
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Nayak, Richi & Iryadi, Wina
(2007)
XML Schema Clustering with Semantic and Hierarchical Similarity Mea-
sures.
Knowledge-Based Systems, 20(4), pp. 336-349.

This file was downloaded from: https://eprints.qut.edu.au/13994/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/j.knosys.2006.08.006

https://eprints.qut.edu.au/view/person/Nayak,_Richi.html
https://eprints.qut.edu.au/view/person/Iryadi,_Wina.html
https://eprints.qut.edu.au/13994/
https://doi.org/10.1016/j.knosys.2006.08.006

XML schema clustering with semantic and hierarchical

similarity measures

Richi Nayak and Wina Iryadi

School of Information Systems, Queensland University of Technology

Brisbane, Australia {r.nayak@qut.edu.au}

Abstract. With the growing popularity of XML as the data representation

language, collections of XML data have exploded in numbers. The methods are

required to manage and discover the useful information from them for improved

document handling. We present a schema clustering process by organising

heterogeneous XML schemas into groups. The methodology considers not only

the linguistic and the context of the elements but also the hierarchical structure

similarity. We support our findings with experiments and analysis.

Keywords: Clustering; Data mining; Document mining; XML; semi-structured

data; semantic similarity; structural similarity; schema matching

1. Introduction

XML has become a standard for information exchange and retrieval [34]. With the

continuous growth in XML data, the ability to manage massive collections of XML

data and to discover knowledge from them becomes essential for Web-based

information systems [15, 25]. A possible solution is to group similar XML data based

on their context and structure. The clustering of XML data facilitates a number of

advanced applications such as improved information retrieval, data and schema

integration, document classification analysis, structure summary and indexing, and

query processing and optimization [6, 23].

The clustering data mining process categorizes the XML data based on their

similarity without having a prior knowledge on the taxonomy. There exist a number of

clustering methods dealing with (unstructured) database objects and text data [3, 36].

The XML data is different – semistructured and hierarchical [34]. There are two types

of XML data: XML documents and XML schemas. A XML schema describes the

structure of the XML document. Usually, XML’s schema can be obtained separately

without scanning the whole document. Therefore, a method to cluster XML documents

should take advantage of their schema.

Similarity of correspondence elements between XML documents can be

conducted efficiently using relevant XML schemas. The document schema provides a

definitive description of the document, while document instances only give a snapshot

what the document may contain. The document definition outlined in a schema holds

true for all document instances of that schema. So the result produced from clustering

of schemas will hold true for all document instances of those schemas, and can be

reused for any other instances. On the contrary, the result of clustering of document

instances will hold true for included document instances only. The clustering process

is to be repeated for any other document instances.

This paper presents the XMine methodology that quantitatively determines

the similarity between heterogeneous XML schemas by considering the semantic as

well as the hierarchical structure similarity of elements. The similar schemas are

clustered into separate meaningful classes. Whilst there are several XML documents

and schema clustering techniques available [4, 6, 9, 11, 24, 26], this paper enhances

this task by adding hierarchical similarity in clustering by addressing the element level

hierarchical positions. The XMine methodology can deal with varying structure of

schemas and with varying aspects of semantic differences in schema elements.

The contributions of this paper are (1) combining the semantic and syntactic

relationships to calculate the linguistic similarity between two element names; (2)

calculating the structural similarity between two elements by considering the ancestor-

child relationship along with parent-child relationship in maximal similar paths; and

then (3) generalizing a suitable schema class hierarchy to determine the relationship

between the discovered schemas in the XMine methodology.

The performance of XMine is demonstrated using a number of heterogeneous

schemas derived from several application domains. The empirical results demonstrate

that the semantic, syntactic and hierarchal relationships of schema elements play

important roles for producing good quality of clustering results. Most importantly, it

discovers that syntactic similarity measure is more useful than semantic similarity

measure.

1.1 Potential Applications of the XMine methodology

The result of schema class composition hierarchy can serve as a basis for a number of

XML application processes. The clusters of schemas provide a hint for building an

index structure. Indexing based on structural similarity support many applications. For

example in information retrieval field, the XML-based search engines can improve the

speed and accuracy in retrieving the relevant portions of XML data by using efficient

indexes. Moreover, several databases tools that are developed to deliver, store,

integrate and query XML data [5, 12, 21, 33], require indexing based on structural

similarity to support an effective document storage and retrieval

 Moreover, the schema class composition hierarchy can be viewed as a

generalization of the training sets of schemas to a super-class that is useful for further

XML document classification analysis. A number of heterogeneous sources of

schemas can be classified into this set of predefined classifications of schemas. This

process will improve the XML document handling and achieve more effective and

efficient searches of relevant XML documents.

The method of association rule mining can also be applied to find interesting

correlation relationships of all metadata available in schemas belonging to the same

schema class. The element tags that frequently occur together within a schema class

can be used to maximally distinguish one class of schema from others. This would

derive a set of association rules associated with each schema class. This schema

element tag-based association analysis is also useful for discovering common XML

structures for a specific domain.

 In addition, the schema class hierarchies can also facilitate a difficult task of

schema integration process on heterogeneous schemas. The integration on similar

schemas within each schema class would provide an easier task than reconciling

schemas that are different in structure and semantics, which would involve complex

restructuring process.

The similarity between two structures is also a notion tied to a challenging

task of reusing XML or semi-structured documents. In XML document content reuse,

a document (or a part of document) structured under one schema must be restructured

into an instance of a different schema. The identification of common paths between

two instances of schema helps to avail this restructuring.

Figure 1: Example of a XML document and its respective DTD

2. Background Knowledge on XML Data

XML is a flexible representation language. There are two varieties of XML data: XML

documents and XML schemas. A XML schema provides the data definitions and

structure of the XML document [1]. While XML documents are the instances of a

schema giving a snapshot of what the document may contain. A schema includes what

elements are (not) allowed; what attributes for any elements may be and the number of

occurrences of elements; etc. A schema for a document may be included as both

internally and externally (located within the same file or a different file, respectively).

 There are several XML schema languages, but only two are commonly used.

They are DTD (Document Type Definition) and XML Schema or XML Schema

Definition (XSD), both of which allow the structure of XML documents to be

described and their contents to be constrained [32]. A DTD specifies the structure of

an XML element by specifying the names of its sub-elements and attributes. Sub-

element structure is specified using operators * (zero or more elements), + (one or

<?xml version=”1.0” encoding=”UTF-8”?>

<Companies> <!DOCTYPE Companies [

 <Company> <!ELEMENT Companies (Company+)>

 <Symbol> Eagle.img </Title> <!ELEMENT Company (Symbol, Name,

 <Name> EagleFarm </Name> Sector?, Industry, (Profile))>

 <Industry> Dairy </Industry> <!ELEMENT Profile (MarketCap,

 <Profile> EmployeeNo, (Address),

 <MarketCap> 1000 </ MarketCap > Description)>

 <EmployeeNo> 20 </ EmployeeNo > <!ELEMENT Address (State,City?)>

 <Address> <!ELEMENT Symbol(#PCDATA)>

 <State> QLD </State> <!ELEMENT Name (#PCDATA)>

 </Address> <!ELEMENT Sector (#PCDATA)>

 <Description> gdsfkls </Description> <!ELEMENT Industry (#PCDATA)>

 </Profile> <!ELEMENT MarketCap (#PCDATA)>

 </Company> <!ELEMENT EmployeeNo (#PCDATA)>

 <!-- Some more instances --> <!ELEMENT State (#PCDATA)>

 …. <!ELEMENT City (#PCDATA)>

</Companies>]>

more elements), ? (optional), and | (or), as well as with properties type (PCDATA, ID,

IDREF, ENUMERATION).

 The DTD language is considered limited as it only supports limited set of data

types, loose structure constraints, limitation of content to textual, etc. To overcome the

above limitations of DTD, XSD provides novel important features, such as simple and

complex types, rich datatype sets, occurrence constraints and inheritance. An XML

Schema is usually comprised of a set of schema components, such as type definitions

and element declarations. They can be used to assess the validity of well-formed

element information items.

 It is believed that XSD will soon take over DTD due to its flexibility [13].

Therefore, the XMine methodology clusters the XML schemas represented in both

schema languages. Throughout this paper, we use the term ‘schema’ to express both

XML-DTD and XML-Schema unless clearly specified.

 Figure 1 illustrates a simple example of XML document and its

corresponding DTD. Figure 2 shows a respective XML Schema.

 Figure 2: Example of the respective XSD of the above document

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema>
 <xsd:element name="Companies" >

 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name=”Company" maxOccurs=”unbounded”>

 <xsd:complexType>
 <xsd:sequence>

 <xsd:element name="Symbol" type="xsd:string"/>

 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Sector" type="xsd:string"/>

 <xsd:element name="Industry" type="xsd:string"/>

 <xsd:element name="Profile" >
 <xsd:complexType>

 <xsd:sequence>
 <xsd:element name="MarketCap" type="xsd:string"/>

 <xsd:element name="EmployeeNumber" type="xsd:unsignedInt"/>

 <xsd:element name="Address" >
 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="State" type="xsd:string"/>
 <xsd:element name=”City" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Description" type="xsd:string"/>

 </xsd:sequence>
 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>
 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>
 </xsd:complexType>

 </element>

</xsd:schema>

WordNet
User-Defined

Synonyms

schema

Docs.

schema cluster 1 schema cluster 2

schema

Structure

Analyzer

schema

Element

Analyzer

Maximally

Similar Paths

Finder

Computing schema Similarity
Semantic Similarity + Structure Similarity

Constrained Agglomerative Clustering

With Various

Structures

Pre-processing

Data Mining

Algorithm

(Clustering)

Post processing

(Visualization) schema cluster n

3. The XMine Methodology

Figure 3 illustrates the overall architecture of the XMine methodology. This is

deployed in three phases, namely preprocessing, data mining, and postprocessing.

The focus of the preprocessing phase is to determine the common and similar

features between various schemas in automated manner to effectively facilitate the

clustering process. It includes four stages to address various issues involved in

measuring the similarity of schemas. Firstly, the structure analyser analyses the

structure of a schema and transforms it into a labelled and directed acyclic tree graph.

The element analyser then measures the similarity between the arbitrary elements in

different schemas primarily based on the element names. Next, the maximally similar

paths finder determines the common and similar hierarchical structure of the elements

defined in schema by using the adapted sequential pattern mining algorithm. Lastly,

the overall degree of similarity between schemas is computed by taking the element

and structure similarity into consideration.

The XMine methodology then proceeds for data mining. Schemas similar in

structure and semantics are grouped together to form a hierarchy of schema classes

using an agglomerative clustering algorithm. The clustering result is visualized in the

final phase of the methodology. The visualization is also a critical verification of the

clustering results, which assist the generalization and specialization on the schema

classes to develop a schema class hierarchy.

 Figure 3: The architecture of XMine methodology

3.1 Preprocessing: Structure Analyser

This module represents a schema into a labelled and ordered tree. This module also

performs simplification analysis of the schema trees in order to deal with nesting and

repetition problems. XMine handles both the common types of XML schemas: DTD

(document type definition) and XSD (XML Schema definition). A schema is

composed of hierarchical elements, wherein for each element it is possible to specify

whether: it is optional (‘?’); it occurs several times ((maxOccurs="unbounded") in

XSD or (‘+’) or (‘*’) in DTD); subelements are alternatives with respect to each other

((‘xsd:choice’) in XSD or (‘|’) in DTD); or subemelmets are grouped in a sequence

((‘xsd:sequence’) in XSD or (‘,’) in DTD).

The constraint features of a schema serve as the primary elements for the

construction of the tree representation. Each node in the tree contains its properties

such as name, data type and cardinality. In addition, each node in the tree corresponds

to an element or an attribute, or to an element operator with edges denoting the nested

relationship between element and its subelement or operator. Moreover, there can be

more than one edge outgoing from a node, only if the edge incoming to that node is

labeled by AND or OR operator. The elements that have basic property types of

#PCDATA or ANY in a DTD, or ‘type’ in a XSD are considered as leaves of the tree

(e.g. fName, mName, lName). Attributes are treated as special elements that have an

atomic property.

According to [18], it is difficult to determine the degree of similarity of two

elements that have AND-OR operators in their content representation. Therefore these

details of a schema are normalized into a simplified schema according to a series of

predefined transformation procedures similar to those in [18].

An example of representing DTDs as a tree form is shown in Figure 5.

3.2 Preprocessing: Element Analyser

This module addresses the issue that schemas from same domains may have naming

differences, and they may model non-identical but similar content. The element

analyser measures the elements (tag names) similarity (linguistic similarity coefficient:

lSim) by comparing each pair of elements of two schemas primarily based on their

names, assuming the same names bear the same semantic meaning.

It considers the equality of canonical name representations after stemming

and element preprocessing. This is important to deal with special prefix or suffix

symbols (e.g. CName → customer name, EmpNo → employee number). In addition,

the element names in different schemas might not be exactly the same, provided they

are stems or similar enough. Hence, the other consideration is the equality of

synonyms between elements (e.g. car → automobile, movie → film) and similarity of

elements based on common string edit distance operation (e.g. chtitle → title). We use

of WordNet thesaurus [10] to exploit synonyms (e.g., movie → film) and the user-

defined dictionaries in order to identify abbreviations (e.g.Emp → Employee),

acronyms (e.g. DOB → Date of Birth), and user-defined synonyms.

 The steps to measure the linguistic similarity coefficient (lSim) are as follows:

1. Parse the compound element name into a set of tokens based on customizable

delimiters such as, uppercase, punctuation, and special symbols, e.g.,

PONumber → {PO, Number}.

2. Expand the tokens into a linguistic set (lingSet) using the user-defined dictionary

with acronyms and abbreviations, e.g., {PO, Number} → {Purchase, Order,

Number}.

T = Set of the tokens = lingSet (w) where w is an element name.

3. Measure the lSim of two sets of name tokens T1 and T2 to find how linguistically

close two element names are. It is the average of the best similarity of each token

with a token in the other set. It is calculated as follows:

|2||1|

),(),(

),(11

max

22
22

max

11
1221

21

TT

Tt
Tt

Tt
Tt

ttsimttsim

ttlSim
+

∈
∈

∈
∈

+

=

∑ ∫ ∑ ∫

sim (t1, t2) is a combined measure (as formulated in figure 4) that calculates the

semantic relationship (e.g. movie → film) as found in WordNet thesaurus [10] and

the syntactic relationship (e.g. ctitle → title) using the string edit distance function

[27]. The semantic relationship is first applied for exploiting the semantic

similarity degree between two tokens by looking up in the WordNet. If the

WordNet does not identify common elements, the syntactic relationship is then

applied. Similarity thresholds (δ and µ) are set to represent the minimal degree of

similarity required for semantic and syntactic measures respectively.

Figure 4: Algorithm to compute Linguistic Similarity of two words

Following is an example showing the calculation of lsim: consider two elements w1-

author_fname and w2 - writerName. Tokens are derived: T1- {author, fname} and T2-

{writer, name}. Similarity between each pair is measured:

1. sim (author, name) = 1 (using the semantic similarity measure)

2. sim (name, author) = 1 (using the semantic similarity measure)

3. sim (fname, name) = 0.8 (using the string edit function due to the semantic

similarity less than δ - Assuming δ is set as 0.7.)

4. sim (name, fname) = 0.8 (using the string edit function due to the semantic

similarity less than δ)

Linguistic Similarity Coefficient (lsim): 9.0
22

)8.01()8.01(
=

+

+++

3.3 Preprocessing: Maximally Similar Paths Finder

This module identifies the paths and elements that are common and similar between

each pair of tree schemas. The assumption is that similar schemas have more common

paths. We adapt the sequential pattern mining algorithm [2] to infer similarity between

elements and paths. The sequential pattern mining algorithm considers the frequent

occurrences of elements as well as the sequences of elements.

 Function sim (t1, t2)

 sim = SemanticSim (t1, {t2}, 1); /* Semantic Relationship with the WordNet*/

 if sim ≥ δ then return sim;

 else /* Syntactic Relationship */

))length(t),(tmax(length

ttnceedit_dista
sim

21

),(21
=

 if sim ≥ µ then return sim;

return 0; /* No match */

The structure of a schema tree is represented by a set of path expressions (or

paths). Each path expression is viewed as a sequence. A path expression is represented

by a unique sequence of elements following the links from the root node to a leaf node

by traversing through the nodes in that path. A path expression, p, is denoted as <x1,

x2, … xn> where x1 is a name of the root node and xn is a name of the leaf node. Let the

set of path expressions, PE, in a schema tree be {p1, p2 … pm} where m is the number

of unique paths in the tree. Using the terminology of sequential pattern mining, a

sequence (or a path) is contained by another if it is a subsequence of that sequence. A

sequence (or a path) is frequent if it occurs in the set more times than the user defined

threshold (or support). In a set of paths, a path pj is maximal if it is not contained by

any other path expression or no super path of pj is frequent.

The task is to find the maximal frequent paths among the set of path

expressions in two schema trees. Each such maximal frequent path represents a

common structure between the pairs of trees. Unlike other data mining applications,

the minimum support for finding the maximal frequent paths between two trees must

be 100% since similar paths must be in both structures. Another variation in this

process is that support count for an element should be incremented only one per

schema even if the schema contains the same elements in two different paths.

 The five phases of the sequential mining algorithm [2] are modified to

facilitate the finding of maximal similar paths (MPEs) between two trees (a base tree

TB and a query tree TQ):

1. Sort Phase. Elements contained in each path are sorted according to their

hierarchical position in the tree levels. The first element appearing in a path

always represents the root node of the corresponding schema tree. The remainder

of the elements in the path are then denoted as the descendent of the root node in

order.

2. Transformation Phase. The elements of path expressions are mapped into integer

representation to facilitate faster sequential mining process. Elements in the path

expressions defined as similar according to the linguistic similarity coefficient

(lSim) is mapped into the same integer representation.

3. Litemset Phase. In this phase, the set of large 1-paths are found by considering the

element matching. Every similar element in the two path expressions is included

in the large 1-paths set. The large 1-path is a set of all expressions that have only

one element and that is frequent.

4. Sequential Phase. This includes the multiple passes over a collection of large

paths sets in order to determine new larger paths progressively such as the large 2-

paths, large 3-paths and so on, until large n-paths are found.

5. Maximal Phase. The maximal similar paths (MPE) are found by using the

backward phase [2] to all the large paths obtained in the sequential phase. All sub-

paths contained in large paths are pruned out until maximal paths are found.

3.4 Preprocessing: Schema Similarity Matrix Processor

A method to compute the similarity between schemas is presented by making use of:

(1) the element semantic similarity as explained in section 3.2; and (2) the element

structural similarity obtained as the maximal large paths in section 3.3. The element

structural similarity includes the hierarchical position of an element in the schema.

This covers the context of an element defined by its ancestor (if it is not a root) and its

descendants positioned as in path expressions. This is included in XMine by

determining similar elements in two trees based on the common paths. This serves the

basis of structural computation. The element semantic similarity includes the linguistic

and constraint similarity between each pair of elements contained in two maximal

similar paths. The overall degree of similarity based on the element and structure

similarity is then computed in the schema similarity matrix processor.

Let us assume two schemas: base schema (schemaB) and query schema

(schemaQ) that are to be compared. Base tree TB and query tree TQ are the

corresponding simplified trees. A unique set of path expressions are obtained by

traversing both the base and query trees, denoted as PEB and PEQ respectively. A set

of maximal similar path expressions (MPE) represents a number of common paths that

exist in both base and query tree. The corresponding path expressions that contain a

MPE from the PE
B

and PE
Q
 sets are identified.

Structural similarity: Once all the corresponding common path expressions from

both trees have been obtained, the similarity coefficient of all maximal similar paths,

maxpathSim, is measured. The maxpathSim aggregates the similarity coefficient of two

corresponding base and query path expressions, refers to as path similarity coefficient,

pathsim. The following is the formalization of maxpathSim:

Similarity between two path expressions (pathSim) is computed by

measuring the linguistic, constraints, and path name similarity of each element of PE
B

i

against elements of PE
Q

j. This checks a one-to-one mapping of elements in the path

expressions, that is an element in PE
B

i matches, at most, one element in PE
Q

j.

where the base element similarity coefficient, baseSim, represents the semantic

similarity between two names. The path name coefficient, PNC, measures the degree

of similarity of elements in two given paths.

Semantic similarity: The base element similarity coefficient, baseSim, is obtained by

the weighted sum of linguistic similarity coefficient, lSim and the constraint similarity

coefficient, constraintSim of the elements, shown as below:

),(),(),(21221121 eeweelSimweebaseSim Simconstraint∗+∗=

where weights w1+w2 = 1.

 The linguistic similarity coefficient, lSim is defined in section 3.2. The

cardinality constraint coefficient, constraintSim of two elements is determined from

the cardinality constraint compatible table (Table 1) as used in [18] for DTD. Table 1

shows the compatibility between two operators. XSD schema is more flexible than

DTD in terms of cardinality operations by using minOccurs and maxOccurs. We show

the mapping between the cardinality operators of DTD and XSD in Table 2 and utilise

the values of Table 1 for each equivalent mapping. For the operators outside this list, if

their data types are identical then 1 is returned or else 0 is returned. The constraint

coefficient is ranged between [0, 1].

 * + ? None

* 1 0.9 0.7 0.7

+ 0.9 1 0.7 0.7

? 0.7 0.7 1 0.8

None 0.7 0.7 0.8 1

Table 1: Cardinality constraint compatibility table adapted from [18]

Cardinality Operator minOccurs maxOccurs No. of child element(s)

[none] 1 1 One and only one

? 0 1 Zero or one

* 0 Unbounded Zero or more

+ 1 Unbounded One or more

Table 2: Cardinality Mapping between XSD and DTD

Path similarity coefficient: The path name coefficient, PNC, measures the degree of

similarity of elements in two given paths. The goal of this computation is to

differentiate elements that are present in both paths but are different in their context

(e.g., a patient’s name and a physician name). Consider two common paths that have

two elements with the same name but appearing in different level position (e.g.,

book.name and book.author.name). The context in which an element appears in the

hierarchical structure of a schema strongly contributes to determine the information

that element models [25]. The context of an element e is given by the path from root

element (that is the first element in the path expression) to the element e, denoted as

e.path(root) = {root, epi,…,epj, e}.

The similarity of two path names is obtained by summing up all the baseSim

values between each pair of elements in two paths then normalizing it with the

maximum number of elements contained in the two paths of the element names.

Schema similarity: Having obtained the similarity between all the maximal similar

paths (MPEs) of two trees, the similarity between two schemas is computed by

combining all MPE similarity coefficients:

|)||,max(|

)(

),(

||

1

QPEPE

MPEMaxpathSim

schemaschemaschemaSim
B

MPE

k

k

QB

∑
==

The similarity between each pair of schemas is mapped into the schema

similarity matrix. This matrix becomes the input to the next phase.

3.5 An example showing the process of preprocessing

Figure 5 shows two schemas and their respective tree representation related to the

health care system. Let us consider one of them (a) as ‘base’ and another one (b) as

‘query’. The objective is to find the similarity between them. A unique set of path

expressions are obtained by traversing both the base and query trees denoted as PEB

and PEQ respectively. Every element contained in the path expression is sorted

according to their hierarchal position in the tree.

 Similar elements of paths are mapped into same integer representation by

referencing the linguistic similarity table. For instance, the abbreviation of PID ↔

Patient ID is defined similar in the user defined library, so both elements are assigned

to the same integer in any path expression. In addition, the use of WordNet thesaurus

is able to resolve the abbreviations such as yr ↔ year and Qty ↔ Quantity. The

tokenizer during the element pre-processing is able to recognize the similarity between

the element names Service_Type ↔ Type_Service.

 Table 3 shows the PEs of both trees. The maximal similar path expressions

(MPEs) are determined from these PEs according to the process described in section

3.3. In the first iteration of the adopted apriori-algorithm, each distinct element in both

sets of path expressions is a member of the set of the candidate 1-paths, C1. The

algorithm simply scans the elements that are similar in both sets of path expressions.

The set of large 1-paths, L1, is then determined. It consists of the candidates 1-paths

that exist in both PEB and PEQ. To discover the set of large 2-paths, L2, the algorithm

uses joining L1 x L1 to generate a candidate set of 2-paths, C2. Then the algorithm

scans C2 to obtain the 2-large-paths that are contained common in PEB and PEQ. The

algorithm iterates this process until it finds all the large paths.

 In our example, the algorithm terminates in the sixth pass. Table 4 shows

some of the Large Paths. The backward phase is now used to find the maximal similar

paths among the set of large paths. Starting from L5, no paths are deleted since there

are no path sequences contained in some other large paths. Then moved on to L4,

delete those paths that are subsequences of the paths in L5 and thus all the 4-large paths

are pruned out. Next, the paths in L3 that are subsequence of the 5-large paths are

pruned out. The 5-large paths in L3 are found to be maximal. They are the first five

rows shown in Table 5. Finally all the paths in L2 and L1 are pruned out since they are

contained in the larger paths. Table 5 lists all the MPEs for these two schemas with the

corresponding PEB and PEQ that contain them.

Figure 5: Base (a) and query (b) documents with their corresponding trees.

PE ID Original path expressions Transformed path

expressions

PEB 1 〈(HomeVisit) (Patient) (Name) 〉 〈{1}{2}{3} 〉
.. 7 〈(HomeVisit) (Patient) (Phone) (Area) 〉 〈{1}{2}{10}{11} 〉
8 〈(HomeVisit) (Patient) (Phone) (Number) 〉 〈{1}{2}{10}{12} 〉
.. 16 〈(HomeVisit) (Patient) (Services) (Product) (Quantity) 〉 〈{1}{2}{14}{22} 24}〉

PEQ 1 〈(HomeVisit) (Patient) (Name) 〉 〈{1}{2}{3} 〉
.. 4 〈(HomeVisit) (Patient) (Phone) 〉 〈{1}{2}{10} 〉
 11 〈(HomeVisit) (Patient) (Services) (Product) (Quantity) 〉 〈{1}{2}{14}{22}{24}〉

Table 3: Equivalent transformed path expressions for both trees.

Large 1-path (L1) Large 2-path (L2) Large 5-path (L5)

Total elements: 17 Total elements: 46 Total elements: 6

All: 〈{1}〉, 〈{2}〉, 〈{3}〉, 〈{4}〉, Sample: 〈{1}{2}〉, 〈{1}{3}〉, All:

〈{9}〉, 〈{10}〉, 〈{13}〉, 〈{14}〉, 〈{1}{4}〉, 〈{1}{9}〉, 〈{1}{10}〉, 〈{1}{2}{14}{15}{16}〉, 〈{1}{2}{14}{15}{17}〉,

〈{15}〉, 〈{16}〉, 〈{17}〉,〈{18}〉, 〈{1}{13}〉, 〈{1}{14}〉, 〈{1}{15〉, 〈{1}{2}{14}{15}{18}〉, 〈{1}{2}{14}{19}{20}〉,

〈{19}〉, 〈{20}〉, 〈{21}〉,〈{22}〉, 〈{1}{16}〉, 〈{1}{17}〉, 〈{1}{18}〉, 〈{1}{2}{14}{19}{21}〉, 〈{1}{2}{14}{22}{24}〉,

〈{24}〉. 〈{1}{19}〉, ………………

Table 4: Large paths in base and query documents

MPE Corresponding

PEB and PEQ

MPE1 〈(HomeVisit) (Patient) (Name)〉 PEB 1, PEQ1

MPE2 〈(HomeVisit) (Patient) (Address)〉 PEB 2, PEB 3, PEB 4,

PEB 5, PEQ2

MPE3 〈(HomeVisit) (Patient) (Gender)〉 PEB 6, PEQ3

MPE4 〈(HomeVisit) (Patient) (Phone)〉 PEB 7, PEB 8 PEQ4

MPE5 〈(HomeVisit) (Patient) (PID)〉 PEB 9, PEQ5

MPE6 〈(HomeVisit) (Patient) (Services) (Date) (Month)〉 PEB 10, PEQ6

MPE7 〈(HomeVisit) (Patient) (Services) (Date) (Day)〉 PEB 11, PEQ7

MPE8 〈(HomeVisit) (Patient) (Services) (Date) (Year)〉 PEB 12, PEQ8

MPE9 〈(HomeVisit) (Patient) (Services) (Service_Type) (Price)〉 PEB 13, PEQ9

MPE10 〈(HomeVisit) (Patient) (Services) (Service_Type) (Time)〉 PEB 14, PEQ10

MPE11 〈(HomeVisit) (Patient) (Services) (Product) (Quantity)〉 PEB 16, PEQ11

Table 5: Corresponding base and query path expressions, PEB and PEQ, for each MPE.

For each MPE, the path similarity coefficient between each pair of base and query

paths is computed by measuring the baseSim and PNC of all pairs of elements in both

paths. Let us compute the maximal similarity path coefficient of

MPE4 = 〈 (HomeVisit) (Patient) (Phone)〉 that consists of:

PEB7 = 〈 (HomeVisit) (Patient) (Phone) (Area) 〉
PEB8 = 〈 (HomeVisit) (Patient) (Phone) (Number) 〉
PEQ4 = 〈 (HomeVisit) (Patient) (Phone) 〉

Here, the pairs of element names with no semantic similarity are not shown. We have:

75.0
)3,4(

)0.1()0.1()0.1(
)3.0,,(47 =

++
=

Max
PEPEpathSim QB

75.0
)3,4(

)0.1()0.1()0.1(
)3.0,,(48 =

++
=

Max
PEPEpathSim QB

 75.0
)1,2(

)75.0()75.0(
)(4 =

+
=

Max
MPEmaxpathSim

The maxpathSim for each MPE is calculated and the schemaSim is determined by

combining them all.

3.6 Data mining: Clustering the schemas according to their similarity

The constrained hierarchical agglomerative clustering method is used for grouping

similar schemas. This method uses a bottom-up strategy that initially assigns each

object to its own cluster and then pairs of clusters are repeatedly merged until the

number of classes is sufficiently small or until certain termination conditions are

satisfied [36]. The reasons to use this method are manyfold. Firstly, similarity of

clusters is based on the number of common elements that the schemas share. There

may be schemas that form small and reasonably cohesive clusters, as well as the

schemas that are not part of particularly cohesive groups.The type of clusters desired is

therefore globular in nature. This algorithm has been shown to be very powerful at

discovering arbitrarily shaped clusters.

 Secondly, the algorithm repeatedly merges the pair of clusters to form a final

solution. Therefore this clustering process can be analysed in the post-processing phase

to form a hierarchy of schema classes. Thirdly, the algorithm must be resistant to noise

and outliers. Since the data collection can have a schema that may not be related to

other schemas, outliers may be present. This algorithm uses a k-nearest neighbour

graph in the partitioning phase that ensures to reduce the effects of noise and outliers.

Fourthly, the algorithm should not require the number of clusters to be pre-determined

because the relationships between data are unknown. Finally, because the volume of

query data can be very large, the algorithm should be scalable.

 We use the wCluto web-enabled data clustering application [31] for clustering

the XML data. In order to use Wcluto, XMine first generated a matrix containing the

schemaSim coefficient (common path similarity coefficient) between the trees in the

data source (pair-wise similarity) using path similarity threshold of 0.7. The Wcluto

takes in the schema similarity matrix and performs the clustering process. The

‘Complete-Link’ merging criterion function is chosen for computing the distance

between clusters.

Based on the clustering results, the discovered schemas classes serve as a

basis for the visualization of the clustering solution and the generation of schema class

hierarchy in the last phase of post-processing.

3.7 Post processing: Generating a hierarchy of schema classes

In the final phase, the discovered schema patterns are visualized as a tree of clusters

called dendogram (an example is shown in figure 10). The dendogram shows the

clusters that are merged together and the distance between these merged clusters. This

facilitates the generalization and specialization processes of the clusters to develop an

appropriate schema class hierarchy. Each cluster, that contains a set of similar schemas,

forms a node in the hierarchy, where all nodes (or clusters) are at the same conceptual

level. Each cluster may be further decomposed into several schema sub clusters,

forming a lower level of the hierarchy. Clusters may also be grouped together to form

a higher level of the hierarchy.

A new schema can now be generalized. First, the schema is generalized to the

identifier of the lowest subclass to which the schema belongs. The identifier of this

subclass can then, in turn, be generalized to a higher-level class identifier by climbing

up the class hierarchy. Similarly, a class or a subclass can be generalized to its

corresponding superclasses by climbing up its associated schema class hierarchy.

Domain No. of Sources No. of Nodes Nesting levels

Automobile 9 10-40 2-10

Property 16 20-50 5-15

Travel 52 20-50 2-16

Health 20 40-80 5-8

Flights 20 20-100 4-15

Publication 40 20-500 4-10

Hotel Messages 25 50-1000 7-20

Table 6: The Input Data Set

4 Empirical Evaluation and Discussion

Dataset: Table 6 summarizes the major characteristics of the schema collection used in

experiments. Each domain consists of a number of different domain categories that

have structural and semantic differences. Hence, even though schemas are from the

same domain, they might not be considered similar enough to be grouped into the

same clusters. Figure 6 illustrates the average similarity degree (using schemaSim

measurement) between schemas in the seven subject domain categories. The average

similarity is estimated at approximately 0.6, showing that schemas are much different

even though they come from the same domain.

Evaluation measures: The validity and quality of the XMine clustering solutions are

verified using two common evaluation methods: (1) the intra-cluster and inter-cluster

quality and (2) FScore measure.

Result and analysis: Figure 7 shows the FScore of the dataset over the 18 different

clustering solutions. The FScore result of the 9-clusters solution shows the best FScore.

When the process reaches to the 13-clusters solution, the clustering quality is stabilized.

The objective of clustering is to maximize the intra-class similarity in clusters and to

find the compact clusters. XMine demonstrates (figure 8) this by the decreasing

tendency in the average scattering compactness of clusters as the number of clusters

increases. As the clustering process continues, clusters are further decomposed into

smaller sub clusters that contain more highly similar schemas. Thus as the intra-cluster

scattering compactness decreases, the more compact schemas result in the clusters. And,

after achieving the optimum clusters, the solution is stabilised.

Another objective of clustering is to minimize the inter-class similarity or to

find the well separated clusters. The figure 9 confirms that the average external

similarity between clusters also decreases as the number of clusters increases. As the

clustering process continues, clusters are produced consisting only of highly similar

schemas. Based on these observations, the 13-clusters solution produces a better

quality of clusters compared to the 9-clusters solution due to the lower intra-cluster

scattering and inter-cluster similarity.

Figure 6: Average schema similarity coefficient Figure 7: FScore measure

 Figure 8: Intra-cluster Similarity Figure 9: Inter-cluster similarity

The members of the clusters are also important to examine the correct

clustering of the similar schemas into related classes. Figure 10 displays the clusters

decomposition for 9 and 13 numbers of clusters. The shaded nodes in the hierarchy

represent the actual clusters of the schemas. The unshaded nodes represent the

generalization class of the low-level schema classes. Each node is labelled with the

class name and the size of the class.

Based on the cluster decompositions of all solution, we can say that the

progression in clustering process achieves more disjoint and specific sub-groups (i.e.,

lesser unclassified patterns). However, the size of these classes becomes very small. In

fact, these classes may not be sufficient to consider as an independent class. These

clusters may only be holding one specific schema (as it happens in the case with 18

clusters), and this may be an outlier.

All

(182)

Travel

(24)

Flight

(20)

Property

(16)

Pubication

(32)

Health

(20)

Hotel

(25)

Unclassified

(45)

Article and

Book

(24)

Proceedings

(8)

Booking

(10)

General

(13)

 Level 0

 Level 1

 Level 2

All

(182)

Travel

(45)

Flight

(20)

Property

(16)

Pubication

(40)

Health

(20)

Hotel

(25)

Unclassified

(17)

Book

(12)
Proceedings

(8)

Booking

(10)

General

(13)

Article

(12)

Automibile

(9)

Info

(24)

Fare

(11)
Journal

(8)

Figure 10: The cluster decomposition for 9 & 13 number of clusters

XMine is also examined to test the sensitivity in computing the schema

similarity coefficient (schemaSim). Without the semantic relationship, XMine is still

able to handle the linguistic similarity between element names relatively more

effectively (figure 12) than without the syntactic relationship (figure 11). Therefore,

syntactic similarity measure is more reliable than semantic similarity measure in

measuring the linguistic similarity of two elements, for this particular data set.

Figures 11 & 12: Effect of Syntactic and semantic relationships on clustering

 Figure 13: Influence of PNC Figure 14: Thresholds in Clustering

Figure 13 shows that the PNC measure increases the correctness of the overall

similarity of schemas. Without inclusion of PNC, the element names with the same

semantics but occurring in different position in the hierarchy path name (i.e. book.title

and book.author.title) cannot be identified and discriminated. Hence the use of path

name, PNC, shows a better quality of clustering solution compared to only considering

single element name matching.

The sensitivity of the XMine in handling the semantic and syntactic similarity

between elements depends on the setting of both semantic (δ) and syntactic (µ)

threshold values. Figure 14 shows that 0.8 threshold yields the best values in this data.

The schemas with errors (grammatical or typo) would result in low matched

values in terms of their element similarity. Hence, by adjusting the threshold values,

two elements names with the semantic and syntactic errors can still be accepted as a

matched candidate. However, the drawback of setting a low threshold value is a less

restrictive matching process. The element pre-processing plays a significant role in

element matching process. In XMine, parsing of element names into a set of tokens

assists in the automatic selection of possible meanings of the erroneous words.

Additionally, the alternative string comparison during the linguistic matching improves

the semantic similarity measure.

5 Related Work

Research on measuring the structural similarity and clustering of XML data is gaining

momentum. We show a taxonomy of these approaches in figure 15 as broadly

classified into structure level and element level based similarity approaches.

Figure 15: A classification of Similarity Measure Approaches

 The structure-level similarity approaches can be divided into three different

research directions; (1) to detecting and measuring the structure and content

similarities between data; (2) to detecting and measuring the structural similarity

Similarity Measure

Approaches

Element-Level

Or

Schema Similarity

Matching

Structure-Level

Or

Tree Similarity

Matching

Schema Only

Level Approach

-structure

information

(Graph matching)

-linguistic such as

tags similarity

-data types

similarity

-key properties

Instance Only

Level Approach

-linguistic (word

frequencies, key

terms)

-value pattern and

ranges

Instance and

Schema Approach

-instances and

schema

information are

considered for

element

matchings

Strcutural

Similarity between

Data and Schema

Struture Similarity

between Data

- Frequent tree

finding

- Strcutural

Similarity of

Documents

- Document

Change Detecion

- Approximate

Queries

Extraction of

schema

Information from

Data

between data and schema; (3) to determining the schema information from

semistructured data relying on their structural similarities.

 The approaches along the first direction can be further decomposed into

approaches developed for (1) document clustering [11, 17, 19, 24, 26], (2) change

detection in documents [30], and (3) approximate querying of documents [29]. Most of

the works developed in these directions rely on the notion of tree edit distance

developed in combinational pattern matching [7, 35]. Recently some researchers have

developed techniques for frequent tree patterns mining [7]. However, none of these

methods take into consideration the hierarchical information (i.e. the level of hierarchy

at which an element locates) when representing frequent patterns. It prevents the use of

level path information of similar elements to discover the synonym elements for

quantifying the similarity between documents for clustering. Thus by ignoring the

hierarchical position, these techniques become too restrictive and incompatible for

clustering the similar hierarchical trees.

The XMine approach adapts the sequential mining approach [2] to find the

maximal paths similar to Lee et al.[17]. [17] defines the structural similarity only

based on the ‘ratio’ between the maximal similar paths and the paths of the base

document. They however do not include the element level hierarchy position, leading

in erroneous match between two names occurring at two different positions or with

different context. XMine overcomes this by including PNC in calculation.

There are techniques [4, 28] that aim at measuring the structural similarity

between data and schema in the context of XML. Some of these techniques present

documents as edge-labelled graphs ignoring the constraints on the repeatability or

alternatives of elements in XML schemas. Additionally, [4] can not be directly

applicable to cluster documents without any knowledge of their schemas, and is not

able to point out dissimilarities among documents referring to the same schema.

However, this approach takes into account the context of element into calculation. This

concept is adapted in XMine during the similarity computation process.

Nevertheless, majority of existing approaches measure structural similarity

between XML documents and thus their goals are substantially different from the

XMine methodology, which measures the structural similarity between a set of trees

representing schemas. The tree-edit distance approach is also not sufficient enough to

measure the semantic and hierarchical structure of the schemas, since it only concerns

with the existence of different elements in two trees, but not the cardinality.

The element-level similarity matching approaches known as schema

matching determines the semantic correspondences between elements of two schemas.

The main difference between schema matching approach and tree editing problem is

that in former, the primary component of determining the similarity between schemas

is elements of the trees with respect to their semantic names and name structures

similarity. On the other hand, tree editing problem concerns the whole tree structure

similarity without concisely taking into account the detailed elements components in

the tree. The tree edit problem treats the label of each node in the tree as a second

preference. For instance, the cost of relabelling is assumed to be cheaper than that of

deleting a node with the old label and inserting a node with the new label. Thus in

other words, schema matching is more concerned on the internal matching of the tree,

whereas tree edit problem is more concerned on the high-level tree matching.

Researchers have approached schema matching for XML data at three

different levels as shown in figure 15. Instance only level approaches sometimes fail to

capture the structure information of the XML data. Machine learning techniques are

used to improve accuracy but can be very computationally expensive[16].

Schema matching at schema only level approaches can be used for mapping a

collection of heterogeneous XML-Schemas [8, 14, 18, 20, 22]. The document

community has also proposed the techniques to automate the process of schema

matching to deduce the transform scripts which can rearrange and modify the

associated data [6]. The drawback is that finding similar elements at this level can

produce more mismatch of elements as no instance data is provided. Therefore the

accuracy of the mapping is depended on the technique that is used for linguistic and

structure matching at the schema only level approach. The instance or schema only

level approach can have some drawback in finding similar elements between XML

documents. Therefore some researchers have combined both the instance and schema

information for schema matching [9]. These approaches however need both the XML

documents and their associated schema definitions to be available for the mapping.

XMine comes closer to a number of schema only level approaches such as

XClust [18], Deep [14], Cupid [20], COMA [8], SF [22]. However, the main

difference between these approaches and XMine is that the structure similarity is

derived based on the maximal similar paths obtained by using the adapted sequential

pattern mining algorithm. Thus, this eliminates the element-to-element matching

process, making XMine an efficient and accurate method.

5 Conclusions and Future Work

The potential benefits of the rich semantics of XML have been recognized widely for

enhancing document handling. A schema clustering process improves the document

handling process in digital libraries and XML repositories by organising heterogeneous

schemas into groups. This paper presented the XMine methodology that accurately

clusters the schemas by considering both structural and semantic information of

elements. The element structural similarity is the hierarchical position of the element

in the schema. XMine includes the structural information in similarity measurement by

finding the maximal similar paths between schemas. The context of an element, which

is defined by its level position among other elements in a path expression, is included

in measuring similarity between maximal paths. This takes into account the elements

with the same name but in different level position in the hierarchical tree. The element

semantic similarity includes the linguistic and constraint similarity between elements

contained only in the maximal large paths. Thus, this eliminates the element-to-

element matching process of two trees and rather focuses only on elements those

appear in maximal paths.

The evaluation shows the effectiveness of XMine in categorizing the set of

heterogeneous schemas into relevant classes that facilitate the generalization of an

appropriate schema class hierarchy. The sensitivity evaluation shows that the XMine

pre-processing components influences the quality of clusters. The XMine’s semantic

and structural similarity measures ensure that equivalent concepts occurring in

completely different structures, and completely independent concepts that belong to

isomorphic structures, are recognised and considered appropriately during the

clustering process.

 This schema clustering approach can also easily be applicable to document

instances after representing each document as a tree. Moreover, the methodology is

applicable to general web documents after performing XHTML conversion, and then

representing documents as trees.

References

[1] Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the Web: From

Relations to Semistructured Data and XML: California: Morgan Kaumann.

[2] Agrawal, R., & Srikant, R. (1996). Mining Sequential Patterns:

Generalizations and Performance Improvements. Paper presented at the the

5th International Conference on Extending Database Technology (EDBT'96),

France.

[3] Berkhin, P. (2002). Survey of clustering data mining techniques: Technical

Report, Accrue Software, San Jose, CA.

[4] Bertino, E., Guerrini, G., & Mesiti, M. (2004). A Matching Algorithm for

Measuring the Structural Similarity between an XML Document and a DTD

and its applications. Information Systems, 29(1), 23-46.

[5] Boag, S., Chamberlin, D., Fernández, M., Florescu, D., Robie, J., & Siméon,

J.XQuery 1.0: An XML Query Language. Retrieved September, 2005, from

http://www.w3.org/TR/2005/WD-xquery-20050915/

[6] Boukottaya, A., & Vanoirbeek, C. (2005, November 02-04). Schema

matching for transforming structured documents. Paper presented at the the

2005 ACM symposium on Document engineering, Bristol, United Kingdom.

[7] Chi, Y., Nijssen, S., & Muntz, R. (2005). Frequent Subtree Mining - An

Overview. Fundamenta Informatiace Special Issue on Graph and Tree

Mining, 66(1-2), 161-198.

[8] Do, H. H., & Rahm, E. (2002 August). COMA - A System for Flexible

Combination of Schema Matching Approaches. Paper presented at the 28th

VLDB, Hong Kong, China.

[9] Doan, A., Domingos, R., & Halevy, A. Y. (2001). Reconciling schemas of

disparate sources: a machine-learning approach. Paper presented at the

ACM SIGMOD, Santa Barbara, California, United States.

[10] Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press.

[11] Flesca, S., Manco, G., Masciari, E., Pontieri, L., & Pugliese, A. (2005). Fast

Detection of XML Structural Similarities. IEEE Transaction on Knowledge

and Data Engineering, 7(2), 160-175.

[12] Guardalben, G. (2004). Integrating XML and Relational Database

Technologies: A Position Paper. Retrieved May 1st, 2005, from

http://www.hitsw.com/products_services/whitepapers/integrating_xml_rdb/int

egrating_xml_white_paper.pdf

[13] Introduction to XML Schema by Refsnes Data. (2005, April 25). from

http://www.w3schools.com/schema/schema_intro.asp

[14] Jeong, E., & Hsu, C.-N. (2001). Induction of integrated view for XML data

with heterogeneous DTDs. Paper presented at the 10th International

Conference on Information and Knowledge Management, Atlanta, Georgia,

USA.

[15] Koloniari, G., & Pitoura, E. (2005). Peer-to-peer management of XML data:

Issues and research challenges. SIGMOD Record, 34(2), 6-17.

[16] Kurgan, L., Swiercz, W., & Cios, K. (2002). Semantic Mapping of XML Tags

using Inductive Machine Learning. Paper presented at the ICMLA.

[17] Lee, J. W., & Park, S. S. (2004, October 20-24). Finding Maximal Similar

Paths Between XML Documents Using Sequential Patterns. Paper presented

at the ADVIS, Izmir, Turkey.

[18] Lee, L. M., Yang, L. H., Hsu, W., & Yang, X. (2002, November). XClust:

Clustering XML Schemas for Effective Integration. Paper presented at the

11th ACM International Conference on Information and Knowledge

Management (CIKM'02), Virginia.

[19] Leung, H.-p., Chung, F.-l., & Chan, S. C.-f. (2005). On the use of hierarchical

information in sequential mining-based XML document similarity

computation. Knowledge and Information Systems, 7(4), 476-498.

[20] Madhavan, J., Bernstein, P. A., & Rahm, E. (2001). Generic Schema

Matching with Cupid. Paper presented at the 27th VLDB, Roma, Italy.

[21] Meier, W. (2002). eXist: An open source native XML database. Paper

presented at the Web, Web-services, and database systems.

[22] Melnik, S., Garcia-Molina, H., & Rahm, E. (2002). Similarity Flooding: A

Versatile Graph Matching Algorithm. Paper presented at the ICDE.

[23] Nayak, R., Witt, R., & Tonev, A. (June 24-27 2002). Data Mining and XML

documents. Paper presented at the The 2002 International Workshop on the

Web and Database (WebDB 2002).

[24] Nayak, R., & Xu, S. (2006). XCLS: A Fast and Effective Clustering Algorithm

for Heterogenous XML Documents. Paper presented at the the 10th Pacific-

Asia Conference on Knowledge Discovery and Data Mining (PAKDD),

Singapore.

[25] Nayak, R., & Zaki, M. (Eds.). (2006). Knowledge Discovery from XML

documents: PAKDD 2006 Workshop Proceedings (Vol. 3915). Lecture Notes

in Computer Science: Springer-Verlag Heidelberg.

[26] Nierman, A., & Jagadish, H. V. (2002, December). Evaluating Structural

Similarity in XML Documents. Paper presented at the 5th International

Conference on Computational Science (ICCS'05), Wisconsin, USA.

[27] Rice, S. V., Bunke, H., & Nartker, T. A. (1997). Classes of Cost Functions for

String Edit Distance. Algorithmica, 18(2), 271-280.

[28] Suzuki, N. (2005, March 13-17). Finding an optimum edit script between an

XML document and a DTD. Paper presented at the Proceedings of the 2005

ACM symposium on Applied computing, Santa Fe, New Mexico.

[29] Theobald, A., & Wiekum, G. (2000). Adding Relevance to XML. Paper

presented at the The 3the International Workshop on the Web and Databases

(WebDB'00), Dallas.

[30] Wang, Y., DeWitt, D. J., & Cai, J. Y. (2003). X-Diff: An Effective Change

Detection Algorithm for XML Documents. Paper presented at the The 19th

IEEE ICDE.

[31] wCluto: Web Interface for CLustering TOolKit. (2003). Retrieved July 25,

2005, from http://cluto.ccgb.umn.edu/cgi-bin/wCluto/wCluto.cgi

[32] XML Schema. from http://www.w3.org/XML/Schema

[33] Xylem, L. (2001). Xylem: A dynamic Warehouse for XML data of the Web.

Paper presented at the IDEAS.

[34] Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C. M., & Maler, E.

(2004). Extensible Markup Language (XML) 1.0 (Third Edition) W3C

Recommendation. Retrieved February, 2004, from

http://www.w3.org/TR/2004/REC-XML-20040204/

[35] Zhang, K., & Shasha, D. (1989). Simple Fast Algorithms for the Editing

Distance Between Trees and Related Problems. SIAM Journal Computing,

18(6), 1245-1262.

[36] Zhao, Y., & Karypis, G. (2002). Evaluation of Hierarchical Clustering

Algorithms for Document Datasets. Paper presented at the The 2002 ACM

CIKM, Virginia, USA.

