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ABSTRACT

Context. IGR J18410-0535 is a supergiant fast X-ray transients. This subclass of supergiant X-ray binaries typically undergoes few-
hour-long outbursts reaching luminosities of 1036–1037 erg s−1, the occurrence of which has been ascribed to the combined effect of
the intense magnetic field and rotation of the compact object hosted in them and/or the presence of dense structures (“clumps”) in the
wind of their supergiant companion.
Aims. IGR J18410-0535 was observed for 45 ks by XMM-Newton as part of a program designed to study the quiescent emission of
supergiant fast X-ray transients and clarify the origin of their peculiar X-ray variability.
Methods. We carried out an in-depth spectral and timing analysis of these XMM-Newton data.
Results. IGR J18410-0535 underwent a bright X-ray flare that started about 5 ks after the beginning of the observation and lasted
for ∼15 ks. Thanks to the capabilities of the instruments on-board XMM-Newton, the whole event could be followed in great detail.
The results of our analysis provide strong convincing evidence that the flare was produced by the accretion of matter from a massive
clump onto the compact object hosted in this system.
Conclusions. By assuming that the clump is spherical and moves at the same velocity as the homogeneous stellar wind, we estimate a
mass and radius of Mcl ≃ 1.4× 1022 g and Rcl ≃ 8× 1011 cm. These are in qualitative agreement with values expected from theoretical
calculations. We found no evidence of pulsations at ∼4.7 s after investigating coherent modulations in the range 3.5 ms–100 s. A
reanalysis of the archival ASCA and Swift data of IGR J18410-0535, for which these pulsations were previously detected, revealed
that they were likely to be due to a statistical fluctuation and an instrumental effect, respectively.
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1. Introduction

IGR J18410-0535 (=AX J1841.0-0536) is a member of the su-
pergiant fast X-ray transients (SFXT), a subclass of supergiant
X-ray binaries (sgHMXBs) that has attracted much attention in
the past few years because of their peculiar behavior in the X-ray
domain (see, e.g. Walter & Zurita Heras 2007, for an updated list
of sources in this class). In contrast to previously known sgH-
MXBs, which are nearly persistent in X-rays (see, e.g. Chaty
2010, for a review), SFXTs usually undergo few-hour long out-
bursts reaching luminosities of 1036–1037 erg s−1, and spend
most of their lifetime in quiescence, with typical luminosities of
1032–1033 erg s−1 (Sidoli 2010; Bozzo et al. 2010). The presence
of black-hole accretors in these sources cannot be completely
ruled out. However, the properties of their X-ray spectra in out-
burst and quiescence and the detection of pulsations in the X-ray
emission of some SFXTs, led to the conclusion that (at least)
most of them should host neutron-star (NS) accretors (see e.g.,
Bozzo et al. 2008b, and references therein).

IGR J18410-0535 was discovered with ASCA in 1994
(Bamba et al. 2001). During the discovery observation, the
source displayed two bright flares with rising times shorter
than 1 h and separated by 0.6 days. The peak fluxes were 2.0
and 9.5× 10−11 erg cm−2 s−1 (2–10 keV), respectively. A time-
resolved spectral analysis of the event revealed that the source

X-ray spectrum could be accurately modelled with an absorbed
power-law of photon index Γ = 1–2 and an absorption col-
umn density of NH = (3.2–7.2)× 1022 cm−2. An iron line with
a centroid energy of 6.4 keV and an equivalent width (EW) of
∼0.2 keV was also required by the data. During the brightest
of the two flares, pulsations were reported at a period of ∼4.7 s
in only the 1.9–4.9 keV energy band. The lowest X-ray flux of
the source measured with ASCA was 2.0× 10−12 erg cm−2 s−1

(2–10 keV).

IGR J18410-0535 was observed with Chandra for 20 ks on
2004 May 12 (Halpern et al. 2004). This observation captured
the source with an average flux of 4.2× 10−12 erg cm−2 s−1 (0.5–
10 keV), and the corresponding X-ray spectrum could be de-
scribed well by an absorbed power-law model with Γ = 1.35 ±
0.30 and NH = (6.1 ± 1.0) × 1022 cm−2. This observation
also provided an improved position of the source at αJ2000 =

18h41m0.s54 and δJ2000 = −05◦35′46.′′8 (nominal Chandra posi-
tion accuracy 0.6.′′), and permitted the identification of the opti-
cal and infrared counterparts of the source as a B1 Ib supergiant
star at an estimated distance of 3.2+2.0

−1.5 kpc (Nespoli et al. 2008).

The source was also captured undergoing several few-hour-
long outbursts with MAXI (Negoro et al. 2010) and INTEGRAL
(1–7 h; Rodriguez et al. 2004; Sguera et al. 2006; Walter &
Zurita Heras 2007). The highest flux measured by INTEGRAL
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during these events was 120 mCrab (20–80 keV; Sguera et al.
2006), corresponding to roughly 1.8× 10−9 erg cm−2 s−1. The
source high energy spectrum (20–80 keV) while in outburst
could be described using a hot blackbody model (BB) with kT =
8–9 keV. Outside the outbursts, the upper limit (1σ c.l.) to the av-
erage hard X-ray flux of the source was estimated to be 1 mCrab
(18–60 keV, corresponding to roughly 1.2× 10−11 erg cm−2 s−1,
Filippova et al. 2004).

IGR J18410-0535 was detected a few times in outburst
by Swift /BAT, and only once Swift performed a slew on
the source to point it with the narrow field instrument XRT
(de Pasquale et al. 2010; Romano et al. 2010a, 2011). On that
occasion, the Swift XRT spectrum was closely described by
an absorbed power-law model with Γ = 0.7+0.5

−0.4 and NH =

3+2
−1 × 1022 cm−2. The average 2–10 keV unabsorbed flux was

7× 10−10 erg cm−2 s−1. No evidence for pulsations was found.
IGR J18410-0535 was not detected in a high X-ray activity
phase during the one-year monitoring (total net on-source ex-
posure time 96.5 ks) with Swift /XRT carried out by Romano
et al. (2009). In the data acquired during this monitoring,
the authors identified four different states for the X-ray emis-
sion of IGR J18410-0535: the “high”, “medium”, “low”, and
“very low” states. In the high state, the source X-ray flux was
8.0× 10−11 erg cm−2 s−1 (2–10 keV) and the corresponding spec-
trum is closely described by an absorbed power-law model with
Γ = 1.1 ± 0.1 and NH = (2.5 ± 0.3) × 1022 cm−2. The medium
state was characterized by a flux of 3.4× 10−11 erg cm−2 s−1, a
power-law photon index of 1.3± 0.2, and NH = (3.5 ± 0.5) ×
1022 cm−2. For the low and very low states, the authors estimated
fluxes of 1.1× 10−11 erg cm−2 s−1 and 6.0× 10−13 erg cm−2 s−1,
respectively. The corresponding power-law photon indices and
absorption column densities were Γ = 1.5 ± 0.1, 0.6± 0.4 and
NH = (3.5 ± 0.5) × 1022 cm−2, (0.6 ± 0.4) × 1022 cm−2.
Sidoli et al. (2008) also reported the detection of pulsations at
∼4.7 s from IGR J18410-0535 in some of the Swift /XRT data.
A possible association between IGR J18410-0535 and the tran-
sient MeV EGRET source 3EG J1837-0423 was suggested by
Sguera et al. (2009).

In this paper, we report on a 45 ks long observation of the
source with XMM-Newton. This observation was obtained as
part of our program aimed at studying the quiescent emission
of SFXTs (see also Bozzo et al. 2010, 2009, 2008b). During
the XMM-Newton observation, IGR J18410-0535 was caught un-
dergoing a bright X-ray flare, lasting roughly 15 ks. The source
reached a maximum flux of 3.4× 10−10 erg cm−2 s−1 (1–10 keV)
at the peak of the flare and then decayed to a very low quiescent
level (8.8× 10−14 erg cm−2 s−1). The total dynamic range in the
X-ray flux was thus >∼4 × 103. In Sect. 2, we give the details of
our data analysis and provide all the results in Sects. 2.2 and 2.3.
In the XMM-Newton data, no pulsation at 4.7 s could be detected,
and the derived upper limits were significantly tighter than the
pulsation amplitude reported previously with ASCA and Swift.
Motivated by these results, we also reanalyzed all the ASCA
and Swift data of the source and show that the previously re-
ported 4.7 s pulsations were probably due a statistical fluctuation
(ASCA) and an instrumental effect (Swift), respectively (Sects. 3
and 4). Our discussion and conclusions are reported in Sects. 5
and 6.

2. XMM-Newton data analysis

XMM-Newton (Jansen et al. 2001) observed IGR J18410-0535
from 55 270.5484 MJD to 55 271.0923 MJD (exposure time
∼45 ks). The Epic-pn camera (Strüder et al. 2001) was operated
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Fig. 1. XMM-Newton Epic-pn lightcurve of the observation of
IGR J18410-0535 (0.3–12 keV, not corrected for background and pile-
up). The start time is MJD 55270.5896 (bin time 30 s).

in full frame, while the Epic-MOS1 and Epic-MOS2 cam-
eras (Turner et al. 2001) operated in small window and tim-
ing mode, respectively. This particular set-up of the instruments
was chosen in order to have the capabilities required to study
the source over a wide range of X-ray flux. We processed the
XMM-Newton observation data files with the two pipelines -
 and  in order to produce Epic-pn and Epic-MOS
cleaned event files, respectively (SAS v.10.0.1). No time inter-
vals were found to be affected by a high background and we
thus retained for the subsequent analysis the entire exposure
time available for the three instruments. We used the energy
range 0.15–15 keV for the Epic-pn and 0.3–12 keV for the two
Epic-MOS cameras. IGR J18410-0535 displayed a large dynam-
ical range in the X-ray flux during the XMM-Newton observa-
tion (see Fig. 1); therefore the source and background extrac-
tion regions were chosen in the different time intervals so as
to maximize the signal-to-noise ration (S/N) of the data (see
next section). During the periods of greatest X-ray emission
from the source, the Epic-pn data suffered significant pile-up.
We accounted for this problem by using in these cases annular
extraction regions for the source in which the appropriate in-
nermost portion of the instrument point spread function (PSF)
was removed1. We checked that the removal of pile-up was ef-
fective by using the SAS tool  and comparing the re-
sults from the Epic-pn camera with those obtained with the Epic-
MOS1 and Epic-MOS2. The effect of pile-up in these cases was
much reduced since the cameras were operated in small win-
dow and timing mode, respectively. Where required, we cor-
rected Epic images to remove the out-of-time (OoT) events2 and
checked that this problem did not significantly affect the spec-
tra. All the Epic lightcurves were barycentered by using the
SAS tool , and then corrected for instrumental vi-
gnetting, dead time, and PSF losses by using the tool -
. Given the lower count rate and S/N of the Epic-MOS1
and Epic-MOS2 cameras compared to those obtained from the
Epic-pn (especially outside the flare), the former instruments did

1 See also
http://xmm.esac.esa.int/external/xmm_user_support/

documentation/uhb/index.html
2 See
http://xmm.esa.int/sas/current/documentation/threads/

EPIC_OoT.shtml
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Fig. 2. Rise of the flare observed during the XMM-Newton observation
of IGR J18410-0535 with the Epic-pn camera. The start time of the
lightcurve is the same as that in Fig. 1, and the binning time is 150 s. The
upper panel shows the source lightcurve in the soft energy band (0.3–
4 keV), the middle panel in the hard energy band (4–12 keV), and the
bottom panel the hardness ratio (HR, defined as the ratio of the source
count-rate in the soft to hard energy band versus time).
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Fig. 3. Details of the Epic-pn lightcurve during the drop in count rate
that occurred around t = 8500–9500 s in Fig. 1 (t = 0 would correspond
to the the start time of the lightcurve in Fig. 1; time bin is 30 s). The
upper (lower) panel shows the source lightcurve in the 0.3–4 keV (4–
12 keV) energy band.

not contribute significantly to the spectral analysis. Therefore,
we report in the following sections and in Fig. 1 only the results
obtained from the Epic-pn camera.

2.1. Lightcurve analysis

During the XMM-Newton observation, IGR J18410-0535 under-
went a bright X-ray flare that started about 5 ks after the begin-
ning of the observation and lasted for ∼15 ks. The lightcurve of
the entire XMM-Newton observation in the 0.3–12 keV energy
band is shown in Fig. 1.

The lowest source count-rate was recorded during the latest
20 ks of observation at a level of (4.0± 1.9)× 10−3 cts s−1 (es-
timated from a 5000 s binned lightcurve that had background
subtracted; all uncertainties in this paper are given at 90% c.l.,
unless otherwise indicated). During the peak of the flare, the cor-
responding highest count-rate was 31.2± 1.0 cts s−1 (determined
from a 30 s binned lightcurve, which was background subtracted

Fig. 4. Final part of the decay after the flare observed by XMM-Newton.
The upper (lower) panel shows the source lightcurve in the 0.3–4 keV
(4–12 keV) energy band. We marked with vertical dashed lines the time
intervals during which major changes in the source spectrum occurred
(spectra K, L, M, N, O in Table 1 and Fig. 8).
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Fig. 5. The same as Fig. 1, but here we used an adaptive rebinning with
S/N = 5. The upper panel shows the source lightcurve in the 0.3–4 keV
energy band, the middle panel the source lightcurve in the 4–12 keV
energy band, and the lower panel the hardness ratio versus time (defined
as in Fig. 2).

and corrected for pile-up). In Fig. 2, we show an enlargement of
the lightcurve during the first 5 ks of the XMM-Newton obser-
vation. Here, a sudden rise of the source X-ray emission was
recorded by the Epic-pn camera ∼3 ks after the beginning of
the observation. In the following ∼2 ks, the source reached the
highest count-rate, and then began to decrease at t ∼ 6000 s.
Interestingly a drop in the source count rate was recorded around
t = 8500 s in both the soft and hard energy band. A zoom in
of this part of the lightcurve is provided in Fig. 3. A detailed
lightcurve of the final part of the flare decay is shown in Fig. 4.
We also show in Fig. 5 the source lightcurves in the 0.3–4 keV
and 4–12 keV energy bands, where an adaptive rebinning of the
data was used in order to achieve in each time bin S/N = 5
and estimate the corresponding source hardness ratio (HR). The
same lightcurves and adaptive rebinning were used to produce
the hardness ration versus intensity diagram shown in Fig. 6 (see
also Bozzo et al. 2010).

From Figs. 5 and 6, we can see that the HR of the source
underwent dramatic changes in time; a non-monotonic trend
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Fig. 6. Hardness-intensity diagram of IGR J18410-0535 obtained by us-
ing the XMM-Newton Epic-pn observation. The hardness ratio of the
source is defined as in Fig. 2.

appears when the HR is plotted as a function of the total source
intensity. Given these findings, we performed in Sect. 2.2 below
a time-resolved spectral analysis of the data.

2.2. Spectral analysis

To search for spectral changes, we first accumulated X-ray spec-
tra on time intervals of ∼few hundreds to ∼few thousands sec-
onds (depending on the source count-rate), following the trend of
the HR (see Fig. 5). Nearby time intervals were then combined
in order to extract a lower number of spectra that could max-
imize the evidence for changes in the properties of the source
X-ray emission. Our optimal separation of the time intervals is
reported in Table 1. All these spectra were rebinned to have at
least 15, 20, or 25 photons per bin (depending on the source in-
tensity) and prevent an oversampling of the energy resolution
of the instruments by more than a factor of three. Spectra with
lower quality statistics were rebinned to have at least 5 photons
per bin and were fit using C-statistics (Cash 1979). For the spec-
tral fits, we used an absorbed power-law model3. None of the
spectra could be convincingly better fit with a blackbody (BB)
or a cut-off power-law model ( in X). In partic-
ular, the latter provided in most cases peculiar values of the
model parameters (negative power-law photon indices and val-
ues of the high energy cut-off largely inconsistent between the
different spectra). A plot of the evolution of the spectral param-
eters of the source in the XMM-Newton observation is provided
in Fig. 7. The power-law photon index remained fairly constant
up to t ≃ 19 000 s, whereas the absorption column density un-
derwent dramatic changes (Fig. 7). In particular, we measured a
large increase (factor of ∼10) in the absorption column density
from the beginning of the observation up to the peak of the flare
(NH ∼ 2 × 1023 cm−2 at t ≃ 5000 s). A rapid drop in the NH
then occurred to ∼1023 cm−2. At the peak of the flare, we also
detected a significant iron line with an energy of ∼6.6 keV and
an EW ∼ 60 eV (see Table 1). The absorption column density
remained virtually constant at ∼1023 cm−2 for about 4 ks after
the source reached the highest X-ray emission level; a rapid rise
in column density then occurred until t ≃ 19 000 s. To test the

3 We used the model phabs*pow in .
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Fig. 7. Spectral parameters of IGR J18410-0535 measured during the
different time intervals reported in Table 1. All the errors are at 90% c.l.
Arrows indicate 90% c.l. upper limits.

significance of the measured variation in the absorption column
density, we report in Fig. 9 the NH-Γ parameters confidence con-
tours for some relevant spectra. In the upper panel of this figure,
we show the parameter contours obtained by summing the spec-
tra from intervals C and D and A and B, which displayed very
similar values of the power-law photon index and absorption
column density before and during the rise of the flare, respec-
tively (see Table 1). The contours correspond to 68%, 90%, and
99% c.l. A very significant (>3σ) increase in the absorption col-
umn density at the onset of the flare is clearly seen. The lower
panel of Fig. 9 shows the case of the J and N spectra: the in-
crease in the absorption column density toward the end of the
flare is also highly significant. During the apparent drop in count
rate around t = 8500–9500 s, no particular change in the spectral
continuum is seen, but a significant iron line appears with a cen-
troid energy of ∼6.4 keV (see spectrum I in Table 1; throughout
this paper, we use narrow lines for the spectral fits and fixed their
width to 0 in X).

The properties of the X-ray emission of the source changed
sharply around t ≃ 19 000 s: at this time, the source under-
went a further decrease in the X-ray flux, and simultaneously its
spectrum flattened and a prominent iron emission line appeared
around 6.4 keV. We show in Fig. 8 the detail of the evolution
of the source spectrum with time during the latest 30 ks of the
XMM-Newton observation. A fit to the spectrum from the O in-
terval with a simple absorbed power-law model gave unaccept-
able results (χ2

red/d.o.f. = 2.1/15). Adding an iron line with an
energy centroid of Eline = 6.36+0.06

−0.05 keV significantly improved
the fit (χ2

red/d.o.f. = 1.0/13). The normalization and equivalent
width of the line were (2.7± 1.0)× 10−6 and 1.1 keV, respec-
tively. From this spectrum, only an upper limit on NH could be
obtained (see Table 1); this was significantly lower than that ex-
pected in the direction of the source (∼1.8× 1022 cm−2, Dickey
& Lockman 1990). Even though this model gave a statistically
acceptable fit to the spectrum O, the very low value of the ab-
sorption column density and the unphysical negative power-law
photon index suggest that other spectral models cannot be ex-
cluded. As we discuss in Sect. 5, a more physical interpretation
of the X-ray emission of the source in this time interval is based
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spectra were fit with a simple absorbed power-law model (the residuals
from these fits are shown for each of the five spectra).

on a model4 comprising two power-law components affected by
two different absorption column densities plus the iron line, i.e.
1*(1++2*2) in X. In the fit,
we fixed phabs1 to the Galactic value of the absorption column
density and constrained the photon indices of the two power-
laws to be the same. The fit gave χ2

red/d.o.f. = 0.8/12, Γ = 0.9+1.8
−0.5

(in agreement with that measured during the other time intervals
in Table 1), Eline = 6.36 ± 0.06 keV, EW = 0.7 keV, and a value
for the second absorption component of (85+48

−33) × 1022 cm−2. In
Fig. 10 we report the unfolded spectrum of interval O together
with the different spectral component used in this model.

In Fig. 11, we also show the contours plots of the iron line
centroid energy versus its normalization for the three detections
in the E, I, and O spectra. We find marginal evidence for a de-
crease in the line centroid with time, from the peak of the flare
(spectrum E) to the quiescent level (spectrum O). No other con-
vincing evidence of the iron line could be found in the spectra
extracted from different time intervals or from merging them in
different combinations. The interpretation of all the above find-
ings is discussed in Sect. 5.1.

We also performed a separate spectral analysis of the source
X-ray emission during the first ∼3 ks and the last ∼17 ks of the
time interval O in order to investigate the cause of the drop in
the source count-rate visible in Fig. 4 around t = 22 820. We
indicate these two additional spectra with O1 (from t = 18 870
to t = 22820) and O2 (from t = 22 820 to t = 42 840) in Table 1.

4 We also performed a fit using the reflection model  in X,
but the poor statistics of the O spectrum did not permit to derive satis-
fiable constraints on the model parameters. We thus do not discuss this
model in further details.
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The O1 spectrum comprised 151 counts and was dominated
by the presence of the iron line. A fit with a simple absorbed
power-law did not provide an acceptable fit (χ2

red/d.o.f. = 2.9/7),
whereas adding a Gaussian line to the spectral model signif-
icantly improved the fit (χ2

red/d.o.f. = 0.8/5). We measured a
power-law photon index of Γ = −1.8−0.4

+0.6, and a centroid en-
ergy for the line of 6.33+0.06

−0.04 keV. The normalization of the
line was (1.1± 0.4)× 10−5 and the estimated EW 1.2 keV (com-
patible with that found by using the entire time interval O).
Only an upper limit to the absorption column density of NH <

8.0 × 1022 cm−2 could be obtained.
Given the measured negative value of the parameter Γ, we

also fit the spectrum O1 by using the double power-law model
discussed above and checked the consistency of the different
model parameters with those determined before for the spec-
trum O. This gave Γ = 0.2+1.0

−1.5 and an absorption column den-
sity for the most extinguished power-law component of 82+52

−42 ×

1022 cm−2 (the absorption column density of the other compo-
nent was fixed to the Galactic value). The centroid energy of
the line and its EW was found to agree with those reported be-
fore for the spectrum O. The estimated 1–10 keV X-ray flux was
9.7× 10−13 erg cm−2 s−1.

During the time interval O2, XMM-Newton recorded only
83 counts from the source. The corresponding spectrum could
be closely fit with a simple absorbed power-law model (see
Table 1). The quality of the fit did not change significantly
(C-statistics 14.5/11) when the power-law photon index was
constrained to be equal to that measured for the O spectrum
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Table 1. Best-fit parameters of IGR J18410-0535 during different time intervals of the XMM-Newton observation (see Fig. 1 and the note below
the table).

Interval T start T stop Exp. NH Γ Eline EWline Fobs Funabs χ2
red/d.o.f.

(s) (s) (ks) (1022 cm−2) (keV) (keV) (erg cm−2 s−1) (erg cm−2 s−1) (C-statistics/d.o.f.)

A 0 3200 2.7 2.6+2.5
−1.7 1.3+1.0

−0.9 – – 3.2× 10−13 4× 10−13 (12.4/11)

B 3200 4670 1.2 8.0+5.0
−4.1 1.1± 0.9 – – 1.7× 10−12 2.8× 10−12 (14.4/18)

C 4670 5020 0.35 19.3+6.3
−5.6 2.2± 0.7 – – 1.0× 10−11 5.0× 10−11 (51.0/47)

D 5020 5220 0.17 19.8+8.0
−7.7 1.9± 0.7 – – 6.0× 10−11 2.4× 10−10 0.8/12

E 5220 6320 0.96 10.8+0.7
−0.6 1.1± 0.1 6.56± 0.05 0.06 3.2× 10−10 6.0× 10−10 1.0/149

F 6320 6820 0.44 10.9+1.2
−1.1 1.1± 0.1 – – 2.9× 10−10 5.3× 10−10 0.9/109

G 6820 7620 0.7 12.4+1.3
−1.2 1.4± 0.2 – – 2.2× 10−10 4.4× 10−10 1.1/108

H 7620 8520 0.8 11.8+1.5
−1.3 1.5± 0.2 – – 1.3× 10−10 2.9× 10−10 1.1/73

I 8520 9520 0.9 15.5+1.6
−1.5 1.6± 0.2 6.32± 0.05 0.10 6.2× 10−11 1.8× 10−10 0.8/107

J 9520 10420 0.8 14.3+1.4
−1.5 1.2± 0.2 – – 8.4× 10−11 1.9× 10−10 0.8/110

K 10420 11520 1.0 17.0± 1.5 1.3± 0.2 – – 6.5× 10−11 1.6× 10−10 1.1/114

L 11520 14520 2.6 23.3± 2.0 1.6± 0.2 – – 2.3× 10−11 8.5× 10−11 1.0/102

M 14520 16620 1.8 28.0+5.0
−4.8 1.7± 0.4 – – 8.2× 10−12 3.3× 10−11 1.2/58

N 16620 18870 1.8 43.4+10.7
−9.7 2.0± 0.6 – – 5.1× 10−12 5.3× 10−11 1.4/36

O 18870 42840 20.8 <0.5 -0.9± 0.3 6.36± 0.06 1.1 2.2× 10−13 2.2× 10−13 1.0/13

O1 18870 22820 3.4 <8.0 -1.8+0.6
−0.4 6.33± 0.06 1.2 9.7× 10−13 9.8× 10−13 0.8/5

O2 22820 42840 17.4 <1.4 0.3+0.5
−0.6 – – 8.8× 10−14 9.1× 10−14 (12.5/10)

Notes. The continuum spectral model is an absorbed power law. Here, NH is the absorption column density, Γ is the power-law photon index, Eline

is the energy of the centroid of the iron line, and EW line the corresponding equivalent width. Fobs (Funabs) is the absorbed (unabsorbed) flux in the
1–10 keV band. In the last column we report the value of the χ2

red/d.o.f. or the corresponding value of the C-statistics/d.o.f, for each spectrum.
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Fig. 10. Unfolded Epic-pn spectrum of IGR J18410-0535 during
the interval O in Table 1. The best-fit model in X here is
phabs1*(pow1+Gauss+phabs2*pow2). The value of phabs1 was fixed
in the fit to 1.8× 1022 cm−2 and the photon index of the two power laws
was forced to be the same (see Sect. 2.2 for details). The dashed line
corresponds to the less absorbed power-law component in the fit, and
the dot-dashed line to the more absorbed one. The dotted line indicates
the iron line component at ∼6.4 keV. The bottom panel shows the resid-
uals from the fit.

(Γ = 1.0); the corresponding value of the absorption column
density was NH = (1.6+2.0

−1.0) × 1022 cm−2, compatible with the ex-
pected Galactic value in the direction of the source. Given these
results, we did not attempt to fit this spectrum with a double
power-law model.

Adding to the spectral model an iron line with an energy
fixed at Eline = 6.36 keV provided an upper limit (90% c.l.) to
its normalization and EW of 1.8× 10−6 and 1.9 keV, respectively.
While the upper limit to the EW is consistent with that estimated
for the O spectrum, the normalization is slightly lower. However,
it is still compatible with the value expected because of the de-
crease in the flux in the two spectra.

All these results suggest that the drop in the count-rate no-
ticed around t ∼ 23 000 s was accompanied by the occurrence of
a further spectral change in the X-ray emission from the source.
The spectrum O1 could not be described well by assuming a sim-
ple absorbed power-law model and the addition of a second more
absorbed component (plus the iron line) provided a more reason-
able fit to the data. In contrast, the spectrum O2 could be well
described by using a single relatively low absorbed power-law
component. We show the two spectra O1 and O2 in Fig. 12, and
discuss their interpretation further in Sect. 5.

We note finally that the relatively low quality statistics of
spectra A and O2 and large errors affecting the values of their
best-fit parameters prevent us from making a clear statement
about any change in the spectral properties of the source before
and after the occurrence of the flare. The XMM-Newton data re-
vealed, however, that the flux of the source before the onset of
the event (time interval A) was a factor ∼3.5 higher that that es-
timated during the last part of the observation (time interval O2).

2.3. Timing analysis

IGR J18410-0535 was reported in previous studies to emit pul-
sations at a period of ∼4.7 s (Bamba et al. 2001; Romano et al.
2009; see also Sect. 1). We carried out an in-depth search for
coherent modulations in data collected with both the Epic-pn
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Fig. 11. Top panels: contour plots of the iron line centroid energy vs. normalization measured from the spectrum E (left), I (middle), and O (right).
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(middle), and O (right). All these spectra were fit by using only an absorbed power-law model in order to highlight the presence of the iron line in
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Fig. 12. The two spectra O1 and O2 extracted during the fist ∼3 ks and
the last ∼17 ks of the time interval O in Table 1. To facilitate the visual
comparison, we used in this figure a grouping of 5 photons per bin for
both spectra. We show the fit obtained with a simple power-law model
to highlight the iron line at ∼6.4 keV.

and Epic-MOS cameras by extracting barycentered source and
background event lists (we used the most accurately determined
source position; see Sects. 1 and 2.3). We applied to the lists
of barycentered photon arrival times in the 0.3–12 keV energy
range the power-spectrum search algorithm developed by Israel
& Stella (1996). This method is optimized to search for peri-
odicities in “coloured” power spectrum components and derive
upper limits if no signal is detected. Pulsations were searched
for by using both the photon arrival times of the entire XMM-
Newton observation and in the different time intervals selected
for the spectral analysis. We did not find any significant indica-
tion of pulsations. As an example, Fig. 13 shows the results ob-
tained by applying the method of Israel & Stella (1996) to the list

of photon arrival times extracted from the entire XMM-Newton
observation. In Table 2, we also report all the 3σ upper limits
on the pulsed fractions5 and pulsation frequencies we investi-
gated. We show in this table the upper limit estimated by using
XMM-Newton data accumulated during the entire observation
(A+B+C+D+E+F+G+H+I+J+K+L+M+N+O), the flare event
(including rise and decay, C+D+E+F+G+H), the rise of the flare
(C+D), the top of the flare (E), the beginning of the flare decay
(F+G+H), the last part of the flare decay (J+K+L), and the time
interval in which the higher absorption was measured (M+N).
This selection of intervals was carried out to investigate whether
pulsations might have been present only during part of the event
observed by XMM-Newton.

For all the time intervals reported in Table 2, we also per-
formed additional searches of pulsations by separating the lists
of photon time arrival times in the soft (0.3–4 keV) and hard (4–
12 keV) energy bands and by combining strictly simultaneous
EPIC-pn and MOS event lists (in this case, a common time reso-
lution of 0.3-s was adopted). No significant improvement to the
upper limits indicated in Table 2 could be obtained. Even though
for a number of time intervals considered in Table 2 the derived
3σ upper limit to the pulsed fraction was relatively high (∼30–
50%), the entire exposure time of the XMM-Newton observation
provided relatively tight constraints on the presence of pulsa-
tions from IGR J18410-0535 compared to those reported previ-
ously (see Sect. 1). Motivated by these findings, we reanalyzed
all the published ASCA and Swift data for which detections of
pulsations at ∼4.7 s were reported.

3. ASCA data analysis

IGR J18410-0535 was observed by ASCA for the first time
on 1994 April 12 (MJD 49 454.677–49 454.701), during
the survey of the Scutum arm region (hereafter Obs.1). A

5 Here we define the pulsed fraction as the semi-amplitude of the sinu-
soid divided by the source average count rate, (Imax − Imin)/(Imax + Imin).
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Table 2. Three σ c.l. upper limits on the pulsed fraction of IGR J18410-0535 (see notes below the table).

XMM-Newton (0.3–12 keV)

Time interval Instrument (time resolution)

PN (73.4 ms) MOS1 (0.3 s) MOS2 (1.75 ms)

A+B+C+D+E+F+G+H+I+J+K+L+M+N+O 6–10% (0.02–6.8 Hz) 10–20% (0.01–1.6 Hz) 15–30% (0.02–286 Hz)

C+D+E+F+G+H 10–30% (0.04–6.8 Hz) 10–30% (0.01–1.6 Hz) 10–30% (0.03–286 Hz)

C+D 30–50% (0.05–6.8 Hz) 50–70% (0.1–1.6 Hz) 60–80% (0.06–286 Hz)

E 20–35% (0.05–6.8 Hz) 20–35% (0.03–1.6 Hz) 20–70% (0.1–286 Hz)

F+G+H 15–20% (0.08–6.8 Hz) 20–30% (0.02–1.6 Hz) 20–30% (0.05–286 Hz)

J+K+L 10–20% (0.02-6.8 Hz) 20–40% (0.01–1.6 Hz) 35–60% (0.02–286 Hz)

M+N 40–60% (0.02–6.8 Hz) 75–100% (0.02–1.6 Hz) 80–100% (0.02–286 Hz)

ASCA (0.7–10 keV)

GIS (0.5 s)

Obs.1+Obs.2 30–45% (0.01–1 Hz)

Notes. The three σ upper limits on the pulsed fraction of IGR J18410-0535 are determined for the three Epic cameras in the different time intervals
reported in Table 1. The results of a similar analysis carried out on the ASCA data are also reported (see Sect. 3.1 for the discussion of the ASCA
data analysis).
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Fig. 13. Power spectrum produced using data from the entire XMM-
Newton observations (0.3–12 keV). The upper continuous line repre-
sents the power threshold for detection of periodicity at a 3σ c.l., ac-
cording to the method described by Israel & Stella (1996). We also show
in the bottom part of the plot a second continuous curve that represents
the upper limit calculated with the same method, on the presence of pul-
sations from IGR J18410-0535 as a function of the frequency. The two
dashed lines represent the 5% and 10% upper limit levels on that curve.
The most stringent upper limit we could provide with this method is
6–10% for frequencies in the range 0.02–6.8 Hz.

follow-up observation was carried out on 1999 October 3–4
(MJD 51 454.252–51455.463, hereafter Obs. 2). On both occa-
sions, IGR J18410-0535 was outside the field of view (FOV) of
the Solid-state Imaging Spectrometers (SIS, Burke et al. 1993),
but included in that of Gas Imaging Spectrometers (GIS, Ohashi
et al. 1996). The GISs were operated in the nominal PH mode
with a time resolution of 62.5 ms for data taken in high bit-rate
and 0.5 s for those taken in medium bit-rate. For our analy-
sis, we used only GIS data obtained when the satellite was ei-
ther outside the South Atlantic Anomaly and low cut-off rigidity
regions (>6 GV), or when the target elevation angle was >5◦.
Particle events were removed based on rise-time discrimination

with the  task (Ohashi et al. 1996). After this screen-
ing, the total available exposure times of Obs. 1 and 2 were 2 ks
and 36 ks, respectively. To improve the quality of the statistics,
we combined data from the GIS-2 and GIS-3 detectors. ASCA
events were extracted from a circular region of 3 arcmin ra-
dius centered on the best known source position (Halpern et al.
2004). The background was extracted from an annular region
around the source position with inner radius of 4.3 arcmin and
outer radius of 6.8 arcmin. This annular region is free from field
point sources and is unaffected by the extended diffuse emis-
sion from the nearby supernova remnant G26.6−0.1 (Bamba
et al. 2003). The inner radius of the background extraction ra-
dius was chosen so as to avoid contamination due to the tail
of the ASCA PSF. Photon arrival times were all converted to
the Solar System barycenter (SSB) with the task  us-
ing the Chandra position reported by Halpern et al. (2004). The
log of the ASCA observations of IGR J18410-0535 is given in
Table 3.

3.1. Timing analysis

In Fig. 14, we show the background-subtracted light curve (top
panel) of IGR J18410-0535 in the 0.7–10 keV energy band.
According to the results reported by Bamba et al. (2001), we
note that the source was characterized by a variable intensity, and
that a 5 hr-long X-ray flare is visible at the end of Obs. 2 (starting
from MJD 51455.3). During this flare, the intensity of the source
increased by a factor of ∼5. After ∼14 ks, IGR J18410-0535 re-
turned to an X-ray emission level comparable to that observed
before the flare. The bottom panel of Fig. 14 shows the evolution
of the hardness ratio computed by using the lightcurves extracted
in the 0.7–2 keV and 2–10 keV energy bands. In Obs. 2, the HR
showed a remarkable increase (from ∼0.5 to ∼2) with the source
intensity.

During the flare in Obs. 2, Bamba et al. (2001) reported on
the detection of coherent pulsations by carrying out a fast Fourier
transform (FFT) of the barycentered photons-event arrival times
selected in the 1.9–4.9 keV energy range (energy channels 161–
415) and extracted from a 3′ circular region centered on the
best known source position. An excess in the power spectrum
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Table 3. ASCA observations log of IGR J18410-0535.

Instrument Observation Start time Time elapsed Exposure
ASCA (1) 61009100 1994-12-04T15:48:13 4312.0 2112.0
ASCA (2) 57026000 1999-10-03T05:47:32 65 484.0 37 373.6

Table 4. Swift observations log of IGR J18410-0535.

Obs. ID Instr. Start time Stop time Exp.
(UTC) (UTC) (ks)

00030988001 XRT/PC 2007-10-26 00:08 2007-10-26 06:45 1.4
00030988004 XRT/PC 2007-11-05 09:08 2007-11-05 09:28 1.2
00030988005 XRT/PC 2007-11-09 16:11 2007-11-09 16:32 1.3

Notes. Exp. indicates the effective exposure time of the observation.
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Fig. 14. Top panel: ASCA light curve of IGR J18410-0535 in the 0.7–
10 keV energy band. Bottom panel: hardness ratio of the 4–10 and 1–
4 keV GIS light curves. The vertical dashed lines mark the flare episode
starting at MJD 51 455.3. The hashed region marks the separation be-
tween Obs. 1 and Obs. 2. A and B denote the two data set selected for
the timing analysis.

(0.02–1 Hz) of ∼40 was visible at ∼0.211 Hz (their most accu-
rately determined spin period was P = 4.7394 ± 0.0008 s, see
also Sect. 1). Taking into account the total number of indepen-
dent frequency trials, this excess corresponds to 4.4 (Gaussian)
standard deviations.

We revisited the data from Obs. 2 performing a power spec-
trum analysis. The source events were collected during the flare
with a time bin of 0.5 s (the time resolution of medium bit-
rate ASCA data) and extracted from a 3′ radius circular re-
gion around the source. We investigated frequencies in the range
0.02–1 Hz with a resolution of 3.7× 10−5 Hz, first by using the
entire energy range of the GIS (i.e. 0.7–10.0 keV) and then only
the events in the 1.9–4.9 keV and 4.9–10.0 keV energy intervals.

In the first and the latter cases, the power spectrum did not
reveal any significant deviations from a statistically flat distribu-
tion. The corresponding estimated upper limit on the pulsed frac-
tion of the source at different frequencies is reported in Table 2
(we used the method described in Sect. 2.3 in order to facili-
tate the comparison with the XMM-Newton results). The power
spectrum realized with the events in the energy interval 1.9–
4.9 keV showed a peak at ∼0.211 Hz with a power of ∼33 (see

Fig. 15). If all the inspected independent frequencies and the
ad-hoc selection in energy are taken into account to estimate the
total effective number of trials, this peak corresponds to a detec-
tion significance of <∼3 (Gaussian) standard deviations.

A signcance of ∼4.4 (Gaussian) standard deviations for pul-
sations at ∼4.7 s could be obtained only by applying the FFT to
the 1.9–4.9 keV flare events and using a time bin of 1 s. Different
choices of the time binning would led to a result comparable
to that obtained with our Fourier analysis (detection signcance
3 sigma).

Since pulsations in the ASCA data seems to be detected with
a suciently high statistical significance only when a specic en-
ergy range is selected and only performing the analysis with the
FFT technique and an ad-hoc time bin of 1 s, we conclude that
this detection could be due to a statistical fluctuation.

4. Swift data analysis

Pulsations in the X-ray emission of IGR J18410-0535 were also
reported by Sidoli et al. (2008). These authors used the three
Swift /XRT observations ID. 00030988001, 00030988004, and
00030988005 (see Table 4). All data were collected in photon
counting mode (PC, time resolution 2.5 s), and summed up to
extract a single source photon event list and increase the statis-
tics. By using a folding technique on this event list, Sidoli et al.
(2008) found a peak in the periodogram at 4.70088± 0.0004 s
with a reduced χ2 of 6.3 (9 degree of freedom).

4.1. Timing analysis

We reanalyzed the Swift XRT data of the above Swift-XRT ob-
servations to verify the detection of pulsations. We used the same
Swift data analysis described in Sidoli et al. (2008). XRT data
were processed with standard procedures (xrtpipeline v. 0.11.6).
Filtering and screening criteria were applied by using 
and only event grades 0–12 were considered. We extracted a
source event list (194 events) by using a circular region of 29 arc-
sec centred on the best known position of IGR J18410-0535
(Halpern et al. 2004) and a background event list (1106 events)
by using an annular region centered on the same position and
with inner radius of 245 arcsec and outer radius of 630 arcsec.
The radii of the background extraction region were chosen in
order to avoid any contamination from the tail of the PSF6. The

6 See also http://heasarc.gsfc.nasa.gov/docs/swift/

analysis/xrt_swguide_v1_2.pdf.
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Fig. 15. ASCA power spectrum of IGR J18410-0535 obtained by using
events in the 1.9–4.9 keV energy range and a time resolution of 0.5 s.
The arrow marks the apparent detection of pulsations at 0.211 Hz. As
we discuss in the text, this excess in the power-spectrum is not statisti-
cally significant if the correct number of trials is taken into account (see
Sect. 3.1).

arrival times of the source and background events were all con-
verted to the SSB with the task . We applied the fold-
ing technique adopted by Sidoli et al. (2008) to the source and
background event lists, to search for a period of ∼4.7 s. In the pe-
riodogram obtained from the analysis of source events (Fig. 16,
upper panel) the peak at 4.70088 (χ2

red/d.o.f. = 6.5/9) is visible.
However, we noted that the same peak is also present in the peri-
odogram obtained from the background event list (Fig. 16, lower
panel). In this case, we obtained χ2

red = 23. The difference in the
value of the χ2

red (a factor ∼4–5) is consistent with the different
quality of the statistics content of the two data samples. We thus
argue that the detection of pulsations reported by Sidoli et al.
(2008) was merely due to an instrumental effect present in the
photon arrival times of the Swift /XRT data. Investigations of
similar effects in other Swift /XRT data-sets are currently going
on and will be reported in the relevant on-line pages7.

5. Discussion

During the 45 ks-long XMM-Newton observation presented here,
IGR J18410-0535 underwent a bright X-ray flare lasting about
15 ks. The rise of the flare occurred 5 ks after the beginning of
the observation, thus we were able to follow in detail the whole
event to the return to quiescence. A time-resolved spectral anal-
ysis of the observation revealed that the source X-ray emission
could be described well in the different selected time intervals
by using an absorbed power-law model. The photon index of
the power law remained virtually constant at least for the first
20 ks of the observation, but in this period the absorption col-
umn density underwent dramatic changes. We measured a sig-
nificant rise in the NH from ∼3 to 20× 1022 cm−2 across the
transition from quiescence to the peak of the flare, followed by
a sudden decrease to a value of 10× 1022 cm−2 which then re-
mained stable for the following 4 ks. In the subsequent 11 ks,
the NH progressively increased to a value of ∼50× 1022 cm−2,
and the spectral properties of the source changed dramatically

7 http://www.swift.ac.uk/xrtdigest.shtml
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Fig. 16. Periodogram realized with the Swift XRT data by using the
source (upper panel) and background (lower panel) event lists ex-
tracted by summing up data in the three observations ID. 00030988001,
00030988004, and 00030988005.

during the last 23 ks of observation. In this time interval, we
measured an abrupt flattening of the source power-law photon
index and revealed the appearance of a prominent emission line
at ∼6.4 keV. Similar behavior is usually observed during the oc-
currence of X-ray eclipses in some of the sgHMXBs and in only
one SFXT (IGR J16479-4514, see e.g., Bozzo et al. 2008b, and
references therein). When the NSs in one of these systems is
obscured by its supergiant companion, the X-ray emission pro-
duced by the accretion process close to the surface of the com-
pact object is progressively absorbed in the photosphere of the
supergiant star. Only the X-rays reflected by matter in the stellar
wind remain visible to the observer and a fluorescence emission
line at ∼6.4 keV becomes very prominent.

In the present case, that IGR J18410-0535 underwent a
bright X-ray flare after which the source turned off sharply be-
cause of an X-ray eclipse appears to be unlikely. Below we dis-
cuss an alternative scenario, in which the entire event observed
by XMM-Newton is interpreted as the accretion of a massive
clump onto the compact object hosted in IGR J18410-0535.

5.1. Ingestion of a massive clump

The idea that dense “clumps” of matter might be generated in
the wind of supergiant stars as a consequence of different mag-
netohydrodynamic instabilities has found some support in the
results of several numerical simulations (Runacres & Owocki
2002; Oskinova et al. 2007, and references therein) and in ob-
servations of isolated OB stars (see e.g., Eversberg et al. 1998;
Martins 2011). Even though the physical parameters of these
clumps (i.e., mass, radius and density) are still largely unknown
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Fig. 17. An artist’s view of the “ingestion of a clump” described in Sect. 5.1. Different elements in the figure are not represented to scale. The
figures illustrate qualitatively the main phases of the event in chronological order from the top left to the bottom right. In each figure, we plot in
the top right corner the XMM-Newton lightcurve of the event already shown in Fig. 7 and highlight with a red color the data points in the plot that
correspond to the physical scenario described in the picture. From top left to bottom right: a) at the beginning of the XMM-Newton observation the
NS is accreting from a low density material, such that the observed X-ray luminosity is relatively low (∼4× 1032 erg s−1); b) the NS encounters
the clump and XMM-Newton observes a rapid rise in the X-ray flux from the source; c) the higher X-ray luminosity (∼4× 1035 erg s−1) causes the
photoionization of the surrounding material and a decrease in NH; d) accretion decreases and the source undergoes a rapid decay in the X-ray flux;
e) the remains of the clump move in front of the NS along the observer line of sight and obscure the X-ray source; f) the remains of the clump
move away and the source returns to its quiescent state (∼1032 erg s−1, some residual accretion might still take place).

because of poorly estimated theoretical and observational pa-
rameters, a clumpy wind scenario is the founding hypothesis
of most models developed so far to interpret the X-ray variabil-
ity of the SFXTs (in’t Zand 2005; Walter & Zurita Heras 2007;

Bozzo et al. 2008a, and references therein). All these models
predict that fast X-ray flares can be produced by the sporadic
capture and accretion of one of these clumps onto the NSs hosted
in the SFXTs. The role of these dense clumps distributed all
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around the NS orbit is two-fold. Clumps simply passing in front
of the X-ray source cause dimming or even obscuration, and dis-
play the signatures of photoelectric absorption, at least during
the ingress and egress stages. In addition to these phenomena,
clumps that lead to increased accretion also give rise to large
variations in the X-ray luminosity. To reach the required X-ray
luminosity level, different densities of the clumps might be re-
quired, depending also on the strength of the NS magnetic field
and the value of its spin period. Both the rotation of the NS and
the extent of its magnetosphere can act as gates that halt most
of the accretion during quiescence and release it during the out-
burst, thus significantly altering the total dynamic range of the X-
ray luminosity (Grebenev & Sunyaev 2007; Bozzo et al. 2008a).

In the case of IGR J18410-0535, the entire flaring episode
observed by XMM-Newton might be due to the accretion of a
single massive clump.

– t = 0–3200 s (time interval A): Pre-flare quies-
cence. At the beginning of the XMM-Newton observa-
tion, the source was caught at a relatively low X-ray
flux (3.2× 10−13 erg cm−2 s−1). For a source distance of
3 kpc, this would translate into an X-ray luminosity of
3.5× 1032 erg/cm2 s−1, i.e. a value typical of SFXTs in qui-
escence. The spectral parameters, NH, Γ, that we measured
in this time interval (spectrum A in Table 1) are compati-
ble with those inferred for the “very low state” reported by
Romano et al. (2009). The relatively low flux and absorp-
tion column density measured in this state with respect to the
other average X-ray emission states (“medium” and “high”)
suggests that the NS at the beginning of the XMM-Newton
observation might have been located in a tenuous region of
the stellar wind such that accretion was taking place only at
a very low level or that it was inhibited by magnetic and/or
centrifugal barriers.

– t = 3200–5220 s (time intervals B, C, and D): Rise of
the flare. Around t = 3200 s, the XMM-Newton lightcurve
showed a remarkable rapid increase in the count-rate from
IGR J18410-0535. This is firstly noticeable in the hard en-
ergy band (4–12 keV, see Fig. 2), thus indicating a high level
of absorption. During the rise of the flare, we measured a sig-
nificant increase in NH, reaching a value of ∼2× 1023 cm−2

at the top of the flare (t ≃ 5200 s). At this stage, the source
X-ray flux increased to 3.3× 10−10 erg cm−2 s−1, correspond-
ing to an X-ray luminosity of 3.6× 1035 erg s−1. A similar si-
multaneous increase in the X-ray luminosity and absorption
column density can be well understood by assuming that a
massive clump approached the NS magnetosphere and filled
the immediate surroundings with high density material. The
increase in the local density can easily lead to a significant
increase in the NH along our line of sight and eventually
compress the NS magnetosphere to open the magnetic and/or
centrifugal barrier and permit direct accretion onto the com-
pact object. In this interpretation, we can use the observa-
tional results in Table 1 to estimate the physical properties of
the clump.
In wind accretion theory, the typical time scale on which
matter is accreted and reaches the surface of the NS from the
magnetospheric boundary is of the order of the local free-fall
time, i.e. hundreds of seconds (see e.g., Bozzo et al. 2008a).
The duration of the flare observed from IGR J18410-0535 is
∼15 ks, thus this time is likely to be linked to the radial extent
of the clump. Therefore, we can estimate

Rcl ≃ 1/2vw∆tflare = 8 × 1011vw8 cm, (1)

where Rcl is the radius of the clump and vw8 is the relative ve-
locity between the clump and the NS in units of 108 cm s−1

(we neglect here the orbital velocity of the NS and consider
a spherical clump moving with the same velocity as the sur-
rounding stellar material; Lépine & Moffat 2008). To a first
order approximation, only the material that falls inside the
accretion radius, Racc, of the NS is accreted, and thus

Mcl = (Rcl/Racc)
2Macc, (2)

where Racc = 2GMNS/v
2
w, MNS = 1.4 M⊙ is the mass of the

NS, and Macc is the total mass accreted during the flare. The
latter can be estimated by integrating the X-ray flux mea-
sured during the flare as a function of time in Fig. 7 and using
the relations Funabs = LX/(4πd2) and LX = GMNSṀacc/RNS
(where d is the source distance, RNS = 106 cm is the NS ra-
dius and Ṁacc is the mass accretion rate). We found Macc =

1.5 × 1019d3 kpc g (where d3 kpc is the source distance in units
of 3 kpc) and thus

Mcl = 1.4 × 1022v6w8d2
3kpc g, (3)

which clearly has a strong dependence on the wind velocity.
Another equation that can be used as a cross-check of these
results is that relating the mass and radius of the clump to the
expected absorption column density caused by its presence
in the vicinity of the NS, i.e.

NH ≃ Mcl/(R
2
clmp) = 1.3 × 1022v4w8d2

3kpccm−2. (4)

As the NH measured by the spectral analysis at the top of
the flare is ∼2× 1023 cm−2, Eq. (4) implies a wind velocity
slightly lower than 108 cm s−1. We note that the estimated
values of Mcl and Rcl are in qualitative agreement with those
expected according to the clumpy wind model developed by
Ducci et al. (2009).

– t = 5220–6320 s (time interval E): Top of the flare. The re-
sults of the spectral analysis obtained during this time in-
terval can also be clearly explained within the scenario de-
picted above. The time-resolved spectral analysis carried out
in Sect. 2.2 showed that the initial rise in the NH, interpreted
above as being due to a massive clump approaching the NS,
was followed by a sudden decrease in the absorption col-
umn density (by a factor of ∼2) when the system reached the
highest luminosity. According to the calculation of Krolik &
Kallman (1984), a similar drop in NH is to be expected be-
cause of the heating and photoionization of the clump mate-
rial by the higher X-ray flux. In particular, a major change in
the opacity of the material with respect to the X-ray photons
is expected when the so-called ionization parameter Ξ ≃ 10.
The latter is defined as

Ξ =
LX

4πr2NkT
≃ 8v−5

w8d−2
3kpcL35T−1

5 , (5)

where L35 = LX/(1035 erg s−1) is the luminosity coming from
the X-ray source, r ≃ Rcl is the distance of the material from
the source, and T ≃ 105 K is the temperature of the clump
(Ducci et al. 2009). We therefore expect Ξ to be close to
the critical value for a luminosity similar to that reached by
IGR J18410-0535 at the peak of the flare. During this time
interval, we also detected a significant iron line with a cen-
troid energy of 6.56+0.06

−0.05 keV. This is somewhat higher than
the Fe Kα line of neutral iron (∼6.4 keV), thus suggests that
the X-ray flux produced by accretion onto the NS partly ion-
ized the clump matter (according to Kallman et al. 2004, the
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centroid energy we measured at the top of the flare requires
the presence of iron ions with ionization stages higher than
FeXXI).

– t = 6320–9520 s (time intervals F, G, H, and I): Beginning
of the flare decay. During this interval, the source X-ray
flux was beginning to decrease. When it dropped below
∼6× 10−11 erg cm−2 s−1, a new rise in the NH is measured
(spectrum I). This is to be expected according to our inter-
pretation where the X-ray flux decreases below the level re-
quired for photoionising the clump material. A further possi-
ble indication of the change in the ionization stage of the
material around the NS can be deduced by the energy of
the iron line detected during interval I. This is somehow
lower than that measured at the top of the flare and close to
the value expected in case of neutral iron (see Fig. 11).
An enigmatic finding that emerged from the analysis of the
XMM-Newton data during this time interval is the drop in the
source count-rate visible in Fig. 1 around t = 8500–9500.
As we discussed in Sect. 2.2, during this interval no particu-
lar spectral change was observed in the X-ray emission (we
note only a marginal increase in the NH with respect to the
spectra extracted from the nearby time intervals and detected
a significant iron line at ∼6.4 keV, see Table 1). A closer in-
spection of the XMM-Newton lightcurve of the source around
t = 8500–9500 revealed that the apparent drop in count-rate
occurred in both the low (0.3–4 keV) and hard (4–12 keV)
energy bands and that several small flares took place during
this period (see Fig. 3). We suggest here that a qualitatively
similar variations in the X-ray flux from the source might
be expected because of some instabilities taking place close
to the NS magnetosphere (e.g., when the decreasing accre-
tion rate of material from the clump is close to the threshold
for the opening/closing of the centrifugal and/or magnetic
barrier Bozzo et al. 2008a). Alternatively, it can be related
to some small structures in the stellar wind located close or
within the clump itself.

– t = 9520–42 840 s (time intervals J, K, L, M, N, and O):
Late stages of the flare decay. The spectral analysis revealed
a progressive increase in the absorption column density, that
reached a value of NH ≃ 50 × 1022 cm−2 in the time inter-
val N. Even though an increase of the NH is still expected
at these times because of the lower ionizing X-ray flux, the
value above is significantly higher than that measured when
the source reached the peak of the X-ray flux. This result
can be explained by assuming that, after the occurrence of
the flare, the clump was located in front of the NS along our
line of sight to the source. This would agree with the dra-
matic change in the X-ray spectrum of the source observed at
the end of the flare during interval O (t = 18 870–42 840 s).
We suggested in Sect. 2.2 that a reasonable fit to this spec-
trum could have been obtained with a model comprising
two power-law components with different absorptions plus
an iron line at 6.4 keV. This model is usually adopted to
interpret the X-ray emission of sgHMXBs in eclipse (see
e.g., van der Meer et al. 2005; Torrejón et al. 2010, for a
review), but in the case of IGR J18410-0535, we assume that
the obscuration of the NS was caused by a massive clump
rather than by its supergiant companion. The more absorbed
power law represents the X-ray emission caused by the ac-
cretion onto the NS that is strongly extinguished by the pres-
ence of the clump. The less absorbed power-law component
is introduced to take into account the scattered emission in
the stellar wind material spread all around the binary sys-
tem, and might also comprise the X-ray emission produced

by the shocks in the wind itself (see e.g., Bozzo et al. 2010,
and references therein). This emission is unaffected by the
presence of the clump and is thus only seen through an ab-
sorption column density that is compatible with the Galactic
value. The iron line is caused by X-ray irradiation of cold
iron in the wind of the supergiant star (see, e.g. Kallman et al.
2004), and its relatively high EW also support the idea that
most of the continuum emission is suppressed by the obscu-
ration of the clump. However, if we consider that the obscu-
ration of the X-ray source is taking place during the entire
time interval O, some ad hoc assumptions on the system ge-
ometry would probably be required to explain how a clump
with the physical dimensions estimated earlier in this sec-
tion and moving with a velocity of the order of ∼108 cm s−1

can hide the NS for about ∼20 ks. We suggest instead that
the obscuration occurred only during the first ∼3 ks of the
time interval O (i.e. time interval O1). Once the clump moved
away, the accretion onto the NS decreased substantially and
the X-ray emission detected during the last ∼20 ks of ob-
servation (time interval O2) was partly due to the residual
accretion and partly to the scattering of these X-rays in the
wind of the supergiant star and the shocks occurring within
the wind itself (see e.g., Bozzo et al. 2010, and references
therein). Even though the statistics of the data accumulated
during the time intervals O1 and O2 was of too low quality
to enable us to draw a firm conclusion, the analysis of these
spectra carried out in Sect. 2 is consistent with this idea. We
showed that a fit to the O1 spectrum required both the pres-
ence of the highly absorbed and the less absorbed power-
law component, whereas the spectrum O2 could be described
well using only the less absorbed power-law. However, given
the very poor spectral information available during the time
interval O2, we cannot presently rule out that after the
clump moved away, the obscuration of the NS by its su-
pergiant companion contributed to reduce the flux measured
at this time (∼9× 10−14 erg cm−2 s−1, 1–10 keV, i.e a fac-
tor of ∼3.5 lower than that measured in the interval A, see
Table 1).
As a final remark, we also note that an iron line with a cen-
troid energy and an EW compatible with that measured dur-
ing the time interval I and E by XMM-Newton was detected
from IGR J18410-0535 during the ASCA observations car-
ried out in 1994 and 1999 (see Sect. 1). On those occasions,
the line was clearly visible in the spectra of the source ex-
tracted in the flux range (0.1–1.0)× 10−11 erg cm−2 s−1 (2–
10 keV), i.e. significantly different from those corresponding
to the XMM-Newton detections (see Table 1). No convincing
indication of the presence of an iron line could be found in
the XMM-Newton spectra extracted at similar flux levels (in-
tervals L, M, N; see also Sect. 2.2). As the centroid energy
of the iron line, together with its EW and normalization, pro-
vides information on the ionization state of stellar wind ma-
terial and the amount of material around the NS, these results
support the idea that the conditions of the stellar winds in the
SFXT sources can change significantly during the NS orbits
(see e.g., Walter & Zurita Heras 2007).

5.2. IGR J18410-0535: another SFXT hosting
a slow-spinning NS?

The timing analysis of the XMM-Newton data did not reveal
any pulsations at 4.7 s, which is the periodicity detected during
previously ASCA and Swift observations of IGR J18410-0535
(see Sect. 1). The relatively tight upper limits on the pulsed

A130, page 13 of 15



A&A 531, A130 (2011)

fraction derived from the XMM-Newton data (see Table 2),
convinced us to reanalyze the archival ASCA and Swift data
where pulsations were detected. In the first case, our results re-
vealed that the detection might have been due to a statistical fluc-
tuation, while in the second case the detection was most likely
related to an instrumental problem. In addition the analysis of
the latest Swift observations performed during the outburst of
the source that occurred on 2010 June 5 could not confirm the
presence of pulsations (Romano et al. 2011). These results sug-
gest that the NS in IGR J18410-0535 might not be pulsating at a
period of 4.7 s.

Among the ∼15 sources in the SFXT class, so far only
IGR J11215-5952, IGR J18483-0311, and IGR J16465-4507,
displayed unambiguously coherent pulsations at ∼186.78 s,
∼21 s, and ∼228 s, respectively (Sidoli et al. 2007; Walter &
Zurita Heras 2007; Giunta et al. 2009). However, IGR J11215-
5952 proved to be a very peculiar source, as it is the only
SFXT displaying regularly periodic outbursts connected with the
NS passage at the periastron of the system, while IGR J18483-
0311 and IGR J16465-4507 were classified as “intermediate
SFXTs” due to their somewhat longer outbursts (up to a few days
as opposed to a few hours) and smaller dynamic range in the X-
ray flux variation (<∼103, see e.g. Rahoui et al. 2008; Romano
et al. 2010b; La Parola et al. 2010; Clark et al. 2010). All SFXTs
displaying a very large dynamic range in the X-ray luminos-
ity (>∼104–105), including IGR J18410-0535, seem instead to be
“non-pulsating” sources (see the cases of, e.g. XTE J1739-302
and IGR J08408-4503 and IGR J17544-2619, Bozzo et al. 2010;
Rampy et al. 2009). In some of these cases, pulsations were
searched deeply up to periods of several hundred seconds, and
no evidence for them was found (Smith et al. 2006; Bozzo et al.
2009, 2010). These non-detections are still consistent with the
possibility that these SFXT sources might host NSs with very
long spin periods (>∼1000 s) and that their extreme X-ray vari-
ability could be related to the centrifugal and magnetic gating
mechanism (Bozzo et al. 2008a).

6. Conclusion

We have reported on the detection with XMM-Newton of a rela-
tively bright flare from the SFXT source IGR J18410-0535. The
lightcurve and spectral analysis presented in Sect. 2, provided
several indications that the event was entirely due to the accre-
tion of a massive clump onto the NS hosted in this system. Even
thought the occurrence of an eclipse by the companion star to-
ward the end of the observation could not be completely ruled
out (see Sect. 5), we provided convincing evidence in favor of
the “ingestion of a clump” scenario. We have shown that:

– The rise of the flare was followed by a sudden increase in
the absorption column density in the direction of the source.
This is expected if the event is triggered by the presence of a
massive clump approaching the NS.

– At the peak of the flare, a significant drop in the absorption
column density occurred; this was ascribed to the effect of
the X-ray photoionization caused by the higher X-ray lumi-
nosity of the source (this is also supported by the evidence of
a change in energy of the iron line centroid with the source
luminosity).

– The gradual increase in the absorption column density in the
direction of the source during the decay from the top of flare,
together with the detection of a prominent iron line in the last
part of the XMM-Newton observation, could be interpreted
as implying that the remains of the clump first covered the

X-ray source for a few ks (∼3 ks) and then moved away
from the NS. The residual X-ray emission observed in the
last ∼17 ks of the observation might be due to some residual
accretion taking place onto the NS.

In accordance with this interpretation, we have provided a rough
estimate of the mass and radius of the clump by assuming a
spherical shape. We note that, because of our poor knowledge
of the properties of the binary system IGR J18410-0535 and the
lack of a clear confirmation of its spin period (see Sect. 5.2), it
was not possible to take into account in these calculations the
effect of the NS magnetic field according to the model devel-
oped by Bozzo et al. (2008b). The lack of clear detection of rel-
atively short spin periods in all the most extreme SFXT sources,
including IGR J18410-0535, is still consistent with the possibil-
ity that these object might host NSs with very long spin peri-
ods (�1000 s) and that their extreme X-ray variability could be
partly related to the centrifugal and magnetic gating mechanisms
(Bozzo et al. 2008a).
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