
XML Data Storage and Query Optimization in
Relational Database by XPath Processing Model

Xiaojie Yuan
College of Information Technology and Science, Nankai University, Tianjin, China

Email: yuanxj@nankai.edu.cn

Xiangyu Hu, Dongxing Wu, Haiwei Zhang+ and Xin Lian
College of Information Technology and Science, Nankai University, Tianjin, China

Email: {huxiangyu, wudongxing, zhanghaiwei, lianxin }@dbis.nankai.edu.cn

Abstract—XML is de facto new standard for data
representation and exchanging on the web. Along with the
growth of XML data, traditional relational databases
support XML data processing across-the-board. Consistent
storage and efficient query for XML data is the chief
problem in XML supported relational databases. This work
presents mechanisms of Storage and query optimization for
XML data in relational database. XML data are treated as a
kind of data type in relational database, and XML tables are
used to store native XML data in fixed schema. Structural
summary index is built and maintained in relational
database and an optimizing mechanism based on XPath
model named Compressed XML Query Tree will also be
presented in order to improve efficiency of XML data query
by reducing superabundant join operations from ancestor-
descendent axis. All strategies are appropriate for classical
XML query algorithms. Algorithms for XML query will be
performed in experiments on real XML datasets in
relational database and query workloads to report the
performance of our mechanism and show the efficiency
compared with other mechanisms.

Index Terms—XML, XPath, Data Storage, Query
Optimization, Compressed XPath Query Tree

I. INTRODUCTION

With the rapid growing popularity of XML to present
data, XML has become a standard format to store data in
many areas and share data between them. Though XML
has been used in many domains for data exchanging and
representation, a great deal of XML data appears and how
to manage XML data efficiently has becoming a hotspot
for researchers.

Native XML databases are powerful system for XML
data management. Thus databases can only process pure
XML data and cannot management other common data,
such as relational data. On the other hand, relational
Databases are traditional solutions for data management
because of their mature theoretic system and manufacture.
As a result, almost all relational databases, such as
SQLServer, Oracle, DB2, have begun to support XML
data in recent years. All of them treat XML data as a new

data type and store in special column of relations and can
perform XQuery and XPath[1][2] for XML data query.

Processing XML data has extended ability of relational
databases for various data management.

XQuery and XPath are most important XML query
languages. XPath is included in XQuery and usually
appears in XQuery expressions while querying XML data.
In native XML databases, XML query languages can be
directly used to obtain results because there is integrated
hierarchy of grammar analysis and query execution in
such system. In relation databases, XML query languages
cannot be performed, they must be integrated with SQL.
SQL/XML standard provides rules for the integration of
XQuery and SQL. According to SQL/XML, new
grammar of data query will be added to SQL and XML
query will be achieved in relational databases.

Data Storage and query optimizing are important
problems in research of database technology. During the
research of XML data management, how to realize XML
data Storage and query optimization in relational database
is worthy of study.

A mechanism of XML data Storage fitting for
relational database will be suggested in this paper and an
efficient XPath query optimization mechanism based on
data Storage that makes full use of XML indices to
quickly retrieve XML data. Coming together with the
mechanism, the Compressed XPath Query Tree (CXQT)
based on indices is proposed, which significantly reduces
many join operations brought by PC relations in XPath
expressions. Then query algorithm based on CXQT is
presented to deal with all the structural relationship using
our mechanism.

II. RELATED WORK

Intuitionistic model of XML data is DOM tree. All
XML components including elements, attributes and text
has been converted to nodes in DOM tree. Navigating
XML data in tree model by XPath is common solution of
query. Unfortunately, DOM tree cannot stored in
relational databases directly. As a result, XML data must
be stored in relational databases by other solutions. + corresponding author: Haiwei Zhang

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 809

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.4.809-816

Figure.1. XML data and tree model

Almost all popular relational databases have begun to
support XML data by adding a new data type named
XML, such as SQLServer, Oracle and DB2. SQLServer
treated XML data as Binary Large Object (BLOB), and
indices on XML data can be built by ODRPATH[3]
coding. Oracle used object-relation model to integrate
XML data management. XML data has been mapping to
relations, and XML schema also has been mapping to
relational schema, object-relation model could be built
consequently. XML data completely has been processed
in relational mechanism. DB2 used different solution to
manage XML data. DB2 integrated native mode for XML
data management. Relational data and XML data used
different engine to process, therefore, DB2 has not really
compromised these two kinds of data.

The key issue in XPath query processing is the
matching of structural relationship. There are two kinds
of structural relations in XPath expressions, parent-child
(PC) and ancestor-descendant (AD). C. Zhang et al.[4],
combining with the traditional thinking of merging
algorithm and interval encoding, proposed Multi-
Predicate Merge Join (MPMGJN) algorithm which is the
first solution to dual structural join. MPMGJN algorithm
reduces the comparison between XML nodes by their
document order relationship. However, S. Al-Khalifa et
al.[5] found MPMGJN algorithm would spend a lot of
time in some cases when issuing the structural
relationship, and proposed StackTree algorithm which
used a stack to save the nodes with the same tag and have
the AD relationship in one path of XML document tree.
Consequently, the comparison between nodes will happen
on the top of stack. Since then, the application of stack
plays an important role in XPath query algorithm.
Nevertheless, MPMGJN algorithm and StackTree
algorithm may produce very large intermediate results.
To solve this problem, N. Bruno et al.[6] proposed
holistic twig join algorithm that maps XPath query tree
into linked-stacks, and then by recursion checking
structures in streams pushes the nodes matching the
structural relationship into stacks, finally gets the result in
a leaf-to-root path. However, if there are a large number
of nodes with PC relationship in the twig queries, the
TwigStack algorithm not only have to create a large
number of stacks but also need to match the PC
relationship. Besides, most of existing XPath query
algorithm suppose the XML data is outside the DBMS, so
those algorithms would have a very large cost on space
and time to retrieve XML data. This retrieving method
has become the bottleneck of structural join. Based on
algorithm above, optimization mechanisms for improving
query efficiency have been presented in recent
years[7][8][9][10], these methods focused on native XML
data query without any solutions derived from relational
databases. X. Yuan et al.[11] proposed structural index,
which has been used in XPath query algorithm. However
it didn't solve the problems in query rewriting based on
structural index.

III. XML DATA STORAGE AND INDICES

XML can be represented by an ordered label tree as
figure 1 shows. Tree model is widely used for XML
representing. Indices for XML data are usually built on
tree model or other models transformed from tree model.
In relational database, XML data usually is stored in
tuples as attribute with a specific data type. As presented
above, BLOB, relation mapping are used in popular
relation databases. This paper proposes XML tables for
data Storage in fixed schema. XML tables are treated as
system tables and not accessed by users directly with
SQL. Data type named xml is also used in this
mechanism and relates to XML tables for XML data
management.

A. XML Table
Tables are particular data structure in relational

database. In order to make full use of capability for data
management, integrating XML data Storage into
relational database and managing these two categories of
data together can exploit their advantages to the full.
XML tables are specific data structure for XML data
Storage. XML tables will be stored in relational database
and used to stored pure XML data.

Definition 1. XML Table is used to store XML data as

relational pattern with fixed schema.
Figure.1 is an example of XML data named bib.xml

and its tree model. Table 1 shows the XML table for data
in bib.xml. The schema of XML tables is:

(nodeid, type, name, value, path)

where nodeid is primary key.

 DLN Code

Column nodeid stores DLN code[12] of each XML
node in tuples. DLN code is a kind of prefix code
encoding XML nodes in documental order. It encodes
parent node as the prefix of its child nodes. And the first
node in XML data is encoded by number 1. The code of a
node is smaller than its right sibling nodes and bigger
than its left sibling nodes. As a result, DLN codes can
describe relation between XML nodes distinctly, and can
be used in all kinds of computation for structural relations
of XML nodes.

 Node Type

810 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

Figure.3. Structural Summary Index

Figure.2. Basic Label Index

Column type describes type of XML node stored in the
XML table. There are three kinds of XML node: element

node, attribute node and text node. Each type relates to a
kind of component of XML data.

 Reversed Path

Column path describes path of the XML node in the
XML table. The path stored in this column is an order
reversed path. For example, if path of an XML node is
book/authors/author, the value in the cell is
author.authors.book. Numbers can be designed for labels
of XML nodes, so path of an XML node can be
represented by a sequence of number as Table I shows.

XML table stores pure XML data as tuples, each node
of XML data is treated as a tuple. Along with the
increment of nodes in XML table, Using XML table,
efficiently accessing specific node in large quantities of
nodes is difficult. As a result, indices of XML table are
necessary for the mechanism.

B. XML Indices
In order to improve efficiency for XML query, indices

are built and maintained in relational databases. Two
kinds of indices are presented in this paper, Basic Label
Index (BLI) and Structural Summary Index (SSI). BLI is
used for XML data Storage and SSI is used for XML
query.

 Basic Label Index

Basic Label Index (BLI) is a simple index for XML
data, and it can be used while locating XML nodes in
XML tables. BLI will map element nodes and attribute

nodes to NodeID in XML table by the label of XML
nodes. Figure.2 shows the process of mapping from node
labels to column NodeID. BLI can be used for indexing
labels of element nodes and attribute nodes. In Fig. 2, if
given label of attribute nodes named year, collection of
nodes encoded by {1.1.1.1} will be located, and values of
nodes in the collection will be obtain in the column value
of XML table.

 Structural Summary Index

BLI can improve efficiency of XML data Storage by
mapping labels of nodes. For XML data query, another
index named Structural Summary Index (SSI) will be
used to improve efficiency of XML data query. SSI is
related to paths of XML nodes, as shown in Figure.3. In
XML table, column path can provide information for
building SSI. Order of nodes in paths of SSI is reversed
from path column because of searching efficiency while
parsing XML data. Each path in SSI is named Path Index,
and locates XML node rapidly. All paths compose of SSI
of XML data, and this structure is appropriate for XML
query.

 SSI indexes XML data by path of nodes. As a result,
query XML data by path can get high-efficiency
performance, especially using XPath. XPath language is
an important and useful XML query language, which was
issued by W3C containing in XQuery (XQuery is
considered to the most integrated XML query language).
In XPath expressions, ancestor-descendent (AD) and
parent-child (PC) axes are important, they describe PC
relations and AD relations between XML nodes
respectively. Parent-child axis is related to paths in SSI,
using SSI can get more effective query pressing. For
another important axis--ancestor-descendent axis in
XPath, some popular query algorithms such as TwigStack,
performed efficiently on such structural relations. In
order to make full use of high-efficient algorithms, a
particular model named Compressed XML Query Tree
will be presented in this paper.

IV. XPATH EVALUATION AND OPTIMIZATION

Using XML tables, XML data can be stored as
relational modes. XML data query can be performed
when relational database could parse XQuery language.
In order to improve efficiency of XML data query in
relational database, mechanism for optimizing XPath
evaluation in XQuery expressions will be presented in
this section.

TABLE I.
XML TABLE OF BIB.XML

NodeID Type Name Val Path

1 D

1.1 E 1 1

1.1.1 E 2 2.1

1.1.1.1 A 3 3.2.1

1.1.1.2 E 4 4.2.1

1.1.1.2.1 T XML

1.1.1.3 E 5 5.2.1

1.1.1.4 E 4 4.2.1

…

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 811

© 2013 ACADEMY PUBLISHER

A. XPath Analysis
XPath is frequently-used XML query language. XPath

is composed of expression named XPath expression.
Location path is the most important expression of XPath.
Location paths compose of steps, each step is related to a
node along with axis or predicates. When querying XML
data by XPath, expressions will be firstly parsed to XPath
Grammar Tree (XGT). For example, XPath expression:

/book[//title = "XML"]/authors/author[first = "john"]
will be parsed to XGT as shown in Figure. 4. Then

XGT will be stored in memory as XPath Query Tree
(XQT). Each step of XPath expression will be a node
named XQ_AxisStep in XQT and the node includes three
pointers: nodeTest, axisType and predicateList. All
pointers relate to components of XPath expression, such
as axis, predicates and node test. XGT shown in Figure.4
can be stored as XQT shown in Figure.5.

B. Compressed XPath Query Tree

XPath expression can be represented by XQT for XML
data query. But XQT has its' own disadvantages in XML
query. Firstly, XQT has many levels and is difficult to
access nodes in the lower levels. Secondly, the structure
of XQT is not fit for SSI and cannot make full use of
indices in XML query. Lastly, XQT preserves PC
relations in XPath expression, but it can cause difficulty
of processing AD relations and algorithms such as
TwigStack cannot be performed well.

In order to improve adaptability of query algorithms,
Compressed XPath Query Tree (CXQT) model will be
used for XPath.

Definition 2. Compressed XPath Query Tree (CXQT)

is transformed from XQT by compressing PC relations in
XPath expressions. CXQT changes PC relations into AD
relations, and then it can fit for more query algorithms
than XQT.

There are three kinds of nodes in CXQT, BLI nodes,

SSI nodes and output nodes. All of these nodes can make
control of query executing and save results of XML query.

 BLI nodes are obtained directly by BLI and
labeled by the same description of original nodes
of XML data.

 SSI nodes are obtained by SSI. Label of SSI
nodes is a sequence of XML nodes and usually
denotes a part of XPath expression as location
path. Relations between SSI nodes are usually
parent-child.

 Output nodes can be BLI nodes or SSI nodes.
They point out query nodes which must output
query results in CXQT, so they are also named
result nodes. When output nodes are SSI nodes,
the last step in location path of SSI is considered
as output nodes of CXQT.

There is a relationship named Generation-Gap in

CXQTs.
Definition 3. Generation-Gap Relation exists among

some nodes in CXQTs that the results of querying these
nodes have certain generation gaps.

For example, PC relation is one of Generation-Gap
relations that its generation gap is one. However, AD
relation is not a Generation-Gap relation since it doesn't
have a certain generation gap.

CXQT model can be used to evaluate two kinds of

XPath expressions, simple XPath expression and twig
XPath expression.

Figure.6. Rewriting SXPE for CXQT

Figure.4. XPath Grammar Tree

XQ_PathExpr

steplist

XQ_AxisStep

XQ_NodeTest

nodeTest

predicateList

axisType

AXIS_CHILD

XQ_Data

nameTest
isAttribute

false

data

author

List

XQ_Expr

head
tail

XQ_AxisStep

predicateList

null

axisType

AXIS_CHILD

XQ_ComparisonExpr

left right

john
kind

KIND_EQUAL

Figure.5. XPath Query Tree

812 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

 Simple XPath Evaluation

Simple XPath Expressions (SXPEs) are XPath
expressions without twigs. SXPE composes of one or
more step expressions, and structural relations in every
two adjacent steps are PC or AD. For example, XPath
expression:

bib/book//chapter/section[head ="Origins"]
can be represented as shown in Fig. 6, in which PC

relation is represented by single line and AD relation is
represented by double lines. Output nodes in the figure
are represented by rectangle.

If SXPE has only one element node or attribute node,
result nodes will be obtained by BLI, and the node will be
rewritten to be BLI node. While more than one element
nodes appear in SXPE and structural relations of these
nodes are PC, the nodes will be merged to a path. SSI
will be used to obtain output nodes for merged path.

Occasionally, SXPEs contain output nodes or non-end
nodes with predicates. These nodes will be used as
separator to divide SXPE into two parts and these two
parts of location path will engender Generation-Gap.
While SXPEs include AD relations, the location path will
also be divided into two paths and these two paths will be
considered to be rewritten.

SXPE are divided into two parts according to such

nodes: output nodes, nodes with predicates and nodes
with AD relation. And these two parts of SXPE will
recursively invoke function rewriteSimplePath to obtain
local rewritten results. Finally, the results will be merged
and returned. When SXPE has only one node, the node
will be changed to a BLI node. When SXPE has more
than one node which cannot be divided, then the nodes
will be merged to a SSI node.

In Figure 6, nodes bib, book and head are BLI nodes
and node chapter/section is SSI node and output node at
the same. The CXQT model changed from XQT of
Figure. 6(a) is shown in Figure. 6(b). CXQT can use
indices reasonably and reduce times of structure join.

 Twig XPath Evaluation

Twig XPath Expressions (TXPE) are XPath
expressions with twig, they usually need to choose nodes
satisfying to some tree structure. For example, following
TXPE:

/book[//title = "XML"]/authors/author[first = "john"]
will query such node:

(i) Value of node first is john, and first is sub child of
author

(ii) Element node author is child node of authors, and
parent of authors is book. And the element node book has
a descendent element node labeled title whose value is
XML.

Dividing TXPEs will consider nodes with predicates in
location path. And these nodes are computed as context
node-set of next step or predicates. Nodes with predicates
cannot be merged while their location is non-endpoints.
For example, element book in Fig. 7(a) includes predicate
//title="XML", it cannot be merged to SSI node labeled
/book/authors/author, but can be considered as a BLI
node. Paths belong to node book are all SXPEs. Using
algorithm for SXPE rewriting, CXQT will generate as
Figure. 7(b) shows.

Algorithm for TXPEs rewriting will divide TXPEs into

two parts, one is a SXPE and the other are more than one
TXPEs. Using function rewriteSimplePath for each
TXPE can obtain rewriting results, and then merge to
CXQT as a tree node. Data structure of CXQT is shown
in Figure 8. CXQT uses binary tree to represent multi-
way tree by linked list. Labels will be considered as
nodes of linked list namelist and structural pointer will be
stored in domain filter.

C. Query Achievement
CXQT will be used to query XML with the help of

DLN code. There are two kinds of XML query strategies,
join-based query strategy and holistic-compare-based
query strategy.

Structural relations exist between adjacent steps of
XPath expression. Each step is related to a collection of
XML nodes. Dividing XPath expression into segments,
all these segments have structural relations. Each segment
can be considered as a minimum query unit, and can get
query results by query algorithms. All results obtained by
segments of XPaths will be merged by structural relations
and then final results of XML query will generate. The
strategy above is join-based query.

CXQT based on SSI can divide XPath expression into
several segments. XPath segments can obtain nodes set
by BLI and SSI. Typical algorithms for execution XML
query by join are named structure join, such as multi-
predicate merge join (MPMGJN) and StackTree, are fit
for join-based XML query.

Figure.8. Data structure of CXQT.

book

title
=“XML

”

authors

first
=“john”

author

book

title
=“XML”

first
=“john”

authors/author

(b) Compressed XPath Query Tree(a) XPath Query Tree

Figure.7. Rewriting SXPE for CXQT

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 813

© 2013 ACADEMY PUBLISHER

TXPE will be divided into many dual structural join
when using join based XML query. Then intermediate
results will be joined in order to get final results. While
join list is in big size, intermediate results will occupy a
great deal of memory space and bring out high cost of I/O
between memory and disk. To solve this problem, Bruno
et.al presented holistic twig, the method can process all
dual structural join in one path of query tree once off.
And the strategy is holistic-compare-based query. XML
query by holistic twig can be performed by algorithm
named PathStack and TwigStack.

V. EXPERIMENTAL EVALUATION

We performed our experiments on an Intel Core 2
Duo 1.86GHz with 2GB of RAM, running MS Windows
7 and Fedora 12. XML data was stored in relational
database PostgreSQL and XPath query processing was
also implemented in PostgreSQL. Every query was
executed three times, and the last two measurements were
averaged to the reported execution time. Consequently,
the warm cache was used in query execution. With a cold
cache all results were greatly different from the latter
ones and are not presented due to lack of space.

A. Datasets
The experimental evaluation used a set of synthetic

and real datasets[13] which contain a wide range of
XML's characteristics (Table 2). We used ToXgene to
generate ten XML documents as the synthetic dataset and
adopted the DBLP dataset as the real dataset.

The synthetic dataset has a smooth structure that

each node sets with different labels have the same size.
However, the real dataset is made up with many node sets
distinct in label name and size.

Table 3 shows all the XPath queries used for the
experiments. We selected only one XPath query to run on
the ToXgene dataset to evaluate the efficiency of
structural index, and five queries to run on the DBLP
dataset to evaluate the algorithms based on CXQT. These

queries, containing four simple XPath queries and two
twig queries, have different combinations of PC and AD
axes and different selectivity over the datasets.

B. Evaluating the Efficiency of Structural Index
We first compared MPMGJN Algorithm without

structural index with CXQT-based MPMGJN Algorithm
for processing the same simple XPath query, Q1, in Table
3 over the same dataset, ToXgene dataset, in Table 2. For
each execution of query in different XML documents of
ToXgene dataset, we recorded the query processing time
for the two algorithms.

Figure. 9 depicts the performance results based on the

query Q1 on ToXgene dataset. The MPMGJN Algorithm
without structural index spends more time on all
executions than CXQT-based MPMGJN Algorithm. The
cause is (i) it is faster to retrieve required nodes with
structural index, (ii) the CXQT reduces the XQT, so Q1
is consist of two query nodes based on CXQT but three
nodes based on XQT. Besides, the executing times of
these two algorithms all have a rapid increment when
querying over large XML documents. It dues to large
data causes the gigantic I/O costs.

C. Evaluating the CXQT-based XPath Processing

Algorithm
In this section, we will study the performance of the

XPath processing algorithms based on CXQT.
As the processing of twig XPath queries can adopt

different processing algorithms compared with the
processing of simple XPath queries. The experiments
were separately conducted on simple XPath queries and
twig XPath queries. In final part of this section, we make
a comparison of our XPath query mechanism and the

Figure.9. Evaluating the Efficiency of Structural Index

TABLE III.
QUERIES USED FOR THE EXPERIMENTAL EVALUATION

 DataSet Query

Q1 ToXgene //book/author//item1

Q2 DBLP /dblp/book/title

Q3 DBLP //article//sub/i

Q4 DBLP /dblp//article[//cite]/title

Q5 DBLP //inproceedings[year]//title/sup

Q6 DBLP //inproceedings[year][.//title/sub]/pages

TABLE II.
XML DATA SETS

DataSet Size(M) Nodes Max/Avg
Depth

DBLP 127 6.34M 6/2.9

ToXgene(1) 2 0.16 M

5/5

ToXgene(2) 4 0.31 M

ToXgene(3) 6 0.47 M

ToXgene(4) 8 0.62 M

ToXgene(5) 10 0.78 M

ToXgene(6) 20 1.56 M

ToXgene(7) 40 3.13 M

ToXgene(8) 60 4.69 M

ToXgene(9) 80 6.26 M

ToXgene(10) 100 7.82 M

814 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

XPath query mechanism in SQL Server 2008, since these
two mechanisms have the similar storage and index
methods.

 Experiments on Simple XPath Queries

Figure 10 depicts the results on processing simple
XPath queries with different CXQT-based algorithms.
When executing Q1 and Q2 which have only one query
node and small query result set, CXQT-based MPMGJN
algorithm and CXQT-based StackTree algorithm return
the query result set immediately using structural index.
Nonetheless, Q3 contains three query nodes which have a
large XML node set, consequently CXQT-based
MPMGJN not only has to do a lot of comparison but also
spends numerous costs on disk I/O.

When there is only one query node in CXQT, the join-
based query strategy is prior to the holistic-compare-
based query strategy, since the result is returned
immediately with structural index in join-based query
strategy, while the holistic-compare-based query strategy
needs to make the result go through the stack bringing
more cost in time. When the number of query nodes in
CXQT is two, the efficiencies of the three algorithms are
almost equal because they all get the result in one time
scan of the candidate lists. However, when CXQT carries
more than two query nodes, holistic-compare-based
strategy is obviously more efficient than join-based
strategy which spends more than five times the time.

 Experiments on Twig XPath Queries

Figure.11 depicts the results on processing twig XPath
queries with CXQT-based StackTree algorithm and
CXQT-based TwigStack algorithm. For the query
processing time, the CXQT-based TwigStack algorithm
significantly outperforms the CXQT-based StackTree
algorithm, and is three to five times faster than the
CXQT-based StackTree algorithm. Since TwigStack
algorithm greatly declines the time by matching CXQT in
streams, resulting in a linear cost in time. Meanwhile,
TwigStack saves the I/O cost in large join operations.

 Comparison with SQL Server 2008

XML data can be stored and queried in SQL Server
2008. The storage of XML data in SQL Server 2008 has
some kind of similarity with the storage system in this
paper which stores XML data in relational database and
keeps the structural characteristics of XML data. We
make the comparison with SQL Server 2008 to prove that
our XPath processing mechanism has some advantages in
comparison with that in SQL Server 2008.

We stored the DBLP dataset in Table 2 into SQL
Server 2008, and then executed the Q2-6 in Table 4. In
order to prevent the cost in printing results, we used count
functions, so that the time will be recorded is the query
processing time of XPath.

VI. CONCLUSIONS

This paper proposes an efficient mechanism of XML
data Storage and query optimization in relational
databases. XML data is stored as XML tables, which fit
for relational databases. Basic Label Index and Structural
Summary Index can be built based on XML tables and
using Compressed XPath Query Tree can make efficient
performance on XML data query by reducing many join
operations. Algorithms for XML data query can be well
performed using solutions we presented. Experiment
results show mechanism presented in this paper will get
better performance than other mechanisms.

ACKNOWLEDGMENT

This work is supported by National High-tech
Research and Development Program (863 Program) of

TABLE IV.
COMPARISON WITH SQL SERVER 2008

 CXQT-based TwigStack SQL Server 2008

Q2 112ms 4s

Q3 368ms 9s

Q4 605ms 54m39s

Q5 2097ms 1m42s

Q6 3913ms 18m44s

Figure.11. Twig XPath Queries.

Figure.10. Simple XPath Queries.

JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013 815

© 2013 ACADEMY PUBLISHER

China (Program No.:2009AA01Z152) and the NSFC
(Grant Nos. 60973089).

REFERENCES

[1] Mary Fernandez, Ashok Malhotra, et al. XQuery 1.0 and
XPath 2.0 Data Model. (2007). Available from
http://www.w3.org/TR/xpath-datamodel/.

[2] 2. Denise Draper, Peter Fankhauser, et al. XQuery 1.0
and XPath 2.0 Formal Semantics. (2007). Available from
http://www.w3.org/TR/xquery-semantics/.

[3] 3. Patrick O'Neil, Elizabeth O'Neil, et al. ORDPATHs:
Insert-Friendly XML Node Labels. Proceedings of ACM
SIGMOD, (2004) June 13-18; Paris, France.

[4] 4. C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and
G. M. Lohman. On Supporting Containment Queries in
Relational Database Management Systems. Proceedings of
ACM SIGMOD, (2001) May 21-24; Santa Barbara,
California, USA.

[5] 5. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N.
Koudas, and D. Srivastava. Structural joins: A Primitive
for Efficient XML Query Pattern Matching. Proceedings of
the 18th International Conference on Data Engineering,
(2002) Feb.26-Mar.1; San Jose, California, USA.

[6] 6. N. Bruno, N. Koudas, and D. Srivastava. Holistic
Twig Joins: Optimal XML Pattern Matching. Proceedings
of ACM SIGMOD, (2002) June 3-6; Madison, Wisconsin,
USA.

[7] 7. J. Lu, Tok W. Ling, C. Y. Chan, T. Chen. From
Region Encoding To Extended Dewey: On Efficient
Processing of XML Twig Pattern Matching. Proceedings
of VLDB, (2005) Aug.30-Sep.2; Trondheim, Norway.

[8] 8. Zhifeng Bao, Tok Wang Ling, et al. SemanticTwig: A
Semantic Approach to Optimize XML Query Processing.
Proceedings of Database Systems for Advanced
Applications (DASFAA), (2008) Mar. 19-21; New Delhi,
India.

[9] 9. H. Georgiadis, M. Charalambides, V. Vassalos: Cost
Based Plan Selection for XPath. Proceedings of ACM
SIGMOD, (2009) June 29-July 2; Providence, USA.

[10] 10. H. Georgiadis, M. Charalambides, V. Vassalos:
Efficient Physical Operators for Cost-based XPath
Execution. Proceedings of 13th International Conference
on Extending Database Technology (EDBT), (2010)
March 22-26; Lausanne, Switzerland.

[11] 11. X. Yuan, X. Wang, and C. Wang. Efficient XPath
Evaluation Using a Structural Summary Index.
Proceedings of International Conference on Computer
Science and Software Engineering (CSSE), (2008) Dec.12-
14; Wuhan, Hubei, China.

[12] 12. Bohme T,Rahm E．Supporting Efficient Streaming
and Insertion of XML Data in RDBMS. Proceedings of 3rd
International Workshop Data Integration over the Web
(DIWeb), (2004) June 8; Riga, Latvia.

[13] 13. University of Washington. XML Data Repository.
www.cs.washington.edu/research/xmldatasets.

816 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER

