
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

164

Manuscript received April 5, 2007

Manuscript revised April 25, 2007

Xml Query Processing – Semantic Cache System

M.R.Sumalatha 1† , V.Vaidehi†† and A.Kannan 2†††
rsumalatha@yahoo.com,vaidehi@annauniv.edu, kannan@annauniv.edu

Anna University , Chennai, INDIA

Summary
With the advent of XML, great challenges arise from the demand
for efficiently retrieving information from remote XML sources
across the Internet. Recently, the advance of extensible Markup
Language (XML) as the lingua franca of the Web meets the
needs for an interoperable data exchange format on the Web. The
semantic caching technology can help to improve the efficiency
of XML query processing in the Web environment. Unlike from
the traditional tuple or page-based caching systems, semantic
caching systems exploit the idea of reusing cached query results
to answer new queries based on the query containment and
rewriting techniques. Fundamental results on the containment of
relational queries have been determined. The results show that
some of our measures outperform the traditional measures in
certain situations.

Key words:
XML query processing, Semantic cache system..

1. Introduction

Caching popular queries and reusing results of previously
computed queries are one important query optimization
technique, especially in modern distributed environments
such as the World Wide Web. Based on the recent
proliferation of XML data and the emergence of the
XQuery language, developing a query-based caching
system for XQuery queries and rewriting strategies to
answer incoming user queries based on the cached
XQueries, whenever possible, instead of accessing remote
XML data sources gives efficient information retrieval. To
manage the space of the cache, a straightforward
application of replacement strategies would correspond to
removing a complete cached query and its derived XML
document as a whole when space needs to be freed [1, 4, 5,
6].When semantic cache system is compared with
traditional systems, one major difference can be stated, it
is that the data cached at the client side of the former is
logically organized by queries, instead of physical tuple
identifications or page numbers. To achieve effective
cache management, the access and management of the
cached data in a semantic caching system is typically at
the level of query descriptions. For example, the decision
of whether the answers of a new query can be retrieved

from the local cache is based on the query containment
analysis of the new query and the cached ones, rather than
by
looking up each and every tuple, or page identification of
objects that could possibly answer a current user request
[2, 3]. An important responsibility of cache management is
to determine which data items should be retained in the
cache and which ones should be replaced to make free
space for new data, given limited cache space. Most
naturally, the data granularity for replacement in a query-
based caching system is the query and its associated result
[7, 8, 9].

2. Semantic Cache System

The first method is to install it in a separate proxy server
as shown in Figure 1 through which all clients connect to
the server. This method leads to a substantial decrease in
the amount of network traffic but the maintenance of the
cache consistency becomes difficult due to the latency in
communicating changes in the database from the server.

Fig. 1 Cache using Proxy Server

The second method is to implement cache on the server
side, that it reduces the load on the web server. The
advantage of using this method is that the load on the
server decreases but it doesn’t have any effect on the
amount of network traffic.

Fig. 2 Cache using Web server

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

165

The first method may be more suitable since it reduces the
response time as well as the network traffic since both the
query and the result set is shortened. Our semantic cache
can be effectively used in both the environments.

3. Partial Query Matching

In a semantic cache, the partial query matching is given
more importance because if the data is partially available,
logically it has to be analyzed and the correct result has to
be given to the user. The concept of how cached contents
are organized by queries is discussed first. That is, a hash-
table like data structure is managed by a semantic cache to
enable the associative access of cached data via the lookup
by queries. For example, Figure 3 depicts an SQL query
and its corresponding answer set represented by a spatial
region scoped in terms of query predicates.

Fig. 3 Query Semantic Region.

Hence, each cached entry consists of a (key, value,
function) triple for representing a semantic region. The
key is a high-level query description extracted from the
original syntactical format of a query. The value refers to
the corresponding query answers accessible through the
key. When a new incoming query is found to be
semantically contained or overlapping with a cached query,
a probe query is computed for retrieving the available
portion of the query answers within the cache, and a
remainder query is sent to the remote data server to fetch
the remaining part of the query answers. Such a re-use of
cached contents based on the semantic query containment
relationship is depicted in Figure 4.

Fig. 4 Probe and Remainder Queries

 4. Proposed Work

We have investigated the challenges imposed by the
problem in defining architecture for efficient semantic
cache management and provided an approach for tackling
it using hash tables which implement the probabilistic
hashing strategy for collision resolution. The Cache stores
cached XML data with a semantic scheme. This semantic
scheme consists of a set of patterns, and describes current
cached XML data. The cached data is organized as an
XML tree, which is a rooted sub tree of the XML tree
exported by the XML database server. We have designed
a mechanism for partial query matching by forming
predicates and rules which perform semantic matching
based on these rules which is an innovative method which
makes efficient information retrieval.
Since the query joining issue plays a vital role in semantic
caching we have analyzed how it can be joined effectively
by proposing a dynamic hash mapping technique. The
complex query given from the user is to be evaluated. This
query is split in to simple sub queries by using the user
defined functional modules, query decomposer, query
marker and query trimmer. The query decomposer does
the work of formation of sub query tree. The actual place
where the division in to a simple sub queries is to be made
is done by the query marker. The actual trimming in to sub
query is done by the query trimmer. Now the Sub query is
matched for its presence in the fact table which is a
knowledge based information about the cache contents. If
it is present and on obtaining a successful exact match
then we draw up the conclusion the actual data is present
in the cache. Actual work to be done is tuning the
effective organization of the fact table entries or rules, that
would result in obtaining faster matches with the incoming
sub query. The rules of the fact table are the organization
of the attributes of the query (ie) the name of the database,
the relation R and the attribute of the relation of the
document contents. We present this as an N-ary tree with
the first level nodes as the resolving what database the
incoming query requires. It proceeds to the next level if
the database name matches with the one present in the fact
table. Then a match or presence of the relation is checked
in the fact table. This process is repeated until a failure or
complete exploration of the N-ary tree. On the point of
failure or success this fact table mapping technique returns
the result depicting the presence in cache or not. On
inferring the portion of the query present, hash function is
applied on the attributes obtained from N-ary tree which
maps directly to the actual data on the cache. The other
part that is not present in the fact table is rewritten as
"probe" and "reminder" part. The probe is the part where
it's actual data is present in the cache and the reminder part

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

166

of the sub query is the portion that has to be sent to the
server where the answer for the query is to be obtained
from the database. This is the way in which the dynamic
hash mapping reduces enormous amount of computation
time of the complex subquery. We have the organization
of the fact table in the form of an exhaustive dynamic n-
nary tree where the incoming query's presence is checked.
If the part of the query is not executed before then it is
treated as "remainder" and it has to be sent to the server
for evaluation. If the query or its part has been executed
before then the path determining its database, table,
attribute is returned. This returned value is employed to
extract the actual value from the cache.

5. Semantic Cache Architecture

The Architecture of the entire cache system shows how
the cache system works. As the XQuery comes, it is
checked up with the cache system, if found return the
results from the xml document stored. Then it will be send
to the Tokenzier to split the Xquery into tokens and send
to the partial matching module. If it doesn’t match in the
Naïve cache then it is partially matched up in the Rule set.
If not found in the cache and the rule set means it will
reported to the Query engine. If the system get a command
from the server to update its cache with a query .The
system will be then ready to receive a XML document.
Then the server sends the XML document with some
intermediate form between the cache system and server.
The Semantic Cache will then interpret the XML
document and store its values in the Cache table by
performing all the operations like the hashing, query
lookup, and replacement and store the results in a
document.

Fig. 5 Semantic cache Architecture

The partial matching structure in Figure 6 shows the
working of the semantic partial matching when the entire
query is not available in the cache and only partial results
are available. For this purpose a partial match hash table is
used to store semantic information about the queries in the
cache. For queries that couldn’t be answered from the
naïve will be checked up with the partial matching cache
to find any relation with the incoming queries that has
some relation with the queries that present in the cache. If
some relation exists then it will return back with the
results and inform the query engine about the relation and
remaining query formulation.

Fig. 6 Partial Matching structure

6. Implementation Issues

1.1.1
A. Steps in storing a query and its results in
the cache
The incoming Query and its details will be cached and
stored to the cache table,
Query : The incoming query
Present Bit: To signify the presence of the entry in
 a particular position.
Age : Number of times it has been accessed.
Query No :The unique number to identify each

 query.
The query is then hashed and the hash value obtained is
used to store the above given fields are inserted into the
hash table. The result of the query is appended to the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

167

XML document with appropriate query number for the
query node using LIBXML.

B. Partial Matching Table
The queries that were not matched in the cache will be
partially matched up with the rule set. The rules are
formed while the entries are added up in the cache. The
incoming Query is split into the following parts based on
FLWR expressions.
Tablename : Name of the table the query refers
Attribute : Name of the attribute in the table the query
 refers
Condition : The condition to be satisfied.
Value : The value of the attribute.
Query No : The unique number to identify the query.
Attr+Tab : This combination is used to index the data
in
 the hash table.

The Attribute + Table value is then hashed and the hash
value obtained is used to store the above given fields are
inserted
into the hash table. Partial values will be computed by
matching the operators, value and conditions. Partial
return can also be answered from the cache.

2.

C. Probabilistic hashing & Cache Replacement Strategy
The cache is implemented using probabilistic hashing
method this technique is particularly useful for
implementing cache since it has more advantages
compared to the Chaining concept in both time and space
complexity. Since the probabilistic hashing is used, when
the cache is full and a new entry must be added, and to
make sure so that the query which is deleted should have
its results removed from the linked documents and must be
replaced with the result of the newly added query. Based
on Age factor, replacement is carried out. In the cache
table a field called ‘age’ is maintained for the no of hits for
every entry for this purpose. Since probabilistic hashing is
used there is no need for searching, and will directly
replace the corresponding index which will result in
efficient time complexity.

7. Result Analysis

The experimental and analysis of the result serve two main
purposes:

• The first purpose is to validate the partial
matching ideas for XQuery. For this, some
example queries were picked from the W3C

working draft “XML Query Use Case” [10] and
run them through the XQuery engine with and
with the semantic caching mechanism provided
by the caching system. The correctness of the
semantically matched queries by comparing their
answers with those produced by directly
executing the corresponding original queries is
also checked.

• The second purpose is to determine whether or
not the system can help to improve query
performance. If yes, how much is the
performance gain achieved, and what is the
response time when the size of the cache is varied.

Without the aid of the cache, a distributed querying
process can be broken down into three distinct stages. The
cost distribution is analyzed in these three phases and aim
to identify the factors that most strongly influence the user
perceivable response time.

• The first stage is sending the query from the
client to the server. There is a query shipping cost
associated with this stage, although it should not
fluctuate between queries as the size of queries
themselves are very small compared to that of an
XML document.

• The second stage is the execution of the query on
the remote server against the originally specified
XML document. This time component should
greatly depend on both the query and the size of
the XML document being queried against.

• The last stage of the process is sending the query
results back to the client.

The result data shipping time associated with this stage is
dependent on the size of the results and therefore also
dependent on the query and the size of the source XML
document. Roughly, the formula below can be used to
indicate how the user perceivable response time is
summed up.
 Ttotal = Tqueryshipping + Tqueryexecution + Tresultshipping

It can be seen from the above that the cost spent in the first
and third stages involves the query shipping and the result
data shipping across the network respectively. Hence, the
network delay is a major factor besides the local query
processing time.
The former is related to the network distance, the available
bandwidth, the quality of network transmission, as well as
the result data size. The latter is dependent on the
efficiency of the query engine being used, the source
document size and the query size. The time saving can be
achieved in possibly all three stages by deploying the
cache system as a proxy server in the LAN to assist the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

168

query engine. That is, if the new query is totally contained
within a cached query, then neither Tqueryshipping nor
Tresultshipping necessary any more, even Tqueryexecution will be
scaled down since the XML document being queried
against is not the original XML document but only the
view document of the containing query, which can be
reasonably assumed to be a small percentage of the
original one. The caching system can be effectively
designed by probabilistic hashing, which can be used for
collision resolution due to its low response times. Also
even if a query is overwritten due to collision, no loss is
incurred since the original query can always be retrieved
from the server.
The performance of the cache system is analyzed by
plotting the average response time for various sizes of the
cache. The results analyzed are shown in the figures below.

Fig. 7 Performance of Semantic cache systems

Fig. 8 Response Times with and without cache

The results show that the response time is almost the same
even when the size of the cache is varied. This is due to
the use of probabilistic hashing technique. The average
response time of the system is around 600µs which is
much lesser than the network latency incurred in
answering a query from the database at the server. Also
when partial results are retrieved using this method, there
is significant reduction in the amount of data transmitted
over the network and also reduces the load on the server
and DBMS.

Fig 9. Network Traffic (Totally Contained)

Fig 10. Network Traffic (Partially Contained)

8. Conclusions and Future Work

In order to improve the efficiency of XML query
processing in the Web environment it is enhanced using
the semantic cache system. Future research issues can give
better solution for this system, provided it overcomes the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.4, April 2007

169

problems like replacement strategy that can better adapt to
the user query access pattern and improve the cache space
utilization, security issues. The system can also be made
multithreaded so that it can process multiple queries
simultaneously for better performance and parallelism.

References
[1]. Wanhong Xu, “The Framework of an XML Semantic
Caching System”, WebDB 2005, ACM, June 2005.
[2]. Bhushan Mandhani and Dan Suciu, “Query Caching and
View Selection for XML Databases”, VLDB Journal (2005).
[3]. Qun Ren, Margaret H. Dunham, and Vijay Kumar,
“Semantic Caching and Query Processing”, IEEE transactions
on knowledge and data engineering, Feb 2003.
[4]. Li Chen and Elke A. Rundensteiner, “XQuery Containment
in Presence of Variable Binding Dependencies”, ACM, May
2005.
[5]. Li Chen, Song Wang, Elizabeth Cash, Burke Ryder and Ian
Hobbs, “A Fine-Grained Replacement Strategy for XML Query
Cache”,
ACM (Nov -2002).
[6]. Athena Vakali, Barbara Catania and Anna Maddalena,
“XML Data Stores: Emerging Practices”, IEEE Internet
Computing, April 2005.
[7]. Irini Fundulaki and Maarten Marx, “Specifying Access
Control Policies for XML Documents with XPath”, ACM, Jun
2004.
[8]. Jaap Kamps, Maarten Marx, Maarten de Rijke and Borkur
Sigurbjornsson, “BestMatch Querying from DocumentCentric
XML”.
ACM , Jun 2004.
[9]. Li Chen, Elke A. Rundensteiner and Song Wang, “XCache
– A Semantic Caching System for XML Queries”, ACM
SIGMOD, June 2002.
[10]. W3C. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, May 2003.

M.R.Sumalatha received the B.E.
degree in Computer Science from
Madras University and M.E.
degree in Electronics Engineering
from Madras Institute of
Technology, Anna University in
1999 and 2001, respectively.
During 2001-2007, she is in the
Database area of Research. She is
currently working in the area of

Information retrieval in Database management systems and web
services.

