
XML Structural Similarity Search Using MapReduce

Peisen Yuan1,2, Chaofeng Sha1,2, Xiaoling Wang3,
Bin Yang1,2, Aoying Zhou2,3, and Su Yang1,2

1 School of Computer Science, Fudan University, P.R.C
2 Shanghai Key Laboratory of Intelligent Information Processing, P.R.C

3 Shanghai Key Laboratory of Trustworthy Computing, Software Engineering Institute,
East China Normal University, P.R.C

{peiseny,cfsha,byang,suyang}@fudan.edu.cn
{xlwang,ayzhou}@sei.ecnu.edu.cn

Abstract. XML is a de-facto standard for web data exchange and information
representation. Efficient management of these large volumes of XML data brings
challenges to conventional technique. To cope with large scale data, MapReduce
computing framework as an efficient solution has attracted more and more at-
tention in the database community recently. In this paper, an efficient and scal-
able framework is proposed for XML structural similarity search on large cluster
with MapReduce. First, sub-structures of XML structure are extracted from large
XML corpus located on a large cluster in parallel. Then Min-Hashing and locality
sensitive hashing techniques are developed on the distributed and parallel com-
puting framework for efficient structural similarity search processing. An empir-
ical study on the cluster with real large datasets demonstrates the effectiveness
and efficiency of our approach.

1 Introduction

XML has become a standard for data exchange in web application development. With
the development of web and the wide usage of XML, search or query in the centralized
solution cannot get satisfied result timely. To efficient manage these huge of XML data,
distributed processing techniques for storing and managing the XML data in P2P or
traditional distributed database techniques are developed [1,2].

Nowadays, cluster computing is broadly applied to the data explosion problem, which
brings up an efficient solution by dividing the big data into small parts and processing in
parallel on thousands of computers. The basic computing framework of cluster comput-
ing is MapReduce, which is a distributed programming model and software framework
for rapidly writing applications that process vast amounts of data in parallel on thou-
sands of cheap commodity computers. It has attracted much attention from many fields
for processing and analyzing huge volumes of data.

Structural similarity search of XML data is an important problem in XML data man-
agement, which is related to data integration, XML classification and clustering, data
cleaning etc. Tree edit distance is used for measuring the structure difference of tree-
structured data, however, its complexity is rather expensive even for ordered tree [3].
Recently, Augsten et al.[4] proposes the pq-gram concept for tree structure comparing

L. Chen et al. (Eds.): WAIM 2010, LNCS 6184, pp. 169–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

170 P. Yuan et al.

for the ordered tree. However, these methods are running on single machine, which
cannot scale well to large cluster for big corpus.

In this paper, we propose a filter-and-refine framework on large cluster with the
Min-Hashing and locality sensitive hashing techniques for efficient structural similarity
search on large XML corpus.

First, pq-gram proposed in [4] is adopted for extracting XML tree-grams, which is
flexible for tree data structural similarity comparing. Then Hadoop is used as a plat-
form for storing and processing large scale of XML data in parallel. Furthermore Min-
Hashing and locality sensitive hashing techniques are implemented on the cluster for
efficient searching. Extensive experiments indicate that our framework is efficient and
effective for XML structural similarity searching on large cluster and scales well in term
of the size of corpus.

To summarize, the main contributions of this paper are outlined as follows:

• We propose an efficient framework for structural similarity searching of XML data
on cluster computing platform.

• Min-Hashing and locality sensitive hashing are implemented on cluster for efficient
searching.

• Extensive experiments are conducted to demonstrate the effectiveness and effi-
ciency of our approach.

The rest of paper is organized as follows. In Section 2, the preliminaries of problem defi-
nition, XML model and MapReduce are introduced. Min-Hashing and locality sensitive
hashing are presented in Section 3. Architecture and main algorithms are introduced in
Section 4, and experiment evaluations are presented in Section 5. The related work is
surveyed in Section 6. Conclusion and future work are presented in Section 7.

2 Preliminaries

2.1 Problem Definition

The problem of structural similarity search is to retrieve the top-k most similar doc-
uments. Given an XML document corpus D, a query document Q and a similarity
function sim, it retrieves the the document set ˜Dk = {di|di ∈ ˜Dk, ˜Dk ⊆ D, ∀d ∈
D\˜Dk, sim(di,Q) ≥ sim(d,Q), i = 1, · · · , k}.

Jaccard similarity is a set based similarity, which is a simple and effective similarity
measure and defined as simjacc = |A∩B|

|A∪B| , where A and B are two sets. The intuitive
meaning of Jaccard similarity is that the more overlapping of A and B, the higher
similarity they are. In this paper, Jaccard similarity is adopted as the similarity measure
for the XML structural similarity.

2.2 XML Model and Tree Gram

In this paper, an XML document is modeled as a rooted ordered labeled tree. According
to this model, element nodes and attributes are considered as structural or internal
nodes, and the text value and attribute value nodes are treated as text nodes or leaf

XML Structural Similarity Search Using MapReduce 171

node. Only structural nodes are taken into consideration as the structure of XML tree,
and the element tag and the attribute node name are considered as the tree node label.

After modeling, the pq-gram proposed in [4] is adopted for extracting tree-gram
from XML tree, which is a flexible way to extract the structural information from tree
structured data for approximate structural similarity comparing. The pq-gram is a sub-
tree of the extended tree for two given integer parameters p and q.

a

b cc

T1

(1) Tree T1

a

b cc

T1
2,3

(2) Extended Tree of T1

*

*
*

*
*

* * * * * * * * *

(*,a,*,*,b)
(a,b,*,*,*)
(*,a,*,b,c)
(a,c,*,*,*)
(*,a,b,c,c)
(a,c,*,*,*)
(*,a,c,c,*)
(*,a,c,*,*)

(3) pq-gram Tuples of T1

a

b dc

T2

(4) Tree T2

Fig. 1. Example Trees and pq-gram Tuples

Example of pq-gram of a tree T1 is shown in Fig. 1. According to [4], for two integers
p and q, an extended tree is first built as shown in Fig.1(2), the ’∗’ nodes represent the
extended empty nodes. Parameters of p and q are set to 2 and 3 respectively in the
example tree T1. The sub-tree enclosed by the dotted line is the first 2,3-gram of T1.

Let g be a pq-gram with the nodes N(g)= {n1, · · · , np, np+1, · · · , np+q}, where ni

is the i-th node in pre-order traversal of g. The (p+q)-tuple L∗(g) = < l(n1), · · · , l(np),
l(np+1), · · · , l(np+q) > is called pq-gram tuple of g, where l(ni) is the node label of
the tree node ni [5].

Example 1. The first 2,3-gram of tree T1 is the subtree circled by the dotted line in the
Fig. 1(2). After pre-order traversing of the subtree, nodes ’*’, ’a’, ’*’, ’*’ and ’b’ are
visited orderly. The 2,3-gram tuple is denoted as (*,a,*,*,b).

An example of pq-gram tuples of T1 is shown in the Fig. 1(3). The pq-gram tuples of
XML Tree T are denoted as GT . The pq-gram tuple universal of the XML corpus is
noted as GU , GU =

⋃

i=1 GT i. The pq-gram tuple is also called tree-gram or pq-gram
if not confused in the following paper. Assume the universe of pq-gram tuples of the
corpus are sorted lexicographically. Consequently, the structure of XML tree can be
represented by a binary vector with dimension |GU |.
Definition 1. pq-Gram Binary Vector

The binary vector vp,q
T =(c1, c2, · · · , c|GU |) is the pq-gram binary vector of the tree

T , ci = 1 iff gi occurs in GT , otherwise ci = 0.

Example 2. In the example trees T1 and T2 of Fig. 1, vectors (1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
0), (1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1) are 2,3-gram binary vectors respective to T1 and T2.

2.3 Hadoop and MapReduce

Hadoop is the core of Apache Hadoop project [6]. It is an open-source implementation
of frameworks for cluster computing, which consists of the Hadoop Distributed File

172 P. Yuan et al.

System (HDFS) and MapReduce. HDFS is a scalable and reliable data storage system
for storing the file in the distributed file system, and MapReduce is a data processing
framework for distributed parallel computing.

The MapReduce programming framework is designed for fast developing applica-
tions which run on large master-slaves shared-nothing cluster in parallel. It is the ba-
sic infrastructure for cluster computing for data-intensive problems. It includes two
primitives: map and reduce [7]. The map primitive processes key/value pairs and
generates intermediate key/values. The reduce primitive merges all the intermediate
key/values of the map output results with the same key. Finally the results are output
to the HDFS.

Input
file
Input
file
Input
file
Input
file
Input
file
Input
file
Input
file
Input
file
Input
file
Input
file

slpit1

slpit2

slpit3

slpit4

slpit5

slpit6

slpitn

Map1
<g1,f1> <g2,f3>
<g3,f3> <g4,f1>

<g4,f2> <g8,f5>
<g3,f2> <g4,f5>

<g5,f4> <g1,f4>
<g3,f4> <g7,f6>

Partition1

Partition2

Reduce1

Partition3

Region1
Region2

Region1
Region2

Region1
Region2

…

<f1,g1> <f1,g4>
<f2,g3> <f2,g4>

...

<f3,g2> <f1,g3>
<f4,g1> <f4,g3>

...
Reduce2

Map2

Map3

Fig. 2. MapReduce Processing Architecture

The processing architecture of MapReduce is outlined in Fig. 2. First, files to be
processed are divided into equal splits. Each split is assigned to a map task. The
inputformat of the application parses the data in each split into key/value pairs
as the map’s input. The intermediate key value lists are obtained and sorted on each
node after map task. Then hash-based partition procedure divides the intermediate
key value list into R groups according to the key on each data node. Next, the reduce
task is scheduled for merging value with the same key. Finally, the results are output
into HDFS.

The advantage of MapReduce is its simple programming interface, which can be
run on shared-nothing cluster without worrying about the details of parallel distributed
tasks, such as task coordinating, load balancing and data storage problems etc.

3 Min-Hashing and Locality Sensitive Hashing

The structural similarity measure between XML documents is evaluated by tree-gram
tuple set and Jaccard similarity, which is defined as: simjacc(GT 1, GT 2) = |GT 1∩GT 2|

|GT 1∪GT 2| .

Min-Hashing. (MH) is introduced in [8] and widely used in duplicate detection [9] etc,
which creates compact signatures for sparse binary vectors such that the similarity can
be effectively measured by their signatures. Min-Hashing is an easy way to implement
min-wise independent permutation[10], which has the property that the probability of

XML Structural Similarity Search Using MapReduce 173

two sets have the same value of Min-Hashing is equal to their Jaccard similarity. The
formal definition is given as follows.

Given a random hash function h : x → I , where x is an integer, and I ⊂ N, the
Min-Hashing function is defined as mh(v) = argmin{h(v[i]) | v ∈ V b, V b is binary
vector set, v[i] is the i-th component of v and v[i] = 1, 0 ≤ i ≤ |v| − 1}. According to
the property of Min-Hashing, given two XML documents d1, d2, the structure of which
is represented by the tree-gram sets GT1 and GT2 and their tree-gram binary vector
are v1 and v2 respectively, their structural similarity can be obtained by Eq. 1.

Pr[mh(v1) = mh(v2)] = simjacc(GT1 , GT2) =
|GT1 ∩ GT2 |
|GT1 ∪ GT2 |

. (1)

Min-Hashing is an approximate procedure for evaluating the set similarity. Thus a ran-
dom hash family H : V b → I is used for improving the efficiency of retrieval. Given
a hash family H, n Min-Hashing signatures are computed for each document. Thus the
binary vector dv of the document d is transformed into Eq. 2

g(dv) = {mh1(dv), mh2(dv), · · · , mhn(dv)}, mhi ∈ H, i = 1, · · · , n. (2)

After generating n Min-Hashing value for all the documents, a signature matrix is ob-
tained, which is a compact representation of the original binary document-gram vec-
tors. Then pairwise similarity can be evaluated by the signature matrix. According to
the property of Min-Hashing, Eq. 3 can be obtained.

Pr[g(dv1) = g(dv2)] = simjacc(d1, d2)n. (3)

Locality Sensitive Hashing. (LSH) is introduced in [11] and widely used in nearest
neighbor search for high dimensional data, approximate KNN query etc, which focus
on pairs of signature of the underlying similar sets. The scheme of locality sensitive
hashing is a distribution on a hash function family H, which operate on a collection of
objects, such that for two objects o1 and o2, Prh∈H[h(o1) = h(o2)] = sim(o1, o2) [12].
The basic idea of LSH is to hash the objects using H, and ensures that for ∀h ∈ H, the
more similarity of the objects, the higher probability they are hashed to the same bucket.
The LSH is a filter-and-refine framework for retrieval. For the retrieval precessing, the
candidates of similar objects can be retrieved in the collision buckets, and the non-
similarity objects are filtered out. The real similarity objects can be validated in the
candidates set, without the need of sequential examining.

In order to improve the searching efficiency, the signature matrix is divided into b
bands with r Min-Hashing signatures each band. Signatures in each band are hashed
into B collision buckets, where B is a large number. Suppose the similarity of two
objects is s, the probability that their LSH signatures agree in all r Min-Hashing signa-
tures of in at least one of b bands is 1 − (1 − sr)b, i.e. the probability that they can be
retrieved is 1 − (1 − sr)b.

In our system, r Min-Hashing values are concatenated for the hash key. The band
number and the bucket number make up the key jointly of the MapReduce job. The
similarity list in the bucket of each band is considered as the value.

174 P. Yuan et al.

4 System Architecture and Algorithms

4.1 System Architecture

The architecture of the system is shown in Fig. 3, which consists of three parts. The first
part is the parsing phase. The structure of XML corpus stored in the HDFS are parsed
and extracted into tree-gram tuples using the algorithm in [4] with one MapReduce job.
The key of the result is file name and the value is the tree-gram set. The key/value
pairs are output to HDFS by the reduce task finally. The processing of parsing is shown
in the Fig. 2, where gi is the tree-gram, fi is the file name.

The second part is the vector building phase. The tree-gram universal GU of
the corpus is obtained by the Universal Generator module in one MapReduce job
firstly. Then GU is distributed by DistrbutedCache function of Hadoop to each data
node. According to GU and the pq-gram tuple set of the XML documents, the binary
document-gram vectors are built in one MapReduce job subsequently.

Parser Vectors
Builder

Universal
Generator

Indexing

Parsing Vector Building Indexing and Searching

LSH Index

Users

XML

Master

Node Node

... ...

ResultsSearch

Fig. 3. Architecture of the System

The third part is the indexing and searching phase. The index is built in one
MapReduce job. Given a binary document-gram vector v, r Min-Hashing values of
each vector are computed for each band. Then these r Min-Hashing values are concate-
nated to make up the hash key jointly and the keys of all the vectors are hashed into B
buckets of each band. The band number and the collision bucket number make up the
key of the index, and the candidate file list is used as the value. The first three part are
computed in parallel on each data node.

Given a query Q, the collision bucket numbers of each band for the query are eval-
uated. Next the candidate set is obtained with the LSH index. Then the similarity dis-
tances of Q with candidate sets are computed. Finally the results are sorted according
to their similarity and returned to the user.

After the introduction of the architecture of the system, main algorithms used in the
system are presented in the following section.

4.2 Algorithms

Vector Building. The tree-grams are extracted from the XML documents residing on
each data node in one MapReduce job using the algorithm from [4] in parallel. The tree-

XML Structural Similarity Search Using MapReduce 175

Algorithm 1. map Function for Building Binary Vectors
Input: Key: file-name. Value: tree-gram list. tree-gram universal GU .
Output: Key: file-name. Value: doc-gram vector.
Vector v = Ø;1

GU is distributed to each data node by DistributedCache;2

foreach g ∈ GT do3

if g ∈ GU then4

v.add(1);5

else6

v.add(0);7

output key = file-name;8

output value = v;9

Emit(output key, output value);10

gram sets of the XML corpus are output into HDFS. After that, the tree-gram universal
GU is generated in another MapReduce job.

The map function of the binary document-gram vector building is introduced in
Algorithm 1. First GU is distributed to each data node by DisributedCache (line 2).
Then the binary vector is built for the XML document (line 3-7). Next the vector is
emitted with the file name as the key and the vector as the value in the map. Finally
the reduce algorithm outputs the binary vectors into HDFS. The reduce algorithm is
omitted here due to its simplicity.

LSH Indexing. LSH Indexing of map function is presented in Algorithm 2. For each
vector v, the computeMinHash() function compute the r Min-Hashing values for
each band. These r Min-Hashing values are concatenated to make up the hash key for
each band(line 4). Then the band number and the collision bucket number make up the
key of the MapReduce, and the file name as the value are emitted to reduce (line 7).

Algorithm 2. map Function for LSH Indexing
Input: Key: file-name. Value: binary doc-gram vectors.
Output: Key: collision bucket number. Value: file list in the bucket.
MinHashClass minHash = new MinHashClass();1

fn = getF ileName(file-name); /*get the file name*/;2

docVector = getV ector(fn); /*get the file vector by file name*/;3

Band:BucketNo = minHash.computeMinHash(docVector);4

output key = Band:BucketNo; /*the band number and the bucket number are concatenated5

as the key*/
output value = output value ∪ file-name;6

Emit(output key, output value);7

Subsequently the reduce task of the LSH indexing merges the file list with the same
key together, i.e. the same band and the same bucket number.

Searching Algorithm. The map function for structural similarity search is shown in
Algorithm 3. Given a query Q, the minHashSimilarityQuery() function searches

176 P. Yuan et al.

Algorithm 3. map Function for Structural Similarity Searching
Input: Query Q.
Output: Key: file name pair. Value: similarity distance.
dist-list = minHashSimilarityQuery(Q, k); /*call algorithm 4*/1

foreach dist ∈ dist-list do2

output key = file-name;3

output value = dist;4

Emit(output key, output value);5

the structural similarity XML documents and computes their similarity distances (line
1). Finally the similarity distance list is emitted to the reduce task (line 5).

The minHashSimilarityQuery() is introduced in Algorithm 4. Given a query Q,
the getV ector() accesses the binary vector firstly (line 4). Subsequently the collision
bucket numbers for each band is computed by computeMinHash() for the query vec-
tor (line 5). Then for each collision number, the candidate file list is obtained (line 6-8).
The Algorithm 4 can be divided into two phrases. The first phrase is the filtering phrase,
which filters out the most of the non-similarity objects (line 2-8), and the second phrase
is the refining phrase, which affirms the true valid similarity objects in the candidate
set. The similarity distances of Q with each file in the candidate set are evaluated (line
9-12). Finally, the result list is sorted and returned (line 13-14).

Algorithm 4. Min-Hashing Structural Similarity Search on Hadoop
Input: LSH index, Query Q.
Output: Top-k result list.
Result = Φ;1

C = Φ; /* list of candidate files */2

MinHashClass minHash = new MinHashClass();3

q′
v = getVector(Q);4

queryCollisionBucket = minHash.computeMinHash(q ′
v);5

foreach collisionNo ∈ queryCollisionBucket do6

c = getVectorByNo(bucketNo);7

C = C ∪{c};8

foreach f ∈ C do9

CandidateVector CV = getVector(f);10

simi = computeSetSimilarity(q′
v , CV);11

Result = Result ∪{simi};12

sort(Result);13

return top-k result list;14

5 Experiments

5.1 Experiment Setup

All the algorithms are implemented in Java SDK1.6 and run on Hadoop 0.19.1 and
Hbase 0.19.1. The cluster is configured with 1 master node and 6 salve nodes. Each

XML Structural Similarity Search Using MapReduce 177

node has a duo core intel 2.33GHz processor, 2G main memory and 180GB disk, which
runs on Ubuntu 9.04, and with 1G memory allocated to JVM. The cluster is organized
in the LAN with 100.0 Mbps. The XML documents are stored on HDFS. Hadoop is
configured with the default and the replication of the data is set to 1. Each data node is
configured with 2 maps and 1 reduce. The default parameters of b and r are set to 20
and 3 respectively.

For XML datasets, data from [13,14] are used. Big XML documents such as psd7003,
SwissProt, dblp, nasa and treebank in the datasets are split with the XML Twig [15] to
smaller ones with size of 100KB, 200KB, 500KB and 1MB. Finally, the size of the
XML corpus is 3.4G and consists of 18015 XML documents. The parameters of p and
q of the pq-gram are set to 2 and 3 respectively.

The datasets are divided into 4 groups with different size which randomly choose
from the 18015 XML documents. The first group D1 is 667 XML documents with the
size about 100MB. The second one D2 is 4863 XML documents with the size about
900MB. The third group D3 is 9382 XML documents about 1.9 GB and the forth group
D4 is 18015 XML documents with 3.4 GB size.

5.2 Time Performance

In this section, the performance of the system is studied. We mainly studied (1) Parsing
of the XML corpus to generate the pq-gram profile of the XML corpus, (2) Vector
building for each XML corpus, (3) LSH index building. For the comparing searching
performance, 2 searching schemes are studied: (1) Sequential scan from HDFS, which
evaluates the similarity by sequential scan from HDFS in one MapReduce job, (2) Using
LSH index.

 10

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

L
og

 P
ro

ce
ss

in
g

T
im

e
 (

s)

Size of the Corpus

Parsing Time
Vector Building Time

M-LSH Indexing Time

Fig. 4. Processing Time

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pr
oc

es
si

ng
 T

im
e(

m
s)

Size of the Corpus

Query with M-LSH Index
Query with Sequential Scan HDFS

Fig. 5. Query Performance Comparison

Fig. 4 demonstrates the processing time. The time axis is logarithm time and the time
unit is second. Fig. 4 indicates that (1) with the increasing of the corpus size, the parsing
time increases almost linearly with the corpus size; (2) the XML parsing takes most of
the time and LSH indexing takes about 150s for 18015 XML documents.

The query performance comparison is shown in Fig. 5. The time unit is millisecond.
For query performance test, the number of bucket B of each band is configured to 7997.
Fig. 5 indicates that the query performance with LSH index is far lower than sequential
scan from HDFS, which takes time less than 0.2% of scanning from HDFS.

178 P. Yuan et al.

5.3 Precision

For precision experiment, the first group XML corpus dataset D1 is used. The default
bucket number B is set to 7997, and the precision, recall and F-measure are tested.
The F-measure is defined as 2 × precison×recall

precison+recall . 14 queries are issued in total and the
average result is used as the final result.

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 15 20 25 30

Pr
ec

is
io

n

Band Number b =

r=3
r=4
r=5
r=6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 15 20 25 30

R
ec

al
l

Band Number b =

r=3
r=4
r=5
r=6

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 10 15 20 25 30

F-
m

ea
su

re

Band Number b =

r=3
r=4
r=5
r=6

(a) Precision (b) Recall (c) F-measure

Fig. 6. Precision, Recall and F-measure

Figures in Fig. 6 show the precision, recall and the F-measure with different param-
eters b and r, r = 3, · · · , 6 and b = 10, 15, 20, 25, 30. Fig. 6(a) shows the precision is
decreasing with the increasing of b and r. Fig. 6(b) indicates that the recall is increas-
ing the the increasing of b, however, it decreases with the increasing of r. This figure
proves the principle of the LSH that the more bucket, the more relevant are retrieved.
Fig. 6(c) demonstrates that (1) the F-measure increases with the band number b before
15, it decreases after 25; (2) it increases with the r. When r = 3 and b = 20, the F-
measure reaches peak. From Fig. 6(a) to 6(c), when r = 3 and b between 15 and 20, the
measures of precision, recall and F-measure can get the best search quality. However,
when r = 4, the search quality is stable with different b, but is much lower than r = 3.
Thus, conclusions can be drawn that r = 3 and b between 15 and 20 is a good choice
for Min-Hashing LSH.

5.4 Scalability

For scalability performance test, the search time are experimented with 4 group XML
corpus and different number of similarity candidates.

Fig. 7 shows the search processing time with different buckets of per band and differ-
ent size of corpus. The time scale of is logarithm time and unit is millisecond. From Fig.
7, conclusion can be drawn that (1) with the size of corpus increasing, the processing
time increases, (2) with the number increasing of bucket of each band, the search time
decreases. However, with the increasing of the buckets, the searching time decreases
tiny after a sharp decreasing. Thus a tradeoff should be made between space cost and
performance.

Fig. 8 demonstrates the searching time with different corpus size and candidate set,
and the time unit is millisecond. 4 queries are issued for this experiment. Q1: Ordi-
naryIssue.xml, Q2: Proceedings.xml, Q3: customer.xml, Q4: reed.xml. There are 99,

XML Structural Similarity Search Using MapReduce 179

 100

 1000

 10000

 100000

 1e+006

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

L
og

 P
ro

ce
ss

in
g

T
im

e(
m

s)

Number of Buckets per Band B=

Corpus D1
Corpus D2
Corpus D3
Corpus D4

Fig. 7. Processing Time with Buckets

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pr
oc

es
si

ng
 T

im
e(

m
s)

Size of the Corpus

Q1
Q2
Q3
Q4

Fig. 8. Query Performance with different Candi-
dates and Corpus Size

40, 7, 7 similarity documents respectively in each corpus. The bucket number B is set
to 14389. Fig. 8 indicates that with the increasing of the size of corpus, the searching
time is increasing. The reason is that the larger of the corpus size, the more candidates
need to be probed. This experiment also shows that, the more similar documents in the
corpus, the more time it costs for searching. However, the query time Q1 decreases in
D4 than D3, the reason is that the data may be distributed unevenly in the cluster. Fig.
5 and Fig. 8 indicate that our system scales well with the size of the corpus.

6 Related Work

In this section, the literatures on approximate structural similarity computing of XML
data, cluster computing and the application of locality sensitive hashing are reviewed.

Approximate tree structural comparison is extensively studied which can give sat-
isfied result. Thus researchers have proposed several approximate methods for XML
structural comparison. Joshi et al. [16] proposed bag of xpath based structural similar-
ity. Recently, tree-gram based methods are proposed to capture the structural similarity
for ordered tree [4,17], which is becoming an efficient and flexible way for tree data
similarity evaluation, They also give the bound against the tree edit distance. However,
they do not take large scale data collection comparison into consideration.

In term of cluster computing, extensive researches have been conducted on large
scale distributed storage and computing nowadays. Such as GFS [18], MapReduce [7],
Dryad [19], Hbase [20] etc. These techniques have applied in many fields and have
attracted lots of attention. The performance and efficiency of these system have been
shown by empirical research for big data problem in these fields. The MapReduce as
the basic computing framework provides easy operations for processing massive data
on thousands of machine for distributed computing.

In the last few years, the locality sensitive hashing and Min-Hashing have been well
studied and applied in many fields, such as duplicate detection, large rare association
rule mining, clustering, information retrieval etc. LSH is widely used for efficient near-
est neighbor searching in high dimension objects etc. Google news [21] employs the
Min-Hashing and locality sensitive hashing for personal news distribution. Manku et
al. [22] make use of Min-Hashing for detecting the duplicate web page in the web
crawler.

180 P. Yuan et al.

7 Conclusion and Future Work

We propose a filter-and-refine framework for searching structural similarity XML doc-
uments on the cluster with MapReduce, which is efficient and effective with high search
quality. Min-Hashing and locality sensitive hashing techniques are implemented with
MapReduce in the framework. Our design gives an efficient solution for large scale
XML documents management in the web age. Extensive experiments on real datasets
show that our framework is efficient and scales well in term of the size of the corpus for
structural similarity searching for XML data. In the web age, data update is very com-
mon, so how to manage these huge amount of data incrementally is rather important.
In the future, optimization of searching algorithm and incremental update functionality
will be added to the system. Furthermore, data mining and analyzing functions will be
incorporated into the framework for large scale XML data management problems.

Acknowledgments. This work is supported by NSFC grants (No. 60773075,
No.60925008 and No. 60903014), National Hi-Tech 863 program under grant 2009A
A01Z149, 973 program (No. 2010CB328106), Shanghai International Cooperation
Fund Project (Project No.09530708400) and Shanghai Leading Academic Discipline
Project (No. B412).

References

1. Özsu, M.T.: Distributed XML Processing. In: Li, Q., Feng, L., Pei, J., Wang, S.X., Zhou, X.,
Zhu, Q.-M. (eds.) APWeb/WAIM 2009. LNCS, vol. 5446, p. 1. Springer, Heidelberg (2009)

2. Abiteboul, S., Benjelloun, O., Milo, T.: The Active XML project: an overview. The VLDB
Journal 17(5), 1019–1040 (2008)

3. Jiang, T., Wang, L., Zhang, K.: Alignment of Trees-An Alternative to Tree Edit. In:
Crochemore, M., Gusfield, D. (eds.) CPM 1994. LNCS, vol. 807, pp. 75–86. Springer,
Heidelberg (1994)

4. Augsten, N., Böhlen, M., Gamper, J.: Approximate matching of hierarchical data using pq-
grams. In: VLDB, pp. 301–312 (2005)

5. Yuan, P., Wang, X., Sha, C., Gao, M., Zhou, A.: Grams3: An efficient framework for xml
structural similarity search. In: DASFAA workshop: UDM (to appear, 2010)

6. Apache Hadoop Project (2009), http://hadoop.apache.org/
7. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:

OSDI, pp. 1–13 (2004)
8. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings of Com-

pression and Complexity of Sequences 1997, pp. 21–29 (1997)
9. Chum, O., Philbin, J., Isard, M., Zisserman, A.: Scalable near identical image and shot de-

tection. In: ICVR, pp. 549–556. ACM, New York (2007)
10. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent

permutations. JCSS 60(3), 630–659 (2000)
11. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of

dimensionality. In: ASTC, pp. 604–613. ACM, New York (1998)
12. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: STOC,

pp. 380–388. ACM, New York (2002)
13. XML Data Repository (2009),

http://www.cs.washington.edu/research/xmldatasets/

http://hadoop.apache.org/
http://www.cs.washington.edu/research/xmldatasets/

XML Structural Similarity Search Using MapReduce 181

14. Sigmod Record (2009),
http://www.sigmod.org/publications/sigmod-record/xml-edition

15. XML Twig (2009), http://xmltwig.com/xmltwig/
16. Joshi, S., Agrawal, N., Krishnapuram, R., Negi, S.: A bag of paths model for measuring

structural similarity in Web documents. In: SIGKDD, pp. 577–582. ACM, New York (2003)
17. Yang, R., Kalnis, P., Tung, A.K.H.: Similarity evaluation on tree-structured data. In:

SIGMOD, pp. 754–765 (2005)
18. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. SIGOPS 37(5), 43 (2003)
19. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel pro-

grams from sequential building blocks. In: SIGOPS/EuroSys, pp. 59–72. ACM, New York
(2007)

20. Hbase Project (2009), http://hadoop.apache.org/hbase/
21. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online

collaborative filtering. In: WWW, pp. 271–280. ACM, New York (2007)
22. Manku, G.S., Jain, A., Das Sarma, A.: Detecting near-duplicates for web crawling. In:

WWW, pp. 141–150. ACM, New York (2007)

http://www.sigmod.org/publications/sigmod-record/xml-edition
http://xmltwig.com/xmltwig/
http://hadoop.apache.org/hbase/

	XML Structural Similarity Search Using Map Reduce
	Introduction
	Preliminaries
	Problem Definition
	XML Model and Tree Gram
	Hadoop and MapReduce

	Min-Hashing and Locality Sensitive Hashing
	System Architecture and Algorithms
	System Architecture
	Algorithms

	Experiments
	Experiment Setup
	Time Performance
	Precision
	Scalability

	Related Work
	Conclusion and Future Work

