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1 Introduction

Digital signatures are one of the most widely used cryptographic primitives. The signature schemes
currently used in practice are RSA, DSA, and ECDSA. Their security depends on the security of
certain trapdoor one-way functions which, in turn, relies on the hardness of factoring integers and
computing discrete logarithms, respectively. However, it is unclear whether those computational
problems remain hard in the future. In fact, it has been shown by Shor [Sho94] that quantum
computers can solve them in polynomial time. Other algorithmic breakthroughs are always possible
in the future. In view of the importance of digital signatures it is necessary to come up with
alternative practical signature schemes that deliver maximum security. In particular, quantum
computers must not be able to break them. They are called post-quantum signature schemes.

In this paper we propose the hash-based signature scheme XMSS (eXtended Merkle Signature
Scheme). It is based on the Merkle Signature Scheme [Mer90a] and the Generalized Merkle Signature
Scheme (GMSS) [BDK+07]. We show that XMSS is an efficient post-quantum signature scheme
with minimal security assumptions.

This is done as follows. XMSS requires a hash function family H and another function family
F . We prove:

(Security) XMSS is existentially unforgeable under adaptively chosen message attacks in the
standard model, provided H is second preimage resistant and F is pseudorandom.

(Efficiency) XMSS is efficient, provided that H and F are efficient. This claim is supported
by experimental results.

⋆ An extended abstract of this paper appears in Proceedings of PQCrypto 2011
⋆⋆ Supported by grant no. BU 630/19-1 of the German Research Foundation (www.dfg.de).



The first assertion shows that the security requirements for XMSS are minimal. This follows from
[Rom90], [RS04], [HILL99] and [GGM86] where the existence of a secure signature scheme is proved
to imply the existence of a second preimage resistant hash function family and a pseudorandom
function family (see Section 3).

The second assertion shows that XMSS is practical as there are many ways to construct very
efficient (hash) function families that are believed to be second preimage resistant or pseudorandom,
respectively, even in the presence of quantum computers. For example, cryptographic hash functions
and block ciphers can be used to construct such families. In particular, there are such constructions
based on hard problems in algebra or coding theory. The huge number of instantiations of XMSS
guarantees the long-term availability of secure and efficient signature schemes.

The idea of hash-based signatures was introduced by Merkle [Mer90a]. The results in [BM96,
BDE+11, BDK+07, BDS08, BDS09, BGD+06, DOTV08, DSS05, Gar05, HM02, JLMS03, Szy04] im-
prove the Merkle idea in many respects by providing new algorithmic ideas and security proofs.
XMSS incorporates many of those ideas and goes one step further. It is the first practical (forward)
secure signature scheme with minimal security requirements in the above sense. On the one hand,
there are only three other signature schemes with minimal assumptions [Gol09,Rom90,DOTV08].
Compared to MSS-SPR [DOTV08], which is the most efficient one of these schemes, we can reduce
the signature size by more than 25 % for the same level of security. The improved signatur size
is very important as the signature size is considered the main drawback of hash-based signatures.
Furthermore, all of these schemes are not forward secure. On the other hand, the results of Section
6 show that the performance of XMSS is compareable to that of the signature schemes used in
practice, like RSA, that do not have minimal security assumptions.

In this paper we show how to sign fixed length messages. The scheme can easily be extended
to sign messages of arbitrary length using TCR hash and sign as proposed in [DOTV08]. This
requires a target collision resistant hash function family. Target collision resistant hash function
families are known to exist if any one-way function exists [Rom90]. Therefore this preserves the
minimal security assumptions property.

The paper is organized as follows. In Section 2 we describe the construction of XMSS. Its security
and forward security is discussed in Sections 3 and 4. The XMSS-efficiency is shown in Section 5.
Section 6 contains a description of our implementation and a presentation of the performance
results.

2 The eXtended Merkle Signature Scheme XMSS

In this section we describe XMSS. Like the Merkle signature scheme [Mer90a] it uses a one-time
signature scheme (OTS) that can only sign one message with one key. To overcome the limitation
to one message per key, a hash tree is used to reduce the authenticity of many OTS verification
keys to one public XMSS key. To minimize storage requirements, pseudorandom generators (PRG)
are used. They generate the OTS signature keys as needed.

The parameters of XMSS are the following:

– n ∈ N, the security parameter,
– w ∈ N, w > 1, the Winternitz parameter,
– m ∈ N, the message length in bits,
– Fn = {fK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n} a function family,
– H ∈ N, the tree height, XMSS allows to make 2H signatures using one keypair,
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– hK , a hash function, chosen randomly with the uniform distribution from the family Hn =
{hK : {0, 1}2n → {0, 1}n|K ∈ {0, 1}n},

– x ∈ {0, 1}n, chosen randomly with the uniform distribution. The string x is used to construct
the one-time verification keys.

Those parameters are publicly known.
We keep the following description of XMSS and its components short by including references

to more detailed descriptions. We write log for log2.

Winternitz OTS As OTS we use the Winternitz OTS (W-OTS) first mentioned in [Mer90a]. We use
a slightly modified version proposed in [BDE+11]. For K,x ∈ {0, 1}n, e ∈ N, and fK ∈ Fn we define
f e
K(x) as follows. We set f0

K(x) = K and for e > 0 we define K ′ = f e−1
K (x) and f e

K(x) = fK′(x).
In contrast to previous versions of W-OTS this is a (random) walk through the function family
instead of an iterated evaluation of a hash function. This modification allows to eliminate the need
for a collision resistant hash function family.

Also, define

ℓ1 =

⌈
m

log(w)

⌉
, ℓ2 =

⌊
log(ℓ1(w − 1))

log(w)

⌋
+ 1, ℓ = ℓ1 + ℓ2.

The secret signature key of W-OTS consists of ℓ n-bit strings ski, 1 ≤ i ≤ ℓ chosen uniformly
at random. The public verification key is computed as

pk = (pk1, . . . , pkℓ) = (fw−1
sk1

(x), . . . , fw−1
skℓ

(x)),

with fw−1 as defined above.
W-OTS signs messages of binary length m. They are processed in base w representation. They

are of the form M = (M1 . . .Mℓ1), Mi ∈ {0, . . . , w − 1}. The checksum C =
∑ℓ1

i=1(w − 1−Mi) in
base w representation is appended to M . It is of length ℓ2. The result is (b1, . . . , bℓ). The signature
of M is

σ = (σ1, . . . , σℓ) = (f b1
sk1

(x), . . . , f bℓ
skℓ

(x)).

It is verified by constructing (b1 . . . , bℓ) and checking

(fw−1−b1
σ1

(pk0), . . . , f
w−1−bℓ
σℓ

(pk0))
?
= (pk1, . . . , pkℓ).

The sizes of signature, public, and secret key are ℓn. For more detailed information see [BDE+11].

XMSS Tree The XMSS tree is a modification of the Merkle Hash Tree proposed in [DOTV08].
It utilizes the hash function hK . The XMSS tree is a binary tree. Denote its height by H. It has
H + 1 levels. The leaves are on level 0. The root is on level H. The nodes on level j, 0 ≤ j ≤ H,
are denoted by Nodei,j , 0 ≤ i < 2H−j . The construction of the leaves is explained below. Level j,
0 < j ≤ H, is constructed using a bitmask (bl,j ||br,j) ∈ {0, 1}

2n chosen uniformly at random. The
nodes are computed as

Nodei,j = hK((Node2i,j−1 ⊕ bl,j)||(Node2i+1,j−1 ⊕ br,j))

for 0 < j ≤ H. The usage of the bitmasks is the main difference to the other Merkle tree construc-
tions. It is borrowed from [BR97] and allows to replace the collision resistant hash function family.
Figure 1 shows the construction of the XMSS tree.
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Fig. 1. The XMSS tree construction

NODEi,j

h

XOR XORbl,j br,j

NODE2i,j-1 NODE2i+1,j-1

j = H

j = 0

We explain the computation of the leaves of the XMSS tree. The XMSS tree is used to authen-
ticate 2H W-OTS verification keys, each of which is used to construct one leaf of the XMSS tree.
The construction of the keys is explained at the end of this section. In the construction of a leaf
another XMSS tree is used. It is called L-tree. The first ℓ leaves of an L-tree are the ℓ bit strings
(pk0, . . . , pkℓ) from the corresponding verification key. As ℓ might not be a power of 2 there are not
sufficiently many leaves. Therefore the construction is modified. A node that has no right sibling
is lifted to a higher level of the L-tree until it becomes the right sibling of another node. In this
construction, the same hash function as above but new bitmasks are used. The bitmasks are the
same for each of those trees. As L-trees have height ⌈log ℓ⌉, additional ⌈log ℓ⌉ bitmasks are required.
The XMSS public key PK contains the bitmasks and the root of the XMSS tree.

To sign the ith message, the ith W-OTS key pair is used. The signature SIG = (i, σ,Auth)
contains the index i, the W-OTS signature σ, and the authentication path for the leaf Node0,i. It is
the sequence Auth = (Auth0, . . . ,AuthH−1) of the siblings of all nodes on the path from Node0,i

to the root. Figure 2 shows the authentication path for leaf i. To compute the authentication path
we use the tree traversal algorithm from [BDS08] as it allows for optimal balanced runtimes using
very little memory.

Fig. 2. The authentication path for leaf i

j = H

j = 0

i
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To verify the signature SIG = (i, σ,Auth), the string (b0, . . . , bℓ) is computed as described in
the W-OTS signature generation. Then the ith verification key is computed using the formula

(pk1, . . . , pkℓ) = (fw−1−b1
σ1

(x), . . . , fw−1−bℓ
σℓ

(x)).

The corresponding leaf Node0,i of the XMSS tree is constructed using the L-tree. This leaf and
the authentication path are used to compute the path (p0, . . . , pH) to the root of the XMSS tree,
where p0 = Node0,i and

pj =

{
hK((pj−1 ⊕ bl,j)||(Authj−1 ⊕ br,j)), if

⌊
i/2j

⌋
≡ 0 mod 2

hK((Authj−1 ⊕ bl,j)||(pj−1 ⊕ br,j)), if
⌊
i/2j

⌋
≡ 1 mod 2

for 0 ≤ j ≤ H. If pH is equal to the root of the XMSS tree in the public key, the signature is
accepted. Otherwise, it is rejected.

Signature Key Generation The W-OTS secret signature keys are computed using a seed Seed ∈
{0, 1}n, the pseudorandom function family Fn, and the pseudorandom generator GEN which for
λ ∈ N, µ ∈ {0, 1}n yields

GENλ(µ) = fµ(1)|| . . . ||fµ(λ).

For i ∈ {1, . . . , 2H} the i-th W-OTS signature key is

ski ← GENℓ(fSeed(i)).

The XMSS secret key contains Seed and the index of the last signature i.
The bit length of the XMSS public key is (2(H + ⌈log ℓ⌉) + 1)n, an XMSS signature has length

(ℓ+H)n, and the length of the XMSS secret signature key is < 2n.

3 Standard Security

In this section we show that XMSS is provably secure in the standard model and discuss the
minimality of the assumptions we use. We first provide the needed preliminaries. We keep the
notations of Section 2.

3.1 Preliminaries I

We write m = poly(n) to denote that m is a function, polynomial in n. We call a function ǫ(n) :
N → [0, 1] negligible and write ǫ(n) = negl(n) if for any c ∈ N, c > 0 there exists a nc ∈ N s.th.

ǫ(n) < n−c for all n > nc. We write x
$
←− X if x is chosen from X uniformly at random. In our

proofs we measure algorithmic runtimes as the number of evaluations of functions from Fn and Hn.

Signature Schemes XMSS is a stateful signature scheme. This is not covered by the standard
definition of digital signature schemes. To capture this formally we follow the definition from [BM99]
of key evolving signature schemes. In a key evolving signature scheme, the lifetime of a keypair is
divided into several time periods, say T . While the public key pk is fixed, the scheme operates on T
different secret keys sk0, . . . , skT−1, one per time period. A key evolving signature scheme contains
a key update algorithm that is called at the end of each time period and updates the secret key. The
end of a time period might be determined by time, i.e. a period is one day, or something else, like

5



the maximum number of signatures a secret key can be used for. This is the case for XMSS, where
a period ends after signing one message and the key update algorithm is automatically called after
each signature creation. In contrast to an ordinary signature scheme, the key generation algorithm
of a key evolving signature scheme takes as an additional input the maximal number of periods T
and outputs the public key pk and the first secret key sk0. Using a key evolving signature scheme,
a signature (σ, i) on a message, contains the index i of the period of the used secret key. The
validation of a signature (σ, i) only succeeds, if the signature is a valid signature for time period
i under public key pk. Viewing the state as part of the secret key, we can use this as model for
XMSS. We summarize this in the following more formal definition.

Definition 1 (Key Evolving Signature Scheme). A key evolving signature scheme is a quadru-
ple of algorithms Kes = (Kg, KUpd, Sign, Vf). It is parameterized by a security parameter n ∈ N

and the number of time periods T ∈ N, T = poly(n) and operates on four finite sets with description
length polynomial in n: the secret key space KS, the public key space KP , the message space M,
and the signature space Σ. The runtime of the algorithms is polynomial in n and the algorithms
are defined as follows:

Kg(1n, T ): The key generation algorithm is a probabilistic algorithm that on input of the security
parameter n ∈ N in unary, and the number of time periods T , outputs an initial private signing
key sk0 ∈ KS and a public verification key pk ∈ KP .

KUpd(sk, i): The key update algorithm is a possibly probabilistic algorithm that on input of a
secret signing key sk ∈ KS and an index i ∈ N, outputs the private signing key ski+1 ∈ KS for
the next time period if i < T − 1 and sk is a valid secret key for time period i. If i ≥ T − 1 it
outputs the empty string. In all other cases it returns fail.

Sign(sk,M, i): The signature algorithm is a possibly probabilistic algorithm that on input of a
signature key sk ∈ KS, a message M ∈M, and an index i ∈ N outputs the signature (σ, i) ∈ Σ
of the message M if i < T and sk is a valid secret key for time period i. It returns fail,
otherwise.

Vf(pk,M, (σ, i)): The verification algorithm is a deterministic algorithm that on input of a public
key pk ∈ KP , a message M ∈ M, and a signature (σ, i) ∈ Σ outputs 1 iff (σ, i) is a valid
signature on M under public key pk for time period i and 0 otherwise.

The following condition must hold: For all M ∈ M, (pk, sk0) ← Kg(1n, T ), i < T and ski the
i − th key derived from sk0 iteratively using KUpd on its outputs with the corresponding index,
Vf(M, (Sign(M, ski, i)), pk) = 1.

A digital signature scheme (Dss) is a key evolving signature scheme with only one period and a key
update algorithm that always returns the empty string. XMSS is a key evolving signature scheme
with T = 2H for H ∈ N, where the key update algorithm is automatically called by the signature
algorithm, as a key update occurs after every signature.

The usual security notion for digital signature schemes is existential unforgeability under adap-
tive chosen message attacks (EU-CMA) introduced in [GMR88]. We translate it to the setting of
key evolving signature schemes, using the following experiment. Kes(1n, T ) denotes a key evolving
signature scheme with security parameter and number of periods. The experiment is split into two
phases. During the chosen message attack phase (cma), the adversary is allowed to collect signa-
tures on messages of her choice like in the original notion. In contrast to the original notion, the
adversary might do this up to T times, once for each time period. The adversary algorithm A is
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given oracle access to an instance of a signature oracle Sign initialized with secret key ski and index
i, denoted by ASign(ski,·,i). Afterwards, in the forgery phase (forge), the adversary has to come up
with an existential forgery like in the original notion. The state variable allows the adversary to
keep a state and the Out variable allows the adversary to switch from the cma to the forge phase.

Experiment ExpEU-CMA

Kes(1n,T )(A)

i← 0, state← null, out← null, (sk0, pk)← Kg(1n, T )
while i < T and out 6= halt

(out, state)← ASign(ski,·,i)(1n, cma, pk, state)
i++; ski ← KUpd(ski−1, i)

(M⋆, σ⋆, i⋆)← A(1n, forge, state)
If Vf(pk,M⋆, (σ⋆, i⋆)) = 1 and Sign was not queried for a signature on M⋆ return 1
return 0

For the success probability of an adversary A in the above experiment we write

Succeu-cma (Kes(1n, T );A) = Pr
[
ExpEU-CMA

Kes(1n,T )(A) = 1
]
.

Now we can define EU-CMA for key evolving signature schemes.

Definition 2 (EU-CMA). Let n, q ∈ N, t = poly(n), Kes a key evolving signature scheme.
Fix T ∈ N. We call Kes EU-CMA-secure, if InSeceu-cma (Kes(1n, T ); t, q), the maximum success
probability of all possibly probabilistic adversaries A, running in time ≤ t, making at most q queries
to each instance of Sign, is negligible in n:

InSeceu-cma (Kes(1n, T ); t, q) = max
A
{Succeu-cma (Kes(1n, T );A)} = negl(n) .

For a Dss this translates to the initial notion. By OTS we denote a Dss that is EU-CMA secure
for q = 1.

Function Families In the following let n ∈ N, m, k = poly(n) , Hn = {hK : {0, 1}m → {0, 1}n|K ∈
{0, 1}k} a function family. We might call Hn a hash function family if m > n. We first define
the success probability of an adversary A against second preimage resistance (spr). Informally the
adversary gets a second preimage challenge, consisting of a random preimage and a random function
key, and has to come up with a collision for this preimage under the function identified by the key.
More formally:

Succspr (Hn;A) =Pr [ K
$
←− {0, 1}k;M

$
←− {0, 1}m,M ′ $

←− A(K,M) :

(M 6= M ′) ∧ (hK(M) = hK(M ′))
]

(1)

Using this we define second preimage resistance of a function family.

Definition 3 (spr). Let t = poly(n), Hn as above. We call Hn second preimage resistant, if
InSecspr (Hn; t), the maximum success probability of all possibly probabilistic adversaries A, running
in time ≤ t, is negligible in n:

InSecspr (Hn; t) = max
A
{Succspr (Hn;A)} = negl(n) .
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The second notion we use is pseudorandomness (prf) of a function family. In the definition of the
success probability of an adversary against pseudorandomness, the adversary gets black-box access
to an oracle Box. Box is either initialized with a function from Hn or a function from the set of
all functions with domain {0, 1}m and range {0, 1}n (G(m,n)). The goal of the adversary is to
distinguish both cases:

Succprf (Hn;A) =
∣∣∣Pr[Box $

←− Hn : ABox(·) = 1]

−Pr[Box
$
←− G(m,n) : ABox(·) = 1]

∣∣∣ . (2)

Now we can define pseudorandomness for a function family.

Definition 4 (prf). Let t = poly(n), Hn as above. We call Hn a pseudorandom function family,
if InSecprf (Hn; t, q), the maximum success probability of all possibly probabilistic adversaries A,
running in time ≤ t, making at most q queries to Box, is negligible in n:

InSecprf (Hn; t, q) = max
A
{Succprf (Hn;A)} = negl(n) .

Key Collisions In [BDE+11] the authors define a key collision of Fn as a pair of distinct keys
(K,K ′) such that fK(M) = fK′(M) holds for one or more messages M ∈ {0, 1}m. They denote the
upper bound on the maximum number of keys that collide on one input value by κ, i.e. κ = 1 says
that there exist no key collisions for Fn. For more information and a formal definition we refer the
reader to [BDE+11].

Pseudorandom Generators Pseudorandom generators (PRG) are functions that stretch a random
input to a longer pseudorandom output. We follow the notion of [BY03]: Let n ∈ N, b = poly(n),
b > n, Gn : {0, 1}n → {0, 1}b and A an adversary that given a b-bit string returns a bit. The notion
is defined using the two following experiments, one where the adversary gets a random string as
input and another one where the input of A is an output of the PRG:

Experiment Expprg−1
Gn

(A)

x
$
←− {0, 1}n; c← Gn(x)

g
$
←− A(c)

return g

Experiment Expprg−0
Gn

(A)

c
$
←− {0, 1}b

g
$
←− A(c)

return g

The success probability of an adversary A against the security of PRG G is defined as the ability
of the adversary to distinguish both experiments:

Succprg (Gn;A) =
∣∣Pr

[
Expprg−1

Gn
(A) = 1

]
− Pr

[
Expprg−0

Gn
(A) = 1

]∣∣ .

Now we define secure pseudorandom generators.

Definition 5 (prg). Let n ∈ N, t = poly(n), Gn as above. We call Gn a secure pseudorandom gen-
erator, if InSecprg (Gn; t), the maximum success probability of all possibly probabilistic adversaries
A, running in time ≤ t, is negligible in n:

InSecprg (Gn; t) = max
A
{Succprg (Gn;A)} = negl(n) .
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3.2 XMSS is Existentially Unforgeable under Chosen Message Attacks

Now, we prove XMSS secure in the standard model and discuss some implications of this result.
We prove the following Theorem:

Theorem 1. If Hn is a second preimage resistant hash function family and Fn a pseudorandom
function family, then XMSS is existentially unforgeable under chosen message attacks.

Before we give the proof of Theorem 1, we want to highlight one implication of this result: The
security assumptions of XMSS are minimal. From [Rom90] it is known that the minimal security
assumption for complexity based cryptography, namely the existence of a one-way function, is
the necessary condition for the existence of a secure digital signature scheme. Also in [Rom90] the
construction of a target collision resistant hash function family from a one-way function is presented.
Since target collision resistant hash function families are second preimage resistant (see [RS04]),
this implies that second preimage resistant hash function families can be constructed from secure
digital signature schemes. In [HILL99] the construction of a pseudorandom generator from a one-way
function is presented. In [GGM86] pseudorandom function families are obtained from pseudorandom
generators. It follows that secure signature schemes yield pseudorandom function families. Those
constructions imply that there exists a secure instance of XMSS if there exists any secure digital
signature scheme and therefore complexity based cryptography at all. This implies that the security
requirements for XMSS are minimal.

Now we give the proof of Theorem 1. The proof uses another view on the construction of XMSS.
Look at XMSS the following way: XMSS uses W-OTS with a pseudorandom key generation. The
ℓn-bit W-OTS secret keys are generated using GEN and a n-bit (pseudo-)random input. This variant
of W-OTS is used with the XMSS-Tree construction to obtain a many-time signature scheme. The
2H n-bit inputs for the key generation are again generated using GEN and a random n-bit string.
In our proof we will show that each of these intermediary constructions is secure.

Proof (of Theorem 1). First we look at the key generation algorithm Kg in more detail. Kg uses the
PRG GENλ(µ) = fµ(0)|| . . . ||fµ(λ − 1) from the last Section. The W-OTS secret key is generated
using GENℓ(µ) where µ in turn is the ith n-bit string of the output of GEN2H (Seed) and Seed is the
XMSS secret key. We show that GENλ is a secure PRG if the used function family is pseudorandom.

Claim 2. Let n, λ ∈ N, µ ∈ {0, 1}n, Fn = {fK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n} a pseudorandom
function family with insecurity function InSecprf (Fn; t, q). Then GENλ : {0, 1}n → {0, 1}λn,

GENλ(µ) = fµ(0)|| . . . ||fµ(λ− 1)

is a PRG with insecurity function

InSecprg (GENλ; t) = InSecprf (Fn; (t+ λ), λ) .

Proof (of claim). For the sake of contradiction assume there was an adversary A distinguishing the
output of GENλ from a uniformly random λn bit string. Then we can build a oracle machine MA

that given access to A distinguishes Fn from G(n, n). MA queries Box for λ outputs and hands the
concatenation to A. Then MA simply forwards A’s output. MA succeeds with the same probability
than A. ⊓⊔
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Now we show, that one can replace the random input of the key generation algorithm, by a
pseudorandom one. So if we look at W-OTS using GENℓ(µ) to generate the secret key from one
n-bit string and assume that µ is chosen uniformly at random for the moment, then the following
Claim tells us, that this is almost as secure as using ℓn random bits. Furthermore it tells us, that
we can use n random bits and GEN2H to generate the 2Hn bits for the 2H W-OTS key pairs of
XMSS.

Claim 3. Let n, n′, T ∈ N, Gn : {0, 1}n → {0, 1}λn be a PRG that stretches n-bit random input
to λn-bit pseudo-random output with insecurity function InSecprg (Gn; t) and let Kes = (Kg, KUpd,

Sign, Vf) be a key evolving signature scheme with insecurity function InSecEU-CMA

(
Kes(1n

′

, T ); t, q
)

that needs λn bits of random input for key generation. Further, let Kes
⋆ = (Kg⋆, KUpd⋆, Sign, Vf)

be the variant of Kes that uses Gn to generate the λn bits required for key generation. Then Kes
⋆

is a key evolving signature scheme with insecurity function

InSecEU-CMA

(
Kes

⋆(1n
′

, T ); t, q
)
= InSecprg

(
Gn; t

′
)

+InSecEU-CMA

(
Kes(1n

′

, T ); t, q
)

t′ = t+ tKg⋆ + TtKUpd⋆ + qtSign + tVf .

The proof for the above claim is based on the idea, that we can use any adversary against the
scheme with pseudorandom key generation to attack the original scheme. Especially, we can upper
bound the success probability of the adversary in this case. Hence, we can use such an adversary
to distinguish between a bit string produced by the PRG and a random bit string. We use the bit
string to generate a key pair for the signature scheme and run the adversary with the public key
as input. If the adversary succeeds, it is more likely that the bit string was produced by the PRG,
than that it was chosen at random.

Proof (of claim). We want to limit the success probability of any adversary A that runs within time
t, making at most q queries to each instance of Sign, so we want to limit the insecurity function

InSecEU-CMA

(
Kes

⋆(1n
′

, T ); t, q
)
. Given such an adversary, we can build a oracle machine MA

telling the output of Gn from random λn-bit strings as described in algorithm 1.

We construct MA the following way. On input of challenge c ∈ {0, 1}λn, MA computes a key pair
(pk, sk0) for Kes

⋆ using c instead of the output of Gn. Next M
A calls ASign=M (1n, cma, pk, state)

for each time period i < T or until A indicates to switch to the forge phase. If A queries the
oracle Sign, during period i MA computes the queried signature using ski. M

A answers up to q
queries per time period. If A returns a valid forgery MA returns 1 and 0 otherwise. MA runs in
time t+ tKg + T tSign + tVf .

Now we calculate the success probability of MA. If MA is in Exp
prg−1
Gn

, c is pseudorandom output

of Gn , therefore A succeeds with probability SuccEU-CMA

(
Kes

⋆(1n
′

, T );A
)
per definition and we

get

Pr
[
Exp

prg−1
Gn

(MA) = 1
]
= SuccEU-CMA

(
Kes

⋆(1n
′

, T );A
)

If MA is in Exp
prg−0
Gn

, c is chosen uniformly at random. In this case A succeeds with probability

≤ InSecEU-CMA

(
Kes(1n

′

, T ); t, q
)
. Otherwise A would be a forger for Kes that running in time

10



Algorithm 1 MA

Input: Security parameter n and challenge c ∈ {0, 1}λn

Output: g ∈ {0, 1}

1. compute (pk, sk)← Kg(1n
′

, T ) using c as the randomness of Kg⋆

2. out← null, state← null, i← 0;
3. while i < T and out 6= halt

(a) run (out, state)← ASign=M (1n, cma, pk, state)
(b) if A queries Sign in time period i then answer up to q queries using ski

4. if (M⋆, σ⋆, i⋆)← A(1n, forge, state) is a valid forgery then return g = 1
5. else return g = 0

t succeeds with probability greater than InSecEU-CMA

(
Kes(1n

′

, T ); t, q
)
, which would contradict

the assumption. So we get

Pr
[
Exp

prg−0
Gn

(MA) = 1
]
≤ InSecEU-CMA

(
Kes(1n

′

, T ); t, q
)
.

Altogether this leads to

InSecprg (Gn; t+ tKg + T tSign + tVf) ≥ Succprg
(
Gn;M

A
)

=
∣∣∣Pr

[
Exp

prg−1
Gn

(MA) = 1
]
− Pr

[
Exp

prg−0
Gn

(MA) = 1
]∣∣∣

≥ SuccEU-CMA

(
Kes

⋆(1n
′

, T );A
)
− InSecEU-CMA

(
Kes(1n

′

, T ); t, q
)

and therefore

SuccEU-CMA

(
Kes

⋆(1n
′

, T );A
)

≤ InSecprg (Gn; t+ tKg + T tSign + tVf) + InSecEU-CMA

(
Kes(1n

′

, T ); t, q
)
.

As this holds for any adversary A running in time ≤ t, making at most q queries to each instance
of Sign we get

InSecEU-CMA

(
Kes

⋆(1n
′

, T ); t, q
)
≤ InSecprg (Gn; t+ tKg + T tSign + tVf)

+ InSecEU-CMA

(
Kes(1n

′

, T ); t, q
)

⊓⊔

In [BDE+11] it is shown that the insecurity function for EU-CMA-security of W-OTS is

InSecEU-CMA (W-OTS(1n, T = 1); t, q = 1) ≤ (ℓ2w2κw−1 1(
1
κ
− 1

2n

)) · InSecprf
(
Fn; t

′, q = 2
)

where t′ = t + tSign + tKg + tVf and κ denotes the upper bound on the number of key collisions in
Fn.
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In [DOTV08] the authors prove that the XMSS-Tree construction, combined with W-OTS has
the following insecurity function for EU-CMA-security:

InSecEU-CMA
(
XMSS-Tree(1n, T = 2H); t, q = 1

)

≤ 2 ·max
{
(2H+log ℓ − 1)InSecspr

(
Hn; t

′
)
, 2H · InSecEU-CMA

(
W-OTS(1n, T = 1); t′, q = 1

)}

with t′ = t+ 2H · tSign + tVf + tKg.
Now we can combine all this to conclude the proof. We use Claim 3 with the insecurity functions

of W-OTS and GENℓ. This gives us the insecurity function for W-OTS with pseudorandom key
generation. We insert this in the insecurity function for XMSS-Tree. Finally we apply Claim 3 again.
This time using the obtained insecurity function for XMSS-Tree with W-OTS with pseudorandom
key generation and GEN2H . Altogether this leads

InSeceu-cma
(
XMSS(1n, T = 2H); t, q = 1

)

≤ InSecprf
(
Fn; (t

′ + 2H), q = 2H
)

+ 2 ·max





(2H+log ℓ − 1) · InSecspr (Hn; t
′) ,

2H
(
InSecprf (Fn; (t

′ + ℓ), q = ℓ)

+(ℓ2w2κw−1 1

( 1

κ
− 1

2n )
) · InSecprf (Fn; (t

′), q = 2)

)





where t′ = t+ 2H · tSign + tVf + tKg. This concludes the proof. ⊓⊔

Note that, assuming only generic attacks on Hn and Fn the symmetric bit security of XMSS is

b = log

(
t

InSecEU-CMA (XMSS ; t, q = 2H)

)

≤ min {n− 1, n−H − 2− w − 2 log(ℓw)} − 1

4 Forward Security

Given the above result we can go even further. In [And97] Anderson introduced the idea of forward
security for signature schemes (FSSIG) which was later formalized in [BM99]. It says that even
after a key compromise all signatures created before remain valid. Obviously, this notion is only
meaningful for key evolving signature schemes that change their secret key over time. From an
attack based point of view this translates to: If an attacker learns the actual secret key ski, she is
still not able to forge a signature under a secret key skj , j < i. This is a desirable property, especially
in the context of long term secure signatures, as it allows to remove the need for timestamps and
a online trusted third party.

In this section we show that XMSS is forward secure if we slightly modify the key generation
process based on an idea from [Kra00]. Before we describe the modification and state our second
Theorem we provide the used definitions.

4.1 Preliminaries II

We stick to the notions and definitions from the last sections. In the following we formally define
stateful pseudorandom generators and the notion of forward security for these generators. We start
defining forward secure signature schemes.
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Forward Secure Signature Schemes The notion of forward security is a security notion for key
evolving signature schemes as defined in the last section. We follow the notion of [BM99]. Again,
we define the notion using an experiment given below. This experiment differs only slightly from the
one used to define EU-CMA-security for key evolving signature schemes. The difference is that the
adversary is allowed to break in. This means that, during the cma phase, the adversary is allowed
to indicate to the experiment, that she wants to break in using the out variable. In this case, the
experiment switches from the cma phase to the forge phase and the adversary is given the secret
key ski−1 of the actual time period (Please note that the last two statements in the while loop are
increasing the index i and updating the secret key. Hence the last key used during the cma phase
has now index i− 1). As an existential forgery for the actual or an upcoming time period would be
trivial, the adversary now has to come up with an existential forgery for a past time period.

Experiment ExpFSSIG
Kes(1n,T )(A)

i← 0, state← null, (sk0, pk)← Kg(1n, T )
while i < T and out 6= breakin

(out, state)← ASign(ski,·,i)(1n, cma, pk, state)
i++, ski ← KUpd(ski−1, i)

(M⋆, σ⋆, i⋆)← A(1n, forge, state, ski−1)
If Vf(pk,M⋆, (σ⋆, i⋆)) = 1, Sign was not queried for a signature on M⋆ and i⋆ < i− 1 return 1
Return 0

For the success probability of an adversary A in the above experiment we write

Succfssig (Kes(1n, T );A) = Pr
[
ExpFSSIG

Kes(1n,T )(A) = 1
]

Now we can define FSSIG for key evolving signature schemes.

Definition 6 (FSSIG). Let n, q ∈ N, t = poly(n), Kes a key evolving signature scheme. Fix
T ∈ N. We call Kes(1n, T ) FSSIG-secure, if InSecfssig (Kes(1n, T ); t, q), the maximum success
probability of all possibly probabilistic adversaries A, running in time ≤ t, making at most q queries
to each instance of Sign, is negligible in n:

InSecfssig (Kes(1n, T ); t, q) = max
A
{Succfssig (Kes(1n, T );A)} = negl(n) .

Note, that forward security defined as above implies EU-CMA-security.

Forward Secure Pseudorandom Bit Generators Informally, a forward secure PRG is a stateful PRG
that starts from a random initial state. Given a state, it outputs a new state and some output
bits. Even if an adversary manages to learn the secret state of a forward secure PRG, she is not
able to distinguish the former outputs from random bit strings. More formally, a stateful PRG is
a function Gn : {0, 1}n → {0, 1}n+b, for n, b ∈ N, b = poly(n), that on input of a state Statei of
length n outputs a new state Statei+1 and b output bits. Forward security for a stateful PRG
that is used to produce no more than ñ outputs is defined using the two following experiments
Exp

fsprg−1
Gn

(A) and Exp
fsprg−0
Gn

(A) which are simplified versions of the ones from [BY03]. In both
experiments the adversary Ais allowed to collect up to ñ bit strings during the find phase. In the
first experiment these bit strings are outputs of Gn, in the second experiment these bit strings are
chosen at random. The adversary can keep a history using the variable h. The adversary can switch
to the guess phase setting d = guess. In the guess phase, the adversary gets the current state of
the Gn and has to output one bit, indicating if the bit strings were random or generated by Gn:
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Experiment Exp
fsprg−1
Gn

(A)

State0
$
←− {0, 1}n

i← 0, h, d← null

Repeat

i← i+ 1
(Outi,Statei)← Gn(Statei−1)

(d, h)
$
←− A(1n, find,Outi, h)

Until (d = guess) or (i = ñ)

g
$
←− A(1n, guess,Statei, h)

Return g

Experiment Exp
fsprg−0
Gn

(A)

State0
$
←− {0, 1}n

i← 0, h, d← null

Repeat

i← i+ 1
(Outi,Statei)← Gn(Statei−1)

Outi
$
←− {0, 1}b

(d, h)
$
←− A(1n, find,Outi, h)

Until (d = guess) or (i = ñ)

g
$
←− A(1n, guess,Statei, h)

Return g

The success probability of an adversary A is denoted by

Succfsprg (GEN;A) =
∣∣∣Pr

[
Exp

fsprg−1
Gn

(Dis) = 1
]
− Pr

[
Exp

fsprg−0
Gn

(Dis) = 1
]∣∣∣ .

Now we can define forward security for a stateful PRG.

Definition 7 (FSSIG). Let n, ñ ∈ N, t = poly(n), Gn a stateful PRG as defined above. We call
Gn fsprg-secure, if InSecfsprg (Gn; t), the maximum success probability of all possibly probabilistic
adversaries A, running in time ≤ t, is negligible in n:

InSecfsprg (Gn; t) = max
A
{Succfsprg (Gn;A)} = negl(n) .

4.2 XMSS is Forward Secure

In the following we describe the modifications needed to make XMSS forward secure. Then we
state our second theorem and prove it. To make XMSS forward secure we use a forward secure
PRG FsGen when generating the seeds for the W-OTS secret keys. Starting from a random input
Seed = State0 of length n, FsGen uses Fn and the previous state Statei−1 to generate n bits of
pseudorandom output Outi and a new state Statei of length n:

FsGen(Statei−1) = (Statei||Outi) = (fStatei−1
(0)||fStatei−1

(1))

The generation of the W-OTS secret keys from the seeds still utilizes GENℓ. The secret key of the
resulting forward secure XMSS contains the actual state Statei instead of Seed. In contrast to
the construction from Section 2, the seeds for the W-OTS signature keys are not easily accessible
from Statei using one evaluation of Fn. To compute the authentication path, the tree traversal
algorithm needs to compute several W-OTS keys before they are needed. This is very expensive
using FsGen. This problem is already addressed in [BDS08]. We use their solution that requires to
store 2H states of FsGen. This results in a secret signature key size of 2Hn.

For the modified XMSS from above we proof the following security theorem.

Theorem 4. If Hn is a second preimage resistant hash function family and Fn a pseudorandom
function family, then XMSS with the modified key generation described above is a forward secure
digital signature scheme.
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Informally the proof works the following way. First we state that FsGen is a forward secure PRG
using a result from [BY03]. In a second step, we show that for arbitrary but fixed H XMSS is
forward secure if the seeds for the W-OTS secret keys are generated using FsGen. The idea behind
the proof is very close to the one of Claim 3. But this time it is more complicated to upper bound
the success probability in the case of random bit strings.

Proof (of Theorem 4). First we revisit a result from [BY03] about the security of FsGen. There the
authors show that if Fn is a pseudorandom function family with insecurity function InSecprf (Fn; t, q),
then FsGen is a forward secure PRG with insecurity function

InSecfsprg (FsGen; t) = 2ñ · InSecprf (Fn; (t+ 2ñ), 2) .

The proof makes use of a hybrid argument and can be found in [BY03].

Now we show that XMSS is forward secure, if the seeds for the W-OTS secret keys are generated
using FsGen.

Claim 5. Let n, n′, H ∈ N, FsGen as described above. Let XMSS′ be the version of XMSS where
the 2H n′-bit seeds for the W-OTS key generation are chosen uniformly at random with insecurity

function InSecEU-CMA

(
XMSS′(1n

′

, 2H); t, q = 1
)
. Further, let XMSS⋆ be the modified version of

XMSS that uses FsGen to generate the 2H n-bit seeds required for W-OTS key generation. Then
XMSS⋆ is a forward secure signature scheme with insecurity function

InSecFSSIG
(
XMSS⋆(1n

′

, 2H); t, q = 1
)
≤ 2H · InSecfsprg

(
FsGen; t′

)

+InSecEU-CMA

(
XMSS′(1n

′

, 2H); t, q = 1
)

t′ = t+ tKg⋆ + TtKUpd⋆ + qtSign + tVf .

Proof (of claim). We want to limit the success probability of any adversary A that tries to break
the forward security of XMSS⋆. We assume A runs within time t, making at most 1 query to each

instance of Sign, so we want to find the insecurity function InSecFSSIG
(
XMSS⋆(1n

′

, 2H); t, q = 1
)
.

Given such an adversary, we can build an oracle machine MA telling the output of FsGen from truly
random outputs, given black box access to A.

We construct MA the following way. MA choses a value α
$
←− {1, . . . , 2H} uniformly at random.

During the find phase,MA collects α outputsOut1, . . . ,Outα before switching to the guess phase.
In the guess phase MA is given Stateα. Now, M

A uses FsGen and Stateα to compute another
2H − α outputs Outα+1, . . . ,Out2H . Then MA uses Out1, . . .Out2H instead of the output of
FsGen to generate a XMSS public key pk. Note, that to generate the W-OTS key pair for time
period i, Outi+1 is used. Next MA calls ASign=M (1n, cma, pk, state) for each time period i < α
until A indicates to break in. If A queries MA as the oracle Sign during period i, MA computes the
queried signature using Outi+1 to generate the corresponding W-OTS secret key. If A indicates to
break in during a time period i < α− 1 or does not indicate to break in in time period i = α− 1,
MA returns 0. If A indicates that she wants to break in at time period i = α − 1, MA runs A in
the forge phase with input ski = (Stateα,Outα). This is all secret information that exists in
time period i = α− 1. If A returns a valid forgery for time period j < i, then MA returns 1 and 0
otherwise. Altogether MA runs in time ≤ t′ = t+ tKg + 2HtSign + tVf .
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Now we calculate the success probability of MA in distinguishing the output of FsGen from
uniformly random outputs. The probability that A wants to break in in time period i = α−1 is 2−H

as α is chosen uniformly at random. Now, ifMA is run in Exp
fsprg−1
FsGen (MA), theOuti, 1 ≤ i ≤ 2H are

pseudorandom outputs of FsGen. Hence A succeeds with probability SuccFSSIG
(
XMSS⋆(1n

′

, 2H);A
)

per definition. As MA returns 1 if A is successful we get

Pr
[
Exp

fsprg−1
FsGen (MA) = 1

]
= 2−H · SuccFSSIG

(
XMSS⋆(1n

′

, 2H);A
)

If MA is in Exp
fsprg−0
FsGen (MA) , the Outi, 1 ≤ i ≤ α are chosen uniformly at random. The remaining

Outi, α + 1 ≤ i ≤ 2H are pseudorandom outputs of FsGen. Again, the probability that A wants
to break in in time period i = α − 1 is 2−H as α is chosen uniformly at random. And again MA

returns 1 if A succeeds. We will need an upper bound for the probability that MA returns 1, so we
have to limit A’s success probability for the case that A breaks in in time period i = α− 1. We will

show that in this case, A succeeds with probability ≤ InSecEU-CMA

(
XMSS′(1n

′

, 2H); t, q = 1
)
. For

the moment assume this is true. Then we get

Pr
[
Exp

fsprg−0
FsGen (MA) = 1

]
≤ 2−H · InSecEU-CMA

(
XMSS′(1n

′

, 2H); t, q = 1
)

Altogether this leads to

InSecfsprg
(
FsGen; t′

)

≥ Succfsprg
(
FsGen;MA

)

=
∣∣∣Pr

[
Exp

fsprg−1
FsGen (MA) = 1

]
− Pr

[
Exp

fsprg−0
FsGen (MA) = 1

]∣∣∣

≥ 2−H · SuccFSSIG
(
XMSS⋆(1n

′

, 2H);A
)
− 2−H · InSecEU-CMA

(
XMSS′(1n

′

, 2H); t, q = 1
)

and therefore

SuccFSSIG
(
XMSS⋆(1n

′

, 2H);A
)

≤ 2H · InSecfsprg
(
FsGen; t′

)
+ InSecEU-CMA

(
XMSS′(1n

′

, 2H); t, q = 1
)
.

As this holds for all A running in time ≤ t, making at most q = 1 queries to each instance of Sign
we get

InSecFSSIG
(
XMSS⋆(1n

′

, 2H); t, q = 1
)

≤ 2H · InSecfsprg
(
FsGen; t′

)
+ InSecEU-CMA

(
XMSS′(1n

′

, 2H); t, q = 1
)
.

So, this is what we wanted. But we still have to show that if MA is in Exp
fsprg−0
FsGen (MA), the

success probability of A, conditioned on the event that MA correctly guesses the time period A

wants to break in, denoted by ǫA, is limited by

ǫA ≤ InSecEU-CMA

(
XMSS′(1n

′

, 2H); t, q = 1
)
.
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We do this, showing how to build an oracle machine M̂A, that behaves exactly as MA does, from
A’s point of view. In contrast to MA, M̂A uses A either to forge a signature for W-OTS with
pseudorandom key generation (W-OTS⋆) or to find a second preimage for a random function hK
from Hn. We describe M̂A.

M̂A receives as input a Second preimage challenge, consisting of a preimage xc and a function
key K identifying a function hK from Hn as well as a W-OTS⋆ public key pkc. Furthermore M̂A

gets access to the corresponding signing oracle for pkc. Like MA, M̂A chooses α
$
←− {1, . . . , 2H}

uniformly at random. Additionally, M̂A chooses β
$
←− {0, α − 1} uniformly at random. Next M̂A

generates 2H W-OTS⋆ key pairs. This is done in a way simulating the Exp
fsprg−0
FsGen (MA) case: For

the first α key pairs M̂A uses a random seed. Then M̂A uses FsGen to compute Stateα using a
random seed and uses FsGen starting from Stateα to generate the seeds for the remaining key
pairs. Afterwards M̂A replaces the key pair on position β by pkc. As β ≤ α and pkc corresponds
to a W-OTS⋆ key pair where the seed is chosen at random, the first α W-OTS⋆ key pairs are now
generated using random seeds and the remaining W-OTS⋆ key pairs are generated using FsGen,
exactly as in the case of MA.

Next, M̂A computes the XMSS-Tree starting from the bit strings of the W-OTS⋆ public keys,
using hK ∈ Hn. During the XMSS-Tree computation, M̂A chooses a random node from the set of
all ancestor nodes of the bit strings of the first α W-OTS⋆ public keys. Then M̂A chooses the bit
masks for the level of this node such that for this node, the input to hk is xc. Then M̂A starts to
interact with A using the resulting XMSS public key, in exactly the same way MA does. Especially
M̂A aborts if A does not break in in time period i = α − 1. M̂A can answer all signature queries
using the generated secret keys or the signing oracle in time period i = β.

If A returns a valid forgery (M ′, (j, σ′,Auth
′)) for time period j < α − 1, M̂A computes the

W-OTS⋆ public key pk′j using the signature σ′. Now there are two mutual exclusive cases:

(Case 1) If pk′j = pkj , σ
′ is an existential forgery for W-OTS⋆. So if j = β M̂A returns (M,σ′),

otherwise M̂A aborts.

(Case 2) If pk′j 6= pkj , by the pigeon hole principle, there must be one node on the paths from
pk′j and pkj to the root, where the paths collide the first time. As this node is an output of hK and

the inputs are different, M̂A found a collision. If one of the inputs is xc, M̂
A returns the second

preimage. Otherwise M̂A aborts. M̂A runs in time t′ = t+ 2H · tSign + tVf + tKg.

Now we compute the success probability of M̂A. Per assumption A breaks in in time pe-
riod i = α − 1. From A’s point of view, M̂A behaves exactly as MA. Hence A returns a valid
forgery with probability ǫA. In case 1, M̂A succeeds with probability Pr[j = β] = 1

α
. But the suc-

cess probability of M̂A for this case is also upper bound by the EU-CMA-security of W-OTS⋆,
InSecEU-CMA (W-OTS(1n, T = 1); t′, q = 1). To analyze case 2, we represent the set of all ancestor
nodes of the bit strings of the first α W-OTS⋆ public keys by Ancestorsα. Then M̂A succeeds with
probability 1

|Ancestorsα|
. But the success probability of M̂A in case 2 is also upper bound by the

second preimage resistance of Hn, InSec
spr (Hn; t

′). One of both cases appears with probability at
least 1

2 . Summing up we get

ǫA ≤ 2 ·max

{
(α+ 1) · InSecEU-CMA (W-OTS(1n, T = 1); t′, q = 1) ,
|Ancestorsα| · InSec

spr (Hn; t
′)

}
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The right part of the equation takes its maximum value for α = 2H . Comparing this with the result
from [DOTV08] given in the proof of Theorem 1 we see that the right part of the equation for

α = 2H is exactly InSecEU-CMA

(
XMSS′(1n

′

, 2H); t, q = 1
)
. This concludes the claim. ⊓⊔

Combining this with the above result for FsGen leads that the maximum success probability over
all adversaries running in time ≤ t, making at most 1 query to each instance of Sign, in attacking
the forward security of XMSS⋆ , InSecfssig (XMSS⋆; t, q = 1), is bounded by

InSecfssig (XMSS⋆; t, q = 1)

≤ 22H+1 · InSecprf
(
Fn; (t

′ + 2), q = 2
)

+ 2 ·max





(2H+log ℓ − 1) · InSecspr (Hn; t
′) ,

2H
(
InSecprf (Fn; (t

′ + ℓ), q = ℓ)

+(ℓ2w2κw−1 1

( 1

κ
− 1

2n )
) · InSecprf (Fn; (t

′), q = 2)

)





t′ = t+ 2H · tSign + tVf + tKg. This concludes the proof. ⊓⊔

5 Efficiency

In this Section we discuss the efficiency of XMSS. We will show that XMSS and its the forward
secure variant are efficient if Hn is an efficient second preimage resistant hash function family and
Fn an efficient pseudorandom function family. Efficiency here refers to the runtimes and space re-
quirements for sufficiently secure parameters. It is expressed as a function of the security parameter
n. In the Section 6 we will propose parameters that are secure according to [LV01] and present
experimental results that support the efficiency of XMSS.

The runtime of all three algorithms of XMSS is dominated by the number #callF of calls to Fn

and the number #callH of calls to Hn. We ignore the negligible computational overhead for adding
the bitmasks, control flow and computing the base w representation of the message. Using a simple
counting argument we obtain the following result:

For one call to the XMSS signature algorithm, the number of calls to Hn and Fn is bounded by

#callH ≤
H + 2

2
∗ (H + ℓ), #callF ≤

H + 2

2
∗ (ℓ(w + 1)) + 4H.

For one call to the XMSS signature verification algorithm, the number of calls to Hn and Fn is
bounded by

#callH ≤ H + ℓ, #callF ≤ ℓw.

For one call to the XMSS key generation algorithm, the number of calls to Hn and Fn is bounded
by

#callH ≤ 2H(ℓ+ 1), #callF ≤ 2H(2 + ℓ(w + 1)).

The space requirements for the internal state of Sign and Kg (including sk) are at most 6H ∗ n
bits. Vf needs no internal state. Hence, the space used by XMSS is at most 6H ∗ n bits.
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6 Implementation

We have implemented XMSS to evaluate its practical performance. The implementation was done in
C, using the AES and SHA-2 implementation of OpenSSL1. The implementation is straightforward,
except for the construction of Hn and Fn for which we implemented constructions based on hash
functions and block ciphers.

First we discuss the hash function based constructions. In our implementation any hash func-
tion from the OpenSSL library can be used that uses the Merkle-Darmgard (M-D) construc-
tion [Mer90b]. The family Fn is constructed as follows.

Given a hash function Hash with block length b and output size n that uses the M-D construction
we build the function family Fn as

fK(M) = Hash(Pad(K)||Pad(M)),

for key K ∈ {0, 1}n, message M ∈ {0, 1}n and Pad(x) = (x||10b−|x|−1) for |x| < b.

We show that this is a pseudorandom function family if Hash is a good cryptographic hash
function. In [BCK96a] it is assumed, that the compression function of a good M-D hash function
is a pseudorandom function family if keyed using the input. In [BCK96b], it is assumed, that the
compression function of a good M-D hash function is a pseudorandom function family if keyed
on the chaining input. Further it is shown, that a fixed input length M-D hash function, keyed
using the initialization vector (IV) is a pseudorandom function family for fixed length inputs.
In our construction the internal compression function of hash is evaluated twice: First on the
IV and the padded key, second on the resulting chaining value and the padded message. Due to
the pseudorandomness of the compression function when keyed on the message input, the first
evaluation works as a pseudorandom key generation. As we have a fixed message length the second
iteration is a pseudorandom function family keyed using the IV input.

For Hn we use Hash without modifications, as we only need a randomly chosen element of
Hn and not the whole family. We follow the standard assumption for the security of keyless hash
functions. It assumes that a keyless hash function is an element of a family of hash functions, chosen
uniformly at random.

Next we present the constructions using a block cipher E(K,M) with block and key length
n bit. This is of special interest in case of AES, because many smartcard crypto co-processors
and also most actual Intel processors provide hardware acceleration for AES. For Fn we use E

without modification, as a standard assumption states that a good block cipher can be modelled
as pseudorandom permutation. Hn is constructed as hK(M) = C2 for M = M1||M2, with

Ci = ECi−1
(Mi)⊕Mi, C0 = K, 0 ≤ i ≤ 2

in M-D mode. In [BRS02] the authors give a black box proof for the security of this construction.
We do not use M-D strengthening, as our domain has fixed size.

Table 1 shows our results on an Intel(R) Core(TM) i5 CPU M540 @ 2.53GHz with Infineon
AES-NI2 for XMSS. For the forward secure construction the signature key size grows to 10.240
bits (5.120 bits) for SHA-256 (AES-128), respectively. We used a tree height H = 20. This leads to
instances usable for about one million signatures. Further we assumed a message length of m = 256

1 http://www.openssl.org/
2 http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
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Table 1. XMSS performance for H = 20, m = 256. b denotes the bit security. * Using AES-NI. ** Although the
authors of [DOTV08] mention the possibility to generate the secret key using a pseudorandom generator, this is not
covered by their security proof. For the provided values a secret key of size 2H ·n is assumed. A secret key size of 152
bits is possible, slightly reducing the bit security. Hence we exclude this value from the comparison for fairness.

Timings (ms) Sizes (bit)
Function w Sign Verify Keygen Signature Public key Secret key b

AES-128* 4 1.72 0.11 109,610.45 19,608 7,296 152 82
AES-128 4 2.87 0.22 158,208.49 19,608 7,296 152 82

SHA-256 4 6.30 0.51 408,687.43 39,192 13,568 280 210
SHA-256 16 7.00 0.52 466,236.55 22,296 13,568 280 196
SHA-256 64 15.17 1.02 1,099,377.18 16,664 13,568 280 146
SHA-256 108 33.47 2.34 2,288,355.24 15,384 13,568 280 100

RSA 2048 3.08 0.09 - ≤ 2048 ≤ 4096 ≤ 4096 87
DSA 2048 0.89 1.06 - ≤ 2048 ≤ 4096 ≤ 4096 87

MSS-SPR (n=128) 68,096 7680 -** 98

bit. The last column of the table shows the bit security of the configuration. Following the heuristic
of Lenstra and Verheul [LV01] the AES configuration with bit security 82 is secure until 2015. The
SHA-256 configurations with bit security 100 (146, 196, 210) are secure until 2039 (2099, 2164,
2182). According to [LV01], RSA as well as DSA using a 2048-bit key are assumed to be secure
until 2022. The timings for RSA and DSA where taken using the OpenSSL speed command. As
this does not provide timings for key generation, we had to leave this field blank. The results show
that XMSS is comparable to existing signature schemes. Only the key generation takes a lot of
time. But as key generation is an offline task, it can be scheduled.

The last row of table 1 shows the signature size and public key size for MSS-SPR [DOTV08]. To
make the results from [DOTV08] comparable, we computed the signature and public key size for
message length m = 256 bit, using their formulas. [DOTV08] does not provide runtimes, therefore
we had to leave these fields blank. Comparing XMSS using SHA-256 and w = 108 with MSS-SPR
shows that even for a slightly higher bit security we achieve a signature length of less than 25 % of
the signature length of MSS-SPR. We also tried to compare XMSS with GMSS [BDK+07], but as
the authors do not provide a security proof, a fair comparison is not possible without presenting a
security proof for GMSS.
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