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ABSTRACT 

The problem of version detection is critical in many important 
application scenarios, including software clone identification, Web 
page ranking, plagiarism detection, and peer-to-peer searching. A 
natural and commonly used approach to version detection relies on 
analyzing the similarity between files. Most of the techniques 
proposed so far rely on the use of hard thresholds for similarity 
measures. However, defining a threshold value is problematic for 
several reasons: in particular (i) the threshold value is not the same 
when considering different similarity functions, and (ii) it is not 
semantically meaningful for the user. To overcome this problem, 
our work proposes a version detection mechanism for XML 
documents based on Naïve Bayesian classifiers. Thus, our approach 
turns the detection problem into a classification problem. In this 
paper, we present the results of various experiments on synthetic 
data that show that our approach produces very good results, both 
in terms of recall and precision measures.  

Categories and Subject Descriptors 

I.7.1 [Document and Text Processing]: Document and Text 
Editing – version control, document management.   

General Terms 

Management, Measurement, Experimentation 

Keywords 

XML, versioning, similarity functions, classification 

1. INTRODUCTION 
Version is the description of an object in a period of time or 

under a certain point of view, whose recording is important for the 
considered application. The applications of the version concept are 
many and diverse. Previous works focused on version management 
and querying rather than version detection [1][2][3][4]. However, 
the version detection problem is critical for many applications, such 
as plagiarism detection, Web page ranking, software clone 
identification, and peer-to-peer searching. For plagiarism detection, 
comparing file checksums is enough for detecting exact replicas, 
but totally useless for detecting partial copies [5][6]. However, such 
plagiarism can be detected by considering partial copies as 
versions. Likewise, the Web page ranking process will greatly 
benefit from such detection mechanism by ranking highly new 
versions of existent top-ranked pages [7]. The software clone 
problem often arises during the development of systems with 
negative impact on their maintenance [8]. By considering such 
clones as versions, this problem is managed and reduced. Finally, 
traditional peer-to-peer systems that are not aware of the existence 
of resource versions often face increasing complexity at the logical 
level and inefficiency at the physical level. These drawbacks can be 
reduced by using an automatic version detection mechanism.  

This paper focuses on version detection of XML documents. By 
version we denote different but very similar representations of the 
same real-world object. Similarity can be measured by several 
metrics, such as content, structure or related subject. Considering 
this assumption, the general idea is that two files with high 
similarity are considered versions of the same document1. However, 
the version detection problem poses two important issues: the first 
is how to measure similarity between files and the second is how to 
define the minimum degree of similarity required for a file to be 
considered a version of another. To solve the first problem, several 
similarity functions are available for atomic values (e.g. string, 

                                                                 
1 The term file refers to a physical representation; document refers to the 

representation of an object in the real world. In other words, one 
document can be stored as many files.   
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integer) [9][10] and complex values (e.g. collections, tuples) 
[11][12][13]. Similarity functions for atomic values are domain-
dependent, while similarity functions for complex values are 
usually based on the structure of the object [14]. However, finding 
similarity functions for XML documents that are effective for 
version detection represents an open research issue. The similarity 
function for version detection must consider the content and 
structure similarity, and also other features that match the 
requirements for each specific application. Based on the typical 
behavior of the document evolution in specific applications, some 
features can be more relevant for detecting versions.  

The use of similarity functions in version detection poses a 
second challenge: this is the problem of determining the threshold 
value that should be used [15]. This difficulty occurs because the 
distribution of the score values generated by distinct similarity 
functions may be completely different  it may even vary when the 
same similarity function is applied to different data sets [16]. 
Moreover, the threshold definition is usually a task performed by 
the user, and it tends to be an error-prone activity. The user has to 
try several different values to get a satisfactory result. If the 
threshold value is too high, the number of false negatives can be 
high. On the other hand, if the threshold value is too low, the 
number of false positives will be high.  

To overcome these two problems, our work proposes a new 
version detection mechanism for XML documents. The mechanism 

is part of DetVX, an environment for Detection, management and 

querying of replicas and Versions of XML documents in a peer-to-
peer context [17]. The main contributions of this paper are: 

� The definition of a similarity function for XML files used as the 
basis for detecting versions: the function is not restricted to a 
specific application and it can be adapted to consider other 
relevant similarity features for specific scenarios.  

� The definition of a version detection mechanism based on 
classification techniques: the detection mechanism relies on the 
use of Naïve Bayesian classifiers, which eliminates the previously 
discussed disadvantages of using thresholds.  

The paper is organized as follows. Section 2 presents some 
related works. In Section 3 we present the main guidelines for the 
version detection mechanism. The similarity function is discussed 
in Section 4. Section 5 details the detection mechanism based on 
Naïve Bayesian classifiers. Experimental results are shown in 
Section 6. Metadata management is described in Section 7. Finally, 
concluding remarks are discussed in Section 8.  

2. RELATED WORK 
The version detection mechanism proposed in this paper relies 

on the use of a similarity function. A similarity function f(f1,f2)→ 

sim generates a score sim to a pair of files f1 and f2, where 
0<=sim<=1. The higher the sim value, the more similar are the 
files. Based on the similarity values, versions can be detected by 
using a threshold: files whose sim is greater than a given threshold 
are considered versions; files whose sim is lower than the threshold 
are considered different documents. Some existent works address 
the similarity functions, while others address the threshold 
definition, as discussed below.   

Existent researches on change detection can be used as a basis 
for measuring similarity. Some approaches use diff algorithms to 
detect differences between files [18][19]. However, diff results are a 

delta script with no semantic information regarding the similarity 
between files. Another possibility is to analyze their ordered tree 
representations by calculating the edit distance, i.e., the minimum 
cost to transform one tree into another using basic operations 
[20][21]. Also, tree edit distance results do not contain meaningful 
information related to the similarity level that could be used to 
detect resource versions. Moreover, some approaches for similarity 
assessment consider only the textual content of documents [11], 
while others consider the structure [12][13].   

Besides choosing a proper similarity function, it is also 
fundamental to understand its behavior to select the best threshold. 
As identified by the experiments in [16] and also in [22][23], some 
similarity functions are more adequate than others in that the values 
of recall and precision tend to be higher and less dependent from 
the threshold values. But the threshold definition also depends on 
the data set and the quality of results expected by the user. A high 
threshold value will consider as versions only files that present high 
similarity (almost replicas). On the other hand, a low threshold 
value can consider as version a large number of files that present 
low similarity (i.e., different documents).  

The discussed works lead us to two conclusions. The first 
conclusion is that there are a variety of similarity functions, either 
for atomic values (e.g. Levenshtein or Edit Distance (Edit) [9], 
Guth [10] and N-grams [9]) or for documents [11][12][13]. 
However, these functions are often suitable for some specific 
requirements or interests. For example, some XML similarity 
functions focus more on structure rather than content; others focus 
more on content than structure. However, for the version detection 
problem many different features must be considered together. In 
this paper, we define a similarity function that considers several 
characteristics with different weights to achieve a more flexible 
approach.  

The second conclusion is that the threshold definition is not a 
trivial task, even if it is automatically defined or manually chosen 
by a user. Some works address threshold definition [24][25], but 
there is not a widely accepted approach. Usually the similarity 
value is semantically poor. Different functions produce different 
distributions, which results in different interpretations for the 
similarity values [14]. In other words, the result quality (measured 
by recall and precision) can vary among functions when a specific 
threshold is chosen. This means that a threshold chosen for one set 
of files may not be adequate for another set of files. In order to 
obtain more robust methods we need to eliminate the dependence of 
threshold. Thus, we turn the version detection mechanism into a 
classification problem, for which no threshold definition is 
necessary. This is done by using Naïve Bayesian classification 
technique, a simple probabilistic classifier with strong 
independence assumptions [26].  

There are some works on document classification based on 
Naïve Bayesian classification [27][28]. In these works, the goal is 
to assign a single electronic document to the category that is most 
relevant. In our proposal, the goal is to categorize pairs of 
documents in two classes (i.e., versions and non-versions). There 
are a set of features that must be taken into account when defining 
the necessary requirements for versions. This paper defines these 
requirements in a similarity function and applies the classification 
technique for version detection.  



3. VERSION DETECTION  
The version detection mechanism seeks to verify if two files are 

versions of the same document. In this proposal, version detection 
is based on file similarity. The general idea is that two files with 
high similarity are considered versions of the same document. For 
measuring similarity, we define a set of attributes (i.e., features) that 
must be assessed to be considered a version.  

Our proposed procedure for version detection performs three 
activities. The first activity is named similarity analysis and it is 
responsible for applying a similarity function to each pair of files. 
The second activity is the classification, which is responsible for 
detecting the versions, based on data generated in the previous task 
using Naïve Bayesian classifiers. Finally, some metadata collected 
during the version detection process are maintained by the activity 
named metadata management.  

In this work, versions are managed as separate files. The same 
detection mechanism can be used for both linear and branched 
versioning. The behavior of the mechanism is the same for both 
versioning types. It only differs in the structure of the tree that is 
traversed during the similarity analysis phase. Let us assume that 

the similarity function f(f1,f2) → sim generates a score sim to a pair 
of files f1 and f2. The sim values are based on discrete mathematics 
(varying in 0.01 scale). Thus, there are hundred different possible 
values for the similarity function result.  

The structure of the traversed tree depends on the type of 
versioning used, as discussed below.  

3.1 Linear Versioning 
In this type of versioning, the document’s evolution creates a 

linear sequence of versions: V1, V2, . . ., Vj, where Vj is the current 
version. A new version (Vj+1) is established by applying a number 
of changes (insertions, deletions or updates) to the current version 
(Vj ) [29]. This leads to a single sequence of consecutive versions.  

In linear versioning, the detection mechanism compares pairs of 
files (e.g. f1 and f2), where f1 is the version candidate and f2 is the 
current version of an existent document. The current version can be 
either specified by the user or assumed by default. By default, we 
consider the modification date of the file versions; the file that was 
last modified is considered the current version. Consider that we 
have two sets of version sequences, as depicted in Figure 1: the first 
sequence (i.e., f1, f2 and f3) corresponds to three versions of a 
document D1; the second sequence (i.e., f4 and f5) corresponds to 
two versions of a document D2. Consider that the current versions 
of these sets are, respectively, f3 and f5 (assumed by default or 
informed by the user). The similarity value between files is 
represented over the arrows. 

 

 

 

Figure 1. Linear versioning sequences 

We compare the candidate file fx with f3 and f5, producing the 
similarity values, such as sim (fx, f3) = 0.45 and sim (fx, f5) = 0.89. 
The pair of files with higher similarity (i.e., fx and f5) is considered 
to be linear versions.  

3.2 Branched Versioning 
In this type of versioning, a new version can be derived from 

any previous one, creating a tree of versions [30]. When branched 
versioning is used, the detection mechanism compares pairs of files 
(e.g. f1 and f2), where f1 is the version candidate and f2 is any 
existent version belonging to the tree. Consider the tree of versions 
shown in Figure 2. Let us assume that this tree corresponds to five 
versions of a document D1.  

 

 

 

Figure 2. Branched versioning tree 

Similar to the previous example, the candidate file fx is 
compared to some existent versions. However, according to the 
branched versioning definition, the candidate file fx can be derived 
from any previous version fy (i.e., f1, f2, f3, f4, or f5). Thus, in an 
optimal solution, fx must be compared with all the tree nodes. The 
pair of files with higher similarity is considered to be versions. 
However, there are different approaches for traversing the tree and 
choosing the order to compare the files, as follows: 

1. Compare fx with all the files following a random order, using 
depth-first or breadth-first search order. This approach is simple 
and optimal, since fx is compared with all the previous versions. 
However, it can have a high cost depending on the number of the 
nodes the tree presents; 

2. Compare fx with all the files that are leaf nodes in the tree. This 
approach is not optimal, since we do not compare the candidate 
file with intermediary nodes. However, it has a lower cost, since 
only a subset of the tree is compared with fx;  

3. Compare fx with all the files following a depth-first or breadth-
first search in a reverse order (i.e., starting by a leaf node) and 
stop traversing when the comparison achieves a stop-condition. A 
stop-condition can be: time of processing, minimum level of 
similarity expected by the user, number of visited nodes, or 
number of K-visited nodes (where K is the number of files that 
were last modified). This approach is not optimal, but it also 
produces a lower cost.  

One of these three approaches must be chosen on the basis of 
the behavior of the document evolution for a specific application. 
For example: if the versions tend to evolve from one of the last 
versions that were generated, the second approach could be chosen, 
since the leaf nodes represent the last versions created from a 
specific branch. If the versions tend to evolve from the last 
modified version, then the third approach could be chosen (for 
K=1). However, if the document does not follow a typical evolving 
behavior and the user seeks an optimal solution, then the first 
approach shall be chosen. Moreover, a combination of approaches 
could be used for specific applications.  

For instance, consider the example in Figure 2, and let us 
assume that the second approach is chosen. Thus, fx is compared to 
all the leaf nodes (i.e., f3, f4, and f5). Suppose that the similarity 
function produces the following values: sim (fx, f3) = 0.41, sim (fx, 

f4) = 0.8 and sim (fx, f5) = 0.07, then the two files with higher 
similarity (i.e., fx and f4) are considered to be versions.  

Similarity analysis between files is described in the next section.  
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4. SIMILARITY ANALYSIS 
The similarity analysis task is responsible for generating a 

similarity value sim for each pair of files. Consider a set Rs = {x ∈ 

R: x >= 0  ∧ x <=1} as the set of all real values in R in the interval 

[0,1]. The similarity function s receives a set of pair of files P and 

generates a similarity value in the Rs interval: s: P →  Rs. Let G = 

{(f1, f2), … , (fn, fm)} be a set of pair of files, the similarity value 

for all pairs can be computed by ∀(fn, fm)∈G : s(fn,fm). The basic 
types of evolution that are considered for similarity analysis are:  

1. Content evolution: in this type of evolution, the element content 
changes between versions, but the element structure keeps the 
same. The example in Figure 3 shows that the element x changes 
its content from version (a) to version (b). In terms of 
implementation, we consider that the element x is updated.  

2. Structure evolution: in this type of evolution, the element 
structure changes between versions, but the element content 
keeps the same. The example in Figure 3 shows that the element x 

changes its structure from version (a) to version (c). In terms of 
implementation, we consider that the element x is removed and 
the elements y and z are added.  

3. Structure and content evolution: in this type of evolution, both 
element content and structure changes between versions. The 
example in Figure 3 shows that the element x changes its structure 
and content from version (a) to version (d). In terms of 
implementation, we consider that the element x is removed and 
the elements y and z are added. 

 

 

Figure 3. Different representations in XML document versions  

In the proposed mechanism, structure evolution and structure 

and content evolution are grouped together. Let us first discuss the 
content evolution in the next section.  

4.1 Content Evolution 
In order to evaluate the content similarity between files with 

content evolution, the following features are observed:  

� Diff results: to assess the content similarity level between two 
files, we first consider the use of a diff algorithm. The diff 

algorithm outputs the differences between two files f1 and f2 in a 
delta representation, as a set of basic edit operations. By using a 
diff algorithm, differences between the files are detected. 
Analyzing the input files and the delta representation, we can 
determine the percentage of elements that have not changed in f2.  

Suppose the files f1 and f2 shown in Figure 4. Since only the 
content has changed in these files, the number of elements keeps 
the same. Figure 4 shows that each file has 6 elements (i.e., the root 
element employee has 6 direct and indirect descendants).  

 

 

 

 

Figure 4. XML files (f1 and f2) with element content changes 

As Figure 5 shows, the content of the elements salary and job 

do not match in the second file. In other words, 67% of the original 
elements kept unchanged in the second file. The assumption is that 
the bigger percentage of unchanged elements, the larger chance the 
files are versions of the same document. 

<delta> <Deleted update="yes"  pos="0:0:3:0">3700</Deleted> 
      <Deleted update="yes" pos="0:0:2:0">engineer</Deleted> 
      <Inserted update="yes"  pos="0:0:2:0">manager</Inserted> 
      <Inserted update="yes" pos="0:0:3:0">4900</Inserted> </delta> 

Figure 5. Diff result for XML files (f1 and f2) 

We are currently using the XyDiff algorithm [18], but the 
architecture allows changing to other diff implementations. XyDiff 
is very efficient in terms of speed and memory space; also, it 
considers, besides insertions, deletions and updates, a move 
operation on subtrees that is essential in the context of XML. 
According to [18], the complexity is no more than the expected 
O(n*log(n)) time. Regarding the algorithm quality, the computed 
changes are very close in size to the synthetic (perfect) changes.  

� Matched and unmatched elements: the previous feature 
analyses the percentage of elements that are the same between 
files. On the other hand, another interesting feature is to look at 
the elements that could have changed completely between files or 
just some of its characters could have changed. In other words, 
we analyze the differences and similarities between elements that 
have changed. The more similar the respective unmatched 
elements, the larger is the chance that the files are versions of the 
same document. 

In this paper, we consider the term matched to refer to an 
element that has the identical content in both files (for example, 
name); unmatched, otherwise (for example, salary). Let us take a 
look at the unmatched elements salary and job. Using a 
(combination of) string similarity function(s), we calculate a value 
that demonstrates how similar the unmatched elements are. Our 
goal is not to describe string similarity functions and quality results. 
An extensive analysis of similarity functions and threshold 
definition can be found in [15].  

� Element change relevance: Another important feature to be 
considered for similarity analysis is the relevance of individual 
changes. Some domain concepts can change more frequently than 
others. Let us suppose that we have an address element. Two 
different addresses can easily refer to the same person; however, 
two different birthdates suggest that we are analyzing two 
different objects in the real world. In other words, the change 
relevance is differently weighted for different concepts. In our 
approach we use different weights, such as high (1), medium (0.5) 
and low (0). The average of weighted relevances is used to 
calculate file similarity. The smaller change relevance they 
present, the larger chance the files are versions of the same 
document. 

Based on the diff results, matched and unmatched elements, and 
element change relevances, the content similarity function simC 

between two files f1 and f2 is defined as:  

simC(f1,f2) = (w1*F1 + w2*F2 + w3*F3 + ... + wn*Fn) 

Where wn is a factor that weights the importance of a specific 

feature Fn. A factor may be positive or negative (if it influences the 
similarity growth or reduction, respectively). Considering wx, 

wx+1,…wy as positive factors and wz, wz+1,…wq as negative 
factors, we assume that wx + wx+1 +...+wy = 1 and -1<=wz + 
wz+1 +...+ wq <= 0.  

(a) 
<root> 
   <x>A St, 7</x> 
</root> 

 

(b) 
<root> 
   <x>B St, 8</x> 
</root> 

 

 

(c) 
<root> 
   <y>A St</y> 
   <z>7</z> 
</root> 

(d) 
<root> 
   <y>B St</y> 
   <z>8</z> 
</root> 

<employee>         <employee> 
<name>Marcos</name>                  <name>Marcos</name> 
<hiringDt>10/10/03</hiringDt                  <hiringDt>10/10/03</hiringDt> 
<job>engineer</job>                  <job>manager</job> 
<salary>3700</salary>                  <salary>4900</salary> 
<address>7 St</address>                  <address>7 St</address> 
<phone>65982541</phone>                  <phone>65982541</phone> 

</employee>         </employee> 



In our approach, three features are combined to produce the 
following content evolution similarity function:  

simC(f1,f2) = w1*P + w2*S + w3*R 

Where: P is the percentage of matched elements, S is the mean 
similarity of the unmatched elements and R is the average of 
domain relevances of the unmatched elements. P and S factors (w1 
and w2, respectively) are positive values (the greater these values, 
the more similar the files) and R factor (w3) is a negative value (the 
smaller this value, the less relevance the change and the more 
similar the files).  The factors (w1, w2,..., wn) must be defined 
based on the importance of the three features in specific 
applications/domains and recall/precision measures. 

The intervals of the defined variables are defined as: {P|P ∈ 

[0,1]}, {S|S ∈ [0,1]}, {R|R ∈ [0,1]. Analyzing the 
minimum and maximum values of P, S and R, and the sum 
restrictions for positive and negative factors, we conclude that the 
similarity function produces a value simC that ranges from -1 to 1, 
i.e., {simC|simC ∈[-1,1]}. 

To calculate P, we use a function calcP that returns the 
percentage of matched elements based on the diff result. S is 
calculated by using a (combination of) string similarity function(s) 
(StrSim()) and it is defined as the average of the similarity values 
for the unmatched elements (ue). Consider that the number of 
unmatched elements is denoted by t. The function is detailed as 
follows: 

simC(f1,f2) = w1*calcP(diff(f1,f2)) +  

w2* StrSim(ue1x,ue2x) + w3* R(uex) 

       (t)                (t) 

Let us consider that P, S and R have the same importance for 
similarity analysis in a specific application (i.e., w1=0.5, w2=0.5 

and w3=-0.5). Figure 6 shows the distribution for the function 
similarity values. The similarity function values are not uniformly 
distributed. To uniformly distribute the values, we sort and map the 
m similarity function results into n classes. The mapping, 
represented in a transformation table, categorizes m/n members in 
each class. Since we have 100 different similarity values, this 
transformation generates 0.01*m members in each class.  

 

 

 

 

 

 

 

 

Figure 6. Histogram for the original function 

Figure 7 shows the distribution of the mapped uniform 
transformation. We generated 1.000.000 values according to the 
original similarity function, using 0.5, 0.5 and -0.5 as the weight 
values, and grouped them into 100 classes. These classes were 
mapped to values ∈ [0,1], in order to uniformly distribute the 

function values. To ensure that the mapping is correct, we 
generated 100.000 more values and mapped them to this table. 

 

 

 

 

 

 

 

 

 

Figure 7. Histogram for the normalized function 

The next section discusses the similarity analysis for structure 
and content evolution.  

4.2 Structure and Content Evolution 
In addition to diff results and element change relevance 

discussed in the last section, there is another important feature that 
must be considered, as presented below. 

� Added and removed elements: using a diff algorithm, the 
differences between the files are detected. Analyzing the files and 
the diff results, we can observe the number of added elements and 
the number of removed elements between the first and the second 
file. Let added denote the new elements (for example, address) 
and let deleted denote the removed elements (for example, job). 
The concepts of added and removed are similar to the ideas 
presented in [31], which consider plus, minus and common 
elements for measuring similarity between a document and a 
DTD. As an example, consider two files, f3 and f4, shown in 
Figure 8. Analyzing the files and the diff results (the diff result is 
not presented here), we can see that f4 has added one element 
(address) and has removed two elements (job and hiringDt).  

 

 

 

Figure 8. XML files (f3 and f4) with element content and 

structure changes 

As XyDiff considers the move operation, the added concept 
refers only to new elements; movement actions are not identified as 
addition and deletion in our proposal.  

For content and structure evolution, we redefine the concept 
matched used in the last section. Here we will use the term matched 

to refer to an element that has the same structure and content in 
both files (for example, name and phone). The term unmatched will 
still be used for denoting changes in the element content (for 
example, salary), since changes on the structure are classified as 
removed and added elements. Thus, the function used to compute 
the similarity including structure evolution is as follows:  

simE(f3,f4) = simC(f3,f4) + w4*A + w5*D 

Where: simC is the content similarity value, A is the percentage 
of added elements and D is the percentage of deleted elements. The 

t 

x=1 

t 

x=1 

 

 

<employee> 
<name>Marcos</name> 
<salary>4500</salary> 
<address>7 St</address> 
<phone>65982541</phone> 

</employee> 

<employee> 
<name>Marcos</name> 
<hiringDt>10/10/03</hiringDt> 
<job>engineer</job> 
<salary>3700</salary> 
<phone>65982541</phone> 

</employee> 



weights for A and D (w4 and w5, respectively) are negative values 

(the smaller these values, the more similar the files).   

For these, variables range over the following interval: {A|A ∈ 

[0,1]}, {D|D ∈ [0,1]}. Analyzing the minimum and 
maximum values of simC, A, D, and the sum restrictions for 
positive and negative factors, we conclude that the similarity 
function produces a value simE that ∈[-3,2]. To calculate A, we 
use a function calcA that returns the percentage of added elements, 
based on the diff result. To calculate D, we use a function calcD 

that returns the percentage of removed elements, based on the diff 
result. Thus we obtain the similarity function is detailed as follows:  

simE(f3,f4) = simC(f3,f4) +  

w4*calcA(diff(f3,f4)) + w5*calcD(diff(f3,f4)) 

Similarly to the function for content evolution, the values of this 
function are also not uniformly distributed. The process detailed in 
the previous section is applied on the results to uniform these 
values. After measuring the similarity between files, the version 
detection task is performed. The version detection is done by the 
activity described in the next section.  

5. CLASSIFICATION 
The second task in the version detection mechanism is 

responsible for deciding if two files f1 and f2 are versions. A typical 
classification task receives as input a training set of tuples, each 
labeled with a class label. The output is a model (i.e., classifier) 
which assigns a class label to each tuple based on the other 
attributes. The model can be used to predict the class of new tuples, 
for which the class label is missing or unknown. The classification 
is defined as a supervised learning technique, since the mechanism 
uses training samples with known classes to classify new data. The 
tuples (i.e., samples) are partitioned in training set and test set.  

The classification is also performed in two steps: training and 
test phases. The training step is responsible for building the model 
from the training set; the test step is responsible for checking the 
accuracy of the model using the testing set. The accuracy of the 
generated model can be measured by matching the test samples 
against the class predicted by the model. The accuracy rate is given 
by the percentage of test set samples correctly classified by the 
model. 

In our proposal, the training set consists of a set of file pairs 
with feature values (i.e., P, S, R for content evolution or P, S, R, A, 

D for structure/content evolution), the similarity value and a class k 

(k | k ∈ {“version”, “no version”}). The testing set also consists of 
the same structure, but the value of k is unknown. Thus, the 
function c computes the class k for each pair. Let G = {(f1, f2), … , 

(fn, fm)} be a set of pair of files, where each pair is associated with 
a 6-tuple F={P, S, R, A, D, sim}. The classification value k for all 

pairs can be computed by∀ (fn, fm)∈G : c(fn, fm). 

In this work, we use Naïve Bayesian classification technique. A 
Naïve Bayesian classifier is a simple probabilistic classifier with 
strong independence assumptions [26]. This technique requires a 
small amount of training data to estimate the parameters (means and 
variances of the variables) necessary for classification. Because 
independent variables are assumed, only the variances of the 
variables for each class need to be determined. The Naïve Bayesian 

classifier assumes attribute independence (P(x1,…,xk|C) = 

P(x1|C)*…*P(xk|C)). If the i-th attribute is categorical, then P(xi|C) 
is estimated as the relative frequency of samples having value xi as 

i-th attribute in class C. If the i-th attribute is continuous, then 
P(xi|C) is estimated thru a Gaussian density function. In our 
approach, the attributes are categorical. The categories are defined 
in an interval, from 0 to 1. The i-th element is given by f(x) = i * 

0.01. Therefore, there are 100 different categories. Experimental 
results on the classification task are presented in Section 6.  

For measuring the quality of the Naïve Bayesian classifier, our 
approach calculates the accuracy rate by using recall and precision, 
metrics widely used in information retrieval [11]. The classical 
definition for recall is the proportion of relevant documents that are 
retrieved, out of all relevant documents available. Precision is 
defined as the proportion of retrieved and relevant documents to all 
the documents retrieved.  Thus, let A be the set of file pairs that are 
truly versions and B be the set of file pairs that were detected as 
versions by the classifier. Let “|” be the cardinality of a set  (i.e., the 
number of elements of the set). Then, the recall is defined as 

Recall: |A∩B|/|A|, and the precision is defined as Precision: 

|A∩B|/|B|. The |A∩B| expression is the number of versions that 
were correctly identified as versions by the classifier. In other 
words, the recall and precision are defined as:  

Recall: (no. of versions correctly detected)/(no. of existent versions) 

Precision: (no. of versions correctly detected)/(no. of detected versions) 

Using the proposed similarity functions and the version 
detection mechanism based on Naïve Bayesian classifiers, several 
experiments were carried out. The quality of the proposed detection 
version mechanism is quite high and it is going to be discussed in 
the next section.  

6. EXPERIMENTAL RESULTS 
This section presents the results of various experiments that 

show that our approach produces very good results, both in terms of 
recall and precision measures. In order to assess the accuracy of the 
similarity function and the version detection mechanism based on 
Naïve Bayesian classification, we divided the experiments into two 
groups. The first group considers only content evolution. The 
second group considers content and structure evolution, as 
presented in Section 4.  

For each type of evolution, the experiments were divided in four 
phases: data acquisition, data training, data testing, and result 
analysis. In the first phase, we acquire the data to be used as the 
training set. In the second phase, the classifier uses the acquired 
data and train on these data, in order to get a classification model. 
In the third phase, we apply a set of data to be tested by the 
classifier. Finally, the analysis phase measures the accuracy of the 
results, using recall and precision metrics.  

The first group of experiments was carried out for files with 
content evolution, as described in the next section. The experiments 
were conducted on synthetic data. 

6.1 Content Evolution 
For these experiments, we consider the similarity function 

presented in Section 4.1. The experiments presented in this paper 
were intentionally based on simulated values (i.e., synthetic data), 
in order to assess the classifier scalability while analyzing the 
quality of the results. The experiments were carried out as follows: 

� Data Acquisition: this phase is responsible for acquiring the 
necessary data set to be used as training data set for the classifier. 
Some activities were performed, as described.  



1. We randomly generated 9000 values for the attributes (features) 
considered in the similarity function: P, S and R, where P, S, R 

∈ [0,1]. For these experiments, we set the weights in 0.5, 0.5 e 
-0.5, respectively. 

2. We applied the similarity function simC in these values, 
obtaining similarity values for 9000 pairs of files. In other 
words, we calculated 9000 similarity values for a set of pair of 
files. These samples were generated equally distributed between 
versions and non-versions (around 50% each one). 

3. Finally, the similarity values were uniformly distributed, using 
the mapping uniform transformation described in Section 4.1.  

� Data Training: this phase is responsible for providing the 
acquired data to the classifier. The classifier uses this data set to 
generate a model that is later used in the test phase. Performing 
the activities 1, 2 and 3, above described, the training set is 
generated and used by the Naïve Bayesian classifier. The training 
set is stored in a database, following the structure: 

trainingTable (pairID, P, S, R,  simCNormalized, class) 

Where: pairID is the identifier of a pair of files; P, S and D are 
the features considered in the similarity function; simCNormalized 

is the similarity value after the mapping transformation; and class is 
the category of the each pair of files that was compared (e.g. 
version or non-version).  

From the training set, we generated the probability for each 
feature value for the expected classes. These probabilities are used 
by the classifier and they were stored using the structure:  

featureProbability (class, feature, value, probability) 

Where: class is the category (e.g. version or non-version), 
feature is one of the features considered in the similarity function 
(i.e., P, S or R), value is the possible value for a feature (from 0 to 
1, varying in 0.01 scale) and probability is the probability that a 
certain value appear in a feature for a specific class (e.g. 0.000648). 
The probability is defined as described in Section 5 and it is 
computed by SQL queries over the trainingTable relation.  

� Data Testing: this phase is responsible for testing several sets of 
data in the model generated by the classifier in the training phase. 
Some activities were carried out, as described. In order to 
evaluate the result quality in different sizes for the testing data 
sets, we have chosen a large, a medium and a smaller group: 3 
data sets with 1000 samples each, 3 data sets with 500 samples 
each and 3 data sets with 100 samples each. The generation of 
these data sets followed the same steps described in data 
acquisition phase. The testing set was stored in a database, 
according to the structure: 

testingTable (pairID, P, S, R, simCNormalized)  

For each pair of files (pairID), we compute the probability of 
the value xi appears in the i-th attribute (i.e., feature) in the class C 

(i.e., version and non-version). For example, let us consider the 
following tuple in testingTable relation: 

testingTable (1, 0.15, 0.13, 0.55, 0.07) 

The calculated probabilities are shown below:  

P(0.15,0.13,0.55|non-version) = 0.0000018102 

P(0.15,0.13,0.55|version) = 0.0000000709 

Since the first probability is larger than the second probability, 
the pair of files is classified as non-version. We apply the classifier 
for each set. The classifier returns the category for each pair of files 
(i.e., version or non-version). 

� Data Analysis: this phase is responsible for measuring the 
accuracy of the results in terms of recall and precision. Several 
experiments were performed using the proposed similarity 
function and the classifier. The experiments are as follows: e1, e2, 
e3: 1000 pairs of files; e4, e5, e6: 100 pairs of files; e7, e8, e9: 
500 pairs of files. The results are presented in Figure 9. As Figure 
9 shows, the mean recall and precision rates were, respectively, 
92.13% and 92.49%. Even the worst cases for recall (88.89% in 
experiment 4) and precision (87.27% in experiment 4) were still 
good. In other words, the classifier correctly detected over 92% of 
the existent versions and over 92% of the detected versions were 
correctly classified.  

 

Figure 9. Recall and precision results for group 1 

For the results presented in Figure 9, we considered the same 
proportion (around 50%) of versions and non-versions for the 
training and testing sets. In order to evaluate how the classifier 
behaves with different proportions of versions and non-versions in 
the training and testing sets, we made other experiments. We used 
the same data configuration described above. However, in these 
experiments, we considered that 80% of the training and testing sets 
were represented by versions. The results of these experiments are 
shown in Figure 10.  

 

Figure 10. Recall and precision results for group 2 

As Figure 10 shows, the recall rates were better in this case. The 
mean recall and precision rates were, respectively, 99.83% and 
91.35%. Even the worst cases for recall (99.28% in experiment 7) 



and precision (89.13% in experiment 5) were still very good. In 
other words, the classifier correctly detected over 99% of the 
existent versions and over 91% of the detected versions were 
correctly classified. 

6.2 Structure and Content Evolution 
For these experiments, we consider the similarity function 

presented in Section 4.2. Similar to the previous section, the 
experiments were carried out as follows: 

� Data Acquisition: similar to the activity presented in Section 7.1, 
some activities were executed, as described.  

1. We randomly generated 9000 values for the attributes (features) 
considered in the similarity function: P, S, R, A and D, where P, 

S, R, D and A ∈ [0,1]. For these experiments, we set the 
weights in 0.5, 0.5, -0.33, -0.33 and -0.33, respectively.  

2. We applied the similarity function simE in these values, 
obtaining similarity values for 9000 pairs of files. These 
samples were also generated equally distributed between 
versions and non-versions (around 50% each one). 

3. Finally, the similarity values were uniformly distributed, using 
the mapping uniform transformation described in Section 4.1.  

� Data Training: this activity is similar to the data training 

activity presented in Section 7.1. The training set is stored in a 
database, following the structure: 

trainingTable (pairID, P, S, R, A, D,  simENormalized,  class)  

Also, the table for the feature probabilities was generated.  

� Data Testing: similarly to the data testing activity presented in 
Section 7.1, some activities were performed, as described. Again, 
in order to evaluate the result quality in different sizes for the 
testing data sets, we have chosen a large, a medium and a smaller 
group: 3 data sets with 1000 samples each, 3 data sets with 500 
samples each and 3 data sets with 100 samples each. The 
generation of these data sets followed the same steps described in 
data acquisition phase. The test set was stored in a database, 
following the structure: 

testingTable (pairID, P, S, R, A, D,  simENormalized)  

We apply the classifier for each set. The classifier returns the 
category for each pair of files (i.e., version or no version). 

� Data Analysis: similarly to the data analysis activity presented in 
Section 7.1, several experiments were performed using the 
proposed similarity function and the classifier. The experiments 
are as follows: e1, e2, e3: 1000 pairs of files; e4, e5, e6: 100 pairs 
of files; e7, e8, e9: 500 pairs of files. The results are presented in 
Figure 11. As Figure 11 shows, the mean recall and precision 
rates were, respectively, 91.11% and 91.05%. Even the worst 
cases for recall (87.23% in experiment 5) and precision (90.04% 
in experiments 1 and 7) were still good. In other words, the 
classifier correctly detected over 91% of the existent versions and 
over 91% of the detected versions were correctly classified. 

All the presented results (groups 1 to 3) were executed over a 
training set with 9000 samples. We also would like to evaluate how 
the recall and precision values behave using a different size for the 
training set. So, we ran again the experiments above (e1 to e9) 
using  a  training  set  with  only  3000 samples (group 4). The same  

 

Figure 11. Recall and precision results for group 3 

configuration was used, i.e., equal distribution between versions 
and non-versions. Figure 12 shows that the results are not as good 
as previous results, but still good. 

 

Figure 12. Recall and precision results for group 4 

The mean recall and precision rates were, respectively, 84.66% 
and 85.87%. Even the worst cases for recall (79.66% in experiment 
8) and precision (79.63% in experiment 6) were reasonably good. 
In other words, the classifier correctly detected over 84% of the 
existent versions and over 85% of the detected versions were 
correctly classified. The results in recall and precision rates (lower 
than in previous experiments) lead us to conclude that the classifier 
produces better results if the training set has more samples. 
Considering the results presented in Figure 11 and Figure 12, the 
recall and precision rates were, respectively, 7.07% and 5.68% 
higher with a larger training set.  

Finally, all the experiments (considering groups 1 to 4) have 
shown the accuracy of the proposed mechanism. We used 2 
different training sets with some configuration changes (e.g. the 
proportion of versions and non-versions, and size), resulting in 4 
training sets. Also the testing sets were diverse: 27 different testing 
sets, whose sizes varied from 100 to 1000 samples. The average 
recall rate considering the first 3 groups of experiments (groups 1 to 
3) was 94.35% and the average precision rate was 91.63%. 
Including the forth group in this analysis (with worse rates because 
of the smaller size of the training set), the average rates were still 
good: 91.93% for recall and 90.19% for precision rates.  

As presented in Section 6, the experiments were executed on 
synthetic data, where we have randomly simulated float values for 
the similarity function features (e.g., P, S, and R). We are currently 
implementing the similarity functions in order to run those 



experiments on the features acquired from XML documents 
crawled on the Web. The good results for evaluating recall and 
precision obtained in this paper are expected to be maintained in 
real scenarios. The new results are going to be presented in the 
conference. 

The next section shows how the version detection allows 
performing very interesting metadata management. 

7. METADATA MANAGEMENT 
Finally, the last activity performed by the version detection 

mechanism is the metadata management. This metadata aims to 
describe information related to the detected versions. However, the 
metadata model also supports the representation of non-versioned 
files (i.e., files that do not match as version of existent files. Non-
versioned files can be represented in the metadata model as roots 
for future lineages. The metadata information is structured as shown 
in Figure 13.  

<!ELEMENT metadata (node*)> 
<!ELEMENT node (features*, node*)> 
<!ATTLIST node file CDATA #REQUIRED> 
<!ELEMENT features EMPTY> 
<!ATTLIST features  P CDATA #REQUIRED    S CDATA #REQUIRED 

        R CDATA #REQUIRED    sim CDATA #REQUIRED  
       D CDATA #IMPLIED     A CDATA #IMPLIED> 

Figure 13. Metadata structure 

By using the metadata model, the logical structure of linear and 
branched versions can be represented. Figure 14 describes the 
metadata XML representation for Figure 1.  

<metadata> 
<node file="f1"> 

<node file="f2"> 
<features P="0.7" S="0.9" R="0.1" sim="0.86"/> 
<node file="f3"> 

<features P="0.8" S="0.9" R="0.1" sim="0.97"/> 
</node> 

 </node> 
</node> 
<node file="f4"> 

<node file="f5"> 
<features P="0.6" S="0.7" R="0.1" sim="0.79"/> 
<node file="fx"> 

<features P="0.7" S="0.8" R="0.1" sim="0.89"/> 
</node> 

</node> 
</node> 

</metadata> 

Figure 14. Metadata example for linear versioning 

The lineage of versions is represented as a parent-children 
relationship. By traversing the tree following the relationships, the 
entire lineage of a specific version can be retrieved. For example, 
there are two groups of linear versions in Figure 1. The first group 
is formed by the files f1, f2 and f3. In Figure 14, this group is 
represented by following the parent-children relationship:    

/metadata/node[@file="f1"]/node[@file="f2"]/node 

Another example is depicted in Figure 2, which contains three 
branches of versions. The third branch is formed by the files f1, f4 

and fx. In Figure 15, this branch is represented by the following 
parent-children relationship:   

/metadata/node[@file="f1"]/node[@file="f4"]/node 

<metadata> 
<node file="f1"> 

<node file="f2"> 

<features P="0.7" S="0.9" R="0.1" sim="0.9"/> 
<node file="f5"> 

<features P="0.8" S="0.9" R="0.1" sim="0.94"/> 
</node>         

</node> 
<node file="f3"> 

<features P="0.6" S="0.7" R="0.1" sim="0.7"/> 
</node> 
<node file="f4"> 

<features P="0.7" S="0.8" R="0.1" sim="0.81"/> 
<node file="fx"> 

<features P="0.7" S="0.8" R="0.2" sim="0.8"/> 
</node> 

</node> 
</node> 

</metadata> 

Figure 15. Metadata example for branched versioning 

The file identifiers (denoted by the attribute file in the metadata 
representation) are generated by using hash functions, a frequently 
used approach for file identification. We are currently using MD5 
(Message-Digest Algorithm 5), a cryptographic hash function with 
a 128-bit hash value. For simplicity, the hash-based identifiers are 
not presented in the examples above. The hash function result is 
substituted by a simpler notation (e.g., the hash result 
ece50ed4d6d48dac839bfe8fa719fcff is denoted by f5).  

8. CONCLUDING REMARKS 
This paper focused on version detection of XML documents. 

The significance of such problem is quite evident in many 
scenarios, such as plagiarism detection, Web page ranking, software 
clone identification, assuring link permanence in Web documents, 
and enhancing search in peer-to-peer systems. In this paper, we 
defined a similarity function that considers several characteristics 
that must be taken into account when considering a version. The 
function is not restricted to a specific application and it can be 
adapted to consider other relevant similarity features for specific 
scenarios. Moreover, each feature can be differently weighted, 
which turns our proposal into a more flexible approach. 

A detection mechanism based on classification techniques is 
also presented. By using a classifier, the hard task of defining the 
threshold value is eliminated. In our proposal, we used the Naïve 

Bayesian classification technique, a simple probabilistic classifier. 
An advantage of this classification technique is the assumption of 
independent variables; thus, only the variances of the variables for 
each class need to be determined.  

The version detection problem is not a new issue. Neither is the 
use of Naïve Bayesian classifiers to categorize documents. 
However, the use of this technique for solving the mentioned 
problem requires the definition of variables (i.e., attributes or 
features) that describe each category, which usually is a hard 
domain-dependent task for version detection. In the response of 
these requirements, in this paper we proposed a similarity function 
and used a classification technique, which provides a very accurate 
solution for an aged problem. The experiments produced very good 
results, over than 90% for recall and precision rates (even 
considering smaller training sets). In the absence of other similar 
approaches for version detection, the values of precision and recall 
cannot be compared. However, over than 90% rate alone is a good 
indicative of precision and recall. 

As future work, we are going to apply the mining method to 
classify the documents using testing sets derived from a particular 
application domain. Therefore, we will also optimize the similarity 



function, the coefficients used (i.e., weights) and the mining 
method. The good results for evaluating recall and precision 
obtained so far are expected to be maintained in different scenarios. 
Further enhancement of metadata management is also planned. 
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