G3, H1, H2,
H3} be a set of element types and AT = {@�,@p,@n} a set of attributes. Then
DT = (PT, RT,K) is a DTD over (ET, AT), where PT is defined as:

PT(K) = G∗
1L

∗, PT(G1) = H∗
1G

∗
2, PT(H1) = H∗

2 ,
PT(H2) = H∗

3 , PT(H3) = ε, PT(G2) = H∗
1G

∗
3,

PT(G3) = H∗
1 , PT(L) = ε.

and RT is defined as:

RT(K) = ∅, RT(G1) = ∅, RT(H1) = {@�},
RT(H2) = {@�}, RT(H3) = {@�}, RT(G2) = ∅,
RT(G3) = ∅, RT(L) = {@p,@n}.

Finally, ΣST is defined as follows. The first rule of ΣST is defined as:

K[L(@p = x,@n = y)] :– K[L(@p = x,@n = y)].
Journal of the ACM, Vol. V, No. N, Month 20YY.

28 ·
This rule says that every node of type L in a source tree T must appear in every
solution for T . The second rule of ΣST is defined as:

H1(@� = x)[H2(@� = y)[H3(@� = z)]] :– K[C(@f = x,@s = y,@t = z)].

Notice that this rule is not fully-specified since it does not say whether the parent
of H1 is a node of type either G1 or G2 or G3. Also notice that in this rule we use
neither descendant // nor wildcard .

The previous rule says that for every C-node v of a source tree T , the values i,
j, k of attributes @f , @s, @t of v must appear in every solution for T in a subtree
of the form shown in Figure 4 (a). For example, every solution for tree Tθ shown
in Figure 3 must have a subtree of the form shown in Figure 4 (b) since Tθ has a
C-node with values 1, 3, 6 in attributes @f , @s, @t.

When constructing a solution for Tθ, we are actually constructing a truth as-
signment for θ. For example, let v be the C-node of Tθ with values 1, 3, 6 in
attributes @f , @s, @t. To construct a solution T ′ for T we have to instantiate the
second dependency of ΣST on values 1, 3 and 6, and then we have to construct a
subtree of the form shown in Figure 4 (b) and place it in T ′, that is, we have to
choose the type of the parent of the node of type H1. The three alternatives for
the type of this parent are shown in Figures 4 (c), (d) and (e). These alternatives
represent three different ways of satisfying the clause stored in the children of v.
We say that a literal i has been assigned value 1 if i is the value of attribute @�
of a great-grandchild of a node of type G1. Thus, in Figure 4 (c), literal 6 (corre-
sponding to ¬x3) has been assigned value 1 since 6 is the value of attribute @� a
great-grandchild (of type H3) of a node of type G1. On the other hand, in Figure
4 (d), literal 3 (corresponding to x2) has been assigned value 1 since 3 is the value
of attribute @� of a great-grandchild (of type H2) of a node of type G1, and in
Figure 4 (e), literal 1 (corresponding to x1) has been assigned value 1 since 1 is
the value of attribute @� of a great-grandchild (of type H1) of a node of type G1.
Notice that when constructing a truth assignment for θ, it is possible to choose
value 1 for two complementary literals. For example, we can choose value 1 for x2

when considering the first clause in Tθ, and we can choose value 1 for ¬x2 when
considering the second clause in this tree. To take care of this problem we use the
following Boolean CTQ-query Q:

∃x∃y (L(@p = x,@n = y) ∧ G1[[[(@� = x)]]] ∧ G1[[[(@� = y)]]]).

Intuitively, query Q says that there exists two complementary literals x and y such
that both x and y have been assigned value 1, that is, x and y are both values of
attribute @� of great-grandchildren of nodes of type G1. Notice that if Q does not
hold, then we have constructed a well defined truth assignment.

Now we prove that for every 3-CNF propositional formula θ, we have that θ is
satisfiable if and only if certain(Q, Tθ) = false, where Tθ is constructed from θ in
PTIME as shown above.

(⇒) Assume that θ is satisfiable and let σ be a truth assignment satisfying θ.
Define a solution T ′ for Tθ as follows. The structure of the L-nodes of T ′ is copied
from Tθ. The structure of the G1-nodes of T ′ is defined as follows. For every C-
node v in Tθ having i, j, k in attributes @f , @s, @t, let Tv be the tree shown in
Figure 4 (a), and let v′ be the node identifier of the root of this tree (v′ is of type
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 29

“k”

H2

H1

H3

@�

@�

“1”

“3”

(b)

@�
“6”

H2

H1

G1

H3

@�

@�

“1”

“3”

(c)

@�
“6”

@�

@�

H2

H1

G2

H3

“1”

“3”

G1

(d)

@�
“6”

H2

H1

G3

H3

@�

@�

“1”

“3”

G2

G1

(e)

@�
“6”

H2

H1

H3

@�

@�

“i”

“j”

(a)

@�

Fig. 4. Different alternatives for satisfying the second rule of ΣST in case STD(, //) of the proof
of Theorem 5.11.

H1). To place Tv into T ′, we have to decide what is the type of the parent of v′. If
σ makes true the third literal of the clause stored in v, then T ′ has a node of type
G1 having v′ as its only child. If σ makes true the second literal of the clause stored
in v, then T ′ has a node of type G1 having only one child (of type G2) and v′ as
its only grandchild. If σ makes true the first literal of the clause stored in v, then
T ′ has a node of type G1 having only one child (of type G2), only one grandchild
(of type G3) and v′ as its only great-grandchild. It is straightforward to prove that
T ′ conforms to DT and satisfies ΣST. Furthermore, T ′ 	|= Q since σ is well defined
and, therefore, for every propositional variables x, either x or ¬x is not assigned
value 1. We conclude that certain(Q, Tθ) = false since T ′ is a solution for Tθ.

(⇐) Assume that certain(Q, Tθ) = false and let T ′ be a solution for Tθ such
that T ′ 	|= Q. We define a truth assignment for the propositional variables of θ as
follows. For every clause in θ, find the values i, j, k assigned in Tθ (as values of
attributes @f , @s and @t) to the literals of that clause. Then find in T ′ a subtree
of the form shown in Figure 4 (a). Let v′ be the root of this tree. If the parent of v′

is of type G1, then σ assigns value 1 to the third literal of the clause. If the parent
of v′ is of type G2, then σ assigns value 1 to the second literal of the clause. If the
parent of v′ is of type G3, then σ assigns value 1 to the first literal of the clause.
Since T ′ 	|= Q, we have that σ is well defined. Thus θ is satisfiable since σ satisfies
this formula by definition. This concludes the proof of the theorem.

Thus, from now one we concentrate on fully-specified STDs. We note that STDs
handled by Clio [Miller et al. 2001; Popa et al. 2002] are fully-specified. Our goal
is to provide a classification of data exchange settings for which computing certain
answers is tractable.

Journal of the ACM, Vol. V, No. N, Month 20YY.

30 ·
6. COMPUTING CERTAIN ANSWERS: CLASSIFICATION AND DICHOTOMY

Proviso: throughout this section, all source-to-target dependencies are fully-
specified. As was shown earlier, outside of this class one cannot avoid coNP-
hardness even for very simple source and target DTDs.

Our goal now is to classify the complexity of the Certain-Answers problem. As
was explained earlier, it depends heavily on target DTDs. We shall classify target
DTDs and prove a dichotomy theorem which states that depending on a class of
regular languages used in DTDs, computing certain answers is either tractable or
coNP-complete. If C is a class of regular expressions, we say that a DTD D is a
C-DTD if all regular expressions in D belong to C.

Definition 6.1. Given a class C of regular expressions, and a class Q of queries,
we say that

— C is tractable for Q if for every data exchange setting (DS, DT, ΣST) with DT

being a C-DTD, and every Q ∈ Q, the problem Certain-Answers(Q) is in
PTIME;

— C is coNP-complete for Q if there exists a data exchange setting (DS, DT, ΣST)
with DT being a C-DTD, and a query Q ∈ Q such that Certain-Answers(Q)
is coNP-complete;

— C is strongly coNP-complete for Q if the above holds when DS is simple and Q
is a Boolean query.

We want our classes of regular expressions to have some degree of uniformity:
that is, we want to disallow classes that contain just a finite number of regular
expressions, or only regular expressions that generate finite languages. We thus
impose the constraint that all classes C contain at least all simple regular expressions
(recall that these are of the form (a1|a2| · · · |an)∗ or ε). Such classes will be called
admissible.

Theorem 6.2. (Dichotomy) Let C be an admissible class of regular expressions
and Q be one of CTQ, CTQ//, CTQ∪ and CTQ//,∪. Then C is either tractable, or
strongly coNP-complete for Q-queries.

Furthermore, for each data exchange setting it is decidable if it falls in the
tractable case, and in this case there is a polynomial time algorithm that for each
source tree T checks whether there exists a solution for T , and if this holds then
produces a solution T � such that s̄ ∈ certain(Q, T) iff s̄ ∈ Q(T �) for every tuple s̄
from Const.

In the rest of the section, we prove this result and present the polynomial-time
algorithm. We introduce a class CU of regular expressions that is tractable for
CTQ//,∪-queries (and thus also for CTQ-, CTQ//- and CTQ∪-queries). Then we show
that every admissible class of regular expressions C 	⊆ CU is strongly coNP-complete
for CTQ-queries (and thus also for CTQ//-, CTQ∪- and CTQ//,∪-queries).

6.1 The tractable case

We explain how to compute a canonical tree T � over which CTQ//,∪-queries can be
evaluated to produce certain(Q, T). The restrictions on the class CU guarantee that
the construction is done in PTIME.
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 31

(a) T

A B

C@�

“4”

@n @m

“5” “6”

(b) Tψ1(4,5,6)

r r

B E

C D @m

“5”

(c) Tψ2(5)

r

(d) cps(T)

A B

C@�

“4”

@n @m

“5” “6”

B E

C D @m

“5”

r

A

@b@a @c

“4” “5” “6”

Fig. 5. Construction of the canonical pre-solution for T .

Fix a data exchange setting (DS, DT,ΣST), where DT = (PT, RT, r). For ev-
ery tree-pattern formula ϕ(x̄) not mentioning descendant // and wildcard and
for every tuple s̄ of strings, there exists an unordered tree Tϕ(s̄) naturally associ-
ated with ϕ(s̄). It is constructed inductively: if ϕ(s̄) = �(@a1 = s1, . . . ,@an =
sn)[ϕ1(s̄1), . . . , ϕk(s̄k)], then the root of Tϕ(s̄) is a node v0 of type � that has at-
tributes @a1, . . ., @an with values s1, . . ., sn, and k distinct children v1, . . ., vk,
with vi being the root of tree Tϕi(s̄i), for i ≤ k.

Recall that an STD ψT(x̄, z̄) :– ϕS(x̄, ȳ) is fully-specified if ψT is of the form
r[ϕ1, . . . , ϕk], where r is the type of the root and ϕi’s do not use descendant // and
wildcard . Now we introduce the notion of canonical pre-solution. Given a source
tree T conforming to DS, the canonical pre-solution for T , denoted by cps(T), is
an XML tree defined as follows. Let X be a set of XML trees such that for every
fully-specified STD ψT(x̄, z̄) :– ϕS(x̄, ȳ) in ΣST and for every pair of tuples s̄, s̄′ of
strings such that |s̄| = |x̄|, |s̄′| = |ȳ| and T |= ϕS(s̄, s̄′), we have that X includes
TψT(s̄,s̄′′), where s̄′′ is an arbitrary tuple of length |z̄| of fresh distinct null values.
Assume that X = {T1, . . . , Tm} and let v1, . . ., vm be the root nodes of T1, . . ., Tm.
Then cps(T) is generated from T1, . . ., Tm by replacing v1, . . ., vm by a single root
node v0.

Example 6.3. Assume ΣST contains rules ψ1(x, y, z) :– ϕ(x, y, z) and
ψ2(y) :– ϕ(x, y, z), where:

ψ1(x, y, z) = r[A(@� = x), B[C(@n = y,@m = z)]],
ψ2(y) = r[B[C,D], E(@m = y)],

ϕ(x, y, z) = r[A(@a = x,@b = y,@c = z)],

and assume that T is the source tree shown in Figure 5 (a). To construct cps(T),
we instantiate the variables x, y, z in the right hand sides of the STDs on values
4, 5 and 6, respectively, and we generate the XML trees associated to ψ1(4, 5, 6)
and ψ2(5), shown in Figures 5 (b) and (c). Then we merge the roots of Tψ1(4,5,6)

and Tψ2(5) into a single node, generating the canonical pre-solution for T , shown in
Figure 5 (d).

Canonical pre-solutions can be computed in PTIME; the problem is that they
may not conform to the target DTD. For example, if DT contains a rule PT(r) =

Journal of the ACM, Vol. V, No. N, Month 20YY.

32 ·
(ABE)∗, then the canonical pre-solution shown in Figure 5 (d) does not conform to
DT. We present an algorithm for computing a canonical solution for a tree T from
cps(T). The key is to find a “repair” every time we have a violation of constraints
imposed by the target DTD. Given a node v of an unordered target tree T ′, we say
that (T ′, v) violates DT if v does not have the right attributes or the children of v
do not have the right types, that is, if {@a | ρ@a(v) is defined in T ′} 	= RT(λT ′ (v))
or λT ′(children(v)) 	∈ π(PT(λT ′ (v))), where λT ′(children(v)) refers to the string
λT ′(v1) . . . λT ′(vn), and v1, . . . , vn are the children of v.

The “easy” violations are those when nodes do not have the right attributes:
if they miss some, we add them and give them fresh values from Var; if they
have extra attributes, the repair algorithm fails. More precisely, repairing function
ChangeAtt receives as parameters a target tree T ′ and a node v such that {@a |
ρ@a(v) is defined in T ′} 	= RT(λT ′(v)). This function fails if there exists an attribute
@a such that ρ@a(v) is defined in T ′ and @a 	∈ RT(λT ′ (v)), since in this case
ΣST forces v to have attribute @a while DT does not allow v to have such an
attribute. Otherwise, for every @a ∈ RT(λT ′ (v)) such that ρ@a(v) is not defined,
ChangeAtt assigns a fresh value from Var to ρ@a(v). The “hard” violations are
those when sequences of children do not satisfy the constraints imposed by regular
expressions in DTDs. Repairing function ChangeReg (defined later) tries to repair
these violations: It receives as parameters a target tree T ′ and a node v such that
λT ′(children(v)) 	∈ π(PT(λT ′(v))), and it either fails or returns a tree T ′′ such that
λT ′′(children(v)) ∈ π(PT(λT ′′ (v))).

Functions ChangeAtt and ChangeReg are applied to cps(T), in no particular
order, until we reach a tree T � that either conforms to DT or is not reparable (that
is, the repair algorithm fails). In the first case we say that T � is a canonical solution
for T .

Example 6.4. Let DS and DT be the DTDs shown in Figures 6 (a) and (b).
Notice that in the latter DTD, PT(r) = (BC)∗, PT(B) = ε, PT(C) = D, RT(B) =
{@m} and RT(C) = ∅. Assume that T is the source tree, conforming to DS,
shown in Figure 6 (c), and assume that ΣST is given by the fully-specified STD
r[B(@m = x)] :– A(@� = x). Then the canonical pre-solution for T is the tree
shown in Figure 6 (d), and a canonical solution for T is shown in Figure 6 (e).

For the class CU (to be defined shortly) we prove:

Lemma 6.5. If DT is a CU -DTD, then for every source tree T :

(a) There exists a solution for T iff there exists a canonical solution for T .
(b) If T � is a canonical solution for T , then for every CTQ//,∪-query Q(x̄) and

every tuple s̄ from Const, s̄ ∈ certain(Q, T) iff T � |= Q(s̄) (if Q is Boolean,
then certain(Q, T) = true iff T � |= Q).

Furthermore, for CU -DTDs canonical solutions can be computed efficiently by re-
peatedly applying ChangeAtt and ChangeReg.

Lemma 6.6. If DT is a CU -DTD, then it can be checked in polynomial time
whether there exists a canonical solution for a given source tree T . Furthermore, if
such a solution exists, then it can be computed in polynomial time.
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 33

(a) DS

r

(BC)∗

D

@n

@m

(b) DT

r

A A

@� @�
“1” “2”

(c) T

r

B B

@m @m
“1” “2”

(d) cps(T)

B B

@m @m
“1” “2”

C C

D D

@n
“⊥2”

r

(e) Canonical solution for T

@n
“⊥1”

r

@�

A∗

Fig. 6. Source DTD DS, target DTD DT, source tree T conforming to DS, canonical pre-solution
for T and canonical solution for T .

By putting together these two lemmas we obtain:

Proposition 6.7. CU is tractable for CTQ//,∪-queries.

Now we define the class CU , explain how ChangeReg works and then prove Lem-
mas 6.5 and 6.6. First, we need some terminology. Let alph(w) (or alph(r)) stands
for the set of alphabet symbols mentioned in a string w (or a regular expression r).
For every a ∈ alph(w), recall that #a(w) is the number of occurrences of a in w.
We write w � w′ if #a(w) ≤ #a(w′) for every a ∈ alph(w), and w ≺ w′ if w � w′

and w′ 	� w.
ChangeReg receives as parameters an unordered tree T ′ and a node v such that

λT ′(children(v)) 	∈ π(PT(λT ′(v))). Assume that � = λT ′(v), w = λT ′(children(v))
and r = PT(�). To adjust w to make T ′ conform to DT, ChangeReg may need to
extend w to a string in the set min ext(w, r) of minimal extensions of w that fall
into π(r):

min ext(w, r) = min�
{
w′ | w′ ∈ π(r), w � w′}.

For example, min ext(b, (bbc)∗) = {bbc, bcb, cbb}. Sometimes ChangeReg may
need to extend not w itself but a substring of w. For example, min ext(bb, bc+) = ∅
and, thus, the only way to repair bb is to merge two b’s into a single b and then
expand to a string in π(r). The resulting strings from the process of expanding
substrings of w are the strings from which ChangeReg will be chosen a candidate
to replace w. Formally, the set of possible repairs of w, denoted by rep(w, r), is
defined as:

rep(w, r) =
⋃

w′�w, alph(w′)=alph(w)

min ext(w′, r).

In this definition, we only consider strings w′ such that alph(w) = alph(w′), since
ΣST forces v to have at least one child of type b, for every b ∈ alph(w).

Once ChangeReg has constructed rep(w, r), it replaces w by a string w′ from
rep(w, r). In general, rep(w, r) will have more than one element, so we need a
criterion to decide which string is the “best” candidate. For example, ccdd and
cd belong to rep(cc, (cd)∗(cde)∗). Which one is better? If we decide to merge two

Journal of the ACM, Vol. V, No. N, Month 20YY.

34 ·
nodes into a single one, we have to put their attributes together. But this is not
possible if these nodes have different constants values on the same attribute. Thus,
we prefer candidates that merge as less elements as possible to avoid attribute
clashes. For example, we prefer ccdd to cd, since ccdd does not merge any element
type. Furthermore, we do not want to add element types if we are not force to do
it and, hence, we prefer ccdd to ccdde. We formalize our preference relation as a
preorder �w. Formally, w1 �w w2 iff (1) #b(w2) ≥ min{#b(w1),#b(w)} for all
b ∈ alph(w), and (2) alph(w2) \ alph(w) ⊆ alph(w1) \ alph(w). Thus, ChangeReg
replaces w by w′ ∈ max�wrep(w, r).

The canonical solution for a source tree must be unique, no matter which string
ChangeReg picks from max�wrep(w, r) and no matter how ChangeReg merges
the elements of w. The problem is that for an arbitrary regular expression this does
not necessarily holds. Thus, we have to restrict our attention to regular expressions
such that (1) max�wrep(w, r) has a “best” candidate w′ and (2) if #b(w) > #b(w′),
then #b(w′) is equal to 1, so that there is only one way to merge the children of
v of type b. We now define these conditions formally. For a regular expression
r and a ∈ alph(r), let fixeda(r) be the set of w ∈ π(r) such that w′ ∈ π(r) and
w � w′ imply #a(w) = #a(w′). For example, if r = a | aab∗, then aa ∈ fixeda(r)
since every string w ∈ π(r) such that aa � w is a permutation of a string of
the form aabn (n ≥ 0) and, hence, #a(aa) = #a(w) = 2. On the other hand,
a 	∈ fixeda(r) since a � aa ∈ π(r) and #a(a) < #a(aa). If fixeda(r) 	= ∅, then
define ca(r) = max

{
#a(w) | w ∈ fixeda(r)

}
. If fixeda(r) = ∅, then ca(r) = 0.

Finally,

c(r) = max
{
ca(r) | a ∈ alph(r)

}
.

For example, ca(a | aab∗) = 2 and cb(a | aab∗) = 0, and, thus, c(a | aab∗) = 2.

Lemma 6.8. c(r) is finite for every r.

Proof. Let r be a regular expression and a ∈ alph(r). It is enough to prove that
there exists a natural number k such that ca(r) ≤ k. By Lemma 5.4, there exist
regular expressions s1, . . ., sn such that π(r) = π(s1| · · · |sn) and each si (i ∈ [1, n])
is of the form w0(w1)∗ · · · (wm)∗, where each wj is a string (j ∈ [0,m]). Assume
that si = wi(wi,1)∗ · · · (wi,mi)∗ (i ∈ [1, n]), where wi, wi,1, . . ., wi,mi are strings
over alph(r). We will show that ca(r) ≤ maxi∈[1,n] #a(wi).

By contradiction, assume that either {� | there exists w ∈ fixeda(r) such that
#a(w) = �} is unbounded or ca(r) > #a(wi), for every i ∈ [1, n]. In either case,
there exists a string w ∈ fixeda(r) such that #a(w) > #a(wi), for every i ∈ [1, n].
Since w ∈ π(r) and π(r) = π(s1| · · · |sn), there exists j ∈ [1, n] such that w ∈
π(sj). Thus, w is a permutation of a string wjw

′, where w′ is in the regular
language defined by (wj,1)∗ · · · (wj,mj)∗. Given that #a(w) > #a(wj), we have
that a ∈ alph(w′) and, therefore, a ∈ alph((wj,1)∗ · · · (wj,mj)∗). Hence, string
wwj,1wj,2 · · ·wj,mj is in π(sj) ⊆ π(r) and #a(w) < #a(wwj,1wj,2 · · ·wj,mj), which
contradicts the fact that w ∈ fixeda(r). This concludes the proof of the lemma.

Definition 6.9. We say that a regular expression r is univocal if c(r) ≤ 1 and
for every string w such that rep(w, r) 	= ∅, the set rep(w, r) has a maximum element
with respect to �w: that is, an element w′ ∈ rep(w, r) such that w′′ �w w′ for all
w′′ ∈ rep(w, r). We write CU for the class of univocal regular expressions.
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 35

For example, all of the following are univocal regular expressions: bc+d∗e?, (b∗|c∗)
and (bc)∗(de)∗. It is easy to see that all simple regular expressions are univocal,
and hence CU is an admissible class.

Proposition 6.10. It is decidable whether a regular expression r is univocal.
In fact, for each r one can compute a sentence Φr of Presburger Arithmetic which
is true iff r is univocal.

Proof. Assume that alph(r) = {σ1, . . . , σn}. By Lemma 5.4 we know that
π(r) = π(s1| . . . |sm), where each si (i ∈ [1,m]) is of the form w0(w1)∗ · · · (w�)∗,
where each wj is a string (j ∈ [0, �]). Let i ∈ [1,m] and assume that si =
w0w

∗
1 · · ·w∗

� . In the proof of Proposition 5.3, we showed that for each si, there
exists an n × � matrix Ai of non-negative integers such that for every string w,
we have that w ∈ π(si) iff there is an �-vector �x of nonnegative integers such that
Ai�x + �b = �c, where �b and �c are n-vectors with bj = #σj (w0) and cj = #σj (w)
(j ∈ [1, n]). Since Ai depends only on si, there exists a formula ϕi(x1, . . . , xn) of
Presburger Arithmetic such that for every string w, we have

w ∈ π(si) iff ϕi(#σ1(w), . . . ,#σn(w)) holds.

We conclude that formula ϕr(x1, . . . , xn) =
∨m
i=1 ϕi(x1, . . . , xn) is such that a string

w is in π(r) iff ϕr(#σ1 (w), . . . ,#σn(w)) holds.
Now simply by examining the definition of univocality we notice that we only

refer to number of occurrences of symbols in strings, and the definition itself can
be stated in first-order logic using ϕr; hence the result follows.

Summing up, if DT is a CU -DTD, then ChangeReg(T ′, v) is defined as shown
in Figure 7 (for the sake of completeness, we also include function ChangeAtt in
Figure 7). Recall that � = λT ′(v), w = λT ′(children(v)) and r = PT(�). Initially,
ChangeReg checks whether rep(w, r) is empty. If this is the case, then it fails.
Otherwise, ChangeReg picks an arbitrary string w′ from max�w rep(w, r), and
then it replaces w by w′. More precisely, let b ∈ alph(r), p = #b(w) and q = #b(w′).
If p < q, then ChangeReg adds (q − p) new children to v of type b, each of them
having no attributes and no children5. If q < p, then q = 1 (since r is univocal)
and, thus, ChangeReg replaces the sequence v1, . . ., vp of children of v of type b
by a single fresh node v′ of type b, and then for every subtree Ti of T ′ rooted at
vi (i ∈ [1, p]), it replaces the root of Ti by v′. At this point ChangeReg fails if
there is an attribute clash, that is, if there is a pair of subtrees of T ′ rooted at vi,
vj (i, j ∈ [1, p]) and an attribute @a such that ρ@a(vi) ∈ Const, ρ@a(vj) ∈ Const
and ρ@a(vi) 	= ρ@a(vj).

In the rest of this section, we prove Lemmas 6.5 and 6.6 that are used to show
that the algorithm presented in this section is correct and it can be implemented in
polynomial time, for every fixed target DTD DT containing only univocal regular
expressions. But before doing this, we note that all regular expressions used in
nested-relational DTDs are univocal. Hence, the following extension of relational
data exchange handled by Clio [Popa et al. 2002] falls in the following large tractable
case:

5Violations generated by adding b-nodes without attributes or children are repaired later by
repeatedly applying ChangeAtt and ChangeReg.

Journal of the ACM, Vol. V, No. N, Month 20YY.

36 ·

ChangeAtt(T : tree, v : node identifier)
if there exists @a ∈ AT \ RT(λT (v)) such that ρ@a(v) is defined then fail
else for every @a ∈ RT(λT (v)) do

if ρ@a(v) is not defined in T then assign to ρ@a(v) a fresh null value
return(T)

ChangeReg(T : tree, v : node identifier)
� := λT (v)
w := λT (children(v)) /∗ if v has no children, then w = ε ∗/
if rep(w, PT(�)) = ∅ then fail
else

Choose w′ ∈ max�w rep(w, PT(�))
for every b ∈ alph(PT(�)) do

if #b(w) < #b(w
′) then add (#b(w

′) − #b(w)) new children of type b to v
else if #b(w) > #b(w

′) then
v1, . . ., vk := sequence of node identifiers of the children of v of type b
if there exists @a ∈ R(b) and i, j ∈ [1, k] such that

ρ@a(vi) ∈ Const, ρ@a(vj) ∈ Const and ρ@a(vi)
= ρ@a(vj) then fail
else

Replace v1, . . ., vk by a single fresh node identifier v′
for every @a ∈ R(b) do

if there exists i ∈ [1, k] such that ρ@a(vi) ∈ Const then ρ@a(v′) := ρ@a(vi)
return(T)

Fig. 7. Rules for constructing a chase sequence.

Corollary 6.11. If (DS, DT,ΣST) is a data exchange setting in which DT

is nested-relational, and Q is a CTQ//,∪-query, then Certain-Answers(Q) is in
PTIME.

We also note that canonical tree T � is unordered and hence may not conform to
the target DTD with an arbitrary sibling ordering imposed on it. However, if one
needs to materialize the target instance T �, by Proposition 5.2 one can transform
T �, in polynomial time, into a tree that conforms to the target DTD.

To prove Lemmas 6.5 and 6.6, we need to introduce some terminology and prove
some intermediate results. In particular, we need to introduce the notion of chase
sequence.

Given an XML tree T over (ET, AT), we say that function ChangeAtt, shown
in Figure 7, can be applied to T if there exists a node v in T such that {@a ∈
AT | ρ@a(v) is defined in T } 	= RT(λT (v)) and ChangeAtt(T , v) does not fail.
Moreover, we say that function ChangeReg, shown in Figure 7, can be applied
to T if there exists a node v in T such that λT (children(v)) 	∈ π(PT(λT (v))) and
ChangeReg(T , v) does not fail. Notice that if T |= DT, then neither ChangeAtt
nor ChangeReg can be applied to T since for every node v in T we have that
ρ@a(v) is defined for every @a ∈ RT(λT (v)) and λT (children(v)) ∈ π(PT(λT (v))).
A (possible infinite) sequence of trees T0, . . ., Ti, . . . over (ET, AT) is a chase
sequence if for every Tj, Tj+1 in the sequence, either ChangeAtt or ChangeReg
can be applied to Tj to generate Tj+1, that is, Tj 	= Tj+1 and there exists a node v
in Tj such that either Tj+1 = ChangeAtt(Tj , v) or Tj+1 = ChangeReg(Tj, v).
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 37

Moreover, a chase sequence T0, . . ., Ti, . . ., is said to be terminal if it is finite and
its last tree Tn is such that neither ChangeAtt nor ChangeReg can be applied
to it.

Lemma 6.12. Every chase sequence T0, . . ., Ti, . . . is finite.

Proof. Let T0, . . ., Ti, . . . be a chase sequence. We prove this lemma by induc-
tion on the depth of T0. If the depth of T0 is 1, then T0 has only one node. Given
that DT is a consistent DTD, we have that T0, . . ., Ti, . . . is contained in a terminal
chase sequence having as last element a tree Tn conforming to DT.

Assume that the depth of T0 is m > 1 and that the property holds for every chase
sequence having as first element a tree with depth at most m − 1. Furthermore,
for every pair Tj , Tj+1 of trees in T0, . . ., Ti, . . ., assume that either Tj+1 =
ChangeAtt(Tj , vj) or Tj+1 = ChangeReg(Tj , vj). Let u0 be the root node of
T0. Since u0 can be used at most twice to construct the chase sequence T0, . . ., Ti,
. . ., once as input of ChangeAtt and the other one as input of ChangeReg, we
can assume that there exists j ≥ 0 such that u0 	= vk, for every k ≥ j. Let u1,
. . ., up be the sequence of children of u0 in Tj , and for every k ∈ [1, p], let T k0 , . . .,
T ki , . . . be a chase sequence defined as follows. T k0 is the subtree of Tj rooted at
uk. Let T ′, T ′′ be a consecutive pair of trees in T0, . . ., Ti, . . . such that T ′, T ′′

is the �-th (� ≥ 1) pair of consecutive trees in the chase sequence Tj , . . ., Ti, . . .
such that either T ′′ = ChangeAtt(T ′, v′) or T ′′ = ChangeReg(T ′, v′) and v′ is a
descendant of uk. Then T k� = ChangeAtt(T k�−1, v

′), if T ′′ = ChangeAtt(T ′, v′),
and T k� = ChangeReg(T k�−1, v

′) otherwise. Given that u0 is not used to construct
the chase sequence Tj , . . ., Ti, . . ., the children of the root u0 are the same in every
tree of this sequence and, hence, every node used to construct Tj , . . ., Ti, . . . is a
descendant of some node uk (k ∈ [1, p]). Thus, if every chase sequence T k0 , . . ., T ki ,
. . . (k ∈ [1, p]) is finite, then Tj , . . ., Ti, . . . is finite and, hence, T0, . . ., Ti, . . . is
finite. But the depth of T k0 (k ∈ [1, p]) is at most m − 1 and, hence, by induction
hypothesis we have that T k0 , . . ., T ki , . . . is finite. This proves that our original
chase sequence T0, . . ., Ti, . . . is also finite.

As a corollary of the previous lemma we obtain that every chase sequence T0,
. . ., Ti, . . . is contained in a terminal sequence.

We say that a chase sequence T0, . . ., Tn is successful if Tn |= DT, and we say
that T0, . . ., Tn is a failing chase sequence if T0, . . ., Tn is terminal and Tn 	|= DT.
Moreover, given a source tree T conforming to DS, we say that T0, . . ., Tn is a
chase sequence for T if T0 = cps(T), and we say that a target tree T ′ is a canonical
solution for T if there exists a successful chase sequence T0, . . ., Tn for T such that
T ′ = Tn.

Example 6.13. Let DS and DT be the DTDs shown in Figures 6 (a) and (b),
and ΣST be the set {r[B(@m = x)] :– A(@� = x)} of fully-specified STDs. Notice
that DT is a CU -DTD since (BC)∗ is a univocal regular expression.

Assume that T is the source tree, conforming to DS, shown in Figure 6 (c). Then
the canonical pre-solution for T is the tree shown in Figure 6 (d), and the canonical
solution for T shown in Figure 6 (e) is constructed as follows. Let T0 = cps(T), v0 be
the root node of T0, v1, v2 the sequence of children of v0 and w = λT0(v1)λT0(v2) =
BB. Since BB 	∈ π(PT(r)) = π((BC)∗), we invoke ChangeReg(T0, v0).

Journal of the ACM, Vol. V, No. N, Month 20YY.

38 ·

D

r

B C CB

@m @m D

@n

“⊥1”

“2”“1”

(c) T3

r

B C CB

@m @m D

“2”“1”

(b) T2

r

B C CB

@m @m

“2”“1”

(a) T1

r

B C CB

@m @m D

@n

“⊥1”

“2”“1”

(d) T4

Fig. 8. Chase sequence.

Since rep(BB, (BC)∗) = min ext(B, (BC)∗) ∪ min ext(BB, (BC)∗) = {BC,CB}
∪ {BBCC,BCBC,BCCB,CBBC,CBCB,CCBB}, ChangeReg does not fail
and it chooses a string from max�BB rep(BB, (BC)∗). Given that BC ≡BB
CB (BC �BB CB and CB �BB BC), BC ≺BB BBCC (BC �BB
BBCC and BBCC 	�BB BC) and BBCC is equivalent to all the strings in
min ext(BB, (BC)∗), the algorithm chooses w′ = BBCC. Since #B(BB) =
#B(BBCC) and #C(BB) < #C(BBCC), the algorithm adds to v0 two new chil-
dren of type C, generating tree T1 shown in Figure 8 (a). Let v3 and v4 be the
node identifiers of these new nodes.

Given that λT1 (v3) = C, PT(C) = D and v3 has no children, we in-
voke ChangeReg(T1, v3). Since rep(ε,D) is not empty (rep(ε,D) = {D}),
ChangeReg does not fail and it chooses a string w′ from max�ε rep(ε,D), in
this case w′ = D. Then it adds to v3 a new child of type D since #D(ε) < #D(D),
generating tree T2 shown in Figure 8 (b). Let v5 be the node identifier of this new
node. Since λT2(v5) = D, RT(D) = {@n} and v5 has no attributes, we invoke
ChangeAtt(T2, v5). This function adds to v5 an attribute @n with value ⊥1,
where ⊥1 is a fresh null value. The resulting tree T3 is shown in Figure 8 (c).

Recall that v4 is the last children of root node v0. Given that λT3(v4) = C,
PT(C) = D and v4 has no children, we invoke ChangeReg(T3, v4). Since
rep(ε,D) is not empty, ChangeReg does not fail and it chooses a string w′ from
max�ε rep(ε,D), in this case w′ = D. Then it adds to v4 a new child of type D
since #D(ε) < #D(D), generating tree T4 shown in Figure 8 (d). Finally, let v6
be the node identifier of this new node. Since λT4(v6) = D, RT(D) = {@n} and
v6 has no attributes, we invoke ChangeAtt(T4, v6). This function adds to v6 an
attribute @n with value ⊥2, where ⊥2 is a fresh null value. The resulting tree is
the canonical solution for T , shown in Figure 6 (e).

Next we show that canonical solutions can be used to compute certain answers. To
do this, first we introduce the notion of homomorphism for trees. Let E ⊂ El be
a finite set of element types, A ⊂ Att be a finite set of attributes and T , T ′ be
XML trees over (E,A). Assume that T = (N,<child, root) and Str(T) = {s ∈ Str |
there exists v ∈ N and @a ∈ A such that ρ@a(v) = s}. Furthermore, assume
that T ′ = (N ′, <′

child, root
′) and Str(T ′) is defined as above. Then a function

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 39

h : N ∪ Str(T) → N ′ ∪ Str(T ′) is a homomorphism from T to T ′, denoted by
h : T → T ′, if:

—for every v ∈ N , h(v) ∈ N ′;
—for every s ∈ Const ∩ Str(T), h(s) = s, and for every s ∈ Var ∩ Str(T), h(s) ∈

Str(T ′);
—h(root) = root ′;
—for every v1, v2 ∈ N , if v1 <child v2, then h(v1) <′

child h(v2);
—for every v ∈ N , λT (v) = λT ′(h(v));
—for every v ∈ N and @a ∈ A such that ρ@a(v) is defined, h(ρ@a(v)) = ρ@a(h(v)).

It is easy to see that the following lemma holds.

Lemma 6.14. Let E be a finite set of element types, A a finite set of attributes,
T , T ′ XML trees over (E,A), Q(x̄) a CTQ//,∪-query over (E,A) and s̄ a tuple of
constants such that T |= Q(s̄). If there exists a homomorphism h : T → T ′, then
T ′ |= Q(s̄).

Lemma 6.15. Let T0, . . ., Tn be a terminal chase sequence for a tree T conform-
ing to DS.

(a) For every solution T ′ for T and every i ∈ [0, n], there exists a homomorphism
hi : Ti → T ′.

(b) If T0, . . ., Tn is a failing sequence, then there is no solution for T .

Proof. (a) By induction on i ∈ [0, n]. Since T0 = cps(T) and T ′ is a solution for
T , it is easy to see that there exists a homomorphism h0 : T0 → T ′. Assume that
the property holds for i < n, that is, there exists a homomorphism hi : Ti → T ′. To
show that there exists a homomorphism hi+1 : Ti+1 → T ′, we consider two cases.
In both cases we assume that N ′, Ni, Ni+1 are the sets of node identifiers of T ′, Ti
and Ti+1, respectively.

First, assume that Ti+1 = ChangeAtt(Ti, v), and define function hi+1 : Ni+1 ∪
Str(Ti+1) → N ′ ∪ Str(T ′) as follows. For every u ∈ Ni+1, define hi+1(u) as hi(u).
We note that this is well defined since Ti+1 = ChangeAtt(Ti, v) and, hence,
Ni = Ni+1. For every string s ∈ Str(Ti+1) ∩ Const, define hi+1(s) as s. We note
that this is well defined since Str(Ti)∩Const = Str(Ti+1)∩Const. Finally, for every
s ∈ Str(Ti+1) ∩ Var, we consider two cases. If s ∈ Str(Ti), then define hi+1(s) as
hi(s). Otherwise, s is a null value that is added to Ti by ChangeAtt(Ti, v) and,
therefore, there exists @a ∈ RT(λTi+1(v)) such that s = ρ@a(v). Define hi+1(s)
as ρ@a(hi(v)). We observe that this is well defined since T ′ |= DT and, hence,
ρ@a(hi(v)) is defined in T ′ since @a ∈ RT(λTi(v)) = RT(λT ′(hi(v))). Since hi is a
homomorphism, it is easy to see that hi+1 is a homomorphism from Ti+1 to T ′.

Second, assume that Ti+1 = ChangeReg(Ti, v). To define homomorphism hi+1 :
Ti+1 → T ′ we need to prove an intermediate result. Let wi = λTi(children(v)),
wi+1 = λTi+1(children(v)) and w′ = λT ′ (children(hi(v))).

Claim 6.16.

(a) alph(wi+1) ⊆ alph(w′).
(b) If a ∈ alph(wi) is such that #a(wi+1) = 1 and #a(wi) > 1, then #a(w′) = 1.

Journal of the ACM, Vol. V, No. N, Month 20YY.

40 ·
The proof of Claim 6.16 can be found in the appendix. We use Claim 6.16 to

define function hi+1 : Ni+1 ∪ Str(Ti+1) → N ′ ∪ Str(T ′). For every u ∈ Ni+1 that
is not a child of v, define hi+1(u) as hi(u). We observe that this is well defined
since ChangeReg(Ti, v) modifies only the sequence of children of v. For every
s ∈ Str(Ti+1) ∩ Const, define hi+1(s) as s. We note that this is well defined since
Str(Ti) ∩ Const = Str(Ti+1) ∩ Const. Finally, for every children u of v and every
@a ∈ RT(λTi+1(u)), we define hi+1(u) and hi+1(ρ@a(u)) as follows. Assume that
λTi+1(u) = �. If #�(wi+1) ≥ #�(wi) and u ∈ Ni, then hi+1(u) = hi(u) and
hi+1(ρ@a(u)) = hi(ρ@a(u)). If #�(wi+1) ≥ #�(wi) and u 	∈ Ni, then define hi+1(u)
as u′, where u′ is an arbitrary child of hi(v) in T ′ of type �. We note that such a node
exists since, by Claim 6.16, alph(wi+1) ⊆ alph(w′). If #�(wi+1) < #�(wi), then
#�(wi+1) = 1 by definition of ChangeReg and , by Claim 6.16, #�(w′) = 1. Let
u′ be the only child of hi(v) of type �. Then define hi+1(u) as u′ and hi+1(ρ@a(u))
as ρ@a(u′). We observe that this is well defined since if ρ@a(u) = s is a constant,
then by definition of ChangeReg there exists a child u′′ of v in Ti of type � such
that ρ@a(u′′) = s and hi(u′′) = u′ (u′ is the only child of hi(v) of type �), and,
hence, hi+1(s) = ρ@a(u′) = hi(ρ@a(u′′)) = hi(s) = s. Since hi is a homomorphism,
it is easy to see that hi+1 is a homomorphism from Ti+1 to T ′. This concludes the
proof of the first part of the lemma.

(b) By contradiction, assume that T0, . . ., Tn is a failing sequence and that
there exists a solution T ′ for T . Then there exists a node v in Tn such that
either {@a ∈ AT | ρ@a(v) is defined in Tn} 	= RT(λTn(v)) and ChangeAtt(Tn,
v) fails or λTn(children(v)) 	∈ π(PT(λTn(v))) and ChangeReg(Tn, v) fails. Let
w = children(v), h a homomorphism from Tn to T ′ (such a homomorphism exists
by (a)) and w′ = children(h(v)). We consider three cases.

First, assume that there exists a node v in Tn such that {@a ∈ AT | ρ@a(v)
is defined in Tn} 	= RT(λTn(v)) and ChangeAtt(Tn, v) fails. Then there exists
@a ∈ AT \ RT(λTn(v)) such that ρ@a(v) is defined in Tn. Thus, given that h is a
homomorphism from Tn to T ′, we have that ρ@a(h(v)) = h(ρ@a(v)). We conclude
that T ′ 	|= DT since @a 	∈ RT(λT ′(h(v))) = RT(λTn(v)), which contradicts the fact
that T ′ is a solution for T .

Second, assume that there exists a node v in Tn such that λTn(children(v)) 	∈
π(PT(λTn(v))) and ChangeReg(Tn, v) fails because rep(w,PT(λTn(v))) = ∅.
Since h : Tn → T ′, we have that alph(w) ⊆ alph(w′). Define string w1 as fol-
lows: alph(w1) = alph(w) and #a(w1) = 1, for every a ∈ alph(w1). Then w1 � w′

since alph(w) ⊆ alph(w′). Thus, there exists w2 ∈ min ext(w1, PT(λTn(v))) such
that w1 � w2 � w′ since w′ ∈ π(PT(λT ′ (h(v)))) = π(PT(λTn(v))). By defini-
tion of rep(w,PT(λTn(v))) we have that w2 ∈ rep(w,PT(λTn(v))) and, therefore,
rep(w,PT(λTn(v))) is not empty, which contradicts our original assumption.

Third, assume that there exists a node v in Tn such that λTn(children(v)) 	∈
π(PT(λTn(v))) and ChangeReg(Tn, v) fails because the algorithm chooses w1 ∈
max�w rep(w,PT(λTn(v))) such that there exist b ∈ alph(PT(λTn(v))), @a ∈ RT(b)
and distinct children u1, u2 of v of type b such that #b(w1) < #b(w), ρ@a(u1) ∈
Const, ρ@a(u2) ∈ Const and ρ@a(u1) 	= ρ@a(u2). To establish a contradiction we
need the following claim.

Claim 6.17. Let r be a univocal regular expression. For every string w1 such
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 41

that rep(w1, r) 	= ∅, every w2 ∈ max�w1
rep(w1, r) and every a ∈ alph(w1), if

#a(w2) < #a(w1), then #a(w2) = 1.

The proof of Claim 6.17 can be found in the appendix. We use this claim to
show that #b(w′) = 1. On the contrary, assume that #b(w′) > 1. Since h is a
homomorphism from Tn to T ′, we have that alph(w) ⊆ alph(w′). Define string
w2 as follows: alph(w2) = alph(w), #b(w2) = 2 and #c(w2) = 1, for every c ∈
alph(w2) \ {b}. Then w2 � w′ since alph(w) ⊆ alph(w′) and #b(w′) > 1. Thus,
there exists w3 ∈ min ext(w2, PT(λTn(v))) such that w2 � w3 � w′ since w′ ∈
π(PT(λT ′ (h(v)))) = π(PT(λTn(v))). By definition of rep(w,PT(λTn(v))) we have
that w3 ∈ rep(w,PT(λTn(v))). Since #b(w2) = 2, we have that #b(w3) > 1.
Furthermore, given that #b(w1) < #b(w) and w1 ∈ max�w rep(w,PT(λTn(v))), by
Claim 6.17 we have that #b(w1) = 1. Hence, given that #b(w3) > 1, #b(w1) = 1
and #b(w) > #b(w1), we conclude that w3 	�w w1, which contradicts the fact
that (rep(w,PT(λTn(v))),�w) has a maximum element (recall that PT(λTn(v)) is
a univocal regular expression) and w1 ∈ max�w rep(w,PT(λTn(v))).

Since #b(w′) = 1, there is only one child of h(v) of type b, say u′. Since h :
Tn → T ′ is a homomorphism and both u1 and u2 are child of v of type b, we
have that h(u1) = h(u2) = u′. Thus, h(ρ@a(u1)) = h(ρ@a(u2)) = ρ@a(u′). Thus,
given that both ρ@a(u1) ∈ Const and ρ@a(u2) ∈ Const, we conclude that ρ@a(u1) =
h(ρ@a(u1)) = h(ρ@a(u2)) = ρ@a(u2), which contradicts our original assumption.
This concludes the proof of the second part of the lemma.

We are finally ready to prove Lemma 6.5.

Proof of Lemma 6.5. (a) We only need to prove one direction. Assume that
there is no canonical solution for T . By Lemma 6.12, there exists a failing chase
sequence for T and, therefore, there is no solution for T by Lemma 6.15.

(b) First, assume that T � 	|= Q(s̄). Then s̄ 	∈ certain(Q, T) since T � is a solution
for T . Second, assume that T � |= Q(s̄) and let T ′ be a solution for T . Then,
by Lemma 6.15 we know that there exists a homomorphism h from T � to T ′.
Thus, by Lemma 6.14 we have that T ′ |= Q(s̄) since Q is a CTQ//,∪-query. We
conclude that for every solution T ′ for T , it is the case that T ′ |= Q(s̄) and, hence,
s̄ ∈ certain(Q, T).

To show that the canonical solution can be computed in polynomial time, we
just need to prove one additional lemma.

Lemma 6.18. Let r be a fixed regular expression. Then the following problems
are solvable in PTIME:

(1) Given an input string w, determine whether rep(w, r) 	= ∅.
(2) Given an input string w such that rep(w, r) 	= ∅, compute w′ ∈

max�w rep(w, r).

Proof. Since r is a fixed regular expression, by Proposition 5.3, the problem of
checking whether a string w ∈ π(r) can be solved in time O(p(|w|)), where p is a
fixed polynomial.

(1) In what follows, we assume that alph(r) = {a1, . . . , ak} and f :
{a1, . . . , ak}∗ → N

k is a mapping defined as f(w) = (#a1(w), . . . ,#ak(w)). We
Journal of the ACM, Vol. V, No. N, Month 20YY.

42 ·
note that if f(w1) = f(w2), then w1 ∈ π(r) if and only if w2 ∈ π(r). To determine
whether rep(w, r) 	= ∅, we have to check whether there exists string w′ such that
alph(w′) = alph(w), w′ � w and min ext(w′, r) 	= ∅. By Lemma 5.8, to verify
whether min ext(w′, r) 	= ∅, we only need to check whether there exists string w′′

such that w′′ ∈ π(r), w′ � w′′ and |w′′| ≤ (|w′|+ 1) · ‖r‖. Thus, given that

|{f(w′′) | for every a ∈ alph(r), #a(w′′) ≤ (|w′|+ 1) · ‖r‖}| ≤
((|w′|+ 1) · ‖r‖ + 1)|alph(r)|

we have that the problem of verifying whether min ext(w′, r) 	= ∅ can be solved in
time O(p((|w′|+ 1) · ‖r‖) · ((|w′|+ 1) · ‖r‖+ 1)|alph(r)|). Therefore, given that

|{f(w′) | alph(w′) = alph(w) and w′ � w}| =∏
a∈alph(w)

#a(w) ≤
∏

a∈alph(w)

|w| ≤
∏

a∈alph(r)

|w| = |w||alph(r)|,

we conclude that the problem of verifying whether rep(w, r) 	= ∅ can be solved in
time O(|w||alph(r)| ·p((|w|+1) ·‖r‖) ·((|w|+1) ·‖r‖+1)|alph(r)|), which is polynomial
on |w| since r is fixed.

(2) Given that r is a fixed regular expression, we know by (1) that for every string
w′ such that alph(w′) = alph(w) and w′ � w, set {f(w′′) | w′′ ∈ min ext(w′, r)}
can be computed in polynomial time on |w′| ≤ |w|. Furthermore, we also know
by (1) that the number of f(w′) for strings w′ satisfying the previous condition is
polynomial on |w| and, therefore, it is possible to compute {f(w′′) | w′′ ∈ rep(w, r)}
in polynomial time on |w|. By Lemma 5.8 the length of a string in rep(w, r) is at
most (|w|+1)·‖r‖ and, thus, it is possible to compute max�w rep(w, r) in polynomial
time on |w|. This concludes the proof of the lemma.

Proof of Lemma 6.6. Given a fixed data exchange setting, function
ChangeReg can be implemented in polynomial time by Lemma 6.18. Thus, by
applying ChangeAtt and ChangeReg to cps(T) in a depth-first search manner
(as shown in Example 6.4), we can compute a terminal chase sequence T0, . . ., Tn
for T in polynomial time. If Tn 	|= DT, then we know by Lemma 6.15 that there is
no solution for T and, in particular, there is no canonical solution for this tree. If
Tn |= DT, then Tn is a canonical solution for T .

6.2 The intractable case

The following shows that CU is the maximal tractable class, and thus completes the
classification of finding certain answers and proves the dichotomy theorem.

Proposition 6.19. Let C be an admissible class of regular expressions such that
C 	⊆ CU . Then C is strongly coNP-complete for CTQ-queries.

This result is a consequence of the following lemmas, which are proved in the rest
of this section.

Lemma 6.20. Let r be a regular expression such that c(r) ≥ 2 and C an admis-
sible class of regular expressions containing r. Then C is strongly coNP-complete
for CTQ-queries.
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 43

Lemma 6.21. Let r be a non-univocal regular expression such that c(r) ≤ 1 and
C an admissible class of regular expressions containing r. Then C is strongly coNP-
complete for CTQ-queries.

Proof of Lemma 6.20. Let r be a regular expression such that c(r) = k ≥ 2 and
C be an admissible class of regular expressions containing r. Since c(r) = k, there
exists a ∈ alph(r) and w ∈ fixeda(r) such that w = aka1 · · · a�, where ai ∈ alph(r)
and a 	= ai (i ∈ [1, �]).

To show that C is strongly coNP-complete, we define a data exchange setting
(DS, DT,ΣST) and a Boolean CTQ-query Q such that DS is a simple DTD, DT

is a C-DTD, ΣST is a set of fully-specified STDs and 3SAT can be reduced to the
complement of Certain-Answers(Q), that is, for every propositional formula θ
in 3-CNF, there exists a PTIME constructible XML tree Tθ conforming to DS such
that θ is satisfiable if and only if certain(Q, Tθ) = false .

Simple DTD DS is defined as follows. Let ES = {B, C, H , L, I1, . . ., Ik, J1,
. . ., J�} be a set of element types and AS = {@f , @s, @t, @p, @n, @id} a set of
attributes. Then DS = (PS, RS, B) is a DTD over (ES, AS), where PS is defined
as:

PS(B) = C∗H∗L∗I∗1 · · · I∗kJ∗
1 · · ·J∗

� ,

PS(�) = ε, for every � ∈ ES \ {B},
and RS is defined as:

RS(B) = ∅, RS(H) = {@t,@f},
RS(C) = {@f,@s,@t}, RS(L) = {@p,@n},
RS(Ii) = {@id}, for every i ∈ [1, k], RS(Ji) = {@id}, for every i ∈ [1, �].

In the following example we explain how XML trees conforming to DS are used to
represent propositional formulae. Let θ be 3-CNF formula (x1 ∨x2 ∨¬x3)∧ (¬x2 ∨
x3 ∨ ¬x4). To construct tree Tθ, first we assign a distinct natural number to each
literal, say

x1 �→ 1, x2 �→ 3, x3 �→ 5, x4 �→ 7,
¬x1 �→ 2, ¬x2 �→ 4, ¬x3 �→ 6, ¬x4 �→ 8.

Then we represent each clause of θ as a node of type C, being the values of attributes
@f , @s, @t the first, second and third literal of that clause, respectively. For
each propositional variable x in θ, we use the attributes @p, @n of a node of
type L to store the values assigned to x and ¬x, respectively. Furthermore, we
create a node of type H and store in its attribute @t value 1 (representing true
value) and in its attribute @f value 0 (representing false value). Finally, for every
i ∈ [1, k] we create a node of type Ii with value i in its attribute @id, and for
every j ∈ [1, �] we create a node of type Jj with value j in its attribute @id (it will
become clear why we need these nodes when we define DT and ΣST). Tree Tθ for
θ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4) is shown in Figure 9.
C-DTD DT is defined as follows. Let ET = {B, C, H , G} ∪ alph(r) be a set

of element types such that {B, C, H , G} ∩ alph(r) = ∅, and let AT = {@f , @s,
@t, @id, @e, @�} be a set of attributes. Then DT = (PT, RT, B) is a DTD over
(ET, AT), where PT is defined as:

Journal of the ACM, Vol. V, No. N, Month 20YY.

44 ·

.

.
@id

B

@f @s @t

C

@t @p @n

L

@p @n

L

@p @n

L

@p @n

L I1

@id@f @s @t

C

@id

J�Ik J1

“1” “6” “4” “5” “8” “1” “0” “1” “2” “3” “4” “5” “6” “7” “8” “1” “k” “1”“3” “�”

H

@f @id

Fig. 9. XML tree Tθ, defined in the proof of Lemma 6.20, representing propositional formula
θ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4).

PT(B) = C∗H∗G∗, PT(G) = r, PT(�) = ε, for every � ∈ alph(r),
PT(C) = ε, PT(H) = ε,

and RT is defined as:

RT(B) = ∅, RT(C) = {@f,@s,@t},
RT(G) = ∅, RT(a) = {@id,@e,@�},
RT(H) = {@f}, RT(�) = {@id}, for every � ∈ alph(r) \ {a}.

Finally, set ΣST of fully-specified STDs is defined as follows. The first rule of ΣST

says that every node of type C in a source tree T must appear in every solution for
T :

B[C(@f = x,@s = y,@t = z)] :– B[C(@f = x,@s = y,@t = z)].

The second rule of ΣST says that the value of attribute @f of a node of type H in
a source tree T must appear in every solution for T as an attribute @f of a node
of type H :

B[H(@f = x)] :– B[H(@f = x)].

Finally, the third rule of ΣST is defined as follows:

B[G[a(@id = u1,@e = x),
k∧
i=2

a(@id = ui,@e = x′),

�∧
j=1

aj(@id = u′j), a(@� = y), a(@� = y′)]] :–

B[H(@t = x,@f = x′), L(@p = y,@n = y′),
k∧
i=1

Ii(@id = ui),
�∧

j=1

Jj(@id = u′j)].

In this rule we use symbol
∧

to denote a sequence of formulae separated by commas.
Indeed, conjunction is not allowed in tree-pattern formulae. Thus, for example,∧k
i=2 a(@id = ui,@e = x′) is a shorthand for:

a(@id = u2,@e = x′), . . . , a(@id = uk,@e = x′).

To explain the meaning of the previous rule, we considered again tree Tθ shown in
Figure 9. Let i, j be a pair of complementary literals in Tθ, say i = 3 and j = 4.
The previous rule says that for each of such pair and for each solution T ′ for Tθ,
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 45

there should exist a node v of type G in T ′ having as children the following sequence
of nodes:

.

G

a a a1 a�

@e
“0”

@id @�
“2”

@e
“0”

@id
“k”

@�
“1” “�”

@id@id

a

@e
“1”

@id @�
“1”

a

@e@id @�

a

@e@id @�
“4”“3”

Thus, v has k + 2 children of type a. The first of these a-nodes has 1 as value of
attribute @id and 1 as value of attribute @e since the third rule of ΣST says that
for this node @id = u1 and @e = x, being u1 and x the values of the attribute
@id of the node of type I1 in Tθ and the attribute @t of the node of type H in
Tθ, respectively. For the i-th (i ∈ [2, k]) a-node in the tree shown above, values of
attributes @id and @e are i and 0, respectively. For the last two a-nodes in this tree,
attribute @� takes values 3 and 4, respectively, since STD mentioned above says
that there exist children of v having y = 3 and y′ = 4 as values of their attributes
@� (formula a(@� = y), a(@� = y′) above). Furthermore, v has also as children a
sequence of nodes of types a1, . . ., a�, being i the value of attribute @id of the i-th
node of this sequence.

Let w′ be the string of types of the children of node v in the tree shown above
(w′ = aka1 · · · a�a2). Since w ∈ fixeda(r), w � w′ and #a(w) < #a(w′), we have
that w′ 	∈ π(r). Thus, to construct a solution for Tθ we need to replace w′ by a
string w′′ ∈ π(r) such that the generated tree continue satisfying ΣST and either
w � w′′ and #a(w) = #a(w′′) or w 	� w′′. The latter case is not possible since the
first k children of v of type a have pairwise distinct values in attribute @id and the
sequence of children of v of types a1, . . ., a� have also pairwise distinct values in
attribute @id (recall that ai 	= a, for every i ∈ [1, �]). Thus, we have to construct
a string w′′ from w′ such that w � w′′ and #a(w) = #a(w′′). Given that the first
k children of v of type a have pairwise distinct values in attribute @id, the only
way to do this is to remove the last two children of v of type a and choose among
the first k a-nodes where to place 3 and 4 as values of attribute @�. For example,
Figure 10 shows a possible way of constructing string w′′, where 3 and 4 are the
values of attribute @e of the last and the first node of type a, respectively. In this
figure, dots next to the node of type a� represent the fact that v can have some
extra children not of type a.

We observe that when choosing where to place values 3 and 4, we are actually
choosing the truth values for x2 and ¬x2. For example, in the solution for Tθ shown
in Figure 10, we have chosen value 1 for ¬x2 since 4 is the value of attribute @� of a
node with value distinct from 0 in attribute @e, and we have chosen value 0 for x2

since 3 is the value of attribute @� of a node with value 0 in attribute @e. We will
use this property to prove that θ is satisfiable if and only if certain(Q, Tθ) = false .
It is worth mentioning that if k > 2, then it is possible to choose value 0 for both
x2 and ¬x2. After defining query Q, we will show that this alternative does not
cause any problems.

Journal of the ACM, Vol. V, No. N, Month 20YY.

46 ·

.

. . .a a a a1 a�

@e

“1”

@id @�

“1”

@e

“0”

@id @�

“2”

@e

“0”

@id

“k”

@�

“1” “�”

@id@id

“4” “3”

G

Fig. 10. A solution T ′ for source tree Tθ.

Boolean CTQ-query Q is defined as:

∃x∃y∃z∃u B[C(@f = x,@s = y,@t = z), H(@f = u),
G[a(@e = u,@� = x)], G[a(@e = u,@� = y)], G[a(@e = u,@� = z)]].

Intuitively, queryQ says that there exists a node v of type C such that each “literal”
of v is assigned value 0, that is, the values i1, i2, i3 of the attributes @f , @s, @t of
v, respectively, are such that for every i ∈ {i1, i2, i3}, there exists a node v′ of type
a such that 0, i are the values of attributes @e, @� of v′, respectively.

Now we prove that for every 3-CNF propositional formula θ, we have that θ is
satisfiable if and only if certain(Q, Tθ) = false, where Tθ is constructed from θ in
PTIME as shown above.

(⇒) Assume that θ is satisfiable and let σ be a truth assignment satisfying θ.
Define a solution T ′ for Tθ as follows. The structure of the C- and H-nodes of T ′

is copied from Tθ. For every propositional variables x in θ, we define a G-node v of
T ′ as follows. The string of types of the children of v is w. The values of attributes
@id and @e of the children of v are assigned as shown above. If σ(x) = 1, then the
value assigned to x in Tθ is the value of the attribute @� of the first child of v of
type a, which has value 1 in attribute @e, and the value assigned to ¬x in Tθ is the
value of the attribute @� of the second child of v of type a, which has value 0 in
attribute @e. Otherwise, σ(x) = 0 and the value assigned to ¬x in Tθ is the value
of the attribute @� of the first child of v of type a, and the value assigned to x in
Tθ is the value of the attribute @� of the second child of v of type a.

It is straightforward to prove that T ′ conforms to DT and satisfies ΣST. Fur-
thermore, T ′ 	|= Q since σ satisfies θ and, therefore, at least one literal per clause
C is not assigned value 0. We conclude that certain(Q, Tθ) = false since T ′ is a
solution for Tθ.

(⇐) Assume that certain(Q, Tθ) = false and let T ′ be a solution for Tθ such
that T ′ 	|= Q. We define a truth assignment for the propositional variables of θ as
follows. For every clause in θ, find a C-node v of T ′ such that the values i1, i2, i3
of attributes @f , @s, @t of v are the values assigned in Tθ to the literals of that
clause. Since T ′ 	|= Q, there exists i ∈ {i1, i2, i3} such that for every node v′ of type
a with value 0 in its attribute @e, we have that i is not the value of attribute @�
of v′. If i corresponds to a positive literal x, then define σ(x) as 1. If i corresponds
to a negative literal ¬x, then define σ(x) as 0 (σ(¬x) = 1)
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 47

We show that σ is well defined. On the contrary, assume that there exists a
propositional variable x such that 1 was assigned to both σ(x) and σ(¬x). Let i,
j be the values assigned in Tθ to x and ¬x. Then for every node v′ of type a with
value 0 in its attribute @e, we have that i is not the value of attribute @� of v′.
Let v′′ be a G-node of T ′ that satisfies the left hand side of the third rule of ΣST

instantiated on the following values from Tθ:

B[H(@t = 1,@f = 0), L(@p = i,@n = j),
k∧
i=1

Ii(@id = i),
�∧
j=1

Jj(@id = j)].

This node has as children two distinct a-nodes v1, v2 with values i, j in attribute
@�, respectively. Since i must be the value of attribute @� of a child of v′′ of type
a with value distinct from 0 in attribute @e, and there is exactly one child of v′′

satisfying this condition (with value 1 in attribute @e), we have that the value of
attribute @e of v2 is 0. Thus, there exists a node v′ of type a such that 0, j are the
values of attributes @e, @� of v′, respectively, and, therefore, 1 is not assigned to
¬x, which contradicts our original assumption.

Since σ is well defined and σ satisfies θ (by definition of σ), we conclude that θ
is satisfiable. This concludes the proof Lemma 6.20.

Proof of Lemma 6.21. Assume that C is an admissible class of regular
expressions containing a non-univocal regular expression r such that c(r) ≤ 1, and
assume that alph(r) = Σ.

Since r is not a univocal regular expression, there exists w ∈ Σ∗ such that w 	∈
π(r), rep(w, r) 	= ∅ and rep(w, r) does not have a maximum element with respect
to �w, that is, there exist w1, . . ., wn in rep(w, r) (n ≥ 2) such that (1) for
every w′ ∈ rep(w, r), there exists i ∈ [1, n] such that w′ �w wi, and (2) for every
i, j ∈ [1, n], i 	= j, we have that wi 	�w wj . Furthermore,

Claim 6.22. If w′ ∈ π(r) is such that alph(w) ⊆ alph(w′), then there exists
i ∈ [1, n] such that w′ �w wi.

The proof of Claim 6.22 can be found in the appendix. To prove the lemma, we
consider three cases.

(I) First, assume that there exists distinct i, j ∈ [1, n] such that w � wi
and w � wj . Without loss of generality, assume that i = 1 and j = 2. De-
fine I = {i ∈ [2, n] | w � wi} and for every i ∈ I ∪ {1}, define X(wi) as
alph(wi) \ alph(w). Furthermore, define Y as

Y =
(⋃
i∈I

X(wi)
)
\X(w1).

Since w2 	�w w1, there exists a0 ∈ X(w1) such that a0 	∈ X(w2). Given that
w1 	�w wi (i ∈ I), there exists b ∈ X(wi) such that b 	∈ X(w1). Thus, by definition
of Y , we conclude that Y ∩X(w1) = ∅ and X(wi) ∩ Y 	= ∅, for every i ∈ I.

To show that C is strongly coNP-complete, we define a data exchange setting
(DS, DT,ΣST) and a Boolean CTQ-query Q such that DS is a simple DTD, DT

is a C-DTD, ΣST is a set of fully-specified STDs and 3SAT can be reduced to the
Journal of the ACM, Vol. V, No. N, Month 20YY.

48 ·

. . .

. . .

B

@p @n

L

@p @n

L

@p @n

L

@p @n

L I1

@id @id

Ik

“1” “2” “3” “4” “5” “6” “7” “8” “1” “k”
@f @s @t

C

“4” “5” “8”
@f @s @t

C

“1” “6”“3”

Fig. 11. XML tree Tθ , defined in case (I) of the proof of Lemma 6.21, representing propositional
formula θ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4).

complement of Certain-Answers(Q), that is, for every propositional formula θ
in 3-CNF, there exists a PTIME constructible XML tree Tθ conforming to DS such
that θ is satisfiable if and only if certain(Q, Tθ) = false. Simple DTD DS is defined
as follows. Let k = max{#b(w) | b ∈ alph(w)}, ES = {B, C, L, I1, . . ., Ik} be a set
of element types and AS = {@f , @s, @t, @p, @n, @id} a set of attributes. Then
DS = (PS, RS, B) is a DTD over (ES, AS), where PS is defined as:

PS(B) = C∗L∗I∗1 · · · I∗k ,
PS(�) = ε, for every � ∈ ES \ {B}.

and RS is defined as:

RS(B) = ∅, RS(C) = {@f,@s,@t},
RS(L) = {@p,@n}, RS(Ii) = {@id}, for every i ∈ [1, k].

XML trees conforming to DS are used to represent propositional formulae. Let θ
be 3-CNF formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4). To construct tree Tθ, first
we assign a distinct natural number to each literal, say

x1 �→ 1, x2 �→ 3, x3 �→ 5, x4 �→ 7, (4)
¬x1 �→ 2, ¬x2 �→ 4, ¬x3 �→ 6, ¬x4 �→ 8.

Then we represent each clause of θ as a node of type C, being the values of attributes
@f , @s, @t the first, second and third literal of that clause, respectively. For each
propositional variable x in θ, we use the attributes @p, @n of a node of type L to
store the values assigned to x and ¬x, respectively. Finally, for every i ∈ [1, k] we
create a node of type Ii with value i in its attribute @id (it will become clear why
we need these nodes when we define DT and ΣST). Tree Tθ for the formula defined
above is shown in Figure 11.
C-DTD DT is defined as follows. Let ET = {B,C} ∪ {Gi | i ∈ [1, 8]} ∪ alph(r)

be a set of element types such that ({B,C} ∪ {Gi | i ∈ [1, 8]}) ∩ alph(r) = ∅, and
let AT = {@f , @s, @t, @id, @e, @c, @d} be a set of attributes. Then DT =
(PT, RT, B) is a DTD over (ET, AT), where PT is defined as:

PT(B) = G∗
1C

∗, PT(G1) = G∗
2G

∗
3, PT(G2) = G∗

4G
∗
5,

PT(G4) = G∗
7, PT(G7) = G∗

8, PT(G8) = ε,
PT(G5) = r, PT(�) = ε, for every � ∈ alph(r), PT(G3) = G∗

6,
PT(G6) = ε, PT(C) = ε.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 49

and RT is defined as:

RT(B) = ∅, RT(G1) = {@e},
RT(G2) = {@e}, RT(G4) = ∅,
RT(G7) = ∅, RT(G8) = {@c},
RT(G5) = ∅, RT(�) = ∅, for every � ∈ alph(r) \ ({a0} ∪ Y ∪ alph(w)),
RT(G3) = ∅, RT(�) = {@id}, for every � ∈ alph(w),
RT(a0) = {@c}, RT(�) = {@d}, for every � ∈ Y ,
RT(G6) = {@d}, RT(C) = {@f,@s,@t}.

Finally, the set ΣST of fully-specified STDs is defined as follows. The first rule of
ΣST is defined as:

B[C(@f = x,@s = y,@t = z)] :– B[C(@f = x,@s = y,@t = z)].

This rule says that every node of type C in a source tree T must appear in every
solution for T . The second rule of ΣST is defined as follows:

B[G1(@e = x)[G2(@e = y)[G4[G7[G8]], G5[
∧

b∈alph(w)

#b(w)∧
i=1

b(@id = ui)]],

G3[G6]] :– B[L(@p = x,@n = y),
k∧
i=1

Ii(@id = ui)].

As in the proof of Lemma 6.20, we use symbol
∧

to denote a sequence of formulae
separated by commas. Indeed, conjunction is not allowed in tree-pattern formulae.
Thus, for example,

∧#b(w)
i=1 b(@id = ui) denotes formula b(@id = u1), . . . , b(@id =

u#b(w)). To explain the meaning of this rule, we considered again tree Tθ shown
in Figure 11. Assuming that w = a1 · · · ap (p ≥ 0), the previous rule says that for
each pair of complementary literals, say (3, 4), and for each solution T ′ for Tθ, there
should exist a node v1 of type G1 in T ′ having the following descendants:

. . .

G4

G7

G8

@c

G2

a1 ap

@id @id

G5@e

@e
“3”

“4”

@d

G6

G3

G1

In this figure, assume that vi (i ∈ [1, 8]) is the identifier of the node of type Gi.
Node v1 has an attribute @e with value 3 and it has two children, node v2 of type
G2 and node v3 of type G3. Node v2 has an attribute @e with value 4 and it has

Journal of the ACM, Vol. V, No. N, Month 20YY.

50 ·

.

(b)

G4

G7

G8

@c

G2

a1 ap

@id @id

G5@e

@e
“3”

“4”

G1

a0

@c

@d

G6

G3

G4

G7

G8

@c

G2

a1 ap

@id @id

G5@e

@e
“3”

“4”

G1

b

@d

@d

G6

G3

(a)

Fig. 12. Possible ways of repairing string w in case (I) of the proof of Lemma 6.21.

two children, node v4 of type G4 and node v5 of type G5. Let b ∈ alph(w). Node v5
has #b(w) children of this type. Furthermore, these b-nodes are assigned pairwise
distinct values in attribute @id, taken from attribute @id of the nodes of type I1,
. . ., Ik in Tθ. We observe that if w = ε, then v5 has no children.

Since w 	∈ π(r), to construct a solution T ′ for Tθ we need to replace w by a string
w′ ∈ π(r) such that the generated tree continue satisfying ΣST. By Claim 6.22,
we know that there exists i ∈ [1, n] such that w′ �w wi. First assume that i = 1.
Then, by definition of �w, we have that a0 ∈ alph(w′) and, therefore, the generated
solution is of the form shown in Figure 12 (a). Second, assume that i 	= 1. Since the
children of v of type b (b ∈ alph(w)) have pairwise distinct values in attribute @id,
we cannot remove any of these nodes in order to construct a solution for T ′. Thus,
w � w′ and, therefore, w � wi. We conclude that i ∈ I. Given that w′ �w wi,
there exists b ∈ Y such that b ∈ alph(w′) and, hence, the generated solution is of
the form shown in Figure 12 (b).

We note that when choosing whether to replace w by either a string contained
in w1 or a string contained in wi (i ∈ I), we are actually choosing the truth values
for x2 and ¬x2. We say that a literal j has been assigned value 0 if j is the value
of attribute @e of a node v having the following descendants:

u1@e
“j”

v

u2

u3 u4

u5

@c

@d

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 51

That is, v has a “great-grandchild” u5 with an attribute @c and it has a “grand-
child” u4 with an attribute @d. For example, in the solution for Tθ shown in Figure
13 (a), we have chosen value 0 for x2 since 3 is the value of attribute @e of a node
(of type G1) having a “great-grandchild” (of type a0) with an attribute @c and
having a “grandchild” (of type G6) with an attribute @d. On the other hand, in
the solution for Tθ shown in Figure 13 (b), we have chosen value 0 for ¬x2 since
4 is the value of attribute @e of a node (of type G2) having a “great-grandchild”
(of type G8) with an attribute @c and having a “grandchild” (of type b) with an
attribute @d. It is worth mentioning that it is possible to choose value 0 for both
x2 and ¬x2. After defining query Q, we will show that this alternative does not
cause any problems. From now on, we say that a node v is a (@c,@d)-node if v
has a “great-grandchild” with an attribute @c and it has a “grandchild” with an
attribute @d. Thus, we say that we have chosen value 0 for a propositional variable
x if there exists a (@c,@d)-node v having in attribute @e the value assigned to x
in Tθ.

Boolean CTQ-query Q is defined as:

∃x∃y∃z∃u1∃u2∃u3∃v1∃v2∃v3 (C(@f = x,@s = y,@t = z) ∧
(@e = x)[[[(@c = u1)]], [(@d = v1)]] ∧
(@e = y)[[[(@c = u2)]], [(@d = v2)]] ∧
(@e = z)[[[(@c = u3)]], [(@d = v3)]]).

Intuitively, queryQ says that there exists a node v of type C such that each “literal”
of v is assigned value 0, that is, the values i1, i2, i3 of the attributes @f , @s, @t of
v, respectively, are such that for every i ∈ {i1, i2, i3}, there exists a (@c,@d)-node
v′ having i as value of attribute @e.

Now we prove that for every 3-CNF propositional formula θ, we have that θ is
satisfiable if and only if certain(Q, Tθ) = false, where Tθ is constructed from θ in
PTIME as shown above.

(⇒) Assume that θ is satisfiable and let σ be a truth assignment satisfying θ.
Define a solution T ′ for Tθ as follows. The structure of the C-nodes of T ′ is copied
from Tθ. For every propositional variables x in θ, we define a G1-node v1 of T ′ as
follows. Node v1 has the value assigned to x in Tθ in attribute @e and it has two
children, node v2 of type G2 and node v3 of type G3. Node v3 has only one child
(of type G6). Node v2 has the value assigned to ¬x in Tθ in attribute @e and it has
two children, node v4 of type G4 and node v5 of type G5. Node v4 has only one
child (of type G7), which in turn has only one child (of type G8). The sequence
of children of v5 is defined as follows. If σ(x) = 0, then the string of types of the
children of v5 is w1. For every b ∈ alph(w), exactly #b(w) children of v5 of type b
are assigned pairwise distinct values in attribute @id, taken from attribute @id of
the nodes of type I1, . . ., Ik in Tθ. Furthermore, attributes with fresh null values
are added to the descendants of v1 according to RT. We note that in this case we
have assigned value 0 to σ(x) since the value assigned to x in Tθ is the value of
attribute @e of a (@c,@d)-node (of type G1). We also note that in this case we
have not assigned value 0 to σ(¬x). If σ(x) = 1, then the string of types of the
children of v5 is w2. For every b ∈ alph(w), exactly #b(w) children of v5 of type b
are assigned pairwise distinct values in attribute @id, taken from attribute @id of

Journal of the ACM, Vol. V, No. N, Month 20YY.

52 ·
the nodes of type I1, . . ., Ik in Tθ. Furthermore, attributes with fresh null values
are added to the descendants of v according to RT. We note that in this case we
have assigned value 0 to σ(¬x) since the value assigned to ¬x in Tθ is the value of
attribute @e of a (@c,@d)-node (of type G2). We also note that in this case we
have not assigned value 0 to σ(x).

It is straightforward to prove that T ′ conforms to DT and satisfies ΣST. Fur-
thermore, T ′ 	|= Q since σ satisfies θ and, therefore, at least one literal per clause
C is not assigned value 0. We conclude that certain(Q, Tθ) = false since T ′ is a
solution for Tθ.

(⇐) Assume that certain(Q, Tθ) = false and let T ′ be a solution for Tθ such
that T ′ 	|= Q. We define a truth assignment for the propositional variables of θ as
follows. For every clause in θ, find a C-node v of T ′ such that the values i1, i2, i3
of attributes @f , @s, @t of v are the values assigned in Tθ to the literals of that
clause. Since T ′ 	|= Q, there exists i ∈ {i1, i2, i3} such that no (@c,@d)-node v′ has
i as value of attribute @e. If i corresponds to a positive literal x, then define σ(x)
as 1. If i corresponds to a negative literal ¬x, then define σ(x) as 0. We will show
that σ is well defined. On the contrary, assume that there exists a propositional
variable x such that 1 was assigned to σ(x) and σ(¬x). Let i, j be the values
assigned in Tθ to x and ¬x. Then no (@c,@d)-node v′ has j as value of attribute
@e. Let v1 be a G-node of T ′ that satisfies the left hand side of the second rule of
ΣST instantiated on the following values from Tθ:

B[L(@p = i,@n = j),
k∧
i=1

Ii(@id = i)].

Then v1 has a child of type G2, which in turn has a child of type G5. Let v5 be the
identifier of this node and w′ = λT ′(children(v5)). Since no (@c,@d)-node v′ has
j as value of attribute @e, we have that alph(w′) ∩ Y = ∅. Thus, by Claim 6.22,
we conclude that w′ �w w1 and, therefore, a0 ∈ alph(w′). But @c ∈ RT(a0) and,
hence, v1 is a (@c,@d)-node having i as value of attribute @e. We conclude that
there exists a (@c,@d)-node having i as value of attribute @e, which contradicts
the fact that 1 was assigned to σ(x).

Since σ is well defined and σ satisfies θ (by definition of σ), we conclude that θ
is satisfiable. This concludes the proof of case (I).

(II) Second, assume that there exists distinct i, j ∈ [1, n] and a ∈ alph(w)
such that (1) #a(wi) < #a(w) and (2) for every b ∈ alph(w), we have that
#b(wi) ≤ #b(wj) or #b(wj) ≥ #b(w). Without loss of generality, assume that
i = 1 and j = 2. Here, we consider two sub-cases.

(II.1) Assume that for every b ∈ alph(w) such that #b(w1) < #b(w), we have that
#b(w1) = #b(w2). Given that w1 	�w w2, there exist b ∈ alph(w2) \ alph(w) such
that b 	∈ alph(w1), and given that w2 	�w w1, there exist c ∈ alph(w1) \ alph(w)
such that c 	∈ alph(w2).

Let w′ be a string such that: alph(w′) = alph(w) and #b(w′) =
min{#b(w1), #b(w)}, for every b ∈ alph(w′). We note that w′ 	∈ π(r) since
w1 �w w′ and w′ 	�w w1 (c ∈ alph(w1) and c 	∈ alph(w)). Since w1 ∈ rep(w, r),
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 53

there exists string s � w such that w1 ∈ min ext(s, r). Then s � w′. On the
contrary, assume that s 	� w′. Hence, given that s � w, there exists d ∈ alph(w)
such that #d(w′) < #d(s) ≤ #d(w). Thus, by definition of w′ we have that
#d(w1) = #d(w′) < #d(s), which contradicts the fact that s � w1. Given that
s � w′, we have that {w′′ | w′ � w′′ y w′′ ∈ π(r)} ⊆ {w′′ | s � w′′ y w′′ ∈ π(r)}
and, therefore, w1 ∈ min ext(w′, r). We conclude that w1 ∈ rep(w′, r). Similarly,
we conclude that w2 ∈ rep(w′, r).

Now we show that w1 ∈ max�w′ rep(w′, r). On the contrary, assume that
there exists s′ ∈ rep(w′, r) such that w1 ≺w′ s′. Given that w1 �w′ s′,
for every a ∈ alph(w) = alph(w′) such that #a(w1) < #a(w), we have that
#a(w1) = #a(w′) ≤ #a(s′). Furthermore, given that w1 �w′ s′, we have that
alph(s′) \ alph(w′) ⊆ alph(w1) \ alph(w′). Thus, given that alph(w′) = alph(w), we
conclude that w1 �w s′. Since alph(w) ⊆ alph(s′), by Claim 6.22 we have that s′ �w
wi (i ∈ [1, n]). If we assume that i = 1, then alph(w1)\alph(w) ⊆ alph(s′)\alph(w)
and, therefore, alph(w1) \ alph(w′) ⊆ alph(s′) \ alph(w′). Thus, given that w′ � w,
we conclude that s′ �w′ w1, which contradicts our assumption that w1 ≺w′ s′.
Thus, s′ �w wi, where i 	= 1. Given that w1 �w s′, we conclude that w1 �w wi,
which contradicts our original assumption. Thus, w1 ∈ max�w′ rep(w′, r) and,
similarly, w2 ∈ max�w′ rep(w′, r).

Given that there exist b ∈ alph(w2) \ alph(w) such that b 	∈ alph(w1) and
there exist c ∈ alph(w1) \ alph(w) such that c 	∈ alph(w2), we have that
w1 	�w′ w2 and w2 	�w′ w1. Thus, given that w′ 	∈ π(r), w1 ∈ max�w′ rep(w′, r),
w2 ∈ max�w′ rep(w′, r), w′ � w1 and w′ � w2, we have that w′ is a string
satisfying case (I) of this proof. Hence, we use case (I) to prove that C is strongly
coNP-complete.

(II.2) Assume that there exists a0 ∈ alph(w) such that #a0(w1) < #a0(w)
and #a0(w1) < #a0(w2). Since w1 	�w w2, we have that there exists
b ∈ alph(w2) \ alph(w) such that b 	∈ alph(w1). Let X be set of all such elements,
that is, X = {b ∈ alph(r) | there exists i ∈ [2, n] such that b ∈ alph(wi) \ alph(w)
and b 	∈ alph(w1)}. Then X 	= ∅.

To show that C is strongly coNP-complete, we define a data exchange setting
(DS, DT,ΣST) and a Boolean CTQ-query Q such that DS is a simple DTD, DT

is a C-DTD, ΣST is a set of fully-specified STDs and 3SAT can be reduced to the
complement of Certain-Answers(Q), that is, for every propositional formula θ
in 3-CNF, there exists a PTIME constructible XML tree Tθ conforming to DS such
that θ is satisfiable if and only if certain(Q, Tθ) = false. Simple DTD DS is defined
as follows. Let k = max{#b(w1) | b ∈ alph(w)}, ES = {B, C, L, I1, . . ., Ik} be a
set of element types and AS = {@f , @s, @t, @p, @n, @id} be a set of attributes.
Then DS = (PS, RS, B) is a DTD over (ES, AS), where PS is defined as:

PS(B) = C∗L∗I∗1 · · · I∗k ,
PS(�) = ε, for every � ∈ ES \ {B}.

and RS is defined as:

RS(B) = ∅, RS(C) = {@f,@s,@t},
RS(L) = {@p,@n}, RS(Ii) = {@id}, for every i ∈ [1, k].

Journal of the ACM, Vol. V, No. N, Month 20YY.

54 ·
XML trees conforming to DS are used to represent propositional formulae exactly
as in case (I). Assume that θ and Tθ are as shown in Figure 11, where variables x1,
x2, x3, x4 and their negations have been assigned the same values as in case (I)
(see equation (4)).
C-DTD DT is defined as follows. Let ET = {B, G, C, N , F} ∪ alph(r) be a set

of element types such that {B, G, C, N , F} ∩ alph(r) = ∅, and let AT = {@f ,
@s, @t, @id, @e} be a set of attributes. Then DT = (PT, RT, B) is a DTD over
(ET, AT), where PT is defined as:

PT(B) = G∗C∗, PT(G) = r, PT(�) = ε, for every � ∈ alph(r) \ {a0},
PT(a0) = N∗F ∗, PT(N) = ε, PT(F) = ε,
PT(C) = ε.

and RT is defined as:

RT(B) = ∅, RT(C) = {@f,@s,@t},
RT(G) = ∅, RT(�) = {@id}, for every � ∈ alph(w) \ {a0}
RT(a0) = {@id,@e}, RT(�) = {@f}, for every � ∈ X ,
RT(N) = {@e}, RT(�) = ∅, for every � ∈ alph(r) \ (X ∪ alph(w)),
RT(F) = {@f}.

Finally, set ΣST of fully-specified STDs is defined as follows. The first rule of ΣST

is defined as:

B[C(@f = x,@s = y,@t = z)] :– B[C(@f = x,@s = y,@t = z)].

This rule says that every node of type C in a source tree T must appear in every
solution for T . The second rule of ΣST is defined as (we use

∧
to denote a sequence

of formulae separated by commas, as in case (I)):

B[G[
∧

b∈alp(w)\{a0}

(nb∧
i=1

b(@id = ui),
#b(w)∧
i=nb+1

b

)
,

na0∧
i=1

a0(@id = ui,@e = x)[F],
#a0(w)∧
i=na0+1

a0[N(@e = y)]]] :–

B[L(@p = x,@n = y),
k∧
i=1

Ii(@id = ui)],

where nb = min{#b(w),#b(w1)}, for every b ∈ alph(w). In particular, na0 =
min{#a0(w),#a0 (w1)} = #a0(w1).

To explain the meaning of the previous rule, we considered again tree Tθ shown
in Figure 11. Assuming that w = a

#a0(w)
0 a1 · · ·ap, where ai 	= a0 (i ∈ [1, p]), the

previous rule says that for each pair of complementary literals, say (3, 4), and for
each solution T ′ for Tθ, there should exist a node v of type G in T ′ having the
following descendants:
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 55

. . .

. . .

.
. . .

a0

“3”

a0

“3”
@e @e

a0

“3”
@e

a0

@e

a0

@e

a1 ap

G

@id @id@id
“na0”

@id
“1”

F

@f

@id
“2”

F

@f

F

@f

@id N

@e
“4”

@id N

@e
“4”

In this tree, v has #a0(w) children of type a0. The first na0 of these children are
defined as follows. Let i ∈ [1, na0]. Then the i-th child of v, from left to right, of
type a0 has a child of type F and it has i as value of attribute @id and 3 as value
of attribute @e since the second rule of ΣST says that for this node @id = ui and
@e = x, being ui and x the values of attribute @id of the node of type Ii in Tθ and
attribute @p of a node of type L in Tθ, respectively. The remaining (#a0(w)−na0)
children of v of type a0 are defined as follows. Let i ∈ [na0 + 1,#a0(w)]. Then
the i-th child of v of type a0 has as child a node of type N having 4 as value of
attribute @e. Moreover, for every b ∈ alph(w) \ {a0}, the first nb children of v of
type b have pairwise distinct values in attribute @id.

Since w 	∈ π(r), to construct a solution T ′ for Tθ we need to replace w by a
string w′ ∈ π(r) such that the generated tree continue satisfying ΣST. By Claim
6.22, we know that there exists i ∈ [1, n] such that w′ �w wi. First assume that
i = 1. Then, by definition of �w, we have that #a0(w′) ≤ #a0(wi) = na0 . Thus,
given that the first na0 children of v of type a0 have pairwise distinct values in
attribute @id, to construct w′ from w we have to remove the last (#a0(w) − na0)
children of v of type a0 and choose among the first na0 nodes of this type where to
place the descendants of the removed a0-nodes. For example, we can make them
children of the first a0-node of w, generating the subtree shown in Figure 13 (a).
Second, assume that i 	= 1 and let s be a string such that alph(s) = alph(w) and
#b(s) = nb, for every b ∈ alph(s). Since the first nb children of v of type b have
pairwise distinct values in attribute @id, for every b ∈ alph(w), we conclude that
s � w′. Given that s � w′, w′ �w wi, and #b(s) = min{#b(w),#b(w1)} for every
b ∈ alph(w), we have that for every c ∈ alph(w) such that #c(wi) < #c(w), it is the
case that #c(wi) ≥ #c(w′) ≥ #c(s) = #c(w1). Thus, given that w1 	�w wi, there
exists b ∈ alph(wi) \ alph(w) such that b 	∈ alph(w1). But alph(wi) \ alph(w) ⊆
alph(w′) \ alph(w) and, thus, b ∈ alph(w′). Therefore, there exists a node in w′ of
type b ∈ X and, hence, the generated subtree is of the form shown in Figure 13 (b).
We observe that w′ must contain at least na0 nodes of type a0, each of them having
value 3 in attribute @e, since the first na0 children of v of type a0 have pairwise
distinct values in attribute @id.

We note that when choosing whether to replace w by either a string contained
in w1 or a string contained in wi (i 	= 1, i ∈ [1, n]), we are actually choosing the
truth values for x2 and ¬x2. We say that a literal j has been assigned value 0 if j
is the value of attribute @e of a node having a sibling with an attribute @f . For
example, in the solution for Tθ shown in Figure 13 (a), we have chosen value 0 for
¬x2 since 4 is the value of attribute @e of a node (of type N) having a sibling (of
type F) with an attribute @f . On the other hand, in the solution for Tθ shown in

Journal of the ACM, Vol. V, No. N, Month 20YY.

56 ·

.

.

.

(b)

a0 b

@f

G

@id @e N

@e

“3”“1”

G

“3”
@id
“1”

@e F

@f

N

@e
“4”

N

@e
“4”

a0

(a)

Fig. 13. Possible ways of repairing string w in case (II.2) of the proof of Lemma 6.21.

Figure 13 (b), we have chosen value 0 for x2 since 3 is the value of attribute @e of
a node (of type a0) having a sibling (of type b) with an attribute @f . We will use
this property to prove that θ is satisfiable if and only if certain(Q, Tθ) = false . It is
worth mentioning that it is possible to choose value 0 for both x2 and ¬x2. After
defining query Q, we will show that this alternative does not cause any problems.

Boolean CTQ-query Q is defined as:

∃x∃y∃z∃u1∃u2∃u3 (C(@f = x,@s = y,@t = z) ∧
[(@f = u1), (@e = x)] ∧ [(@f = u2), (@e = y)] ∧

[(@f = u3), (@e = z)]).

Intuitively, queryQ says that there exists a node v of type C such that each “literal”
of v is assigned value 0, that is, the values i1, i2, i3 of the attributes @f , @s, @t of
v, respectively, are such that for every i ∈ {i1, i2, i3}, there exists a node v′ having
i as value of attribute @e and having a sibling with an attribute @f .

Now we prove that for every 3-CNF propositional formula θ, we have that θ is
satisfiable if and only if certain(Q, Tθ) = false, where Tθ is constructed from θ in
PTIME as shown above.

(⇒) Assume that θ is satisfiable and let σ be a truth assignment satisfying θ.
Define a solution T ′ for Tθ as follows. The structure of the C-nodes of T ′ is copied
from Tθ. For every propositional variables x in θ, we define a G-node v of T ′ as
follows. If σ(x) = 1, then the string of types of the children of v is w1. For every
b ∈ alph(w), exactly nb children of v of type b are assigned pairwise distinct values
in attribute @id, taken from attribute @id of the nodes of type I1, . . ., Ik in Tθ.
The value assigned to x in Tθ is the value of attribute @e of the na0 children of v
of type a0. Furthermore, the first child of v of type a0 has a child of type F and
(#a0(w) − na0) children of type N , each of them having the value assigned to ¬x
in Tθ as value of attribute @e. The remaining na0 − 1 children of v of type a0 have
exactly one child (of type F). Finally, each node of type F has an attribute @f
with value a fresh null. We note that in this case we have assigned value 0 to σ(¬x),
since the value assigned to ¬x in Tθ is the value of attribute @e of a node (of type
N) having a sibling (of type F) with an attribute @f . We also note that in this
case we have not assigned value 0 to σ(x). Now, let us consider σ(x) = 0. In this
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 57

case, the string of types of the children of v is w2. For every b ∈ alph(w), exactly
nb children of v of type b are assigned pairwise distinct values in attribute @id,
taken from attribute @id of the nodes of type I1, . . ., Ik in Tθ. The value assigned
to x in Tθ is the value of attribute @e of the first na0 children of v of type a0.
Each of these nodes also has a child of type F , and these are the only descendant
of v having children of type F . Since #a0(w1) < #a0(w2), there exists at least one
child of v of type a0 not having a child of type F . Let v′ one of these nodes. Then
v′ has as children #a0(w1) − na0 nodes of type N , each of them having the value
assigned to ¬x in Tθ as value of attribute @e. Finally, every node of type either F
or b ∈ alph(w2) \ alph(w1) has an attribute @f with value a fresh null. We note
that in this case we have assigned value 0 to σ(x), since the value assigned to x
in Tθ is the value of attribute @e of a node (of type a0) having a sibling (of type
b ∈ alph(w2) \ alph(w1)) with an attribute @f . We also note that in this case we
have not assigned value 0 to σ(¬x) (no node of type a0 has both a child of type F
and a child of type N).

It is straightforward to prove that T ′ conforms to DT and satisfies ΣST. Fur-
thermore, T ′ 	|= Q since σ satisfies θ and, therefore, at least one literal per clause
C is not assigned value 0. We conclude that certain(Q, Tθ) = false since T ′ is a
solution for Tθ.

(⇐) Assume that certain(Q, Tθ) = false and let T ′ be a solution for Tθ such
that T ′ 	|= Q. We define a truth assignment for the propositional variables of θ as
follows. For every clause in θ, find a C-node v of T ′ such that the values i1, i2, i3
of attributes @f , @s, @t of v are the values assigned in Tθ to the literals of that
clause. Since T ′ 	|= Q, there exists i ∈ {i1, i2, i3} such that every node v′ having i as
value of attribute @e does not have a sibling with an attribute @f . If i corresponds
to a positive literal x, then define σ(x) as 1. If i corresponds to a negative literal
¬x, then define σ(x) as 0. We will show that σ is well defined. On the contrary,
assume that there exists a propositional variable x such that 1 was assigned to σ(x)
and σ(¬x). Let i, j be the values assigned in Tθ to x and ¬x. Then every node
v′ having j as value of attribute @e does not have a sibling with an attribute @f .
Let v′′ be a G-node of T ′ that satisfies the left hand side of the second rule of ΣST

instantiated on the following values from Tθ:

B[L(@p = i,@n = j),
k∧
i=1

Ii(@id = i)],

and let w′′ = λT ′(children(v′′)). This node has at least na0 children of type a0

having i as value of attribute @e and has at least #a0(w1) − na0 > 0 descendants
of type N having j as value of attribute @e. Thus, given that every node v′ having
j as value of attribute @e does not have a sibling with an attribute @f , we have
that v′′ has at least na0 + 1 nodes of type a0. Hence, by Claim 6.22, we conclude
that w′′ �w wi, where i 	= 1. Since the first nb children of v′′ of type b have
pairwise distinct values in attribute @id, for every b ∈ alph(w), we conclude that
#b(w′′) ≥ nb = min{#b(w),#b(w1)} for every b ∈ alph(w). Thus, given that
w′′ �w wi, we have that for every c ∈ alph(w) such that #c(wi) < #c(w), it is the
case that #c(wi) ≥ #c(w′′) ≥ nc = #c(w1). Hence, given that w1 	�w wi, there
exists b ∈ alph(wi) \ alph(w) such that b 	∈ alph(w1). But alph(wi) \ alph(w) ⊆

Journal of the ACM, Vol. V, No. N, Month 20YY.

58 ·
alph(w′′)\alph(w) and, thus, b ∈ alph(w′′). Therefore, there exists a children of v′′

of type b ∈ X having an attribute @f and, hence, there exists a node (of type a0)
having i as value of attribute @e and having a sibling (of type b) with an attribute
@f , which contradicts the fact that 1 was assigned to σ(x).

Since σ is well defined and σ satisfies θ (by definition of σ), we conclude that θ
is satisfiable. This concludes the proof of case (II).

(III) Finally, assume that (I) and (II) do not hold. Then

Claim 6.23.

(a) For every i ∈ [1, n], there exists a ∈ alph(w) such that #a(wi) < #a(w).

(b) For every i ∈ [1, n] and every a ∈ alph(w) such that #a(wi) < #a(w), we have
that #a(wi) = 1.

(c) For every i, j ∈ [1, n], i 	= j, there exists a ∈ alph(w) such that #a(wi) = 1 <
#a(w) and #a(wi) < #a(wj).

Proof. (a) On the contrary, assume that there exists i ∈ [1, n] such that w �
wi. Then, given that (I) does not hold, for every j ∈ [1, n], j 	= i, there exists
a ∈ alph(w) such that #a(wj) < #a(w). But n ≥ 2 and, thus, there exist distinct
i, j ∈ [1, n] and a ∈ alph(w) such that (1) #a(wj) < #a(w) and (2) for every
b ∈ alph(w), we have that #b(wj) ≤ #b(wi) or #b(wi) ≥ #b(w), which contradicts
the fact that (II) does not hold.

(b) On the contrary, assume that there exists i ∈ [1, n] and a ∈ alph(w) such that
1 < #a(wi) < #a(w). Since c(r) ≤ 1, we have that wi 	∈ fixeda(r) and, therefore,
there exists w′ ∈ π(r) such that wi � w′ and #a(wi) < #a(w′). Let s be a string
such that alph(s) = alph(w), #a(s) = #a(wi)+1 and #b(s) = min{#b(w),#b(wi)},
for every b ∈ alph(w) \ {a}. Then s � w and s � w′ and, therefore, there exists
s′ ∈ min ext(s, r) such that s � s′ � w′ and s′ ∈ rep(w, r). By Claim 6.22, there
exists j ∈ [1, n] such that s �w wj . Notice that j 	= i since #a(wi) < #a(w) and
#a(wi) + 1 = #a(s). It is easy to see that for every b ∈ alph(w), we have that
#b(wi) ≤ #b(wj) or #b(wj) ≥ #b(w). Thus, there exists distinct i, j ∈ [1, n] and
a ∈ alph(w) such that (1) #a(wi) < #a(w) and (2) for every b ∈ alph(w), we have
that #b(wi) ≤ #b(wj) or #b(wj) ≥ #b(w), which contradicts the fact that (II)
does not hold.

(c) On the contrary, assume that there exist i, j ∈ [1, n], i 	= j, such that for
every b ∈ alph(w) such that #b(wi) = 1 < #b(w), we have that #b(wi) ≥ #b(wj).
Then, by (b), we conclude that for every b ∈ alph(w) such that #b(wi) < #b(w),
we have that #b(wi) ≥ #b(wj). But by (a) we know that there exists a ∈ alph(w)
such that #a(wj) < #a(w) and, therefore, there exist distinct i, j ∈ [1, n] and
a ∈ alph(w) such that (1) #a(wj) < #a(w) and (2) for every b ∈ alph(w), we have
that #b(wj) ≤ #b(wi) or #b(wi) ≥ #b(w), which contradicts the fact that (II)
does not hold.

For every i ∈ [1, n], let X(wi) be the set of element types {b ∈ alph(w) | 1 =
#b(wi) < #b(w)}. By Claim 6.23 we know that X(wi) 	= ∅, for every i ∈ [1, n],
and that X(wi) 	⊆ X(wj), for every i, j ∈ [1, n], i 	= j. Let a0 ∈ X(w1) such that
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 59

B

@p @n

L

@p @n

L

@p @n

L

@p @n

L

“1” “2” “3” “4” “5” “6” “7” “8”
@f @s @t

C

“4” “5” “8”
@f @s @t

C

“1” “6”“3”

Fig. 14. XML tree Tθ, defined in case (III) of the proof of Lemma 6.21, representing propositional
formula θ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4).

a0 	∈ X(w2) and let

Y =
(n⋃
i=2

X(wi)
)
\X(w1).

Then a0 	∈ Y , X(w1) ∩ Y = ∅ and X(wi) ∩ Y 	= ∅, for every i ∈ [2, n].
As in all the previous cases, to show that C is strongly coNP-complete, we define

a data exchange setting (DS, DT,ΣST) and a Boolean CTQ-query Q such that DS

is a simple DTD, DT is a C-DTD, ΣST is a set of fully-specified STDs and 3SAT
can be reduced to the complement of Certain Answers(Q), that is, for every
propositional formula θ in 3-CNF, there exists a PTIME constructible XML tree
Tθ conforming to DS such that θ is satisfiable if and only if certain(Q, Tθ) = false .
Simple DTD DS is defined as follows. Let ES = {B, C, L} be a set of element types
and AS = {@f , @s, @t, @p, @n} be a set of attributes. Then DS = (PS, RS, B) is
a DTD over (ES, AS), where PS is defined as:

PS(B) = C∗L∗,
PS(�) = ε, for every � ∈ ES \ {B}.

and RS is defined as:

RS(B) = ∅, RS(C) = {@f,@s,@t}, RS(L) = {@p,@n}.
XML trees conforming to DS are used to represent propositional formulae. Let θ
be 3-CNF formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4). To construct tree Tθ, first
we assign a distinct natural number to each literal, say

x1 �→ 1, x2 �→ 3, x3 �→ 5, x4 �→ 7,
¬x1 �→ 2, ¬x2 �→ 4, ¬x3 �→ 6, ¬x4 �→ 8.

Then we represent each clause of θ as a node of type C, being the values of attributes
@f , @s, @t the first, second and third literal of that clause, respectively. For
each propositional variable x in θ, we use the attributes @p, @n of a node of
type L to store the values assigned to x and ¬x, respectively. Tree Tθ for θ =
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4) is shown in Figure 14.
C-DTD DT is defined as follows. Let ET = {B, G, C, N , F} ∪ alph(r) be a set

of element types such that {B, G, C, N , F} ∩ alph(r) = ∅, and let AT = {@f , @s,
@t, @e} be a set of attributes. Then DT = (PT, RT, B) is a DTD over (ET, AT),
where PT is defined as:

Journal of the ACM, Vol. V, No. N, Month 20YY.

60 ·

PT(B) = G∗C∗, PT(G) = r, PT(�) = ε, for every � ∈ alph(r) \ (Y ∪ {a0}),
PT(C) = ε, PT(F) = ε, PT(�) = N∗F ∗, for every � ∈ Y ∪ {a0},
PT(N) = ε.

and RT is defined as:

RT(B) = ∅, RT(G) = ∅, RT(�) = ∅, for every � ∈ alph(r)
RT(C) = {@f,@s,@t}, RT(N) = {@e}, RT(F) = {@f}.

Finally, set ΣST of fully-specified STDs is defined as follows. The first rule of ΣST

is defined as:

B[C(@f = x,@s = y,@t = z)] :– B[C(@f = x,@s = y,@t = z)].

This rule says that every node of type C in a source tree T must appear in every
solution for T . The second rule of ΣST is defined as (we use

∧
to denote a sequence

of formulae separated by commas, as in cases (I) and (II)):

B[G[a0[F],
#a0 (w)∧
i=2

a0[N(@e = x)],
∧
b∈Y

(
b[F],

#b(w)∧
i=2

b[N(@e = y)]
)
,

∧
c∈alph(w)\(Y ∪{a0})

#c(w)∧
i=1

c]] :– B[L(@p = x,@n = y)].

To explain the meaning of this rule, we considered again tree Tθ shown in Figure 14.
Assuming that b ∈ Y , the previous rule says that for each pair of complementary
literals, say (3, 4), and for each solution T ′ for Tθ, there should exist a node v of
type G in T ′ having the following descendants:

.

G

a0 b

N

@e
“3”

F

@f

a0

N

@e
“3”

a0

F

@f

b

N

@e
“4”

b

N

@e
“4”

In this figure, v has #a0(w) children of type a0. The first of these children has
only one child (of type F). Let i ∈ [2,#a0(w)]. Then the i-th child of v, from left
to right, of type a0 has only one child (of type N) having 3 as value of attribute
@e. Moreover, v has #b(w) children of type b, for every b ∈ Y . The first of these
children has only one child (of type F). Let i ∈ [2,#b(w)]. Then the i-th child of
v, from left to right, of type b has only one child (of type N) having 4 as value of
attribute @e. Finally, for every c ∈ alph(w)\ (Y ∪{a0}), we have that v has exactly
#c(w) children of type c.

Since w 	∈ π(r), to construct a solution T ′ for Tθ we need to replace w by a
string w′ ∈ π(r) such that alph(w) ⊆ alph(w′). By Claim 6.22, we know that there
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 61

. . .

. . .

.

. . .

. . .

(b)

G

b

F

@f

b

N

@e
“4”

b

N

@e
“4”

a0

N

@e
“3”

F

@f

N

@e
“3”

G

a0

N

@e
“3”

a0a0

NF

@e@f
“3”

b

N

@e
“4”

F

@f

N

@e
“4”

(a)

Fig. 15. Possible ways of repairing string w in case (III) of the proof of Lemma 6.21.

exists i ∈ [1, n] such that w′ �w wi. First assume that i = 1. Then, given that
#a0(w1) = 1 < #a0(w), we have that #a0(w′) = 1 and, hence, to construct w′ from
w we have to group all a0-nodes together into a single node, generating the subtree
shown in Figure 15 (a). Second, assume that i 	= 1. Then, there exists b ∈ Y such
that #b(wi) = 1 < #b(w) and, thus, #b(w′) = 1. In this case, to construct w′ from
w we have to group all b-nodes together into a single node, generating the subtree
shown in Figure 15 (b).

We note that when choosing whether to replace w by either a string contained
in w1 or a string contained in wi (i 	= 1, i ∈ [1, n]), we are actually choosing the
truth values for x2 and ¬x2. As in case (II.2), we say that a literal j has been
assigned value 0 if j is the value of attribute @e of a node having a sibling with
an attribute @f . For example, in the solution for Tθ shown in Figure 15 (a), we
have chosen value 0 for x2 since 3 is the value of attribute @e of a node (of type
N) having a sibling (of type F) with an attribute @f . On the other hand, in the
solution for Tθ shown in Figure 15 (b), we have chosen value 0 for ¬x2 since 4 is
the value of attribute @e of a node (of type N) having a sibling (of type F) with
an attribute @f . We will use this property to prove that θ is satisfiable if and only
if certain(Q, Tθ) = false . It is worth mentioning that it is possible to choose value
0 for both x2 and ¬x2. After defining query Q, we will show that this alternative
does not cause any problems.

Boolean CTQ-query Q is defined exactly as in case (II.2):

∃x∃y∃z∃u1∃u2∃u3 (C(@f = x,@s = y,@t = z) ∧
[(@f = u1), (@e = x)] ∧ [(@f = u2), (@e = y)] ∧

[(@f = u3), (@e = z)]).

Intuitively, queryQ says that there exists a node v of type C such that each “literal”
of v is assigned value 0, that is, the values i1, i2, i3 of the attributes @f , @s, @t of
v, respectively, are such that for every i ∈ {i1, i2, i3}, there exists a node v′ having
i as value of attribute @e and having a sibling with an attribute @f .

Now we prove that for every 3-CNF propositional formula θ, we have that θ is
satisfiable if and only if certain(Q, Tθ) = false, where Tθ is constructed from θ in
PTIME as shown above.

Journal of the ACM, Vol. V, No. N, Month 20YY.

62 ·
(⇒) Assume that θ is satisfiable and let σ be a truth assignment satisfying θ.

Define a solution T ′ for Tθ as follows. The structure of the C-nodes of T ′ is copied
from Tθ. For every propositional variables x in θ, we define a G-node v of T ′

as follows. If σ(x) = 0, then the string of types of the children of v is w1. In
particular, v has only one child of type a0, which has as children one node of type
F and (#a0(w)−1) nodes of type N , each of them having in attribute @e the value
assigned to x in Tθ. For every b ∈ Y , we have that v has #b(w1) children of type b
(#b(w1) > 1 by definition of Y). The first child of v of type b has as children a node
of type F . Each of the remaining (#b(w1) − 1) b-nodes has as children only one
node (of type N) having in attribute @e the value assigned to ¬x in Tθ. Finally,
each node of type F has an attribute @f with value a fresh null. We note that in
this case we have assigned value 0 to σ(x), since the value assigned to x in Tθ is
the value of attribute @e of a node (of type N) having a sibling (of type F) with
an attribute @f . Observe that these nodes are descendants of a node of type a0.
We also note that in this case we have not assigned value 0 to σ(¬x). Now, let us
consider σ(x) = 1. In this case, the string of types of the children of v is w2. In
particular, v has only one child of type b, for some b ∈ Y , which has as children one
node of type F and (#b(w)− 1) nodes of type N , each of them having in attribute
@e the value assigned to ¬x in Tθ. Furthermore, v has #a0(w2) children of type
a0 (#a0(w2) > 1 since a0 	∈ X(w2)). The first child of v of type a0 has as children
a node of type F . Each of the remaining (#a0(w2) − 1) a0-nodes has as children
only one node (of type N) having in attribute @e the value assigned to x in Tθ.
Finally, each node of type F has an attribute @f with value a fresh null. We note
that in this case we have assigned value 0 to σ(¬x), since the value assigned to ¬x
in Tθ is the value of attribute @e of a node (of type N) having a sibling (of type
F) with an attribute @f . Observe that these nodes are descendants of a node of
type b ∈ Y . We also note that in this case we have not assigned value 0 to σ(x).

It is straightforward to prove that T ′ conforms to DT and satisfies ΣST. Fur-
thermore, T ′ 	|= Q since σ satisfies θ and, therefore, at least one literal per clause
C is not assigned value 0. We conclude that certain(Q, Tθ) = false since T ′ is a
solution for Tθ.

(⇐) Assume that certain(Q, Tθ) = false and let T ′ be a solution for Tθ such
that T ′ 	|= Q. We define a truth assignment for the propositional variables of θ as
follows. For every clause in θ, find a C-node v of T ′ such that the values i1, i2, i3
of attributes @f , @s, @t of v are the values assigned in Tθ to the literals of that
clause. Since T ′ 	|= Q, there exists i ∈ {i1, i2, i3} such that every node v′ having i as
value of attribute @e does not have a sibling with an attribute @f . If i corresponds
to a positive literal x, then define σ(x) as 1. If i corresponds to a negative literal
¬x, then define σ(x) as 0. We will show that σ is well defined. On the contrary,
assume that there exists a propositional variable x such that 1 was assigned to σ(x)
and σ(¬x). Let i, j be the values assigned in Tθ to x and ¬x. Then every node
v′ having j as value of attribute @e does not have a sibling with an attribute @f .
Let v′′ be a G-node of T ′ that satisfies the left hand side of the second rule of ΣST

instantiated on the following values from Tθ:

B[L(@p = i,@n = j)],
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 63

and let w′′ = λT ′(children(v′′)). Since every node v′ having j as value of attribute
@e does not have a sibling with an attribute @f , for every b ∈ Y we have that
either #b(w′′) = 0 or #b(w′′) ≥ 2. Thus, by Claims 6.22 and definition of Y , we
have that w′′ �w w1 and, hence, #a0(w′′) = 1. We conclude that the only child of
v′′ of type a0 must have a child of type F and a child of type N having i as value
of attribute @e and, hence, there exists a node having i as value of attribute @e
and having a sibling with an attribute @f , which contradicts the fact that 1 was
assigned to σ(x).

Since σ is well defined and σ satisfies θ (by definition of σ), we conclude that θ
is satisfiable. This concludes the proof of case (III) and the proof of Lemma 6.21.

7. CONCLUSIONS

We have defined the basic notions of XML data exchange: source-to-target con-
straints, data exchange settings, consistency and query answering problems. We
have seen that transferring relational data exchange results to the XML setting
requires considerable effort, even in the fairly simple setting that shows how to
translate source patterns into target patterns. We have shown that, while check-
ing consistency is hard in general, it is tractable for a practically relevant class
handled by the Clio system at IBM [Popa et al. 2002]. For query answering, we
showed a dichotomy, that separates query answering instances into tractable and
coNP-complete ones, depending on properties of DTDs and constraints.

As far as the theoretical foundations of XML data exchange are concerned, this
paper uncovered at most the tip of the iceberg. We now briefly list other prob-
lems that seem to be worthy a theoretical investigation. We would like to remove
the distinct-variable restriction on source patterns used in our investigation of the
consistency problem, and analyze the resulting settings for decidability/complexity
issues. The standard notions of local-as-view and global-as-view from data integra-
tion [Lenzerini 2002] have been adapted in relational data exchange [Fagin et al.
2005; Fagin et al. 2005] and sometimes they lead to better algorithms or easier
analysis of the behavior of data exchange settings and queries. So far we have
not made these notions precise in the XML case. We have concentrated on tree
patterns that use the child and descendant axes of XPath; in the future we plan
to consider more expressive source-to-target constraints that use other axes such
as next sibling. We also would like to consider more expressive schema constraints
(for example, ID and IDREF attributes). Finally, to define the notion of certain
answers, we used queries that produce tuples of values. Most XML queries produce
trees, but it is not at all clear how to define the certain answers semantics for them.
We plan to work on this in the future. One very specific issue one needs to address
is the complexity of checking univocality of regular expressions (which guarantees
tractable query answering). We showed that the notion is decidable by reduction
to Presburger arithmetic, but this does not give us good complexity bounds.

Acknowledgments

We are very grateful to Ronald Fagin, Phokion Kolaitis, and Lucian Popa for many
helpful discussions during the early stages of this project, to Pablo Barceló and
Wenfei Fan for their comments on the first draft, and to the referees for their

Journal of the ACM, Vol. V, No. N, Month 20YY.

64 ·
comments. Part of this work was done while both authors were at the University
of Toronto, supported by a grant from NSERC, and while M. Arenas was visiting
IBM Almaden, supported by an IBM graduate fellowship. In addition, M. Arenas
is supported by FONDECYT grants 1050701 and 1070732 and grant P04-067-F
from the Millennium Nucleus Center for Web Research, and L. Libkin is supported
by the EC Marie Curie Excellence grant MEXC-CT-2005-024502 and EPSRC grant
E005039.

REFERENCES

Abiteboul, S. and Duschka, O. M. 1998. Complexity of answering queries using materialized
views. In Proceedings of the ACM Symposium on Principles of Database Systems (PODS).
ACM Press, New York, NY, 254–263.

Abiteboul, S., Kanellakis, P. C., and Grahne, G. 1991. On the representation and querying
of sets of possible worlds. Theor. Comput. Sci. 78, 1, 158–187.

Abiteboul, S., Segoufin, L., and Vianu, V. 2001. Representing and querying XML with incom-
plete information. In Proceedings of the ACM Symposium on Principles of Database Systems
(PODS). ACM Press, New York, NY, 150–161.

Amer-Yahia, S., Cho, S., Lakshmanan, L. V. S., and Srivastava, D. 2002. Tree pattern query
minimization. VLDB J. 11, 4, 315–331.

Amer-Yahia, S. and Kotidis, Y. 2004. Web-services architecture for efficient XML data ex-
change. In Proceedings of the IEEE International Conference on Data Engineering (ICDE).
IEEE Computer Society Press, Los Alamitos, CA, 523–534.

Arenas, M., Barceló, P., Fagin, R., and Libkin, L. 2004. Locally consistent transformations
and query answering in data exchange. In Proceedings of the ACM Symposium on Principles
of Database Systems (PODS). ACM Press, New York, NY, 229–240.

Arenas, M. and Libkin, L. 2005. XML data exchange: consistency and query answering. In
Proceedings of the ACM Symposium on Principles of Database Systems (PODS). ACM Press,
New York, NY, 13–24.

Benedikt, M., Fan, W., and Kuper, G. M. 2003. Structural properties of XPath fragments. In
Proceedings of the International Conference on Database Theory (ICDT). Springer, Heidelberg,
79–95.

Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison,

S., and Tommasi, M. 2007. Tree automata techniques and applications. Available on: http:
//www.grappa.univ-lille3.fr/tata. release October, 12th 2007.

Deutsch, A. and Tannen, V. 2001. Containment and integrity constraints for XPath. In Proceed-
ings of the International Workshop on Knowledge Representation meets Databases (KRDB).
CEUR-WS.org.

Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. 2003. Data exchange: Semantics and
query answering. In Proceedings of the International Conference on Database Theory (ICDT).
Springer, Heidelberg, 207–224.

Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. 2005. Data exchange: semantics and
query answering. Theor. Comput. Sci. 336, 1, 89–124.

Fagin, R., Kolaitis, P. G., and Popa, L. 2003. Data exchange: getting to the core. In Proceedings
of the ACM Symposium on Principles of Database Systems (PODS). ACM Press, New York,
NY, 90–101.

Fagin, R., Kolaitis, P. G., and Popa, L. 2005. Data exchange: getting to the core. ACM Trans.
Database Syst. 30, 1, 174–210.

Fagin, R., Kolaitis, P. G., Popa, L., and Tan, W. C. 2005. Composing schema mappings:
Second-order dependencies to the rescue. ACM Trans. Database Syst. 30, 4, 994–1055.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman.

Gottlob, G., Koch, C., and Schulz, K. U. 2006. Conjunctive queries over trees. J. ACM 53, 2,
238–272.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 65

Imielinski, T. and Lipski, W. 1984. Incomplete information in relational databases. J.

ACM 31, 4, 761–791.

Kozen, D. 2002. On two letters versus three. In Proceedings of the Fixed Points in Computer
Science (FICS). University of Aarhus, 44–50.

Krishnamurthy, R., Kaushik, R., and Naughton, J. F. 2003. XML-SQL query translation
literature: The state of the art and open problems. In Proceedings of the International XML
Database Symposium (XSym). Springer, Heidelberg, 1–18.

Lakshmanan, L. V. S., Ramesh, G., Wang, H., and Zhao, Z. 2004. On testing satisfiability of
tree pattern queries. In Proceedings of the International Conference Very Large Data Bases
(VLDB). Morgan Kaufmann, San Mateo, CA, 120–131.

Lenstra, H. W. 1983. Integer programming in a fixed number of variables. Math. Oper. Res. 8, 4,
538–548.

Lenzerini, M. 2002. Data integration: A theoretical perspective. In Proceedings of the ACM
Symposium on Principles of Database Systems (PODS). ACM Press, New York, NY, 233–246.

Miller, R. J., Hernández, M. A., Haas, L. M., Yan, L.-L., Ho, C. T. H., Fagin, R., and

Popa, L. 2001. The clio project: Managing heterogeneity. SIGMOD Record 30, 1, 78–83.

Neven, F. 2002. Automata, logic, and XML. In Proceedings of the Conference for Computer
Science Logic (CSL). Springer, Heidelberg, 2–26.

Neven, F. and Schwentick, T. 2003. XPath containment in the presence of disjunction, DTDs,
and variables. In Proceedings of the International Conference on Database Theory (ICDT).

Springer, Heidelberg, 312–326.

Popa, L., Velegrakis, Y., Miller, R. J., Hernández, M. A., and Fagin, R. 2002. Translating
web data. In Proceedings of the International Conference Very Large Data Bases (VLDB).
Morgan Kaufmann, San Mateo, CA, 598–609.

Seidl, H. 1990. Deciding equivalence of finite tree automata. SIAM J. Comput. 19, 3, 424–437.

Shu, N. C., Housel, B. C., Taylor, R. W., Ghosh, S. P., and Lum, V. Y. 1977. Express:
A data extraction, processing, amd restructuring system. ACM Trans. Database Syst. 2, 2,
134–174.

Vianu, V. 2001. A web odyssey: From Codd to XML. In Proceedings of the ACM Symposium
on Principles of Database Systems (PODS). ACM Press, New York, NY, 1–15.

Wood, P. T. 2003. Containment for XPath fragments under DTD constraints. In Proceedings of
the International Conference on Database Theory (ICDT). Springer, Heidelberg, 297–311.

Yu, C. and Popa, L. 2004. Constraint-based xml query rewriting for data integration. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD).
ACM Press, New York, NY, 371–382.

A. STRING AND TREE AUTOMATA

In this section, we recall some basic facts about ranked and unranked tree automata.
We write NFA and DFA for non-deterministic and deterministic finite automata.
If A is an automaton, then L(A) is the language accepted by it. Recall that given
a regular expression r, constructing an NFA Ar with L(Ar) = L(r) can be done in
polynomial time.

A nondeterministic (ranked) finite tree automaton (NFTA) on binary node-
labeled trees over alphabet Γ is defined as A = 〈Q, q0, δ, F 〉 where Q is the set of
states, q0 ∈ Q,F ⊆ Q and δ : Γ×Q×Q→ 2Q is the transition function. Given a bi-
nary tree T , a run ofA on T is a function runA : T → Q that assigns states to nodes.
For a leaf s labeled a, we require that runA(s) ∈ δ(a, q0, q0), and for a node s labeled
a with two children s1 and s2 we require that runA(s) ∈ δ(a, runA(s1), runA(s2)).
A tree T is accepted if there is a run runA such that runA(root) ∈ F . Given
an NFTA A, testing whether L(A) = ∅ can be done in time linear in the size of

Journal of the ACM, Vol. V, No. N, Month 20YY.

66 ·
A [Comon et al. 2007], and testing whether there is a tree not accepted by A is
EXPTIME-complete [Seidl 1990].

An unranked nondeterministic finite tree automaton (UNFTA) on ordered un-
ranked node-labeled trees over alphabet Γ is defined as A = 〈Q, δ, F 〉 where Q is
the set of states, F ⊆ Q and δ : Q × Γ → 2Q

∗
is the transition function such that

δ(q, a) is a regular language for every s ∈ Q and a ∈ Γ. Given an ordered unranked
tree T , a run of A on T is again a function runA : T → Q that assigns states to
nodes. If s is a node whose children are s1, . . . , sn ordered by the sibling relation
as s1 <sib . . . <sib sn, then the word runA(s1) . . . runA(sn) over Q must be in
δ(runA(s), a). In particular, if s is a leaf, then a run can assign a state q to it iff
ε ∈ L(δ(q, a)). A tree T is accepted if there is a run runA such that runA(root) ∈ F .
An automaton is deterministic if every tree admits only one run.

The standard representation of UNFTAs uses NFAs for transitions, that is, δ
maps pairs state-letter to NFAs over Q. It is known that testing nonemptiness is
again polynomial-time [Neven 2002]. If an automaton is deterministic and further-
more all transitions are represented by DFAs, then we refer to UFTA(DFA).

DTDs can naturally be represented by tree automata. We shall consider DTDs
without attributes. Such a DTD D over a set E of element types is represented by
an automaton AD in which the set of states is E, and δ(�, �) is defined to be an
automaton for P (�), and δ(�, �′) = ∅ otherwise, and F = {r}.

B. PROOFS

B.1 Proof of Proposition 4.4

As before, we can assume that all formulae in STDs have no free variables. Mem-
bership in NP is easy by guessing an instance; for membership in PSPACE we
transform a DTD such that all regular expressions become either conjunctions or
disjunctions, and then use an alternating polynomial-time algorithm. For hardness,
we use reductions from QSAT for PSPACE and 3SAT for NP.

We start with a). By Claim 4.2, it suffices to consider STDs in which all attribute
formulae are of the form � ∈ El . Furthermore, every nonrecursive DTD D that does
not use the Kleene star can be in polynomial time transformed into a DTD D′ in
which all productions are of the form � → �′�′′, or � → �′|�′′, or � → ε. This is
done by repeatedly changing each rule � → r1r2 into � → �1�2, �1 → r1, �2 → r2,
and each rule � → r1|r2 into � → �1|�2, �1 → r1, �2 → r2, where �1 and �2 are fresh
symbols from El . This also establishes an embedding h : SAT(D)→ SAT(D′) such
that for every tree-pattern formula given by the grammar

ϕ := �, � ∈ E | �[ϕ] | //ϕ,

one can find a formula ϕ′ from the same class such that T |= ϕ iff h(T) |= ϕ′, for
every T ∈ SAT(D). (This formula simply leaves // in place, and replaces �[ϕ] by an
explicit chain of new element types introduced in the translation). In view of this,
we can assume, without loss of generality, that in all DTDs all the productions are
of the form �→ �′�′′, or �→ �′|�′′, or �→ ε.

Now we show membership in PSPACE. Since by the assumption the target DTD
DT is fixed and is not recursive and does not use the Kleene star, there are only
finitely many trees that conform to it (if we disregard attribute values), that can
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 67

be explicitly listed. Let T1, . . . , Tm be the listing of those trees. Then for each STD
ψ :– ϕ and each Ti we can verify if Ti |= ψ. Furthermore, since each tree-pattern
formula can be translated into an FO formula in the vocabulary that contains both
child <child and descendant <∗

child relation, checking whether Ti |= ψ can be done
in PSPACE (since the combined complexity of FO is PSPACE).

Let Φi be the set of all ϕ’s such that Ti 	|= ψ where ψ :– ϕ is an STD in ΣST.
Then the setting (DS, DT,ΣST) is consistent iff there is a tree T |= DS and i ≤ n
such that T 	|= ϕ for every ϕ ∈ Φi (in this case Ti is a solution for T). Thus, to show
PSPACE-membership, it suffices to show that for a given set Φ of right-hand sides
of STDs from ΣST, one can check, in PSPACE, whether there exists a tree T that
conforms to DS and falsifies every formula in Φ. This is proved by providing an
alternating PTIME algorithm; since alternating PTIME equals PSPACE, the result
follows. Given the restriction on STDs, each ϕ simply checks the existence of a path
with a fixed set of labels �1, . . . , �k, indicating for each consecutive ones whether
they are in the child or descendant relation. Hence the alternating algorithm makes
an existential step for each � → �′|�′′ rule in the DTD, and a universal step for
each � → �′�′′ rule. It takes polynomial time to keep each path in memory and
verify whether it falsifies every ϕ ∈ Φ. Since DS is non-recursive, this alternating
algorithm runs in polynomial time, thus proving PSPACE-membership.

For PSPACE-hardness, we show reduction from QBF. Suppose we are given a
quantified Boolean formula

α = Q1x1 . . . Qmxm
(
C1 ∧ . . . ∧ Cn

)
, (5)

where each Qi is either ∀ or ∃, and each clause Ci is a disjunction (x+,−
ji
∨ x+,−

ki
∨

x+,−
�i

). Here x+,− indicates that variables could be negated: x+ refers to x and x−

to ¬x. Since the restriction of QBF to 3-CNF quantifier-free formulae is known to
be PSPACE-complete, we can assume this restriction on the shape of clauses.

To represent formula (5) we use the following data exchange setting. The source
DTD DS has element types {r, x+

1 , x
−
1 , . . . , x

+
m, x

−
m}, assuming that formula (5)

mentions propositional variables x1, . . ., xm. The rules of DS are as follows:

r → x+
1 x

−
1 if Q1 = ∀ x+

m → ε
r → x+

1 |x−1 if Q1 = ∃ x−m → ε
xi → x+

i+1x
−
i+1 if Qi+1 = ∀, for 1 ≤ i < m

xi → x+
i+1|x−i+1 if Qi+1 = ∃, for 1 ≤ i < m

Let f be an element type that does not occur in the target DTD, whose root is
denoted by r′. For each clause C, consider the assignment that invalidates it. For
example, let C = (xi ∨¬xj ∨ xk) with i < j < k. Then the invalidating assignment
is xi = 0, xj = 1, xk = 0. In this case we put the following STD into ΣST:

r′[f] :– r[//x−i [//x+
j [//x−k]]],

assuming i− 1, j − i, k − j > 1. In other words, if C is invalidated, we attempt to
put an node in the target tree that is inconsistent with the target DTD. When some
of the indices are consecutive, we have to omit the descendant //: for example, if
i = 1, j > 2 and k = j + 1, we use

r′[f] :– r[x−i [//x+
j [x−k]]],

Journal of the ACM, Vol. V, No. N, Month 20YY.

68 ·
since in this case x−i has to be witnessed at a child of the root, and not a descendant
of a child of a root.

We now let ΣST contain all such STDs for all the clauses used in the formula.
Then a straightforward argument shows that α is true iff there is a tree T |= DS

such that no right-hand side of an STD is satisfied, which in turn is equivalent to
the consistency of the setting.

We continue with b). This proof is similar to the previous case. Again we assume
that formulae in STDs do not have free variables. We shall need the following
observation. If we have a path-pattern formula ϕ, a tree T , and a node v of T , one
can verify if v witnesses ϕ in T in time O(‖T ‖ · ‖ϕ‖). Indeed, we inductively find
sets of nodes in which subformulae of ϕ are true. First, each formula � is true in
nodes labeled �. To find nodes in which �[ϕ′] holds we find �-nodes which have a
child for which by induction we already know that ϕ′ holds. To find nodes in which
//ϕ′ holds, we depth-first traverse the tree and for each node in which ϕ′ holds,
mark all its ancestors with //ϕ′ as we go backwards. Thus, for each subformula
of ϕ we need time linear in the size of T , and hence the algorithm runs in time
O(‖T ‖ · ‖ϕ‖).

We now show membership in NP. Since DT is fixed and does not use the Kleene
star, there may be only a fixed number of trees that conform to it. Let T1, . . . , Tn
enumerate them. As before, let Φi = {ϕ | ψ :– ϕ ∈ ΣST and Ti 	|= ψ}. Then it
suffices to check in NP if for some i ≤ n, there exists a tree T such that T |= DS

and T 	|= ϕ for all ϕ ∈ Φi. If that is the case, the pair 〈T, Ti〉 witnesses consistency;
if there is no such tree for all i, the setting is inconsistent. For the latter, we guess a
tree T simply by making a choice for each of the rules �→ �1| . . . |�m. Then, by the
earlier observation, we can verify whether T 	|= ϕ in polynomial time in the sizes of
T (which is linear in the size of DS) and ϕ. This proves membership in NP.

For hardness, we simply apply the proof for QBF in the case when all quan-
tifiers are existential. Then every rule is of the form � → �′|�′′ or � → ε, and
the QBF reduction becomes a 3SAT reduction. This proves NP-hardness, and the
proposition.

B.2 Proof of Theorem 5.11

We consider here classes STD(r, //) and STD(r,). The proof for the class
STD(, //) was already given in Section 5.3.

Case of STD(r, //): We define a data exchange setting (DS, DT,ΣST) and a
Boolean CTQ-query Q such that both DS and DT are simple DTDs, ΣST is a set
of source-to-target dependencies in STD(r, //) and 3SAT can be reduced to the
complement of Certain-Answers(Q), that is, for every propositional formula θ
in 3-CNF, there exists a PTIME constructible XML tree Tθ conforming to DS

such that θ is satisfiable if and only if certain(Q, Tθ) = false. Simple DTD DS is
defined exactly as in the proof for STD(, //) (see Section 5.3). Simple DTD DT

is defined as follows. Let ET = {K, L, B1, B2, G1, G2, J , H1, H2, C1, C2, C3}
be a set of element types and AT = {@�,@p,@n,@m} a set of attributes. Then
DT = (PT, RT,K) is a DTD over (ET, AT), where PT is defined as:

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 69

PT(K) = B∗
1L

∗, PT(B1) = B∗
2 , PT(B2) = G∗

1J
∗C∗

1 ,
PT(G1) = G∗

2J
∗, PT(G2) = J∗, PT(J) = H∗

1 ,
PT(H1) = H∗

2 , PT(H2) = ε, PT(C1) = C∗
2 ,

PT(C2) = C∗
3 , PT(C3) = ε, PT(L) = ε.

and RT is defined as:

RT(K) = ∅, RT(B1) = ∅, RT(B2) = ∅,
RT(G1) = {@m}, RT(G2) = ∅, RT(J) = {@m},
RT(H1) = ∅. RT(H2) = ∅. RT(C1) = {@�},
RT(C2) = {@�}, RT(C3) = {@�}, RT(L) = {@p,@n}.

Finally, ΣST is defined as follows. The first rule of ΣST is defined as:

K[L(@p = x,@n = y)] :– K[L(@p = x,@n = y)].

This rule says that every node of type L in a source tree T must appear in every
solution for T . The second rule of ΣST is defined as:

K[B1[B2[(@m = u)[[]], C1(@� = x)[C2(@� = y)[C3(@� = z)]]]]] :–
K[C(@f = x,@s = y,@t = z)].

Notice that this rule is not fully-specified since it does not say whether the node
having an attribute @m is of type either G1 or J . Also notice that in the left
hand side of this rule we have a formula of the form K[B1[B2[ϕ1, ϕ2]]] not using
descendant //, where K is the type of the root.

The previous rule says that for every C-node v of a source tree T having i, j, k
as values of attributes @f , @s, @t, and for every solution T ′ for T , T ′ must have
as subtree at least one of the trees shown in Figure 16.

When constructing a solution for Tθ, we are actually constructing a truth assign-
ment for θ. Let v be a C-node of Tθ with values i, j, k in attributes @f , @s, @t.
To construct a solution T ′ for T we have to instantiate the second dependency of
ΣST on values i, j and k, and then we have to choose among the trees shown in
Figure 16 which one is going to be a subtree of T ′. These alternatives represent
three different ways of satisfying the clause stored in the children of v. We say that
a literal i has been assigned value 1 if i appears in a subtree of the form:

v1

v2

v5v3

J v6

@�
“i”

v4

That is, there exists a node v1 that has at least two great-grandchildren, one of type
J and another one having i in attribute @�. Thus, in Figure 16 (a), literal i has been
assigned value 1 since there is a node (of type K) having as great-grandchildren

Journal of the ACM, Vol. V, No. N, Month 20YY.

70 ·

“j”

K

B1

B2

C2

C1

C3

@�

G1

“k”

J

H1

(b)

@m

@m

@�
“i”

@�
“j”

K

B1

B2

C2

C1

C3

@�

G1

G2

“k”

J

@m

(c)

@m @�
“i”

@�
“j”

K

B1

B2

C2

C1

C3

@�
“k”

J

H1

H2

(a)

@m @�
“i”

@�

Fig. 16. Different alternatives for satisfying the second rule of ΣST in case STD(r, //) of the proof
of Theorem 5.11.

a node of type J and a node (of type C1) having i in attribute @�. On the other
hand, in Figure 16 (b), literal j has been assigned value 1 since there is a node (of
type B1) having as great-grandchildren a node of type J and a node (of type C2)
having j in attribute @�, and in Figure 16 (c), literal k has been assigned value 1
since there is a node (of type B2) having as great-grandchildren a node of type J
and a node (of type C3) having k in attribute @�. Notice that when constructing
a truth assignment for θ, it is possible to choose value 1 for two complementary
literals (when considering complementary literals in two distinct clauses). To take
care of this problem we use the following Boolean CTQ-query Q:

∃x∃y (L(@p = x,@n = y) ∧ [[[J]], [[(@� = x)]]] ∧ [[[J]], [[(@� = y)]]]).

Intuitively, query Q says that there exists two complementary literals x and y such
that both x and y have been assigned value 1, that is, there exists a node having at
least two great-grandchildren, one of type J and the other one having x in attribute
@�, and the same holds for y.

Now we prove that for every 3-CNF propositional formula θ, we have that θ is
satisfiable if and only if certain(Q, Tθ) = false, where Tθ is constructed from θ in
PTIME as in the proof for STD(, //) (see Section 5.3).

(⇒) Assume that θ is satisfiable and let σ be a truth assignment satisfying θ.
Define a solution T ′ for Tθ as follows. The structure of the L-nodes of T ′ is copied
from Tθ. For every C-node v in Tθ having i, j, k in attributes @f , @s, @t, if σ makes
true the first literal of this clause, then T ′ has as subtree the tree shown in Figure
16 (a). If σ makes true the second literal of this clause, then T ′ has as subtree
the tree shown in Figure 16 (b). Finally, if σ makes true the third literal of this
clause, then T ′ has as subtree the tree shown in Figure 16 (c). It is straightforward
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 71

to prove that T ′ conforms to DT and satisfies ΣST. Furthermore, T ′ 	|= Q since σ
is well defined and, therefore, for every propositional variables x, either x or ¬x is
not assigned value 1. We conclude that certain(Q, Tθ) = false since T ′ is a solution
for Tθ.

(⇐) Assume that certain(Q, Tθ) = false and let T ′ be a solution for Tθ such
that T ′ 	|= Q. We define a truth assignment for the propositional variables of
θ as follows. For every clause in θ, find the values i, j, k assigned in Tθ (as
values of attributes @f , @s and @t) to the literals of that clause. Then T ′ has
as subtree at least one of the trees shown in Figure 16. If T ′ has as subtree
the tree shown in Figure 16 (a), then σ assigns value 1 to the first literal of
the clause. If T ′ has as subtree the tree shown in Figure 16 (b), then σ assigns
value 1 to the second literal of the clause. Finally, if T ′ has as subtree the
tree shown in Figure 16 (c), then σ assigns value 1 to the third literal of the
clause . Since T ′ 	|= Q, we have that σ is well defined. Thus θ is satisfiable since
σ satisfies this formula by definition. This concludes the proof of case of STD(r, //).

Case of STD(r,): We define a data exchange setting (DS, DT,ΣST) and a
Boolean CTQ-query Q such that both DS and DT are simple DTDs, ΣST is a set
of source-to-target dependencies in STD(r,) and 3SAT can be reduced to the
complement of Certain-Answers(Q), that is, for every propositional formula
θ in 3-CNF, there exists a PTIME constructible XML tree Tθ conforming to DS

such that θ is satisfiable if and only if certain(Q, Tθ) = false .
Simple DTD DS is defined exactly as in the previous case. Simple DTD DT is

defined as follows. Let ET = {K, L, B1, B2, G1, G2, J , C1, C2, C3} be a set of
element types and AT = {@�,@p,@n} a set of attributes. Then DT = (PT, RT,K)
is a DTD over (ET, AT), where PT is defined as:

PT(K) = B∗
1L

∗, PT(B1) = B∗
2 , PT(B2) = G∗

1J
∗C∗

1 ,
PT(G1) = G∗

2J
∗, PT(G2) = J∗, PT(J) = ε,

PT(C1) = C∗
2 , PT(C2) = C∗

3 , PT(C3) = ε,
PT(L) = ε.

and RT is defined as:

RT(K) = ∅, RT(B1) = ∅, RT(B2) = ∅,
RT(G1) = ∅, RT(G2) = ∅, RT(J) = ∅,
RT(C1) = {@�}, RT(C2) = {@�}, RT(C3) = {@�},
RT(L) = {@p,@n}.

Finally, ΣST is defined as follows. The first rule of ΣST is defined as:

K[L(@p = x,@n = y)] :– K[L(@p = x,@n = y)].

This rule says that every node of type L in a source tree T must appear in every
solution for T . The second rule of ΣST is defined as:

K[B1[B2[//J, C1(@� = x)[C2(@� = y)[C3(@� = z)]]]]] :–
K[C(@f = x,@s = y,@t = z)].

Journal of the ACM, Vol. V, No. N, Month 20YY.

72 ·
K

B1

B2

C2

C1

C3

@�

@�

@�

“i”

J

K

B1

B2

C2

C1

C3

@�

@�

@�

G1

K

B1

B2

C2

C1

C3

@�

@�

@�

G1

J G2

J

“i”

“j”“j”

“k” “k”

“i”

“j”

“k”

(a) (b) (c)

Fig. 17. Different alternatives for satisfying the second rule of ΣST in case STD(r,) of the proof
of Theorem 5.11.

Notice that this rule is not fully-specified since it does not say whether the father
of J is a node of type either B2 or G1 or G2. Also notice that in the left hand side
of this rule we have a formula of the form K[B1[B2[ϕ1, ϕ2]]] not using wildcard ,
where K is the type of the root. The previous rule says that for every C-node v
of a source tree T having i, j, k as values of attributes @f , @s, @t, and for every
solution T ′ for T , T ′ must have as subtree at least one of the trees shown in Figure
17.

When constructing a solution for Tθ, we are actually constructing a truth assign-
ment for θ. Let v be a C-node of Tθ with values i, j, k in attributes @f , @s, @t.
To construct a solution T ′ for T we have to instantiate the second dependency of
ΣST on values i, j and k, and then we have to choose among the trees shown in
Figure 17 which one is going to be a subtree of T ′. These alternatives represent
three different ways of satisfying the clause stored in the children of v. As in the
previous case, we say that a literal i has been assigned value 1 if there exists a node
having at least two great-grandchildren, one of type J and another one having i
in attribute @�. Thus, in Figure 17 (a), literal i has been assigned value 1 since
there is a node (of type K) having as great-grandchildren a node of type J and
a node (of type C1) having i in attribute @�. On the other hand, in Figure 17
(b), literal j has been assigned value 1 since there is a node (of type B1) having as
great-grandchildren a node of type J and a node (of type C2) having j in attribute
@�, and in Figure 17 (c), literal k has been assigned value 1 since there is a node (of
type B2) having as great-grandchildren a node of type J and a node (of type C3)
having k in attribute @�. Notice that when constructing a truth assignment for θ,
it is possible to choose value 1 for two complementary literals (when considering
complementary literals in two distinct clauses). To take care of this problem we
Journal of the ACM, Vol. V, No. N, Month 20YY.

· 73

use the same Boolean CTQ-query Q as in the previous case:

∃x∃y (L(@p = x,@n = y) ∧ [[[J]], [[(@� = x)]]] ∧ [[[J]], [[(@� = y)]]]).

Exactly as in the previous case, we prove that for every 3-CNF propositional formula
θ, we have that θ is satisfiable if and only if certain(Q, Tθ) = false , where Tθ is
constructed from θ in PTIME as in the proof for STD(, //) (see Section 5.3). This
concludes the proof of case STD(r,) and the proof of Theorem 5.11.

B.3 Proof of Claim 6.16

(a) On the contrary, assume that alph(wi+1) 	⊆ alph(w′). Since hi is a ho-
momorphism from Ti to T ′, we have that alph(wi) ⊆ alph(w′) and, there-
fore, alph(wi+1) \ alph(wi) 	⊆ alph(w′) \ alph(wi). Define string w′

i as follows:
alph(w′

i) = alph(wi) and #a(w′
i) = 1, for every a ∈ alph(w′

i). Then w′
i � w′

since alph(wi) ⊆ alph(w′). Thus, there exists w′′
i ∈ min ext(w′

i, PT(λTi(v)))
such that w′

i � w′′
i � w′ since w′ ∈ π(PT(λT ′(hi(v)))) = π(PT(λTi(v))).

By definition of rep(wi, PT(λTi (v))) we have that w′′
i ∈ rep(wi, PT(λTi(v))).

Since alph(w′′
i) ⊆ alph(w′) and alph(wi+1) \ alph(wi) 	⊆ alph(w′) \ alph(wi),

we have that alph(wi+1) \ alph(wi) 	⊆ alph(w′′
i) \ alph(wi). We conclude that

w′′
i 	�wi wi+1, which contradicts the fact that (rep(wi, PT(λTi(v))),�wi) has a

maximum element (recall that PT(λTi(v)) is a univocal regular expression) and
wi+1 ∈ max�wi rep(wi, PT(λTi(v))).

(b) On the contrary, assume that #a(w′) > 1. Since hi is a homomorphism
from Ti to T ′, we have that alph(wi) ⊆ alph(w′). Define string w′

i as follows:
alph(w′

i) = alph(wi), #a(w′
i) = 2 and #b(w′

i) = 1, for every b ∈ alph(w′
i) \ {a}.

Then w′
i � w′ since alph(wi) ⊆ alph(w′) and #a(w′) > 1. Thus, there

exists w′′
i ∈ min ext(w′

i, PT(λTi(v))) such that w′
i � w′′

i � w′ since w′ ∈
π(PT(λT ′ (hi(v)))) = π(PT(λTi(v))). By definition of rep(wi, PT(λTi(v))) we have
that w′′

i ∈ rep(wi, PT(λTi (v))). Given that #a(w′′
i) ≥ #a(w′

i) > 1, #a(wi+1) = 1
and #a(wi) > 1, we conclude that w′′

i 	�wi wi+1, which contradicts the fact that
(rep(wi, PT(λTi(v))),�wi) has a maximum element (recall that PT(λTi (v)) is a uni-
vocal regular expression) and wi+1 ∈ max�wi rep(wi, PT(λTi (v))). This concludes
the proof of the claim.

B.4 Proof of Claim 6.17

By contradiction, assume that there exist strings w1, w2 and a ∈ alph(r) such that
rep(w1, r) 	= ∅, w2 ∈ max�w1

rep(w1, r) and 2 ≤ #a(w2) < #a(w1). Since c(r) ≤ 1,
we have that w2 	∈ fixeda(r) and, hence, there exists a string w3 ∈ π(r) such that
w2 � w3 and #a(w2) < #a(w3). Let w4 be a string such that alph(w4) = alph(w1),
#a(w4) = #a(w2)+1 and for every b ∈ alph(w1)\ {a}, #b(w4) = 1. Since w4 � w3

and w3 ∈ π(r), we conclude that min ext(w4, r) 	= ∅. Let w5 ∈ min ext(w4, r).
By definition of min ext(w4, r), we have that #a(w5) ≥ #a(w4) > #a(w2), and by
definition of w4 and rep(w1, r), we have that w5 ∈ rep(w1, r). We conclude that
there exists a string w5 ∈ rep(w1, r) such that #a(w2) < #a(w5). Thus, given
that #a(w2) < #a(w1), we have that w5 	�w1 w2, which contradicts the fact that
w2 ∈ max�w1

rep(w1, r) and (rep(w1, r),�w1) has a maximum element.
Journal of the ACM, Vol. V, No. N, Month 20YY.

74 ·
B.5 Proof of Claim 6.22

Let s be a string such that alph(s) = alph(w) and #a(s) = min{#a(w′),#a(w)},
for every a ∈ alph(s). We note that s � w and s � w′. Since w′ ∈ π(r), there
exists s′ ∈ min ext(s, r) such that s � s′ � w′. By definition of rep(w, r), we
have that s′ ∈ rep(w, r) and, hence, there exists i ∈ [1, n] such that s′ �w wi. We
conclude that w′ �w wi since (1) for every a ∈ alph(w) such that #a(wi) < #a(w),
we have that #a(wi) ≥ #a(s′) ≥ #a(s) = #a(w′) and (2) alph(wi) \ alph(w) ⊆
alph(s′) \ alph(w) ⊆ alph(w′) \ alph(w).

Received Month Year; revised Month Year; accepted Month Year

Journal of the ACM, Vol. V, No. N, Month 20YY.

