| University
OPEN ’ ACCESS of Dundee

University of Dundee

XmoNet
Bano, Sophia; Asad, Muhammad; Fetit, Ahmed; Rekik, Islem

Published in:
PRedictive Intelligence in MEdicine

Publication date:
2018

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):

Bano, S., Asad, M., Fetit, A., & Rekik, I. (2018). XmoNet: a Fully Convolutional Network for Cross-Modality MR
Image Inference. In |. Rekik, G. Unal, E. Adeli, & S. H. Park (Eds.), PRedictive Intelligence in MEdicine: First
International Workshop, PRIME 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16,
2018, Proceedings (Lecture Notes in Computer Science). Springer International Publishing.
https://www.springerprofessional.de/en/xmonet-a-fully-convolutional-network-for-cross-modality-mr-
image/16118204

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

» Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain.
* You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 21. Aug. 2022


https://discovery.dundee.ac.uk/en/publications/f04883fa-c197-42fd-bf62-2fc733901d64
https://www.springerprofessional.de/en/xmonet-a-fully-convolutional-network-for-cross-modality-mr-image/16118204
https://www.springerprofessional.de/en/xmonet-a-fully-convolutional-network-for-cross-modality-mr-image/16118204

XmoNet: a Fully Convolutional Network for
Cross-Modality MR Image Inference

Sophia Bano', Muhammad Asad?, Ahmed E. Fetit?, and Islem Rekik*

! Wellcome/EPSRC Centre for Interventional and Surgical Sciences and Department
of Computer Science, University College London, UK sophia.bano@ucl.ac.uk
2 Imagination Technologies, UK
3 Biomedical Image Analysis Group, Imperial College London, UK
* BASIRA Lab, CVIP, School of Science and Engineering (Computing), University of
Dundee, UK

Abstract. Magnetic resonance imaging (MRI) can generate multimodal
scans with complementary contrast information, capturing various anatom-
ical or functional properties of organs of interest. But whilst the acquisi-
tion of multiple modalities is favourable in clinical and research settings,
it is hindered by a range of practical factors that include cost and imag-
ing artefacts. We propose XmoNet, a deep-learning architecture based on
fully convolutional networks (FCNs) that enables cross-modality MR im-
age inference. This multiple branch architecture operates on various lev-
els of image spatial resolutions, encoding rich feature hierarchies suited
for this image generation task. We illustrate the utility of XmoNet in
learning the mapping between heterogeneous T1- and T2-weighted MRI
scans for accurate and realistic image synthesis in a preliminary analy-
sis. Our findings support scaling the work to include larger samples and
additional modalities.

Keywords: Fully convolutional networks - MRI - multimodal - image
generation.

1 Introduction

Magnetic resonance imaging (MRI) is the key imaging technology used to aid
the diagnosis and management of a wide range of diseases. Visual character-
istics of tissues of interest can be acquired via a variety of MR modalities
(e.g. T1l-weighted, T2-weighted, FLAIR, diffusion-weighted and diffusion-tensor
imaging), each offering complementary contrast mechanisms. For instance in
neuro-oncology, T1-weighted scans are favourable for observing brain structures
whereas T2-weighted scans can provide rich information for tumour localisation.
However, a number of factors impede acquisition of multimodal scans in clinical
settings; particularly cost, limited availability of scanning time and patient dis-
comfort [7]. In research settings and imaging clinical trials, it is common to face
heterogeneous or incomplete datasets due to similar reasons, as well as acquisi-
tion artefacts and data corruption. This has motivated various efforts in the MR
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Fig.1: The proposed XmoNet enables cross-modality MR image inference, as
demonstrated here with an example. The architecture takes as input a T1-
weighted slice in (a) and predicts the corresponding T2-weighted slice in (c).
Ground-truth T2-weighted slice is shown in (b) for reference. Visual inspection
of (b) and (c) illustrates practical utility of XmoNet in achieving cross-modality
mapping, along with generation of areas which have missing ground-truth data;
a high-value application in clinical and research settings.

literature that can broadly be divided into two categories: (i) improving image
acquisition and reconstruction strategies, and (ii) synthesising a target modality
given a separate source modality; also known as cross-modality generation.

Cross-modality generation has attracted the attention of the medical im-
age computing community in recent years. Work by D. H. Ye et al. [14] inves-
tigated a modality propagation approach, where for each point in the target
image a patch-based search is carried out across a database of images, utilis-
ing nearest neighbours’ information for estimating target modality values. The
work was motivated by the observation that local and contextual similarities
observed in one modality can often extend to other modalities. Evaluation of
the approach illustrated effectiveness in synthesising T2-weighted and DTT sig-
nals given a source T'1-weighted input, including successful application on brain
tumour scans. Y. Lu et al. [10] proposed a novel distance measure that used
patch based intensity histogram and Weber Local Descriptor features to search
the most similar patch from the database for modality synthesis.

Recently, Y. Huang et al. [7] proposed a weakly supervised technique that re-
quires only a few registered multi-modal image pairs for effective cross-modality
generation. The technique works through mapping different image features of the
underlying tissues, preserving global statistical image properties across modali-
ties, and subsequently refining the features to ensure local geometrical structures
are preserved within each modality. Additionally, manifold matching is used to
select target-modality features from the most similar source-modality subjects;
thus complementing unpaired data with the original training pairs. Effectiveness
of the technique was illustrated in cross modality generation between T1- and
T2-weighted scans, as well as T2- and PD-weighted scans.

Deep learning algorithms, particularly Convolutional Neural Networks (CNNs),
have rapidly gained widespread adoption within the medical image computing
community. Work by Bahrami et al. [2] studied the utility of CNNs for map-
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Fig. 2: Flowchart of the proposed XmoNet. The input T1-weighted slice is con-
volved using multiple pathways at different resolutions. The output from each
pathway is upsampled with a deconvolution operation and then fed into a fusion
layer. The multiple higher resolution pathways allows high-frequency patterns
to be preserved. Multiple residual layers are added to the lowest resolution path,
which ensures mapping of low-frequency visual patterns from the source data.

ping cross-domain scans, albeit for a resolution mapping problem (3T to 7T
MRI) as opposed to generation of missing modalities. In their earlier work,
Bahrami et al. [3] made use of high- and low-frequency visual features, thus
capturing variations among 3T scans with various levels of quality. Evaluation
was carried out on various paired MR datasets of healthy subjects, as well as
patients with epilepsy and MCI. A. Ben-Cohen et al. [4] combined a fully convo-
lutional network (FCN) with a conditional generative adversarial network (GAN)
to generate PET data from CT for improving automated lesion detection. Y. Hi-
asa et al. [5] proposed CycleGAN-based MR to CT orthopedic image synthesis
method in which the accuracy at the bone boundaries was improved by adding
the gradient consistency loss.

We contribute XmoNet, a deep learning architecture for rapid and accu-
rate cross(X)-MOdality learning; and carry out a preliminary analysis to ex-
amine its effectiveness on heterogeneous MR data. The architecture is based on
fully convolutional networks (FCN) and utilises parallel pathways to encode low-
and high-frequency visual features, allowing mapping of rich feature hierarchies.
Preliminary analysis demonstrated accurate and realistic synthesis of target T2-
weighted images from source T1-weighted data (see Figure 1); our findings sup-
port scaling the work to include larger samples and additional modalities.

2 Proposed Method

Inspired by recent successes of fully convolutional networks (FCNs) [9,1,11] the
XmoNet utilises a FCN architecture that learns the cross-modality mapping from
T1- onto T2-weighted MR data. Figure 2 shows a flowchart of the proposed archi-
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tecture. Given an input slice, the network utilises several strided-convolutional
layers to reduce spatial dimensionality whilst increasing the number of acti-
vation channels at every branch, following intuition from the well-established
VGG architecture [12]. Through the use of multiple pathways, we map differ-
ent frequency levels of visual features from the input scan. The use of multiple
pathways is inspired by FCN methods proposed for semantic segmentation [9, 1],
and ensures capturing of high-frequency visual patterns. Merging with deconvo-
lution layers is carried out in order to spatially upsample the activations whilst
reducing the number of channels. These are followed by fuse layers for pathway
concatenation. Residual layers are also used for cross-modality mapping of low-
frequency visual patterns. The network uses 4, 8 and 16 filters in the first, second
and third convolutional pathways respectively. The two residual blocks use 16
filters each and the filters in the upsampling layers are reduced to 8 and 4 in the
first and second branch, respectively. L2 loss is used for the network training.

3 Experimental Analysis

3.1 Dataset

In this preliminary analysis we used the public MNI-HISUB25 dataset by Kulaga-
Yoskovitz et al. [8] which includes submillimetric, high-resolution T1- and T2-
weighted brain scans of 25 healthy subjects. The dataset is available in NIfTT for-
mat and is labelled for hippocampal subfields. Resolutions are 0.6 x 0.6 x 0.6mm?
and 0.45 x 0.45 x 2.0mm?2 for T1- and T2-weighted scans, respectively. Kulaga-
Yoskovitz et al. [8] pre-processed the captured scans for spatial normalisation
to MNI152-space as well as registration of the two modalities. The final, pre-
processed T1- and T2-weighted scans have a 0.4 x 0.4 x 0.4mm3 resolution in
MNI152-space which are used in our experiments.

3.2 Experimental Setup

We used the open-source med2image® tool for MRI axial slice extraction. This
was then followed by extracting only those slices that contained hippocampi
since region around hippocampi is of high relevance to the diagnosis of brain
disorders such as Alzheimers’ disease. In total, 2431 slices (452 x 542 pixels)
contained hippocampi regions; these formed the data for our experiments. We
performed two experiments: (i) input to XmoNet was the whole T1-weighted
image (452 x 542 pixels), and (ii) input to XmoNet was a cropped region selected
around right hippocampus of the T1-weighted image (128 x 128 pixels).
T2-weighted images in the dataset failed to capture complete brain struc-
tures; most of them had zero-pixel regions in place of lower or/and upper parts
of the images (Figure 1). Incorporating corrupted regions into the learning pro-
cess would obscure network training; we alleviated this through generating ex-
clusion masks obtained by detecting regions in the T2-weighted images where

® https://github.com/FNNDSC/med2image. last access: 20072018
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no signal was present. A blob size threshold was used to ensure zero-pixel brain
structures were not included within the masks. Such masks were subsequently
used during model training, ensuring the loss is computed only for pixels within
which an anatomical signal was present. Similarly, the masks were used during
the validation stage when computing evaluation metrics.

3.3 Validation Protocol

(a) 80% of the data was selected (first 20 subjects; 1961 slices in total) for model
training. The remaining data (5 subjects; 470 slices) were completely unseen
during the training process but held out for evaluation. (b) Furthermore, we
performed k-fold cross-validation (k=5) to provide additional reassurance; each
fold contained an average of 485 slices representing the scans of 5 subjects. The
cross-validation loop consisted of model training over 4 folds and subsequent
testing on the remaining fold. An i7-CPU workstation with NVIDIA 1080 GTX
card installed was used for the analysis. The training process took place over 20
hours (approx. 5 hours per fold) for 5-fold validation. Observed testing rate was
48 slices per second.

3.4 Evaluation Metrics

Peak signal-to-noise ratio (PSNR) and structural similarity (SIMM) [13] metrics
are used in existing method [2,3,6] for the quantitative evaluation of recon-
structed images/patches, hence we used the same evaluation metrics. Given a
ground-truth X and a generated image Y both of height H and width W; mean
square error (MSE) is first obtained:

| Hoiwel
o N -o\12
PSNR (in dB) is then computed as follows (MAXx is the maximum possible
pixel intensity; 255 here):

(2)

MAX?
PSNR = 101log;, <MSEX)

SIMM measures the perceived change in Y relative to X and is computed as:

(2l‘x#y +c1) (2‘7:831 + c2)

STMM (z,y) =
9= G2t 12 ) (02 402+ 2)

3)

where p, and p, are the mean, o, and o, are the variance and o, are the
covariances of X and Y. ¢; and co depend on the dynamic range of pixel inten-
sities; needed to stabilise division on weak denominators [13]. Increase in PSNR
suggests an improvement in signal to noise ratio i.e. lower noise and/ or better
image generation. SIMM, on the other hand, captures the structural similar-
ity between a synthesised and a ground-truth image. PSNR and SIMM were
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Table 1: Mean and standard deviation (Std) for PSNR and SIMM obtained via
5-fold cross validation for synthesis of T2-weighted (i) complete images and (ii)
right hippocampus subregions.

fold# 1 2 3 4 5
Mean‘Std Mean‘Std Mean‘Std Mean‘Std Mean‘Std
PSNR |30.48|0.58|30.74|0.56| 30.98(0.67| 30.96|0.53| 31.11{1.21
SIMM| 0.77|0.09| 0.79/0.10| 0.80{0.10| 0.80{0.10| 0.78]0.11
PSNR|28.45|0.78(27.75(0.14| 27.83|0.34| 27.76|0.22| 29.24|0.72
SIMM| 0.60(0.12| 0.61|0.13] 0.61|0.12| 0.60(0.13| 0.63]0.14

Complete slice

Hippocampi region

computed for only those pixels that lie outside the defined exclusion masks. Vi-
sual inspection was further carried out to assess realism of synthesised images,
particularly regions where no T2 ground-truth is available.

4 Results and Discussion

Table 1 shows the result for the 5-fold validation for the complete and right-
hippocampus T2-weighted sub-region generation. Both PSNR and SIMM mea-
sures are higher for the complete T2-weighted image synthesis compared to the
T2-weighted sub-region synthesis as complete image synthesis managed to better
capture high resolution details resulting in relatively accurate and sharp image
generation. This is because the variance of each pixel in complete T2-weighted
image is low during training compared to the sub-region image.

Figure 3 shows a set of original images (T1-weighted network input and noisy
T2-weighted ground-truth) as well as synthesised T2-weighted images for 8 dif-
ferent subjects. The proposed XmoNet is capable of achieving cross-modality
mapping from T1 onto T2. Visual inspection of these figures suggests that syn-
thesised images better capture overall brain structures (with respect to source
T1-weighted images) than the original T2 scans; successful synthesis of regions
with heavily missing T2 signal is achieved (Figure 3(d)-(f)).

A number of limitations exist in this study. Firstly, the generated brain re-
gions for which no T2 baseline exists require thorough validation and assessment
by medical experts. Additionally, network input-output is currently a T1-T2
generation route; exploring the opposite scenario of T2-T1 generation was not
carried out. Furthermore, testing data used in the study was obtained from the
same source as the training/fine-tuning data; studying network’s generalisability
to different acquisition settings was not carried out.

In addition to the above, validating XmoNet on larger datasets will drive our
future efforts. Additionally, rigorous comparison against performance of state-
of-the-art methods is crucial. An interesting application of the work is synthesis
of images of non-healthy regions e.g. brain tumours. Although the model was
designed for MR image generation, it can be adopted to incorporate non-MR
based modalities (e.g. CT). Moreover, cross modality inference in 3D images is
also of interest [6], hence adopting our model to 3D images can also be considered.
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Fig. 3: Representative images of axial slices from six subjects (a)-(f); (a)-(c) sec-
tions at the level of Pons showing missing frontal lobe parts in the T2 (ground-
truth) scans, (d)-(f) showing missing frontal and parietal lobe parts in the T2
(ground-truth) scans. XmoNet automatically generated the missing parts as
shown in T2 (predicted). For each subject, upper row shows complete image
synthesis while lower row shows results on the hippocampus sub-region images.
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Conclusions

We proposed XmoNet, a CNN designed for the problem of cross-modality MR
image generation. The network utilises a fully convolutional architecture, where
multiple pathways are used to capture a hierarchy of low- and high-frequency
visual patterns. A preliminary analysis was carried out on brain MR scans of 25
healthy subjects. Quantitative evaluation and qualitative visual inspection illus-
trated the utility of XmoNet for accurate and realistic synthesis of T2-weighted
images from source T1-weighted data. Our findings support extending the anal-
ysis to incorporate larger datasets and additional modalities.
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