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Abstract. With the growing popularity of XML as the data representation 

language, collections of XML data have exploded in numbers. The methods are 

required to manage and discover the useful information from them for improved 

document handling. We present a schema clustering process by organising 

heterogeneous XML schemas into groups. The methodology considers not only 

the linguistic and the context of the elements but also the hierarchical structure 

similarity. We support our findings with experiments and analysis. 
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1. Introduction 

 
XML has become a standard for information exchange and retrieval [34]. With the 

continuous growth in XML data, the ability to manage massive collections of XML 

data and to discover knowledge from them becomes essential for Web-based 

information systems [15, 25]. A possible solution is to group similar XML data based 

on their context and structure. The clustering of XML data facilitates a number of 

advanced applications such as improved information retrieval, data and schema 

integration, document classification analysis, structure summary and indexing, and 

query processing and optimization [6, 23].  

The clustering data mining process categorizes the XML data based on their 

similarity without having a prior knowledge on the taxonomy. There exist a number of 

clustering methods dealing with (unstructured) database objects and text data [3, 36]. 

The XML data is different – semistructured and hierarchical [34]. There are two types 

of XML data: XML documents and XML schemas. A XML schema describes the 

structure of the XML document. Usually, XML’s schema can be obtained separately 

without scanning the whole document. Therefore, a method to cluster XML documents 

should take advantage of their schema.  

Similarity of correspondence elements between XML documents can be 

conducted efficiently using relevant XML schemas. The document schema provides a 

definitive description of the document, while document instances only give a snapshot 

what the document may contain. The document definition outlined in a schema holds 

true for all document instances of that schema. So the result produced from clustering 

of schemas will hold true for all document instances of those schemas, and can be 

reused for any other instances. On the contrary, the result of clustering of document 



 

instances will hold true for included document instances only. The clustering process 

is to be repeated for any other document instances.   

This paper presents the XMine methodology that quantitatively determines 

the similarity between heterogeneous XML schemas by considering the semantic as 

well as the hierarchical structure similarity of elements. The similar schemas are 

clustered into separate meaningful classes. Whilst there are several XML documents 

and schema clustering techniques available [4, 6, 9, 11, 24, 26], this paper enhances 

this task by adding hierarchical similarity in clustering by addressing the element level 

hierarchical positions. The XMine methodology can deal with varying structure of 

schemas and with varying aspects of semantic differences in schema elements. 

The contributions of this paper are (1) combining the semantic and syntactic 

relationships to calculate the linguistic similarity between two element names; (2) 

calculating the structural similarity between two elements by considering the ancestor-

child relationship along with parent-child relationship in maximal similar paths; and 

then (3) generalizing a suitable schema class hierarchy to determine the relationship 

between the discovered schemas in the XMine methodology. 

The performance of XMine is demonstrated using a number of heterogeneous 

schemas derived from several application domains. The empirical results demonstrate 

that the semantic, syntactic and hierarchal relationships of schema elements play 

important roles for producing good quality of clustering results. Most importantly, it 

discovers that syntactic similarity measure is more useful than semantic similarity 

measure.  

 

1.1 Potential Applications of the XMine methodology 

 

The result of schema class composition hierarchy can serve as a basis for a number of 

XML application processes. The clusters of schemas provide a hint for building an 

index structure. Indexing based on structural similarity support many applications. For 

example in information retrieval field, the XML-based search engines can improve the 

speed and accuracy in retrieving the relevant portions of XML data by using efficient 

indexes. Moreover, several  databases tools that are developed to deliver, store, 

integrate and query XML data [5, 12, 21, 33],  require indexing based on structural 

similarity to support an effective document storage and retrieval 

 Moreover, the schema class composition hierarchy can be viewed as a 

generalization of the training sets of schemas to a super-class that is useful for further 

XML document classification analysis. A number of heterogeneous sources of 

schemas can be classified into this set of predefined classifications of schemas. This 

process will improve the XML document handling and achieve more effective and 

efficient searches of relevant XML documents.  

The method of association rule mining can also be applied to find interesting 

correlation relationships of all metadata available in schemas belonging to the same 

schema class. The element tags that frequently occur together within a schema class 

can be used to maximally distinguish one class of schema from others. This would 

derive a set of association rules associated with each schema class. This schema 

element tag-based association analysis is also useful for discovering common XML 

structures for a specific domain. 



 

 In addition, the schema class hierarchies can also facilitate a difficult task of 

schema integration process on heterogeneous schemas. The integration on similar 

schemas within each schema class would provide an easier task than reconciling 

schemas that are different in structure and semantics, which would involve complex 

restructuring process. 

The similarity between two structures is also a notion tied to a challenging 

task of reusing XML or semi-structured documents. In XML document content reuse, 

a document (or a part of document) structured under one schema must be restructured 

into an instance of a different schema. The identification of common paths between 

two instances of schema helps to avail this restructuring. 

 

Figure 1: Example of a XML document and its respective DTD 

 

2.  Background Knowledge on XML Data 

 
XML is a flexible representation language. There are two varieties of XML data: XML 

documents and XML schemas. A XML schema provides the data definitions and 

structure of the XML document [1]. While XML documents are the instances of a 

schema giving a snapshot of what the document may contain.  A schema includes what 

elements are (not) allowed; what attributes for any elements may be and the number of 

occurrences of elements; etc. A schema for a document may be included as both 

internally and externally (located within the same file or a different file, respectively).  

 There are several XML schema languages, but only two are commonly used. 

They are DTD (Document Type Definition) and XML Schema or XML Schema 

Definition (XSD), both of which allow the structure of XML documents to be 

described and their contents to be constrained [32]. A DTD specifies the structure of 

an XML element by specifying the names of its sub-elements and attributes. Sub-

element structure is specified using operators * (zero or more elements), + (one or 

<?xml version=”1.0” encoding=”UTF-8”?> 

<Companies>          <!DOCTYPE Companies [ 

    <Company>     <!ELEMENT Companies (Company+)> 

 <Symbol> Eagle.img </Title>            <!ELEMENT Company (Symbol, Name, 

 <Name> EagleFarm </Name>                   Sector?, Industry, (Profile))> 

 <Industry> Dairy </Industry>   <!ELEMENT Profile (MarketCap,  

 <Profile>      EmployeeNo, (Address),  

        <MarketCap> 1000 </ MarketCap >  Description)>   

       <EmployeeNo> 20 </ EmployeeNo > <!ELEMENT Address (State,City?)> 

       <Address>    <!ELEMENT Symbol(#PCDATA)> 

  <State> QLD </State>  <!ELEMENT Name (#PCDATA)>  

       </Address>    <!ELEMENT Sector (#PCDATA)> 

       <Description> gdsfkls </Description> <!ELEMENT Industry (#PCDATA)> 

 </Profile>    <!ELEMENT MarketCap (#PCDATA)> 

     </Company>     <!ELEMENT EmployeeNo (#PCDATA)> 

 <!-- Some more instances -->   <!ELEMENT State (#PCDATA)> 

 ….     <!ELEMENT City (#PCDATA)> 

</Companies>     ]> 



 

more elements), ? (optional), and | (or), as well as with properties type (PCDATA, ID, 

IDREF, ENUMERATION).  

 The DTD language is considered limited as it only supports limited set of data 

types, loose structure constraints, limitation of content to textual, etc. To overcome the 

above limitations of DTD, XSD provides novel important features, such as simple and 

complex types, rich datatype sets, occurrence constraints and inheritance. An XML 

Schema is usually comprised of a set of schema components, such as type definitions 

and element declarations. They can be used to assess the validity of well-formed 

element information items.  

 It is believed that XSD will soon take over DTD due to its flexibility [13].   

Therefore, the XMine methodology clusters the XML schemas represented in both 

schema languages. Throughout this paper, we use the term ‘schema’ to express both 

XML-DTD and XML-Schema unless clearly specified.  

 Figure 1 illustrates a simple example of XML document and its 

corresponding DTD. Figure 2 shows a respective XML Schema. 

  

 Figure 2: Example of the respective XSD of the above document  

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema> 
  <xsd:element name="Companies"  > 

     <xsd:complexType> 
        <xsd:sequence> 

            <xsd:element name=”Company" maxOccurs=”unbounded”> 

                <xsd:complexType> 
                    <xsd:sequence> 

                        <xsd:element name="Symbol" type="xsd:string"/> 

                        <xsd:element name="Name" type="xsd:string"/> 
                        <xsd:element name="Sector" type="xsd:string"/> 

                        <xsd:element name="Industry" type="xsd:string"/> 

             <xsd:element name="Profile" > 
            <xsd:complexType> 

                     <xsd:sequence> 
        <xsd:element name="MarketCap" type="xsd:string"/> 

     <xsd:element name="EmployeeNumber" type="xsd:unsignedInt"/> 

     <xsd:element name="Address" > 
          <xsd:complexType> 

                                       <xsd:sequence> 

                                   <xsd:element name="State" type="xsd:string"/> 
                                  <xsd:element name=”City" type="xsd:string"/> 

             </xsd:sequence> 

                             </xsd:complexType> 
                   </xsd:element> 
       <xsd:element name="Description" type="xsd:string"/> 

     </xsd:sequence> 
                        </xsd:complexType> 

                        </xsd:element> 

        </xsd:sequence> 
                   </xsd:complexType> 

                 </xsd:element> 

             </xsd:sequence> 
         </xsd:complexType> 

   </element> 

</xsd:schema> 
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3. The XMine Methodology 

 

Figure 3 illustrates the overall architecture of the XMine methodology. This is 

deployed in three phases, namely preprocessing, data mining, and postprocessing.  

The focus of the preprocessing phase is to determine the common and similar 

features between various schemas in automated manner to effectively facilitate the 

clustering process. It includes four stages to address various issues involved in 

measuring the similarity of schemas. Firstly, the structure analyser analyses the 

structure of a schema and transforms it into a labelled and directed acyclic tree graph. 

The element analyser then measures the similarity between the arbitrary elements in 

different schemas primarily based on the element names. Next, the maximally similar 

paths finder determines the common and similar hierarchical structure of the elements 

defined in schema by using the adapted sequential pattern mining algorithm. Lastly, 

the overall degree of similarity between schemas is computed by taking the element 

and structure similarity into consideration. 

The XMine methodology then proceeds for data mining. Schemas similar in 

structure and semantics are grouped together to form a hierarchy of schema classes 

using an agglomerative clustering algorithm. The clustering result is visualized in the 

final phase of the methodology. The visualization is also a critical verification of the 

clustering results, which assist the generalization and specialization on the schema 

classes to develop a schema class hierarchy. 

 

 Figure 3: The architecture of XMine methodology 
 

3.1 Preprocessing: Structure Analyser 

 

This module represents a schema into a labelled and ordered tree. This module also 

performs simplification analysis of the schema trees in order to deal with nesting and 

repetition problems. XMine handles both the common types of XML schemas: DTD 

(document type definition) and XSD (XML Schema definition). A schema is 

composed of hierarchical elements, wherein for each element it is possible to specify 



 

whether: it is optional (‘?’); it occurs several times ((maxOccurs="unbounded") in 

XSD or (‘+’) or (‘*’) in DTD); subelements are alternatives with respect to each other 

((‘xsd:choice’) in XSD or (‘|’) in DTD); or subemelmets are grouped in a sequence 

((‘xsd:sequence’) in XSD or (‘,’) in DTD).  

The constraint features of a schema serve as the primary elements for the 

construction of the tree representation. Each node in the tree contains its properties 

such as name, data type and cardinality. In addition, each node in the tree corresponds 

to an element or an attribute, or to an element operator with edges denoting the nested 

relationship between element and its subelement or operator. Moreover, there can be 

more than one edge outgoing from a node, only if the edge incoming to that node is 

labeled by AND or OR operator. The elements that have basic property types of 

#PCDATA or ANY in a DTD, or ‘type’ in a XSD are considered as leaves of the tree 

(e.g. fName, mName, lName). Attributes are treated as special elements that have an 

atomic property. 

According to [18], it is difficult to determine the degree of similarity of two 

elements that have AND-OR operators in their content representation. Therefore these 

details of a schema are normalized into a simplified schema according to a series of 

predefined transformation procedures similar to those in [18]. 

An example of representing DTDs as a tree form is shown in Figure 5. 

 

3.2 Preprocessing: Element Analyser 
 

This module addresses the issue that schemas from same domains may have naming 

differences, and they may model non-identical but similar content. The element 

analyser measures the elements (tag names) similarity (linguistic similarity coefficient: 

lSim) by comparing each pair of elements of two schemas primarily based on their 

names, assuming the same names bear the same semantic meaning.  

It considers the equality of canonical name representations after stemming 

and element preprocessing. This is important to deal with special prefix or suffix 

symbols (e.g. CName → customer name, EmpNo → employee number). In addition, 

the element names in different schemas might not be exactly the same, provided they 

are stems or similar enough. Hence, the other consideration is the equality of 

synonyms between elements (e.g. car → automobile, movie → film) and similarity of 

elements based on common string edit distance operation (e.g. chtitle → title). We use 

of WordNet thesaurus [10] to exploit synonyms (e.g., movie → film) and the user-

defined dictionaries in order to identify abbreviations (e.g.Emp → Employee), 

acronyms (e.g. DOB → Date of Birth), and user-defined synonyms.  

 The steps to measure the linguistic similarity coefficient ( lSim) are as follows: 

1. Parse the compound element name into a set of tokens based on customizable 

delimiters such as, uppercase, punctuation, and special symbols, e.g.,  

PONumber → {PO, Number}.  

2. Expand the tokens into a linguistic set (lingSet) using the user-defined dictionary 

with acronyms and abbreviations, e.g., {PO, Number} → {Purchase, Order, 

Number}. 

T = Set of the tokens  = lingSet (w ) where w is an element name. 



 

3. Measure the lSim of two sets of name tokens T1 and T2 to find how linguistically 

close two element names are. It is the average of the best similarity of each token 

with a token in the other set. It is calculated as follows:  
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sim (t1, t2)  is a combined measure (as formulated in figure 4) that calculates the 

semantic relationship (e.g. movie → film) as found in WordNet thesaurus [10] and 

the syntactic relationship (e.g. ctitle → title) using the string edit distance function 

[27]. The semantic relationship is first applied for exploiting the semantic 

similarity degree between two tokens by looking up in the WordNet. If the 

WordNet does not identify common elements, the syntactic relationship is then 

applied. Similarity thresholds (δ and µ) are set to represent the minimal degree of 

similarity required for semantic and syntactic measures respectively.  

 

Figure 4: Algorithm to compute Linguistic Similarity of two words 

 

Following is an example showing the calculation of lsim: consider two elements w1-  

author_fname and w2 - writerName. Tokens are derived: T1- {author, fname} and T2- 

{writer, name}. Similarity between each pair is measured: 

1. sim (author, name) = 1 (using the semantic similarity measure) 

2. sim (name, author) = 1 (using the semantic similarity measure) 

3. sim (fname, name) = 0.8 (using the string edit function due to the semantic 

similarity less than δ - Assuming δ is set as 0.7.) 

4. sim (name, fname) = 0.8 (using the string edit function due to the semantic 

similarity less than δ) 

Linguistic Similarity Coefficient (lsim): 9.0
22

)8.01()8.01(
=

+

+++  

 

3.3 Preprocessing: Maximally Similar Paths Finder 

 

This module identifies the paths and elements that are common and similar between 

each pair of tree schemas. The assumption is that similar schemas have more common 

paths. We adapt the sequential pattern mining algorithm [2] to infer similarity between 

elements and paths. The sequential pattern mining algorithm considers the frequent 

occurrences of elements as well as the sequences of elements. 

  Function sim (t1, t2)   

      sim = SemanticSim (t1, {t2}, 1);  /* Semantic Relationship with the WordNet*/ 

      if sim ≥ δ then return sim; 

      else   /* Syntactic Relationship */ 

 

))length(t ),(tmax(length

ttnceedit_dista
sim

21

),( 21
=  

 if sim ≥ µ then return sim; 

return 0; /* No match */ 

 



 

The structure of a schema tree is represented by a set of path expressions (or 

paths). Each path expression is viewed as a sequence. A path expression is represented 

by a unique sequence of elements following the links from the root node to a leaf node 

by traversing through the nodes in that path. A path expression, p, is denoted as <x1, 

x2, … xn> where x1 is a name of the root node and xn is a name of the leaf node. Let the 

set of path expressions, PE, in a schema tree be {p1, p2 … pm} where m is the number 

of unique paths in the tree. Using the terminology of sequential pattern mining, a 

sequence (or a path) is contained by another if it is a subsequence of that sequence. A 

sequence (or a path) is frequent if it occurs in the set more times than the user defined 

threshold (or support). In a set of paths, a path pj is maximal if it is not contained by 

any other path expression or no super path of pj is frequent.  

The task is to find the maximal frequent paths among the set of path 

expressions in two schema trees. Each such maximal frequent path represents a 

common structure between the pairs of trees. Unlike other data mining applications, 

the minimum support for finding the maximal frequent paths between two trees must 

be 100% since similar paths must be in both structures. Another variation in this 

process is that support count for an element should be incremented only one per 

schema even if the schema contains the same elements in two different paths. 

 The five phases of the sequential mining algorithm [2] are modified to 

facilitate the finding of maximal similar paths (MPEs) between two trees (a base tree 

TB and a query tree TQ):  

1. Sort Phase. Elements contained in each path are sorted according to their 

hierarchical position in the tree levels. The first element appearing in a path 

always represents the root node of the corresponding schema tree. The remainder 

of the elements in the path are then denoted as the descendent of the root node in 

order. 

2. Transformation Phase. The elements of path expressions are mapped into integer 

representation to facilitate faster sequential mining process. Elements in the path 

expressions defined as similar according to the linguistic similarity coefficient 

(lSim) is mapped into the same integer representation.  

3. Litemset Phase. In this phase, the set of large 1-paths are found by considering the 

element matching. Every similar element in the two path expressions is included 

in the large 1-paths set. The large 1-path is a set of all expressions that have only 

one element and that is frequent. 

4. Sequential Phase. This includes the multiple passes over a collection of large 

paths sets in order to determine new larger paths progressively such as the large 2-

paths, large 3-paths and so on, until large n-paths are found.  

5. Maximal Phase. The maximal similar paths (MPE) are found by using the 

backward phase [2] to all the large paths obtained in the sequential phase. All sub-

paths contained in large paths are pruned out until maximal paths are found. 

 

3.4 Preprocessing: Schema Similarity Matrix Processor 

 

A method to compute the similarity between schemas is presented by making use of: 

(1) the element semantic similarity as explained in section 3.2; and (2) the element 

structural similarity obtained as the maximal large paths in section 3.3. The element 

structural similarity includes the hierarchical position of an element in the schema. 



 

This covers the context of an element defined by its ancestor (if it is not a root) and its 

descendants positioned as in path expressions. This is included in XMine by 

determining similar elements in two trees based on the common paths. This serves the 

basis of structural computation. The element semantic similarity includes the linguistic 

and constraint similarity between each pair of elements contained in two maximal 

similar paths. The overall degree of similarity based on the element and structure 

similarity is then computed in the schema similarity matrix processor.  

Let us assume two schemas: base schema (schemaB) and query schema 

(schemaQ) that are to be compared. Base tree TB and query tree TQ are the 

corresponding simplified trees. A unique set of path expressions are obtained by 

traversing both the base and query trees, denoted as PEB and PEQ respectively.  A set 

of maximal similar path expressions (MPE) represents a number of common paths that 

exist in both base and query tree. The corresponding path expressions that contain a 

MPE from the PE
B 

and PE
Q
 sets are identified. 

 

Structural similarity: Once all the corresponding common path expressions from 

both trees have been obtained, the similarity coefficient of all maximal similar paths, 

maxpathSim, is measured. The maxpathSim aggregates the similarity coefficient of two 

corresponding base and query path expressions, refers to as path similarity coefficient, 

pathsim. The following is the formalization of maxpathSim: 

 

Similarity between two path expressions (pathSim) is computed by 

measuring the linguistic, constraints, and path name similarity of each element of PE
B

i 

against elements of PE
Q

j. This checks a one-to-one mapping of elements in the path 

expressions, that is an element in PE
B

i matches, at most, one element in PE
Q

j. 

 

where the base element similarity coefficient, baseSim, represents the semantic 

similarity between two names. The path name coefficient, PNC, measures the degree 

of similarity of elements in two given paths. 

 

Semantic similarity: The base element similarity coefficient, baseSim, is obtained by 

the weighted sum of linguistic similarity coefficient, lSim and the constraint similarity 

coefficient, constraintSim of the elements, shown as below: 



 

  ),(),(),( 21221121 eeweelSimweebaseSim Simconstraint∗+∗=   

where weights w1+w2 = 1.  

 The linguistic similarity coefficient, lSim is defined in section 3.2. The 

cardinality constraint coefficient, constraintSim of two elements is determined from 

the cardinality constraint compatible table (Table 1) as used in [18] for DTD. Table 1 

shows the compatibility between two operators.  XSD schema is more flexible than 

DTD in terms of cardinality operations by using minOccurs and maxOccurs. We show 

the mapping between the cardinality operators of DTD and XSD in Table 2 and utilise 

the values of Table 1 for each equivalent mapping. For the operators outside this list, if 

their data types are identical then 1 is returned or else 0 is returned. The constraint 

coefficient is ranged between [0, 1]. 

  

 * + ? None 

* 1 0.9 0.7 0.7 

+ 0.9 1 0.7 0.7 

? 0.7 0.7 1 0.8 

None 0.7 0.7 0.8 1 

Table 1: Cardinality constraint compatibility table adapted from [18]  
 

 

Cardinality Operator minOccurs maxOccurs No. of child element(s) 

[none] 1 1 One and only one 

? 0 1 Zero or one 

* 0 Unbounded Zero or more 

+ 1 Unbounded One or more 

Table 2: Cardinality Mapping between XSD and DTD 

 

Path similarity coefficient: The path name coefficient, PNC, measures the degree of 

similarity of elements in two given paths. The goal of this computation is to 

differentiate elements that are present in both paths but are different in their context 

(e.g., a patient’s name and a physician name). Consider two common paths that have 

two elements with the same name but appearing in different level position (e.g., 

book.name and book.author.name). The context in which an element appears in the 

hierarchical structure of a schema strongly contributes to determine the information 

that element models [25]. The context of an element e is given by the path from root 

element (that is the first element in the path expression) to the element e, denoted as 

e.path(root) = {root, epi,…,epj, e}.  

The similarity of two path names is obtained by summing up all the baseSim 

values between each pair of elements in two paths then normalizing it with the 

maximum number of elements contained in the two paths of the element names. 

 



 

Schema similarity: Having obtained the similarity between all the maximal similar 

paths (MPEs) of two trees, the similarity between two schemas is computed by 

combining all MPE similarity coefficients: 
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The similarity between each pair of schemas is mapped into the schema 

similarity matrix. This matrix becomes the input to the next phase.  

 

3.5 An example showing the process of preprocessing  
 

Figure 5 shows two schemas and their respective tree representation related to the 

health care system. Let us consider one of them (a) as ‘base’ and another one (b) as 

‘query’. The objective is to find the similarity between them. A unique set of path 

expressions are obtained by traversing both the base and query trees denoted as PEB 

and PEQ respectively. Every element contained in the path expression is sorted 

according to their hierarchal position in the tree.  

 Similar elements of paths are mapped into same integer representation by 

referencing the linguistic similarity table. For instance, the abbreviation of PID ↔ 

Patient ID is defined similar in the user defined library, so both elements are assigned 

to the same integer in any path expression. In addition, the use of WordNet thesaurus 

is able to resolve the abbreviations such as yr ↔ year and Qty ↔ Quantity. The 

tokenizer during the element pre-processing is able to recognize the similarity between 

the element names Service_Type ↔ Type_Service.  

 Table 3 shows the PEs of both trees. The maximal similar path expressions 

(MPEs) are determined from these PEs according to the process described in section 

3.3. In the first iteration of the adopted apriori-algorithm, each distinct element in both 

sets of path expressions is a member of the set of the candidate 1-paths, C1. The 

algorithm simply scans the elements that are similar in both sets of path expressions. 

The set of large 1-paths, L1, is then determined. It consists of the candidates 1-paths 

that exist in both PEB and PEQ. To discover the set of large 2-paths, L2, the algorithm 

uses joining L1 x L1 to generate a candidate set of 2-paths, C2. Then the algorithm 

scans C2 to obtain the 2-large-paths that are contained common in PEB and PEQ. The 

algorithm iterates this process until it finds all the large paths.  

 In our example, the algorithm terminates in the sixth pass. Table 4 shows 

some of the Large Paths. The backward phase is now used to find the maximal similar 

paths among the set of large paths. Starting from L5, no paths are deleted since there 

are no path sequences contained in some other large paths. Then moved on to L4, 

delete those paths that are subsequences of the paths in L5 and thus all the 4-large paths 

are pruned out. Next, the paths in L3 that are subsequence of the 5-large paths are 

pruned out. The 5-large paths in L3 are found to be maximal. They are the first five 

rows shown in Table 5. Finally all the paths in L2 and L1 are pruned out since they are 

contained in the larger paths. Table 5 lists all the MPEs for these two schemas with the 

corresponding PEB and PEQ that contain them. 



 

 
Figure 5: Base (a) and query (b) documents with their corresponding trees. 

 

 

PE  ID  Original path expressions  Transformed path 

expressions  

PEB  1  〈(HomeVisit) (Patient) (Name) 〉  〈{1}{2}{3} 〉  
..  .. .. 7  〈(HomeVisit) (Patient) (Phone) (Area) 〉  〈{1}{2}{10}{11} 〉  
8  〈(HomeVisit) (Patient) (Phone) (Number) 〉  〈{1}{2}{10}{12} 〉  
.. .. .. 16  〈(HomeVisit) (Patient) (Services) (Product) (Quantity) 〉  〈{1}{2}{14}{22} 24}〉  

PEQ  1  〈(HomeVisit) (Patient) (Name) 〉  〈{1}{2}{3} 〉  
.. .. .. 4  〈(HomeVisit) (Patient) (Phone) 〉  〈{1}{2}{10} 〉  
   11  〈(HomeVisit) (Patient) (Services) (Product) (Quantity) 〉 〈{1}{2}{14}{22}{24}〉 

Table 3: Equivalent transformed path expressions for both trees. 



 

Large 1-path (L1)  Large 2-path (L2)  Large 5-path (L5)  

Total elements: 17 Total elements: 46 Total elements: 6 

All: 〈{1}〉, 〈{2}〉, 〈{3}〉, 〈{4}〉,  Sample: 〈{1}{2}〉, 〈{1}{3}〉,  All:   

〈{9}〉, 〈{10}〉, 〈{13}〉, 〈{14}〉,  〈{1}{4}〉, 〈{1}{9}〉, 〈{1}{10}〉,  〈{1}{2}{14}{15}{16}〉, 〈{1}{2}{14}{15}{17}〉,  

〈{15}〉, 〈{16}〉, 〈{17}〉,〈{18}〉,  〈{1}{13}〉, 〈{1}{14}〉, 〈{1}{15〉,  〈{1}{2}{14}{15}{18}〉, 〈{1}{2}{14}{19}{20}〉,  

〈{19}〉, 〈{20}〉, 〈{21}〉,〈{22}〉,  〈{1}{16}〉, 〈{1}{17}〉, 〈{1}{18}〉,  〈{1}{2}{14}{19}{21}〉, 〈{1}{2}{14}{22}{24}〉,  

〈{24}〉. 〈{1}{19}〉, ………………   

Table 4: Large paths in base and query documents 

 

 

MPE Corresponding 

PEB and PEQ  

MPE1  〈(HomeVisit) (Patient) (Name)〉  PEB 1, PEQ1  

MPE2  〈(HomeVisit) (Patient ) (Address)〉  PEB 2, PEB 3, PEB 4, 

PEB 5, PEQ2  

MPE3  〈(HomeVisit) (Patient) (Gender)〉  PEB 6, PEQ3  

MPE4  〈(HomeVisit) (Patient) (Phone)〉  PEB 7, PEB 8 PEQ4  

MPE5  〈(HomeVisit) (Patient) (PID)〉  PEB 9, PEQ5  

MPE6  〈(HomeVisit) (Patient) (Services) (Date) (Month)〉  PEB 10, PEQ6  

MPE7  〈(HomeVisit) (Patient) (Services) (Date) (Day)〉  PEB 11, PEQ7  

MPE8  〈(HomeVisit) (Patient) (Services) (Date) (Year)〉  PEB 12, PEQ8  

MPE9  〈(HomeVisit) (Patient) (Services) (Service_Type) (Price)〉  PEB 13, PEQ9  

MPE10  〈(HomeVisit) (Patient) (Services) (Service_Type) (Time)〉  PEB 14, PEQ10  

MPE11  〈(HomeVisit) (Patient) (Services) (Product) (Quantity)〉  PEB 16, PEQ11  

Table 5: Corresponding base and query path expressions, PEB and PEQ, for each MPE. 

 

For each MPE, the path similarity coefficient between each pair of base and query 

paths is computed by measuring the baseSim and PNC of all pairs of elements in both 

paths. Let us compute the maximal similarity path coefficient of  

MPE4 = 〈 (HomeVisit) (Patient) (Phone)〉 that consists of: 

PEB7 = 〈 (HomeVisit) (Patient) (Phone) (Area) 〉 
PEB8 = 〈 (HomeVisit) (Patient) (Phone) (Number) 〉 
PEQ4 = 〈 (HomeVisit) (Patient) (Phone) 〉 

Here, the pairs of element names with no semantic similarity are not shown. We have: 
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The maxpathSim for each MPE is calculated and the schemaSim is determined by 

combining them all. 
 

3.6 Data mining: Clustering the schemas according to their similarity  

 

The constrained hierarchical agglomerative clustering method is used for grouping 

similar schemas. This method uses a bottom-up strategy that initially assigns each 

object to its own cluster and then pairs of clusters are repeatedly merged until the 

number of classes is sufficiently small or until certain termination conditions are 

satisfied [36]. The reasons to use this method are manyfold. Firstly, similarity of 

clusters is based on the number of common elements that the schemas share. There 

may be schemas that form small and reasonably cohesive clusters, as well as the 

schemas that are not part of particularly cohesive groups.The type of clusters desired is 

therefore globular in nature. This algorithm has been shown to be very powerful at 

discovering arbitrarily shaped clusters.  

 Secondly, the algorithm repeatedly merges the pair of clusters to form a final 

solution. Therefore this clustering process can be analysed in the post-processing phase 

to form a hierarchy of schema classes. Thirdly, the algorithm must be resistant to noise 

and outliers. Since the data collection can have a schema that may not be related to 

other schemas, outliers may be present. This algorithm uses a k-nearest neighbour 

graph in the partitioning phase that ensures to reduce the effects of noise and outliers. 

Fourthly, the algorithm should not require the number of clusters to be pre-determined 

because the relationships between data are unknown. Finally, because the volume of 

query data can be very large, the algorithm should be scalable.  

 We use the wCluto web-enabled data clustering application [31] for clustering 

the XML data. In order to use Wcluto, XMine first generated a matrix containing the 

schemaSim coefficient (common path similarity coefficient) between the trees in the 

data source (pair-wise similarity) using path similarity threshold of 0.7.  The Wcluto 

takes in the schema similarity matrix and performs the clustering process. The 

‘Complete-Link’ merging criterion function is chosen for computing the distance 

between clusters. 

Based on the clustering results, the discovered schemas classes serve as a 

basis for the visualization of the clustering solution and the generation of schema class 

hierarchy in the last phase of post-processing. 

 

3.7 Post processing: Generating a hierarchy of schema classes  

 

In the final phase, the discovered schema patterns are visualized as a tree of clusters 

called dendogram (an example is shown in figure 10). The dendogram shows the 

clusters that are merged together and the distance between these merged clusters. This 

facilitates the generalization and specialization processes of the clusters to develop an 



 

appropriate schema class hierarchy. Each cluster, that contains a set of similar schemas, 

forms a node in the hierarchy, where all nodes (or clusters) are at the same conceptual 

level. Each cluster may be further decomposed into several schema sub clusters, 

forming a lower level of the hierarchy. Clusters may also be grouped together to form 

a higher level of the hierarchy.  

A new schema can now be generalized. First, the schema is generalized to the 

identifier of the lowest subclass to which the schema belongs. The identifier of this 

subclass can then, in turn, be generalized to a higher-level class identifier by climbing 

up the class hierarchy. Similarly, a class or a subclass can be generalized to its 

corresponding superclasses by climbing up its associated schema class hierarchy. 

 

 

Domain No. of  Sources No. of  Nodes Nesting levels 

Automobile   9 10-40 2-10 

Property 16 20-50 5-15 

Travel 52 20-50 2-16 

Health 20 40-80 5-8 

Flights 20 20-100 4-15 

Publication 40 20-500 4-10 

Hotel Messages 25 50-1000 7-20 

Table 6: The Input Data Set 

 

4   Empirical Evaluation and Discussion 
 

Dataset: Table 6 summarizes the major characteristics of the schema collection used in 

experiments. Each domain consists of a number of different domain categories that 

have structural and semantic differences. Hence, even though schemas are from the 

same domain, they might not be considered similar enough to be grouped into the 

same clusters. Figure 6 illustrates the average similarity degree (using schemaSim 

measurement) between schemas in the seven subject domain categories. The average 

similarity is estimated at approximately 0.6, showing that schemas are much different 

even though they come from the same domain. 

 

Evaluation measures: The validity and quality of the XMine clustering solutions are 

verified using two common evaluation methods: (1) the intra-cluster and inter-cluster 

quality and (2) FScore measure.  

 

Result and analysis: Figure 7 shows the FScore of the dataset over the 18 different 

clustering solutions. The FScore result of the 9-clusters solution shows the best FScore. 

When the process reaches to the 13-clusters solution, the clustering quality is stabilized. 

The objective of clustering is to maximize the intra-class similarity in clusters and to 

find the compact clusters. XMine demonstrates (figure 8) this by the decreasing 

tendency in the average scattering compactness of clusters as the number of clusters 

increases. As the clustering process continues, clusters are further decomposed into 

smaller sub clusters that contain more highly similar schemas. Thus as the intra-cluster 

scattering compactness decreases, the more compact schemas result in the clusters. And, 

after achieving the optimum clusters, the solution is stabilised.  



 

Another objective of clustering is to minimize the inter-class similarity or to 

find the well separated clusters. The figure 9 confirms that the average external 

similarity between clusters also decreases as the number of clusters increases. As the 

clustering process continues, clusters are produced consisting only of highly similar 

schemas. Based on these observations, the 13-clusters solution produces a better 

quality of clusters compared to the 9-clusters solution due to the lower intra-cluster 

scattering and inter-cluster similarity. 

 
Figure 6: Average schema similarity coefficient Figure 7: FScore measure 

 

 
 Figure 8: Intra-cluster Similarity                  Figure 9: Inter-cluster similarity  

The members of the clusters are also important to examine the correct 

clustering of the similar schemas into related classes. Figure 10 displays the clusters 

decomposition for 9 and 13 numbers of clusters. The shaded nodes in the hierarchy 

represent the actual clusters of the schemas. The unshaded nodes represent the 

generalization class of the low-level schema classes. Each node is labelled with the 

class name and the size of the class.  

Based on the cluster decompositions of all solution, we can say that the 

progression in clustering process achieves more disjoint and specific sub-groups (i.e., 

lesser unclassified patterns). However, the size of these classes becomes very small. In 

fact, these classes may not be sufficient to consider as an independent class. These 

clusters may only be holding one specific schema (as it happens in the case with 18 

clusters), and this may be an outlier.  
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Figure 10: The cluster decomposition for 9 & 13 number of clusters 

 

XMine is also examined to test the sensitivity in computing the schema 

similarity coefficient (schemaSim). Without the semantic relationship, XMine is still 

able to handle the linguistic similarity between element names relatively more 

effectively (figure 12) than without the syntactic relationship (figure 11). Therefore, 

syntactic similarity measure is more reliable than semantic similarity measure in 

measuring the linguistic similarity of two elements, for this particular data set.  

 

  

Figures 11 & 12: Effect of Syntactic and semantic relationships on clustering 

 

  
  Figure 13: Influence of PNC               Figure 14: Thresholds in Clustering 

 

Figure 13 shows that the PNC measure increases the correctness of the overall 

similarity of schemas. Without inclusion of PNC, the element names with the same 



 

semantics but occurring in different position in the hierarchy path name (i.e. book.title 

and book.author.title) cannot be identified and discriminated.  Hence the use of path 

name, PNC, shows a better quality of clustering solution compared to only considering 

single element name matching.  

The sensitivity of the XMine in handling the semantic and syntactic similarity 

between elements depends on the setting of both semantic (δ) and syntactic (µ) 

threshold values. Figure 14 shows that 0.8 threshold yields the best values in this data.  

The schemas with errors (grammatical or typo) would result in low matched 

values in terms of their element similarity. Hence, by adjusting the threshold values, 

two elements names with the semantic and syntactic errors can still be accepted as a 

matched candidate. However, the drawback of setting a low threshold value is a less 

restrictive matching process. The element pre-processing plays a significant role in 

element matching process. In XMine, parsing of element names into a set of tokens 

assists in the automatic selection of possible meanings of the erroneous words. 

Additionally, the alternative string comparison during the linguistic matching improves 

the semantic similarity measure.  

 

5   Related Work 
 

Research on measuring the structural similarity and clustering of XML data is gaining 

momentum. We show a taxonomy of these approaches in figure 15 as broadly 

classified into structure level and element level based similarity approaches.  

  

Figure 15: A classification of Similarity Measure Approaches 

 The structure-level similarity approaches can be divided into three different 

research directions; (1) to detecting and measuring the structure and content 

similarities between data; (2) to detecting and measuring the structural similarity 

Similarity Measure

Approaches

Element-Level

Or

Schema Similarity

Matching

Structure-Level

Or

Tree Similarity

Matching

Schema Only

Level Approach

-structure

information

(Graph matching)

-linguistic such as

tags similarity

-data types

similarity

-key properties

Instance Only

Level Approach

-linguistic (word

frequencies, key

terms)

-value pattern and

ranges

Instance and

Schema Approach

-instances and

schema

information are

considered for

element

matchings

Strcutural

Similarity between

Data and Schema

Struture Similarity

between Data

- Frequent tree

finding

- Strcutural

Similarity of

Documents

- Document

Change Detecion

- Approximate

Queries

Extraction of

schema

Information from

Data



 

between data and schema; (3) to determining the schema information from 

semistructured data relying on their structural similarities.  

 The approaches along the first direction can be further decomposed into 

approaches developed for (1) document clustering [11, 17, 19, 24, 26], (2) change 

detection in documents [30], and (3) approximate querying of documents [29]. Most of 

the works developed in these directions rely on the notion of tree edit distance 

developed in combinational pattern matching [7, 35]. Recently some researchers have 

developed techniques for frequent tree patterns mining [7]. However, none of these 

methods take into consideration the hierarchical information (i.e. the level of hierarchy 

at which an element locates) when representing frequent patterns. It prevents the use of 

level path information of similar elements to discover the synonym elements for 

quantifying the similarity between documents for clustering. Thus by ignoring the 

hierarchical position, these techniques become too restrictive and incompatible for 

clustering the similar hierarchical trees.  

The XMine approach adapts the sequential mining approach [2] to find the 

maximal paths similar to Lee et al.[17].  [17] defines the structural similarity only 

based on the ‘ratio’ between the maximal similar paths and the paths of the base 

document. They however do not include the element level hierarchy position, leading 

in erroneous match between two names occurring at two different positions or with 

different context. XMine overcomes this by including PNC in calculation.  

There are techniques [4, 28] that aim at measuring the structural similarity 

between data and schema in the context of XML. Some of these techniques present 

documents as edge-labelled graphs ignoring the constraints on the repeatability or 

alternatives of elements in XML schemas. Additionally, [4] can not be directly 

applicable to cluster documents without any knowledge of their schemas, and is not 

able to point out dissimilarities among documents referring to the same schema. 

However, this approach takes into account the context of element into calculation. This 

concept is adapted in XMine during the similarity computation process. 

Nevertheless, majority of existing approaches measure structural similarity 

between XML documents and thus their goals are substantially different from the 

XMine methodology, which measures the structural similarity between a set of trees 

representing schemas. The tree-edit distance approach is also not sufficient enough to 

measure the semantic and hierarchical structure of the schemas, since it only concerns 

with the existence of different elements in two trees, but not the cardinality.  

The element-level similarity matching approaches known as schema 

matching determines the semantic correspondences between elements of two schemas. 

The main difference between schema matching approach and tree editing problem is 

that in former, the primary component of determining the similarity between schemas 

is elements of the trees with respect to their semantic names and name structures 

similarity. On the other hand, tree editing problem concerns the whole tree structure 

similarity without concisely taking into account the detailed elements components in 

the tree. The tree edit problem treats the label of each node in the tree as a second 

preference. For instance, the cost of relabelling is assumed to be cheaper than that of 

deleting a node with the old label and inserting a node with the new label. Thus in 

other words, schema matching is more concerned on the internal matching of the tree, 

whereas tree edit problem is more concerned on the high-level tree matching. 



 

Researchers have approached schema matching for XML data at three 

different levels as shown in figure 15. Instance only level approaches sometimes fail to 

capture the structure information of the XML data. Machine learning techniques are 

used to improve accuracy but can be very computationally expensive[16].  

Schema matching at schema only level approaches can be used for mapping a 

collection of heterogeneous XML-Schemas [8, 14, 18, 20, 22]. The document 

community has also proposed the techniques to automate the process of schema 

matching to deduce the transform scripts which can rearrange and modify the 

associated data [6]. The drawback is that finding similar elements at this level can 

produce more mismatch of elements as no instance data is provided.  Therefore the 

accuracy of the mapping is depended on the technique that is used for linguistic and 

structure matching at the schema only level approach.  The instance or schema only 

level approach can have some drawback in finding similar elements between XML 

documents. Therefore some researchers have combined both the instance and schema 

information for schema matching [9]. These approaches however need both the XML 

documents and their associated schema definitions to be available for the mapping. 

XMine comes closer to a number of schema only level approaches such as 

XClust [18], Deep [14], Cupid [20], COMA [8], SF [22]. However, the main 

difference between these approaches and XMine is that the structure similarity is 

derived based on the maximal similar paths obtained by using the adapted sequential 

pattern mining algorithm. Thus, this eliminates the element-to-element matching 

process, making XMine an efficient and accurate method. 

 

5   Conclusions and Future Work 

 
The potential benefits of the rich semantics of XML have been recognized widely for 

enhancing document handling. A schema clustering process improves the document 

handling process in digital libraries and XML repositories by organising heterogeneous 

schemas into groups. This paper presented the XMine methodology that accurately 

clusters the schemas by considering both structural and semantic information of 

elements. The element structural similarity is the hierarchical position of the element 

in the schema. XMine includes the structural information in similarity measurement by 

finding the maximal similar paths between schemas. The context of an element, which 

is defined by its level position among other elements in a path expression, is included 

in measuring similarity between maximal paths. This takes into account the elements 

with the same name but in different level position in the hierarchical tree. The element 

semantic similarity includes the linguistic and constraint similarity between elements 

contained only in the maximal large paths. Thus, this eliminates the element-to-

element matching process of two trees and rather focuses only on elements those 

appear in maximal paths.  

The evaluation shows the effectiveness of XMine in categorizing the set of 

heterogeneous schemas into relevant classes that facilitate the generalization of an 

appropriate schema class hierarchy. The sensitivity evaluation shows that the XMine 

pre-processing components influences the quality of clusters. The XMine’s semantic 

and structural similarity measures ensure that equivalent concepts occurring in 

completely different structures, and completely independent concepts that belong to 



 

isomorphic structures, are recognised and considered appropriately during the 

clustering process. 

 This schema clustering approach can also easily be applicable to document 

instances after representing each document as a tree. Moreover, the methodology is 

applicable to general web documents after performing XHTML conversion, and then 

representing documents as trees.  
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