
XML Version Detection

ABSTRACT

The problem of version detection is critical in many important
application scenarios, including software clone identification, Web
page ranking, plagiarism detection, and peer-to-peer searching. A
natural and commonly used approach to version detection relies on
analyzing the similarity between files. Most of the techniques
proposed so far rely on the use of hard thresholds for similarity
measures. However, defining a threshold value is problematic for
several reasons: in particular (i) the threshold value is not the same
when considering different similarity functions, and (ii) it is not
semantically meaningful for the user. To overcome this problem,
our work proposes a version detection mechanism for XML
documents based on Naïve Bayesian classifiers. Thus, our approach
turns the detection problem into a classification problem. In this
paper, we present the results of various experiments on synthetic
data that show that our approach produces very good results, both
in terms of recall and precision measures.

Categories and Subject Descriptors

I.7.1 [Document and Text Processing]: Document and Text
Editing – version control, document management.

General Terms

Management, Measurement, Experimentation

Keywords

XML, versioning, similarity functions, classification

1. INTRODUCTION
Version is the description of an object in a period of time or

under a certain point of view, whose recording is important for the
considered application. The applications of the version concept are
many and diverse. Previous works focused on version management
and querying rather than version detection [1][2][3][4]. However,
the version detection problem is critical for many applications, such
as plagiarism detection, Web page ranking, software clone
identification, and peer-to-peer searching. For plagiarism detection,
comparing file checksums is enough for detecting exact replicas,
but totally useless for detecting partial copies [5][6]. However, such
plagiarism can be detected by considering partial copies as
versions. Likewise, the Web page ranking process will greatly
benefit from such detection mechanism by ranking highly new
versions of existent top-ranked pages [7]. The software clone
problem often arises during the development of systems with
negative impact on their maintenance [8]. By considering such
clones as versions, this problem is managed and reduced. Finally,
traditional peer-to-peer systems that are not aware of the existence
of resource versions often face increasing complexity at the logical
level and inefficiency at the physical level. These drawbacks can be
reduced by using an automatic version detection mechanism.

This paper focuses on version detection of XML documents. By
version we denote different but very similar representations of the
same real-world object. Similarity can be measured by several
metrics, such as content, structure or related subject. Considering
this assumption, the general idea is that two files with high
similarity are considered versions of the same document1. However,
the version detection problem poses two important issues: the first
is how to measure similarity between files and the second is how to
define the minimum degree of similarity required for a file to be
considered a version of another. To solve the first problem, several
similarity functions are available for atomic values (e.g. string,

1 The term file refers to a physical representation; document refers to the

representation of an object in the real world. In other words, one
document can be stored as many files.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng’07, August 28–31, 2007, Winnipeg, Manitoba, Canada.
Copyright 2007 ACM 978-1-59593-776-6/07/0008...$5.00.

fx Nina Edelweiss
Universidade Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500
Porto Alegre, RS, Brazil

55 51 33166808

nina@inf.ufrgs.br

Carlo Zaniolo

University of California
405 Hilgard Avenue

Los Angeles, CA, United States
1 310 8258137

zaniolo@cs.ucla.edu

Deise de Brum Saccol
Universidade Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500
Porto Alegre, RS, Brazil

55 51 37376345

deise@inf.ufrgs.br

Renata de Matos Galante

Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves, 9500

Porto Alegre, RS, Brazil
55 51 33 08 77 46

galante@inf.ufrgs.br

integer) [9][10] and complex values (e.g. collections, tuples)
[11][12][13]. Similarity functions for atomic values are domain-
dependent, while similarity functions for complex values are
usually based on the structure of the object [14]. However, finding
similarity functions for XML documents that are effective for
version detection represents an open research issue. The similarity
function for version detection must consider the content and
structure similarity, and also other features that match the
requirements for each specific application. Based on the typical
behavior of the document evolution in specific applications, some
features can be more relevant for detecting versions.

The use of similarity functions in version detection poses a
second challenge: this is the problem of determining the threshold
value that should be used [15]. This difficulty occurs because the
distribution of the score values generated by distinct similarity
functions may be completely different  it may even vary when the
same similarity function is applied to different data sets [16].
Moreover, the threshold definition is usually a task performed by
the user, and it tends to be an error-prone activity. The user has to
try several different values to get a satisfactory result. If the
threshold value is too high, the number of false negatives can be
high. On the other hand, if the threshold value is too low, the
number of false positives will be high.

To overcome these two problems, our work proposes a new
version detection mechanism for XML documents. The mechanism

is part of DetVX, an environment for Detection, management and

querying of replicas and Versions of XML documents in a peer-to-
peer context [17]. The main contributions of this paper are:

� The definition of a similarity function for XML files used as the
basis for detecting versions: the function is not restricted to a
specific application and it can be adapted to consider other
relevant similarity features for specific scenarios.

� The definition of a version detection mechanism based on
classification techniques: the detection mechanism relies on the
use of Naïve Bayesian classifiers, which eliminates the previously
discussed disadvantages of using thresholds.

The paper is organized as follows. Section 2 presents some
related works. In Section 3 we present the main guidelines for the
version detection mechanism. The similarity function is discussed
in Section 4. Section 5 details the detection mechanism based on
Naïve Bayesian classifiers. Experimental results are shown in
Section 6. Metadata management is described in Section 7. Finally,
concluding remarks are discussed in Section 8.

2. RELATED WORK
The version detection mechanism proposed in this paper relies

on the use of a similarity function. A similarity function f(f1,f2)→

sim generates a score sim to a pair of files f1 and f2, where
0<=sim<=1. The higher the sim value, the more similar are the
files. Based on the similarity values, versions can be detected by
using a threshold: files whose sim is greater than a given threshold
are considered versions; files whose sim is lower than the threshold
are considered different documents. Some existent works address
the similarity functions, while others address the threshold
definition, as discussed below.

Existent researches on change detection can be used as a basis
for measuring similarity. Some approaches use diff algorithms to
detect differences between files [18][19]. However, diff results are a

delta script with no semantic information regarding the similarity
between files. Another possibility is to analyze their ordered tree
representations by calculating the edit distance, i.e., the minimum
cost to transform one tree into another using basic operations
[20][21]. Also, tree edit distance results do not contain meaningful
information related to the similarity level that could be used to
detect resource versions. Moreover, some approaches for similarity
assessment consider only the textual content of documents [11],
while others consider the structure [12][13].

Besides choosing a proper similarity function, it is also
fundamental to understand its behavior to select the best threshold.
As identified by the experiments in [16] and also in [22][23], some
similarity functions are more adequate than others in that the values
of recall and precision tend to be higher and less dependent from
the threshold values. But the threshold definition also depends on
the data set and the quality of results expected by the user. A high
threshold value will consider as versions only files that present high
similarity (almost replicas). On the other hand, a low threshold
value can consider as version a large number of files that present
low similarity (i.e., different documents).

The discussed works lead us to two conclusions. The first
conclusion is that there are a variety of similarity functions, either
for atomic values (e.g. Levenshtein or Edit Distance (Edit) [9],
Guth [10] and N-grams [9]) or for documents [11][12][13].
However, these functions are often suitable for some specific
requirements or interests. For example, some XML similarity
functions focus more on structure rather than content; others focus
more on content than structure. However, for the version detection
problem many different features must be considered together. In
this paper, we define a similarity function that considers several
characteristics with different weights to achieve a more flexible
approach.

The second conclusion is that the threshold definition is not a
trivial task, even if it is automatically defined or manually chosen
by a user. Some works address threshold definition [24][25], but
there is not a widely accepted approach. Usually the similarity
value is semantically poor. Different functions produce different
distributions, which results in different interpretations for the
similarity values [14]. In other words, the result quality (measured
by recall and precision) can vary among functions when a specific
threshold is chosen. This means that a threshold chosen for one set
of files may not be adequate for another set of files. In order to
obtain more robust methods we need to eliminate the dependence of
threshold. Thus, we turn the version detection mechanism into a
classification problem, for which no threshold definition is
necessary. This is done by using Naïve Bayesian classification
technique, a simple probabilistic classifier with strong
independence assumptions [26].

There are some works on document classification based on
Naïve Bayesian classification [27][28]. In these works, the goal is
to assign a single electronic document to the category that is most
relevant. In our proposal, the goal is to categorize pairs of
documents in two classes (i.e., versions and non-versions). There
are a set of features that must be taken into account when defining
the necessary requirements for versions. This paper defines these
requirements in a similarity function and applies the classification
technique for version detection.

3. VERSION DETECTION
The version detection mechanism seeks to verify if two files are

versions of the same document. In this proposal, version detection
is based on file similarity. The general idea is that two files with
high similarity are considered versions of the same document. For
measuring similarity, we define a set of attributes (i.e., features) that
must be assessed to be considered a version.

Our proposed procedure for version detection performs three
activities. The first activity is named similarity analysis and it is
responsible for applying a similarity function to each pair of files.
The second activity is the classification, which is responsible for
detecting the versions, based on data generated in the previous task
using Naïve Bayesian classifiers. Finally, some metadata collected
during the version detection process are maintained by the activity
named metadata management.

In this work, versions are managed as separate files. The same
detection mechanism can be used for both linear and branched
versioning. The behavior of the mechanism is the same for both
versioning types. It only differs in the structure of the tree that is
traversed during the similarity analysis phase. Let us assume that

the similarity function f(f1,f2) → sim generates a score sim to a pair
of files f1 and f2. The sim values are based on discrete mathematics
(varying in 0.01 scale). Thus, there are hundred different possible
values for the similarity function result.

The structure of the traversed tree depends on the type of
versioning used, as discussed below.

3.1 Linear Versioning
In this type of versioning, the document’s evolution creates a

linear sequence of versions: V1, V2, . . ., Vj, where Vj is the current
version. A new version (Vj+1) is established by applying a number
of changes (insertions, deletions or updates) to the current version
(Vj) [29]. This leads to a single sequence of consecutive versions.

In linear versioning, the detection mechanism compares pairs of
files (e.g. f1 and f2), where f1 is the version candidate and f2 is the
current version of an existent document. The current version can be
either specified by the user or assumed by default. By default, we
consider the modification date of the file versions; the file that was
last modified is considered the current version. Consider that we
have two sets of version sequences, as depicted in Figure 1: the first
sequence (i.e., f1, f2 and f3) corresponds to three versions of a
document D1; the second sequence (i.e., f4 and f5) corresponds to
two versions of a document D2. Consider that the current versions
of these sets are, respectively, f3 and f5 (assumed by default or
informed by the user). The similarity value between files is
represented over the arrows.

Figure 1. Linear versioning sequences

We compare the candidate file fx with f3 and f5, producing the
similarity values, such as sim (fx, f3) = 0.45 and sim (fx, f5) = 0.89.
The pair of files with higher similarity (i.e., fx and f5) is considered
to be linear versions.

3.2 Branched Versioning
In this type of versioning, a new version can be derived from

any previous one, creating a tree of versions [30]. When branched
versioning is used, the detection mechanism compares pairs of files
(e.g. f1 and f2), where f1 is the version candidate and f2 is any
existent version belonging to the tree. Consider the tree of versions
shown in Figure 2. Let us assume that this tree corresponds to five
versions of a document D1.

Figure 2. Branched versioning tree

Similar to the previous example, the candidate file fx is
compared to some existent versions. However, according to the
branched versioning definition, the candidate file fx can be derived
from any previous version fy (i.e., f1, f2, f3, f4, or f5). Thus, in an
optimal solution, fx must be compared with all the tree nodes. The
pair of files with higher similarity is considered to be versions.
However, there are different approaches for traversing the tree and
choosing the order to compare the files, as follows:

1. Compare fx with all the files following a random order, using
depth-first or breadth-first search order. This approach is simple
and optimal, since fx is compared with all the previous versions.
However, it can have a high cost depending on the number of the
nodes the tree presents;

2. Compare fx with all the files that are leaf nodes in the tree. This
approach is not optimal, since we do not compare the candidate
file with intermediary nodes. However, it has a lower cost, since
only a subset of the tree is compared with fx;

3. Compare fx with all the files following a depth-first or breadth-
first search in a reverse order (i.e., starting by a leaf node) and
stop traversing when the comparison achieves a stop-condition. A
stop-condition can be: time of processing, minimum level of
similarity expected by the user, number of visited nodes, or
number of K-visited nodes (where K is the number of files that
were last modified). This approach is not optimal, but it also
produces a lower cost.

One of these three approaches must be chosen on the basis of
the behavior of the document evolution for a specific application.
For example: if the versions tend to evolve from one of the last
versions that were generated, the second approach could be chosen,
since the leaf nodes represent the last versions created from a
specific branch. If the versions tend to evolve from the last
modified version, then the third approach could be chosen (for
K=1). However, if the document does not follow a typical evolving
behavior and the user seeks an optimal solution, then the first
approach shall be chosen. Moreover, a combination of approaches
could be used for specific applications.

For instance, consider the example in Figure 2, and let us
assume that the second approach is chosen. Thus, fx is compared to
all the leaf nodes (i.e., f3, f4, and f5). Suppose that the similarity
function produces the following values: sim (fx, f3) = 0.41, sim (fx,

f4) = 0.8 and sim (fx, f5) = 0.07, then the two files with higher
similarity (i.e., fx and f4) are considered to be versions.

Similarity analysis between files is described in the next section.

0.86 0.97

0.79

f1 f2 f3

f4 f5

sim (fx, f3) = 0.45

sim (fx, f5) = 0.89

0.86 0.97

0.79

f1 f2 f3

f4 f5

? fx

0.89

fx

? fx

0.9

f1

f2

f3

f4

f5

0.7

0.81

0.94
0.9

f1

f2

f3

f4

f5

0.7

0.81

0.94

fx
0.8

4. SIMILARITY ANALYSIS
The similarity analysis task is responsible for generating a

similarity value sim for each pair of files. Consider a set Rs = {x ∈

R: x >= 0 ∧ x <=1} as the set of all real values in R in the interval

[0,1]. The similarity function s receives a set of pair of files P and

generates a similarity value in the Rs interval: s: P → Rs. Let G =

{(f1, f2), … , (fn, fm)} be a set of pair of files, the similarity value

for all pairs can be computed by ∀(fn, fm)∈G : s(fn,fm). The basic
types of evolution that are considered for similarity analysis are:

1. Content evolution: in this type of evolution, the element content
changes between versions, but the element structure keeps the
same. The example in Figure 3 shows that the element x changes
its content from version (a) to version (b). In terms of
implementation, we consider that the element x is updated.

2. Structure evolution: in this type of evolution, the element
structure changes between versions, but the element content
keeps the same. The example in Figure 3 shows that the element x

changes its structure from version (a) to version (c). In terms of
implementation, we consider that the element x is removed and
the elements y and z are added.

3. Structure and content evolution: in this type of evolution, both
element content and structure changes between versions. The
example in Figure 3 shows that the element x changes its structure
and content from version (a) to version (d). In terms of
implementation, we consider that the element x is removed and
the elements y and z are added.

Figure 3. Different representations in XML document versions

In the proposed mechanism, structure evolution and structure

and content evolution are grouped together. Let us first discuss the
content evolution in the next section.

4.1 Content Evolution
In order to evaluate the content similarity between files with

content evolution, the following features are observed:

� Diff results: to assess the content similarity level between two
files, we first consider the use of a diff algorithm. The diff

algorithm outputs the differences between two files f1 and f2 in a
delta representation, as a set of basic edit operations. By using a
diff algorithm, differences between the files are detected.
Analyzing the input files and the delta representation, we can
determine the percentage of elements that have not changed in f2.

Suppose the files f1 and f2 shown in Figure 4. Since only the
content has changed in these files, the number of elements keeps
the same. Figure 4 shows that each file has 6 elements (i.e., the root
element employee has 6 direct and indirect descendants).

Figure 4. XML files (f1 and f2) with element content changes

As Figure 5 shows, the content of the elements salary and job

do not match in the second file. In other words, 67% of the original
elements kept unchanged in the second file. The assumption is that
the bigger percentage of unchanged elements, the larger chance the
files are versions of the same document.

<delta> <Deleted update="yes" pos="0:0:3:0">3700</Deleted>
 <Deleted update="yes" pos="0:0:2:0">engineer</Deleted>
 <Inserted update="yes" pos="0:0:2:0">manager</Inserted>
 <Inserted update="yes" pos="0:0:3:0">4900</Inserted> </delta>

Figure 5. Diff result for XML files (f1 and f2)

We are currently using the XyDiff algorithm [18], but the
architecture allows changing to other diff implementations. XyDiff
is very efficient in terms of speed and memory space; also, it
considers, besides insertions, deletions and updates, a move
operation on subtrees that is essential in the context of XML.
According to [18], the complexity is no more than the expected
O(n*log(n)) time. Regarding the algorithm quality, the computed
changes are very close in size to the synthetic (perfect) changes.

� Matched and unmatched elements: the previous feature
analyses the percentage of elements that are the same between
files. On the other hand, another interesting feature is to look at
the elements that could have changed completely between files or
just some of its characters could have changed. In other words,
we analyze the differences and similarities between elements that
have changed. The more similar the respective unmatched
elements, the larger is the chance that the files are versions of the
same document.

In this paper, we consider the term matched to refer to an
element that has the identical content in both files (for example,
name); unmatched, otherwise (for example, salary). Let us take a
look at the unmatched elements salary and job. Using a
(combination of) string similarity function(s), we calculate a value
that demonstrates how similar the unmatched elements are. Our
goal is not to describe string similarity functions and quality results.
An extensive analysis of similarity functions and threshold
definition can be found in [15].

� Element change relevance: Another important feature to be
considered for similarity analysis is the relevance of individual
changes. Some domain concepts can change more frequently than
others. Let us suppose that we have an address element. Two
different addresses can easily refer to the same person; however,
two different birthdates suggest that we are analyzing two
different objects in the real world. In other words, the change
relevance is differently weighted for different concepts. In our
approach we use different weights, such as high (1), medium (0.5)
and low (0). The average of weighted relevances is used to
calculate file similarity. The smaller change relevance they
present, the larger chance the files are versions of the same
document.

Based on the diff results, matched and unmatched elements, and
element change relevances, the content similarity function simC

between two files f1 and f2 is defined as:

simC(f1,f2) = (w1*F1 + w2*F2 + w3*F3 + ... + wn*Fn)

Where wn is a factor that weights the importance of a specific

feature Fn. A factor may be positive or negative (if it influences the
similarity growth or reduction, respectively). Considering wx,

wx+1,…wy as positive factors and wz, wz+1,…wq as negative
factors, we assume that wx + wx+1 +...+wy = 1 and -1<=wz +
wz+1 +...+ wq <= 0.

(a)
<root>
 <x>A St, 7</x>
</root>

(b)
<root>
 <x>B St, 8</x>
</root>

(c)
<root>
 <y>A St</y>
 <z>7</z>
</root>

(d)
<root>
 <y>B St</y>
 <z>8</z>
</root>

<employee> <employee>
<name>Marcos</name> <name>Marcos</name>
<hiringDt>10/10/03</hiringDt <hiringDt>10/10/03</hiringDt>
<job>engineer</job> <job>manager</job>
<salary>3700</salary> <salary>4900</salary>
<address>7 St</address> <address>7 St</address>
<phone>65982541</phone> <phone>65982541</phone>

</employee> </employee>

In our approach, three features are combined to produce the
following content evolution similarity function:

simC(f1,f2) = w1*P + w2*S + w3*R

Where: P is the percentage of matched elements, S is the mean
similarity of the unmatched elements and R is the average of
domain relevances of the unmatched elements. P and S factors (w1
and w2, respectively) are positive values (the greater these values,
the more similar the files) and R factor (w3) is a negative value (the
smaller this value, the less relevance the change and the more
similar the files). The factors (w1, w2,..., wn) must be defined
based on the importance of the three features in specific
applications/domains and recall/precision measures.

The intervals of the defined variables are defined as: {P|P ∈

[0,1]}, {S|S ∈ [0,1]}, {R|R ∈ [0,1]. Analyzing the
minimum and maximum values of P, S and R, and the sum
restrictions for positive and negative factors, we conclude that the
similarity function produces a value simC that ranges from -1 to 1,
i.e., {simC|simC ∈[-1,1]}.

To calculate P, we use a function calcP that returns the
percentage of matched elements based on the diff result. S is
calculated by using a (combination of) string similarity function(s)
(StrSim()) and it is defined as the average of the similarity values
for the unmatched elements (ue). Consider that the number of
unmatched elements is denoted by t. The function is detailed as
follows:

simC(f1,f2) = w1*calcP(diff(f1,f2)) +

w2* StrSim(ue1x,ue2x) + w3* R(uex)

 (t) (t)

Let us consider that P, S and R have the same importance for
similarity analysis in a specific application (i.e., w1=0.5, w2=0.5

and w3=-0.5). Figure 6 shows the distribution for the function
similarity values. The similarity function values are not uniformly
distributed. To uniformly distribute the values, we sort and map the
m similarity function results into n classes. The mapping,
represented in a transformation table, categorizes m/n members in
each class. Since we have 100 different similarity values, this
transformation generates 0.01*m members in each class.

Figure 6. Histogram for the original function

Figure 7 shows the distribution of the mapped uniform
transformation. We generated 1.000.000 values according to the
original similarity function, using 0.5, 0.5 and -0.5 as the weight
values, and grouped them into 100 classes. These classes were
mapped to values ∈ [0,1], in order to uniformly distribute the

function values. To ensure that the mapping is correct, we
generated 100.000 more values and mapped them to this table.

Figure 7. Histogram for the normalized function

The next section discusses the similarity analysis for structure
and content evolution.

4.2 Structure and Content Evolution
In addition to diff results and element change relevance

discussed in the last section, there is another important feature that
must be considered, as presented below.

� Added and removed elements: using a diff algorithm, the
differences between the files are detected. Analyzing the files and
the diff results, we can observe the number of added elements and
the number of removed elements between the first and the second
file. Let added denote the new elements (for example, address)
and let deleted denote the removed elements (for example, job).
The concepts of added and removed are similar to the ideas
presented in [31], which consider plus, minus and common
elements for measuring similarity between a document and a
DTD. As an example, consider two files, f3 and f4, shown in
Figure 8. Analyzing the files and the diff results (the diff result is
not presented here), we can see that f4 has added one element
(address) and has removed two elements (job and hiringDt).

Figure 8. XML files (f3 and f4) with element content and

structure changes

As XyDiff considers the move operation, the added concept
refers only to new elements; movement actions are not identified as
addition and deletion in our proposal.

For content and structure evolution, we redefine the concept
matched used in the last section. Here we will use the term matched

to refer to an element that has the same structure and content in
both files (for example, name and phone). The term unmatched will
still be used for denoting changes in the element content (for
example, salary), since changes on the structure are classified as
removed and added elements. Thus, the function used to compute
the similarity including structure evolution is as follows:

simE(f3,f4) = simC(f3,f4) + w4*A + w5*D

Where: simC is the content similarity value, A is the percentage
of added elements and D is the percentage of deleted elements. The

t

x=1

t

x=1

<employee>
<name>Marcos</name>
<salary>4500</salary>
<address>7 St</address>
<phone>65982541</phone>

</employee>

<employee>
<name>Marcos</name>
<hiringDt>10/10/03</hiringDt>
<job>engineer</job>
<salary>3700</salary>
<phone>65982541</phone>

</employee>

weights for A and D (w4 and w5, respectively) are negative values

(the smaller these values, the more similar the files).

For these, variables range over the following interval: {A|A ∈

[0,1]}, {D|D ∈ [0,1]}. Analyzing the minimum and
maximum values of simC, A, D, and the sum restrictions for
positive and negative factors, we conclude that the similarity
function produces a value simE that ∈[-3,2]. To calculate A, we
use a function calcA that returns the percentage of added elements,
based on the diff result. To calculate D, we use a function calcD

that returns the percentage of removed elements, based on the diff
result. Thus we obtain the similarity function is detailed as follows:

simE(f3,f4) = simC(f3,f4) +

w4*calcA(diff(f3,f4)) + w5*calcD(diff(f3,f4))

Similarly to the function for content evolution, the values of this
function are also not uniformly distributed. The process detailed in
the previous section is applied on the results to uniform these
values. After measuring the similarity between files, the version
detection task is performed. The version detection is done by the
activity described in the next section.

5. CLASSIFICATION
The second task in the version detection mechanism is

responsible for deciding if two files f1 and f2 are versions. A typical
classification task receives as input a training set of tuples, each
labeled with a class label. The output is a model (i.e., classifier)
which assigns a class label to each tuple based on the other
attributes. The model can be used to predict the class of new tuples,
for which the class label is missing or unknown. The classification
is defined as a supervised learning technique, since the mechanism
uses training samples with known classes to classify new data. The
tuples (i.e., samples) are partitioned in training set and test set.

The classification is also performed in two steps: training and
test phases. The training step is responsible for building the model
from the training set; the test step is responsible for checking the
accuracy of the model using the testing set. The accuracy of the
generated model can be measured by matching the test samples
against the class predicted by the model. The accuracy rate is given
by the percentage of test set samples correctly classified by the
model.

In our proposal, the training set consists of a set of file pairs
with feature values (i.e., P, S, R for content evolution or P, S, R, A,

D for structure/content evolution), the similarity value and a class k

(k | k ∈ {“version”, “no version”}). The testing set also consists of
the same structure, but the value of k is unknown. Thus, the
function c computes the class k for each pair. Let G = {(f1, f2), … ,

(fn, fm)} be a set of pair of files, where each pair is associated with
a 6-tuple F={P, S, R, A, D, sim}. The classification value k for all

pairs can be computed by∀ (fn, fm)∈G : c(fn, fm).

In this work, we use Naïve Bayesian classification technique. A
Naïve Bayesian classifier is a simple probabilistic classifier with
strong independence assumptions [26]. This technique requires a
small amount of training data to estimate the parameters (means and
variances of the variables) necessary for classification. Because
independent variables are assumed, only the variances of the
variables for each class need to be determined. The Naïve Bayesian

classifier assumes attribute independence (P(x1,…,xk|C) =

P(x1|C)*…*P(xk|C)). If the i-th attribute is categorical, then P(xi|C)
is estimated as the relative frequency of samples having value xi as

i-th attribute in class C. If the i-th attribute is continuous, then
P(xi|C) is estimated thru a Gaussian density function. In our
approach, the attributes are categorical. The categories are defined
in an interval, from 0 to 1. The i-th element is given by f(x) = i *

0.01. Therefore, there are 100 different categories. Experimental
results on the classification task are presented in Section 6.

For measuring the quality of the Naïve Bayesian classifier, our
approach calculates the accuracy rate by using recall and precision,
metrics widely used in information retrieval [11]. The classical
definition for recall is the proportion of relevant documents that are
retrieved, out of all relevant documents available. Precision is
defined as the proportion of retrieved and relevant documents to all
the documents retrieved. Thus, let A be the set of file pairs that are
truly versions and B be the set of file pairs that were detected as
versions by the classifier. Let “|” be the cardinality of a set (i.e., the
number of elements of the set). Then, the recall is defined as

Recall: |A∩B|/|A|, and the precision is defined as Precision:

|A∩B|/|B|. The |A∩B| expression is the number of versions that
were correctly identified as versions by the classifier. In other
words, the recall and precision are defined as:

Recall: (no. of versions correctly detected)/(no. of existent versions)

Precision: (no. of versions correctly detected)/(no. of detected versions)

Using the proposed similarity functions and the version
detection mechanism based on Naïve Bayesian classifiers, several
experiments were carried out. The quality of the proposed detection
version mechanism is quite high and it is going to be discussed in
the next section.

6. EXPERIMENTAL RESULTS
This section presents the results of various experiments that

show that our approach produces very good results, both in terms of
recall and precision measures. In order to assess the accuracy of the
similarity function and the version detection mechanism based on
Naïve Bayesian classification, we divided the experiments into two
groups. The first group considers only content evolution. The
second group considers content and structure evolution, as
presented in Section 4.

For each type of evolution, the experiments were divided in four
phases: data acquisition, data training, data testing, and result
analysis. In the first phase, we acquire the data to be used as the
training set. In the second phase, the classifier uses the acquired
data and train on these data, in order to get a classification model.
In the third phase, we apply a set of data to be tested by the
classifier. Finally, the analysis phase measures the accuracy of the
results, using recall and precision metrics.

The first group of experiments was carried out for files with
content evolution, as described in the next section. The experiments
were conducted on synthetic data.

6.1 Content Evolution
For these experiments, we consider the similarity function

presented in Section 4.1. The experiments presented in this paper
were intentionally based on simulated values (i.e., synthetic data),
in order to assess the classifier scalability while analyzing the
quality of the results. The experiments were carried out as follows:

� Data Acquisition: this phase is responsible for acquiring the
necessary data set to be used as training data set for the classifier.
Some activities were performed, as described.

1. We randomly generated 9000 values for the attributes (features)
considered in the similarity function: P, S and R, where P, S, R

∈ [0,1]. For these experiments, we set the weights in 0.5, 0.5 e
-0.5, respectively.

2. We applied the similarity function simC in these values,
obtaining similarity values for 9000 pairs of files. In other
words, we calculated 9000 similarity values for a set of pair of
files. These samples were generated equally distributed between
versions and non-versions (around 50% each one).

3. Finally, the similarity values were uniformly distributed, using
the mapping uniform transformation described in Section 4.1.

� Data Training: this phase is responsible for providing the
acquired data to the classifier. The classifier uses this data set to
generate a model that is later used in the test phase. Performing
the activities 1, 2 and 3, above described, the training set is
generated and used by the Naïve Bayesian classifier. The training
set is stored in a database, following the structure:

trainingTable (pairID, P, S, R, simCNormalized, class)

Where: pairID is the identifier of a pair of files; P, S and D are
the features considered in the similarity function; simCNormalized

is the similarity value after the mapping transformation; and class is
the category of the each pair of files that was compared (e.g.
version or non-version).

From the training set, we generated the probability for each
feature value for the expected classes. These probabilities are used
by the classifier and they were stored using the structure:

featureProbability (class, feature, value, probability)

Where: class is the category (e.g. version or non-version),
feature is one of the features considered in the similarity function
(i.e., P, S or R), value is the possible value for a feature (from 0 to
1, varying in 0.01 scale) and probability is the probability that a
certain value appear in a feature for a specific class (e.g. 0.000648).
The probability is defined as described in Section 5 and it is
computed by SQL queries over the trainingTable relation.

� Data Testing: this phase is responsible for testing several sets of
data in the model generated by the classifier in the training phase.
Some activities were carried out, as described. In order to
evaluate the result quality in different sizes for the testing data
sets, we have chosen a large, a medium and a smaller group: 3
data sets with 1000 samples each, 3 data sets with 500 samples
each and 3 data sets with 100 samples each. The generation of
these data sets followed the same steps described in data
acquisition phase. The testing set was stored in a database,
according to the structure:

testingTable (pairID, P, S, R, simCNormalized)

For each pair of files (pairID), we compute the probability of
the value xi appears in the i-th attribute (i.e., feature) in the class C

(i.e., version and non-version). For example, let us consider the
following tuple in testingTable relation:

testingTable (1, 0.15, 0.13, 0.55, 0.07)

The calculated probabilities are shown below:

P(0.15,0.13,0.55|non-version) = 0.0000018102

P(0.15,0.13,0.55|version) = 0.0000000709

Since the first probability is larger than the second probability,
the pair of files is classified as non-version. We apply the classifier
for each set. The classifier returns the category for each pair of files
(i.e., version or non-version).

� Data Analysis: this phase is responsible for measuring the
accuracy of the results in terms of recall and precision. Several
experiments were performed using the proposed similarity
function and the classifier. The experiments are as follows: e1, e2,
e3: 1000 pairs of files; e4, e5, e6: 100 pairs of files; e7, e8, e9:
500 pairs of files. The results are presented in Figure 9. As Figure
9 shows, the mean recall and precision rates were, respectively,
92.13% and 92.49%. Even the worst cases for recall (88.89% in
experiment 4) and precision (87.27% in experiment 4) were still
good. In other words, the classifier correctly detected over 92% of
the existent versions and over 92% of the detected versions were
correctly classified.

Figure 9. Recall and precision results for group 1

For the results presented in Figure 9, we considered the same
proportion (around 50%) of versions and non-versions for the
training and testing sets. In order to evaluate how the classifier
behaves with different proportions of versions and non-versions in
the training and testing sets, we made other experiments. We used
the same data configuration described above. However, in these
experiments, we considered that 80% of the training and testing sets
were represented by versions. The results of these experiments are
shown in Figure 10.

Figure 10. Recall and precision results for group 2

As Figure 10 shows, the recall rates were better in this case. The
mean recall and precision rates were, respectively, 99.83% and
91.35%. Even the worst cases for recall (99.28% in experiment 7)

and precision (89.13% in experiment 5) were still very good. In
other words, the classifier correctly detected over 99% of the
existent versions and over 91% of the detected versions were
correctly classified.

6.2 Structure and Content Evolution
For these experiments, we consider the similarity function

presented in Section 4.2. Similar to the previous section, the
experiments were carried out as follows:

� Data Acquisition: similar to the activity presented in Section 7.1,
some activities were executed, as described.

1. We randomly generated 9000 values for the attributes (features)
considered in the similarity function: P, S, R, A and D, where P,

S, R, D and A ∈ [0,1]. For these experiments, we set the
weights in 0.5, 0.5, -0.33, -0.33 and -0.33, respectively.

2. We applied the similarity function simE in these values,
obtaining similarity values for 9000 pairs of files. These
samples were also generated equally distributed between
versions and non-versions (around 50% each one).

3. Finally, the similarity values were uniformly distributed, using
the mapping uniform transformation described in Section 4.1.

� Data Training: this activity is similar to the data training

activity presented in Section 7.1. The training set is stored in a
database, following the structure:

trainingTable (pairID, P, S, R, A, D, simENormalized, class)

Also, the table for the feature probabilities was generated.

� Data Testing: similarly to the data testing activity presented in
Section 7.1, some activities were performed, as described. Again,
in order to evaluate the result quality in different sizes for the
testing data sets, we have chosen a large, a medium and a smaller
group: 3 data sets with 1000 samples each, 3 data sets with 500
samples each and 3 data sets with 100 samples each. The
generation of these data sets followed the same steps described in
data acquisition phase. The test set was stored in a database,
following the structure:

testingTable (pairID, P, S, R, A, D, simENormalized)

We apply the classifier for each set. The classifier returns the
category for each pair of files (i.e., version or no version).

� Data Analysis: similarly to the data analysis activity presented in
Section 7.1, several experiments were performed using the
proposed similarity function and the classifier. The experiments
are as follows: e1, e2, e3: 1000 pairs of files; e4, e5, e6: 100 pairs
of files; e7, e8, e9: 500 pairs of files. The results are presented in
Figure 11. As Figure 11 shows, the mean recall and precision
rates were, respectively, 91.11% and 91.05%. Even the worst
cases for recall (87.23% in experiment 5) and precision (90.04%
in experiments 1 and 7) were still good. In other words, the
classifier correctly detected over 91% of the existent versions and
over 91% of the detected versions were correctly classified.

All the presented results (groups 1 to 3) were executed over a
training set with 9000 samples. We also would like to evaluate how
the recall and precision values behave using a different size for the
training set. So, we ran again the experiments above (e1 to e9)
using a training set with only 3000 samples (group 4). The same

Figure 11. Recall and precision results for group 3

configuration was used, i.e., equal distribution between versions
and non-versions. Figure 12 shows that the results are not as good
as previous results, but still good.

Figure 12. Recall and precision results for group 4

The mean recall and precision rates were, respectively, 84.66%
and 85.87%. Even the worst cases for recall (79.66% in experiment
8) and precision (79.63% in experiment 6) were reasonably good.
In other words, the classifier correctly detected over 84% of the
existent versions and over 85% of the detected versions were
correctly classified. The results in recall and precision rates (lower
than in previous experiments) lead us to conclude that the classifier
produces better results if the training set has more samples.
Considering the results presented in Figure 11 and Figure 12, the
recall and precision rates were, respectively, 7.07% and 5.68%
higher with a larger training set.

Finally, all the experiments (considering groups 1 to 4) have
shown the accuracy of the proposed mechanism. We used 2
different training sets with some configuration changes (e.g. the
proportion of versions and non-versions, and size), resulting in 4
training sets. Also the testing sets were diverse: 27 different testing
sets, whose sizes varied from 100 to 1000 samples. The average
recall rate considering the first 3 groups of experiments (groups 1 to
3) was 94.35% and the average precision rate was 91.63%.
Including the forth group in this analysis (with worse rates because
of the smaller size of the training set), the average rates were still
good: 91.93% for recall and 90.19% for precision rates.

As presented in Section 6, the experiments were executed on
synthetic data, where we have randomly simulated float values for
the similarity function features (e.g., P, S, and R). We are currently
implementing the similarity functions in order to run those

experiments on the features acquired from XML documents
crawled on the Web. The good results for evaluating recall and
precision obtained in this paper are expected to be maintained in
real scenarios. The new results are going to be presented in the
conference.

The next section shows how the version detection allows
performing very interesting metadata management.

7. METADATA MANAGEMENT
Finally, the last activity performed by the version detection

mechanism is the metadata management. This metadata aims to
describe information related to the detected versions. However, the
metadata model also supports the representation of non-versioned
files (i.e., files that do not match as version of existent files. Non-
versioned files can be represented in the metadata model as roots
for future lineages. The metadata information is structured as shown
in Figure 13.

<!ELEMENT metadata (node*)>
<!ELEMENT node (features*, node*)>
<!ATTLIST node file CDATA #REQUIRED>
<!ELEMENT features EMPTY>
<!ATTLIST features P CDATA #REQUIRED S CDATA #REQUIRED

 R CDATA #REQUIRED sim CDATA #REQUIRED
 D CDATA #IMPLIED A CDATA #IMPLIED>

Figure 13. Metadata structure

By using the metadata model, the logical structure of linear and
branched versions can be represented. Figure 14 describes the
metadata XML representation for Figure 1.

<metadata>
<node file="f1">

<node file="f2">
<features P="0.7" S="0.9" R="0.1" sim="0.86"/>
<node file="f3">

<features P="0.8" S="0.9" R="0.1" sim="0.97"/>
</node>

 </node>
</node>
<node file="f4">

<node file="f5">
<features P="0.6" S="0.7" R="0.1" sim="0.79"/>
<node file="fx">

<features P="0.7" S="0.8" R="0.1" sim="0.89"/>
</node>

</node>
</node>

</metadata>

Figure 14. Metadata example for linear versioning

The lineage of versions is represented as a parent-children
relationship. By traversing the tree following the relationships, the
entire lineage of a specific version can be retrieved. For example,
there are two groups of linear versions in Figure 1. The first group
is formed by the files f1, f2 and f3. In Figure 14, this group is
represented by following the parent-children relationship:

/metadata/node[@file="f1"]/node[@file="f2"]/node

Another example is depicted in Figure 2, which contains three
branches of versions. The third branch is formed by the files f1, f4

and fx. In Figure 15, this branch is represented by the following
parent-children relationship:

/metadata/node[@file="f1"]/node[@file="f4"]/node

<metadata>
<node file="f1">

<node file="f2">

<features P="0.7" S="0.9" R="0.1" sim="0.9"/>
<node file="f5">

<features P="0.8" S="0.9" R="0.1" sim="0.94"/>
</node>

</node>
<node file="f3">

<features P="0.6" S="0.7" R="0.1" sim="0.7"/>
</node>
<node file="f4">

<features P="0.7" S="0.8" R="0.1" sim="0.81"/>
<node file="fx">

<features P="0.7" S="0.8" R="0.2" sim="0.8"/>
</node>

</node>
</node>

</metadata>

Figure 15. Metadata example for branched versioning

The file identifiers (denoted by the attribute file in the metadata
representation) are generated by using hash functions, a frequently
used approach for file identification. We are currently using MD5
(Message-Digest Algorithm 5), a cryptographic hash function with
a 128-bit hash value. For simplicity, the hash-based identifiers are
not presented in the examples above. The hash function result is
substituted by a simpler notation (e.g., the hash result
ece50ed4d6d48dac839bfe8fa719fcff is denoted by f5).

8. CONCLUDING REMARKS
This paper focused on version detection of XML documents.

The significance of such problem is quite evident in many
scenarios, such as plagiarism detection, Web page ranking, software
clone identification, assuring link permanence in Web documents,
and enhancing search in peer-to-peer systems. In this paper, we
defined a similarity function that considers several characteristics
that must be taken into account when considering a version. The
function is not restricted to a specific application and it can be
adapted to consider other relevant similarity features for specific
scenarios. Moreover, each feature can be differently weighted,
which turns our proposal into a more flexible approach.

A detection mechanism based on classification techniques is
also presented. By using a classifier, the hard task of defining the
threshold value is eliminated. In our proposal, we used the Naïve

Bayesian classification technique, a simple probabilistic classifier.
An advantage of this classification technique is the assumption of
independent variables; thus, only the variances of the variables for
each class need to be determined.

The version detection problem is not a new issue. Neither is the
use of Naïve Bayesian classifiers to categorize documents.
However, the use of this technique for solving the mentioned
problem requires the definition of variables (i.e., attributes or
features) that describe each category, which usually is a hard
domain-dependent task for version detection. In the response of
these requirements, in this paper we proposed a similarity function
and used a classification technique, which provides a very accurate
solution for an aged problem. The experiments produced very good
results, over than 90% for recall and precision rates (even
considering smaller training sets). In the absence of other similar
approaches for version detection, the values of precision and recall
cannot be compared. However, over than 90% rate alone is a good
indicative of precision and recall.

As future work, we are going to apply the mining method to
classify the documents using testing sets derived from a particular
application domain. Therefore, we will also optimize the similarity

function, the coefficients used (i.e., weights) and the mining
method. The good results for evaluating recall and precision
obtained so far are expected to be maintained in different scenarios.
Further enhancement of metadata management is also planned.

9. ACKNOWLEDGMENTS
This work has been partially supported by CNPq under grant

No. 142396/2004-4 and Capes under grant No. 1451/06-5 for Deise
de Brum Saccol. It is also supported by CNPq under grant No.
481516/2004-2, Fapergs under grant No. 0412264 and Digitex
(CNPq No. 550.845/2005-4) for Renata de Matos Galante.

10. REFERENCES
[1] Westfechtel, B., Munch, B. P., and Conradi, R. A Layered

Architecture for Uniform Version Management. IEEE Trans.

Software Eng., 27(12):1111–1133, 2001.

[2] Chien, S-Y., Tsotras, V. J., Zaniolo, C. (2001). XML Document

Versioning. SIGMOD Records, Vol. 30 Number 3, Sept.

[3] Ronnau, S.; Scheffczyk, J. e Borghoff, U.M.. Towards XML

Version Control of Office Documents. DocEng '05: Proc. of the

2005 ACM symposium on Document engineering, ACM Press,

10-19, 2005.

[4] Katz, R. e Chang, E.. Managing Change in a Computer-Aided

Design Database. Proceedings of VLDB Conference, 1987.

[5] Schleimer, S., Wilkerson, D., Aiken, A.. Winnowing: Local

Algorithms for Document Fingerprinting. Proc. of the ACM

SIGMOD Intl. Conf. on Management of Data, San Diego, CA, p.

76-85, 2003.

[6] Chen, X., Francia, B., Li, M., McKinnon, B., Seker, A.. Shared

information and program plagiarism detection. IEEE Transactions

on Information Theory, v. 50, n. 7, p-1545-1551, 2004.

[7] Baeza-Yates, R., Castillo, C.. Relating Web Characteristics with

Link based Web Page Ranking. Proc. of the 8th Intl. Symposium

on String Processing and Information Retrieval, 2001.

[8] Ducasse, S., Niertrasz, O., Rieger, M.. On the effectiveness of

clone detection by string matching. Journal of Software

Maintenance and Evolution: Research and Practice, v. 18, n. 1, p.

37-58, 2006.

[9] Navarro, G.: A guided tour to approximate string matching. ACM

Computing Surveys 33, 31–88, 2001.

[10] Guth, G.J.: Surname spellings and computerized record linkage.

Historical Methods Newsletter 10, 10–19, 1976.

[11] Baeza-Yates, R.A. e Ribeiro-Neto, B.A.. Modern Information

Retrieval. ACM Press / Addison-Wesley, 1999.

[12] Flesca, S. e Pugliese, A.. Fast Detection of XML Structural

Similarity. IEEE Transactions on Knowledge and Data

Engineering, 17, 160-175, 2005.

[13] Nierman, A. e Jagadish, H.V.. Evaluating Structural Similarity in

XML Documents. Proc. of the 5th Intl. Workshop on the Web and

Databases (WebDB 2002), 2002.

[14] Dorneles, C. F. ; Heuser, C. A. ; Lima, A. E. N.; Silva, A. S.;

Moura, E. S. . Measuring similarity between collections of values.

In: Proc. of the 6th ACM Intl. Workshop on Web Information and

Data Management (WIDM), Washington, DC, 2004. p. 56-63.

[15] Silva, R. ; Stasiu, R. K. ; Orengo, V. M. ; Heuser, C. A. .

Measuring quality of similarity functions in approximate data

matching. Journal of Informetrics, v. 1, p. 4, 2007.

[16] Stasiu, R. K. ; Heuser, C. A. ; Silva, R. . Estimating Recall and

Precision for vague queries in Databases. In: 17th International

Conference Advanced Information Systems Engineering (CAISE),

Porto, Portugal, 2005. v. 3520. p. 187-200.

[17] Saccol, D.B., Edelweiss, N., Galante, R.M.. Detecting, Managing

and Querying Replicas and Versions in a Peer-to-Peer

Environment. In: 1st IEEE TCSC Doctoral Symposium, in

conjunction with the 7th IEEE Intl. Symposium on Cluster

Computing and the Grid, Rio de Janeiro, 2007.

[18] Cobena, G., Abiteboul, S. and Marian, A.. Detecting Changes in

XML Documents. Proc. of 18th Intl. Conf. on Data Engineering,

41-52, 2002.

[19] Wang, Y., DeWitt, D. J., Cai, J. X-Diff: An Effective Change

Detection Algorithm for XML Documents. Intl. Conf. on Data

Engineering, 519-530, 2003.

[20] Chawathe, S. S.. Comparing Hierarchical Data in External

Memory. Proc. of the 25th Intl. Conf. on Very Large Data Bases,

Morgan Kaufmann Publishers Inc., 90-101, 1999.

[21] Wan, X. and Yang, J.. Using Proportional Transportation

Similarity with Learned Element Semantics for XML Document

Clustering. WWW '06: Proc. of the 15th Intl. Conf. on World

Wide Web, ACM Press, 961-962, 2006.

[22] Cohen, W.W., Ravikumar, P., Fienberg, S.: A comparison of

string distance metrics for name-matching tasks. In: Proc. of

IJCAI-03 Workshop on Information Integration on the Web,

Acapulco, Mexico, Morgan Kaufmann, 73–78, 2003.

[23] Schallehn, E., Sattler, K.U., Saake, G.: Efficient similarity-based

operations for data integration. Data Knowl. Eng. 48 (2004) 361–

387.

[24] Bilenko, M.; Mooney, R.; Cohen, W.; Ravikumar, P.; Fienberg, S.

Adaptive Name Matching in Information Integration. IEEE

Intelligent Systems, [S.l.], v.18, n.5, p.16–23, September/October

2003.

[25] Sarawagi, S.; Bhamidipaty, A. Interactive deduplication using

active learning. In: International Conference on Knowledge

Discovery and Data Mining, ACM SIGKDD, 8. New York, NY,

USA. Proc. New York:ACM Press, 2002. p.269–278, 2002.

[26] Langley, P., Iba, W., & Thompson, K. An analysis of Bayesian

classifiers. Proc. of the 10th National Conference on Artificial

Intelligence (pp. 223-228). San Jose, CA: AAAI Press, 1992.

[27] Wang. Y., Hodges, J., Tang, B.; Classification of Web Documents

Using a Naive Bayes Method. Proc. of the 15th IEEE Intl. Conf.

on Tools with Artificial Intelligence. IEEE Computer Society

Washington, DC, USA, 2003.

[28] Pon, R.K., Cárdenas, A.F., Buttler, D., Critchlow, T.. iScore:

Measuring the Interestingness of Articles in a Limited User

Environment. In: IEEE Symposium on Computational Intelligence

and Data Mining, Honolulu, HI, 2007.

[29] Chien, S.-Y., Tsotras, V.J., Zaniolo, C.; Efficient schemes for

managing multiversion XML Documents, The VLDB Journal,

Dec. 2002.

[30] Vagena, Z., Moro, M.M., Tsotras, V.J.; Supporting Branched

Versions on XML documents. In: 14th International Workshop on

Research Issues on Data Engineering, held with 20th Intl. Conf. on

Data Engineering (ICDE), Boston, USA, 2004.

[31] Bertino, E., Guerrini G., Mesiti, M.. A Matching Algorithm for

Measuring the Structural Similarity between a XML Document

and a DTD and its Applications. Information Systems, v. 29, n. 1,

Special issue on web data integration, p. 23-46, 2004.

