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Abstract. We propose two efficient approximations to standard
convolutional neural networks: Binary-Weight-Networks and XNOR-
Networks. In Binary-Weight-Networks, the filters are approximated with
binary values resulting in 32× memory saving. In XNOR-Networks, both
the filters and the input to convolutional layers are binary. XNOR-
Networks approximate convolutions using primarily binary operations.
This results in 58× faster convolutional operations (in terms of num-
ber of the high precision operations) and 32× memory savings. XNOR-
Nets offer the possibility of running state-of-the-art networks on CPUs
(rather than GPUs) in real-time. Our binary networks are simple, accu-
rate, efficient, and work on challenging visual tasks. We evaluate our
approach on the ImageNet classification task. The classification accu-
racy with a Binary-Weight-Network version of AlexNet is the same as
the full-precision AlexNet. We compare our method with recent network
binarization methods, BinaryConnect and BinaryNets, and outperform
these methods by large margins on ImageNet, more than 16 % in top-1
accuracy. Our code is available at: http://allenai.org/plato/xnornet.

1 Introduction

Deep neural networks (DNN) have shown significant improvements in sev-
eral application domains including computer vision and speech recognition.
In computer vision, a particular type of DNN, known as Convolutional
Neural Networks (CNN), have demonstrated state-of-the-art results in object
recognition [1–4] and detection [5–7].

Convolutional neural networks show reliable results on object recognition
and detection that are useful in real world applications. Concurrent to the recent
progress in recognition, interesting advancements have been happening in virtual
reality (VR by Oculus) [8], augmented reality (AR by HoloLens) [9], and smart
wearable devices. Putting these two pieces together, we argue that it is the right
time to equip smart portable devices with the power of state-of-the-art recogni-
tion systems. However, CNN-based recognition systems need large amounts of
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Fig. 1. We propose two efficient variations of convolutional neural networks.
Binary-Weight-Networks, when the weight filters contains binary values. XNOR-

Networks, when both weigh and input have binary values. These networks are very
efficient in terms of memory and computation, while being very accurate in natural
image classification. This offers the possibility of using accurate vision techniques in
portable devices with limited resources. (Color figure online)

memory and computational power. While they perform well on expensive, GPU-
based machines, they are often unsuitable for smaller devices like cell phones and
embedded electronics.

For example, AlexNet [1] has 61 M parameters (249 MB of memory) and
performs 1.5 B high precision operations to classify one image. These numbers
are even higher for deeper CNNs e.g., VGG [2] (see Sect. 4.1). These models
quickly overtax the limited storage, battery power, and compute capabilities of
smaller devices like cell phones.

In this paper, we introduce simple, efficient, and accurate approximations
to CNNs by binarizing the weights and even the intermediate representations in
convolutional neural networks. Our binarization method aims at finding the best
approximations of the convolutions using binary operations. We demonstrate
that our way of binarizing neural networks results in ImageNet classification
accuracy numbers that are comparable to standard full precision networks while
requiring a significantly less memory and fewer floating point operations.

We study two approximations: Neural networks with binary weights and
XNOR-Networks. In Binary-Weight-Networks all the weight values are
approximated with binary values. A convolutional neural network with binary
weights is significantly smaller (∼32×) than an equivalent network with single-
precision weight values. In addition, when weight values are binary, convolutions
can be estimated by only addition and subtraction (without multiplication),
resulting in ∼2× speed up. Binary-weight approximations of large CNNs can
fit into the memory of even small, portable devices while maintaining the same
level of accuracy (See Sects. 4.1 and 4.2).

To take this idea further, we introduce XNOR-Networks where both the
weights and the inputs to the convolutional and fully connected layers are
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approximated with binary values1. Binary weights and binary inputs allow an
efficient way of implementing convolutional operations. If all of the operands of
the convolutions are binary, then the convolutions can be estimated by XNOR
and bitcounting operations [11]. XNOR-Nets result in accurate approximation
of CNNs while offering ∼58× speed up in CPUs (in terms of number of the
high precision operations). This means that XNOR-Nets can enable real-time
inference in devices with small memory and no GPUs (Inference in XNOR-Nets
can be done very efficiently on CPUs).

To the best of our knowledge this paper is the first attempt to present an
evaluation of binary neural networks on large-scale datasets like ImageNet. Our
experimental results show that our proposed method for binarizing convolutional
neural networks outperforms the state-of-the-art network binarization method
of [11] by a large margin (16.3%) on top-1 image classification in the ImageNet
challenge ILSVRC2012. Our contribution is two-fold: First, we introduce a new
way of binarizing the weight values in convolutional neural networks and show
the advantage of our solution compared to state-of-the-art solutions. Second, we
introduce XNOR-Nets, a deep neural network model with binary weights and
binary inputs and show that XNOR-Nets can obtain similar classification accu-
racies compared to standard networks while being significantly more efficient.
Our code is available at: http://allenai.org/plato/xnornet.

2 Related Work

Deep neural networks often suffer from over-parametrization and large amounts
of redundancy in their models. This typically results in inefficient computation
and memory usage [12]. Several methods have been proposed to address efficient
training and inference in deep neural networks.

Shallow networks: Estimating a deep neural network with a shallower model
reduces the size of a network. Early theoretical work by Cybenko shows that a
network with a large enough single hidden layer of sigmoid units can approximate
any decision boundary [13]. In several areas (e.g., vision and speech), however,
shallow networks cannot compete with deep models [14]. [15] trains a shallow
network on SIFT features to classify the ImageNet dataset. They show it is
difficult to train shallow networks with large number of parameters. [16] provides
empirical evidence on small datasets (e.g., CIFAR-10) that shallow nets are
capable of learning the same functions as deep nets. In order to get the similar
accuracy, the number of parameters in the shallow network must be close to
the number of parameters in the deep network. They do this by first training
a state-of-the-art deep model, and then training a shallow model to mimic the
deep model. These methods are different from our approach because we use the
standard deep architectures not the shallow estimations.

1 Fully connected layers can be implemented by convolution, therefore, in the rest of
the paper, we refer to them also as convolutional layers [10].

http://allenai.org/plato/xnornet
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Compressing pre-trained deep networks: Pruning redundant, non-
informative weights in a previously trained network reduces the size of the net-
work at inference time. Weight decay [17] was an early method for pruning a
network. Optimal Brain Damage [18] and Optimal Brain Surgeon [19] use the
Hessian of the loss function to prune a network by reducing the number of connec-
tions. Recently [20] reduced the number of parameters by an order of magnitude
in several state-of-the-art neural networks by pruning. [21] proposed to reduce
the number of activations for compression and acceleration. Deep compression
[22] reduces the storage and energy required to run inference on large networks so
they can be deployed on mobile devices. They remove the redundant connections
and quantize weights so that multiple connections share the same weight, and
then they use Huffman coding to compress the weights. HashedNets [23] uses a
hash function to reduce model size by randomly grouping the weights, such that
connections in a hash bucket use a single parameter value. Matrix factorization
has been used by [24,25]. We are different from these approaches because we do
not use a pretrained network. We train binary networks from scratch.

Designing compact layers: Designing compact blocks at each layer of a deep
network can help to save memory and computational costs. Replacing the fully
connected layer with global average pooling was examined in the Network in Net-
work architecture [26], GoogLenet [3] and Residual-Net [4], which achieved state-
of-the-art results on several benchmarks. The bottleneck structure in Residual-
Net [4] has been proposed to reduce the number of parameters and improve
speed. Decomposing 3×3 convolutions with two 1×1 is used in [27] and resulted
in state-of-the-art performance on object recognition. Replacing 3 × 3 convolu-
tions with 1 × 1 convolutions is used in [28] to create a very compact neural
network that can achieve ∼50× reduction in the number of parameters while
obtaining high accuracy. Our method is different from this line of work because
we use the full network (not the compact version) but with binary parameters.

Quantizing parameters: High precision parameters are not very important
in achieving high performance in deep networks. [29] proposed to quantize the
weights of fully connected layers in a deep network by vector quantization tech-
niques. They showed just thresholding the weight values at zero only decreases
the top-1 accuracy on ILSVRC2012 by less than %10. [30] proposed a provably
polynomial time algorithm for training a sparse networks with +1/0/−1 weights.
A fixed-point implementation of 8-bit integer was compared with 32-bit floating
point activations in [31]. Another fixed-point network with ternary weights and
3-bits activations was presented by [32]. Quantizing a network with L2 error
minimization achieved better accuracy on MNIST and CIFAR-10 datasets in
[33]. [34] proposed a back-propagation process by quantizing the representations
at each layer of the network. To convert some of the remaining multiplications
into binary shifts the neurons get restricted values of power-of-two integers. In
[34] they carry the full precision weights during the test phase, and only quantize
the neurons during the back-propagation process, and not during the forward-
propagation. Our work is similar to these methods since we are quantizing the
parameters in the network. But our quantization is the extreme scenario +1,−1.
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Network binarization: These works are the most related to our approach.
Several methods attempt to binarize the weights and the activations in neural
networks. The performance of highly quantized networks (e.g., binarized) were
believed to be very poor due to the destructive property of binary quantiza-
tion [35]. Expectation BackPropagation (EBP) in [36] showed high performance
can be achieved by a network with binary weights and binary activations. This
is done by a variational Bayesian approach, that infers networks with binary
weights and neurons. A fully binary network at run time presented in [37] using
a similar approach to EBP, showing significant improvement in energy efficiency.
In EBP the binarized parameters were only used during inference. BinaryCon-
nect [38] extended the probabilistic idea behind EBP. Similar to our approach,
BinaryConnect uses the real-valued version of the weights as a key reference for
the binarization process. The real-valued weight updated using the back prop-
agated error by simply ignoring the binarization in the update. BinaryConnect
achieved state-of-the-art results on small datasets (e.g., CIFAR-10, SVHN). Our
experiments shows that this method is not very successful on large-scale datsets
(e.g., ImageNet). BinaryNet [11] propose an extention of BinaryConnect, where
both weights and activations are binarized. Our method is different from them
in the binarization method and the network structure. We also compare our
method with BinaryNet on ImageNet, and our method outperforms BinaryNet
by a large margin. [39] argued that the noise introduced by weight binarization
provides a form of regularization, which could help to improve test accuracy.
This method binarizes weights while maintaining full precision activation. [40]
proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with
binary weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet 〈I,W, ∗〉. I is a set of
tensors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer
of CNN (Green cubes in Fig. 1). W is a set of tensors, where each element in
this set W = Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN.

Kl is the number of weight filters in the lth layer of the CNN. ∗ represents a
convolutional operation with I and W as its operands2. I ∈ R

c×win×hin , where
(c, win, hin) represents channels, width and height respectively. W ∈ R

c×w×h,
where w ≤ win, h ≤ hin. We propose two variations of binary CNN: Binary-

weights, where the elements of W are binary tensors and XNOR-Networks,
where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network 〈I,W, ∗〉 to have binary
weights, we estimate the real-value weight filter W ∈ W using a binary filter

2 In this paper we assume convolutional filters do not have bias terms.
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B ∈ {+1,−1}c×w×h and a scaling factor α ∈ R
+ such that W ≈ αB. A convo-

lutional operation can be approximated by:

I ∗ W ≈ (I ⊕ B) α (1)

where, ⊕ indicates a convolution without any multiplication. Since the weight
values are binary, we can implement the convolution with additions and sub-
tractions. The binary weight filters reduce memory usage by a factor of ∼32×
compared to single-precision filters. We represent a CNN with binary weights
by 〈I,B,A,⊕〉, where B is a set of binary tensors and A is a set of positive real
scalars, such that B = Blk is a binary filter and α = Alk is an scaling factor and
Wlk ≈ AlkBlk

Estimating Binary Weights: Without loss of generality we assume W,B are
vectors in R

n, where n = c×w ×h. To find an optimal estimation for W ≈ αB,
we solve the following optimization:

J(B, α) = ‖W − αB‖2

α∗,B∗ = argmin
α,B

J(B, α) (2)

by expanding Eq. 2, we have

J(B, α) = α2BTB − 2αWTB + WTW (3)

since B ∈ {+1,−1}n, BTB = n is a constant. WTW is also a constant because
W is a known variable. Lets define c = WTW. Now, we can rewrite the Eq. 3
as follow: J(B, α) = α2n − 2αWTB + c. The optimal solution for B can be
achieved by maximizing the following constrained optimization: (note that α is
a positive value in Eq. 2, therefore it can be ignored in the maximization)

B∗ = argmax
B

{WTB} s.t. B ∈ {+1,−1}n (4)

This optimization can be solved by assigning Bi = +1 if Wi ≥ 0 and Bi = −1
if Wi < 0, therefore the optimal solution is B∗ = sign(W). In order to find the
optimal value for the scaling factor α∗, we take the derivative of J with respect
to α and set it to zero:

α∗ =
WTB∗

n
(5)

By replacing B∗ with sign(W)

α∗ =
WTsign(W)

n
=

∑
|Wi|

n
=

1

n
‖W‖ℓ1 (6)

therefore, the optimal estimation of a binary weight filter can be simply achieved
by taking the sign of weight values. The optimal scaling factor is the average of
absolute weight values.
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Training Binary-Weights-Networks: Each iteration of training a CNN
involves three steps; forward pass, backward pass and parameters update. To
train a CNN with binary weights (in convolutional layers), we only binarize
the weights during the forward pass and backward propagation. To compute
the gradient for sign function sign(r), we follow the same approach as [11],
where ∂sign

∂r
= r1|r|≤1. The gradient in backward after the scaled sign function is

∂C
∂Wi

= ∂C

W̃i

( 1
n

+ ∂sign
∂Wi

α). For updating the parameters, we use the high precision

(real-value) weights. Because, in gradient descend the parameter changes are
tiny, binarization after updating the parameters ignores these changes and the
training objective can not be improved. [11,38] also employed this strategy to
train a binary network.

Algorithm 1. Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I,Y), cost function C(Y, Ŷ), current weight
Wt and current learning rate ηt.

Output: updated weight Wt+1 and updated learning rate ηt+1.
1: Binarizing weight filters:
2: for l = 1 to L do

3: for kth filter in lth layer do

4: Alk = 1

n
‖Wt

lk‖ℓ1

5: Blk = sign(Wt
lk)

6: W̃lk = AlkBlk

7: Ŷ = BinaryForward(I, B, A) // standard forward propagation except that convolutions

are computed using Eq. 1 or 11

8: ∂C

∂W̃
= BinaryBackward( ∂C

∂Ŷ
, W̃) // standard backward propagation except that gra-

dients are computed using W̃ instead of Wt

9: Wt+1 = UpdateParameters(Wt, ∂C

∂W̃
, ηt) // Any update rules (e.g., SGD or ADAM)

10: ηt+1 = UpdateLearningrate(ηt, t) // Any learning rate scheduling function

Algorithm1 demonstrates our procedure for training a CNN with binary
weights. First, we binarize the weight filters at each layer by computing B and A.
Then we call forward propagation using binary weights and its corresponding
scaling factors, where all the convolutional operations are carried out by Eq. 1.
Then, we call backward propagation, where the gradients are computed with
respect to the estimated weight filters W̃. Lastly, the parameters and the learn-
ing rate gets updated by an update rule e.g., SGD update with momentum or
ADAM [42].

Once the training finished, there is no need to keep the real-value weights.
Because, at inference we only perform forward propagation with the binarized
weights.

3.2 XNOR-Networks

So far, we managed to find binary weights and a scaling factor to estimate the
real-value weights. The inputs to the convolutional layers are still real-value



532 M. Rastegari et al.

Fig. 2. This figure illustrates the procedure explained in Sect. 3.2 for approximating a
convolution using binary operations.

tensors. Now, we explain how to binarize both weights and inputs, so convolu-
tions can be implemented efficiently using XNOR and bitcounting operations.
This is the key element of our XNOR-Networks. In order to constrain a convolu-
tional neural network 〈I,W, ∗〉 to have binary weights and binary inputs, we need
to enforce binary operands at each step of the convolutional operation. A convo-
lution consist of repeating a shift operation and a dot product. Shift operation
moves the weight filter over the input and the dot product performs element-
wise multiplications between the values of the weight filter and the corresponding
part of the input. If we express dot product in terms of binary operations, convo-
lution can be approximated using binary operations. Dot product between two
binary vectors can be implemented by XNOR-Bitcounting operations [11]. In this
section, we explain how to approximate the dot product between two vectors in
R

n by a dot product between two vectors in {+1,−1}n. Next, we demonstrate
how to use this approximation for estimating a convolutional operation between
two tensors.

Binary Dot Product: To approximate the dot product between X,W ∈ R
n

such that XTW ≈ βHTαB, where H,B ∈ {+1,−1}n and β, α ∈ R
+, we solve

the following optimization:

α∗,B∗, β∗,H∗ = argmin
α,B,β,H

‖X ⊙ W − βαH ⊙ B‖ (7)

where ⊙ indicates element-wise product. We define Y ∈ R
n such that Yi =

XiWi, C ∈ {+1,−1}n such that Ci = HiBi and γ ∈ R
+ such that γ = βα.

The Eq. 7 can be written as:

γ∗,C∗ = argmin
γ,C

‖Y − γC‖ (8)
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the optimal solutions can be achieved from Eq. 2 as follow

C∗ = sign(Y) = sign(X) ⊙ sign(W) = H∗ ⊙ B∗ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

γ∗ =

∑
|Yi|

n
=

∑
|Xi||Wi|

n
≈

(
1

n
‖X‖ℓ1

)(
1

n
‖W‖ℓ1

)
= β∗α∗ (10)

Binary Convolution: Convolving weight filter W ∈ R
c×w×h (where win ≫

w, hin ≫ h) with the input tensor I ∈ R
c×win×hin requires computing the

scaling factor β for all possible sub-tensors in I with same size as W. Two of
these sub-tensors are illustrated in Fig. 2 (second row) by X1 and X2. Due to
overlaps between subtensors, computing β for all possible sub-tensors leads to a
large number of redundant computations. To overcome this redundancy, first, we

compute a matrix A =
∑

|I:,:,i|
c

, which is the average over absolute values of the
elements in the input I across the channel. Then we convolve A with a 2D filter
k ∈ R

w×h, K = A ∗ k, where ∀ij kij = 1
w×h

. K contains scaling factors β for
all sub-tensors in the input I. Kij corresponds to β for a sub-tensor centered at
the location ij (across width and height). This procedure is shown in the third
row of Fig. 2. Once we obtained the scaling factor α for the weight and β for all
sub-tensors in I (denoted by K), we can approximate the convolution between
input I and weight filter W mainly using binary operations:

I ∗ W ≈ (sign(I) ⊛ sign(W)) ⊙ Kα (11)

where ⊛ indicates a convolutional operation using XNOR and bitcount oper-
ations. This is illustrated in the last row in Fig. 2. Note that the number of
non-binary operations is very small compared to binary operations.

Training XNOR-Networks: A typical block in CNN contains several differ-
ent layers. Figure 3(left) illustrates a typical block in a CNN. This block has
four layers in the following order: 1-Convolutional, 2-Batch Normalization, 3-
Activation and 4-Pooling. Batch Normalization layer [43] normalizes the input
batch by its mean and variance. The activation is an element-wise non-linear

Fig. 3. This figure contrasts the block structure in our XNOR-Network (right) with a
typical CNN (left).
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function (e.g., Sigmoid, ReLU). The pooling layer applies any type of pooling
(e.g., max,min or average) on the input batch. Applying pooling on binary input
results in significant loss of information. For example, max-pooling on binary
input returns a tensor that most of its elements are equal to +1. Therefore, we
put the pooling layer after the convolution. To further decrease the informa-
tion loss due to binarization, we normalize the input before binarization. This
ensures the data to hold zero mean, therefore, thresholding at zero leads to less
quantization error. The order of layers in a block of binary CNN is shown in
Fig. 3(right).

The binary activation layer (BinActiv) computes K and sign(I) as explained
in Sect. 3.2. In the next layer (BinConv), given K and sign(I), we compute
binary convolution by Eq. 11. Then at the last layer (Pool), we apply the pooling
operations. We can insert a non-binary activation (e.g., ReLU) after binary
convolution. This helps when we use state-of-the-art networks (e.g., AlexNet or
VGG).

Once we have the binary CNN structure, the training algorithm would be
the same as Algorithm 1.

Binary Gradient: The computational bottleneck in the backward pass at each
layer is computing a convolution between weight filters (w) and the gradients
with respect of the inputs (gin). Similar to binarization in the forward pass, we
can binarize gin in the backward pass. This leads to a very efficient training pro-
cedure using binary operations. Note that if we use Eq. 6 to compute the scaling
factor for gin, the direction of maximum change for SGD would be diminished.
To preserve the maximum change in all dimensions, we use maxi(|g

in
i |) as the

scaling factor.

k-bit Quantization: So far, we showed 1-bit quantization of weights and inputs
using sign(x) function. One can easily extend the quantization level to k-bits by

using qk(x) = 2(
[(2k−1)( x+1

2
)]

2k−1
− 1

2 ) instead of the sign function. Where [.] indicates
rounding operation and x ∈ [−1, 1].

4 Experiments

We evaluate our method by analyzing its efficiency and accuracy. We measure
the efficiency by computing the computational speedup (in terms of number of
high precision operation) achieved by our binary convolution vs. standard convo-
lution. To measure accuracy, we perform image classification on the large-scale
ImageNet dataset. This paper is the first work that evaluates binary neural net-
works on the ImageNet dataset. Our binarization technique is general, we can
use any CNN architecture. We evaluate AlexNet [1] and two deeper architec-
tures in our experiments. We compare our method with two recent works on
binarizing neural networks; BinaryConnect [38] and BinaryNet [11]. The classi-
fication accuracy of our binary-weight-network version of AlexNet is as accurate
as the full precision version of AlexNet. This classification accuracy outperforms
competitors on binary neural networks by a large margin. We also present an
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Fig. 4. This figure shows the efficiency of binary convolutions in terms of memory
(a) and computation (b–c). (a) is contrasting the required memory for binary and
double precision weights in three different architectures (AlexNet, ResNet-18 and VGG-
19). (b, c) Show speedup gained by binary convolution under (b)-different number of
channels and (c)-different filter size

ablation study, where we evaluate the key elements of our proposed method;
computing scaling factors and our block structure for binary CNN. We shows
that our method of computing the scaling factors is important to reach high
accuracy.

4.1 Efficiency Analysis

In an standard convolution, the total number of operations is cNWNI, where c

is the number of channels, NW = wh and NI = winhin. Note that some modern
CPUs can fuse the multiplication and addition as a single cycle operation. On
those CPUs, Binary-Weight-Networks does not deliver speed up. Our binary
approximation of convolution (Eq. 11) has cNWNI binary operations and NI

non-binary operations. With the current generation of CPUs, we can perform 64
binary operations in one clock of CPU, therefore the speedup can be computed
by S = cNWNI

1
64

cNWNI+NI

= 64cNW

cNW+64 .

The speedup depends on the channel size and filter size but not the input
size. In Fig. 4(b–c) we illustrate the speedup achieved by changing the number of
channels and filter size. While changing one parameter, we fix other parameters
as follows: c = 256, nI = 142 and nW = 32 (majority of convolutions in ResNet
[4] architecture have this structure). Using our approximation of convolution
we gain 62.27× theoretical speed up, but in our CPU implementation with all
of the overheads, we achieve 58× speed up in one convolution (Excluding the
process for memory allocation and memory access). With the small channel
size (c = 3) and filter size (NW = 1 × 1) the speedup is not considerably
high. This motivates us to avoid binarization at the first and last layer of a
CNN. In the first layer the channel size is 3 and in the last layer the filter
size is 1 × 1. A similar strategy was used in [11]. Figure 4a shows the required
memory for three different CNN architectures (AlexNet, VGG-19, ResNet-18)
with binary and double precision weights. Binary-weight-networks are so small
that can be easily fitted into portable devices. BinaryNet [11] is in the same
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order of memory and computation efficiency as our method. In Fig. 4, we show
an analysis of computation and memory cost for a binary convolution. The same
analysis is valid for BinaryNet and BinaryConnect. The key difference of our
method is using a scaling-factor, which does not change the order of efficiency
while providing a significant improvement in accuracy.

4.2 Image Classification

We evaluate the performance of our proposed approach on the task of natural
image classification. So far, in the literature, binary neural network methods
have presented their evaluations on either limited domain or simplified datasets
e.g., CIFAR-10, MNIST, SVHN. To compare with state-of-the-art vision, we
evaluate our method on ImageNet (ILSVRC2012). ImageNet has ∼1.2 M train
images from 1 K categories and 50 K validation images. The images in this
dataset are natural images with reasonably high resolution compared to the
CIFAR and MNIST dataset, which have relatively small images. We report our
classification performance using Top-1 and Top-5 accuracies. We adopt three dif-
ferent CNN architectures as our base architectures for binarization: AlexNet [1],
Residual Networks (known as ResNet) [4], and a variant of GoogLenet [3]. We
compare our Binary-weight-network (BWN) with BinaryConnect (BC) [38] and
our XNOR-Networks (XNOR-Net) with BinaryNeuralNet (BNN) [11]. Bina-
ryConnect (BC) is a method for training a deep neural network with binary
weights during forward and backward propagations. Similar to our approach,
they keep the real-value weights during the updating parameters step. Our bina-
rization is different from BC. The binarization in BC can be either deterministic
or stochastic. We use the deterministic binarization for BC in our comparisons
because the stochastic binarization is not efficient. The same evaluation settings
have been used and discussed in [11]. BinaryNeuralNet (BNN) [11] is a neural
network with binary weights and activations during inference and gradient com-
putation in training. In concept, this is a similar approach to our XNOR-Network
but the binarization method and the network structure in BNN is different from
ours. Their training algorithm is similar to BC and they used deterministic bina-
rization in their evaluations.

CIFAR-10: BC and BNN showed near state-of-the-art performance on CIFAR-
10, MNIST, and SVHN dataset. BWN and XNOR-Net on CIFAR-10 using the
same network architecture as BC and BNN achieve the error rate of 9.88 % and
10.17 % respectively. In this paper we explore the possibility of obtaining near
state-of-the-art results on a much larger and more challenging dataset (Ima-
geNet).

AlexNet: [1] is a CNN architecture with 5 convolutional layers and two fully-
connected layers. This architecture was the first CNN architecture that showed to
be successful on ImageNet classification task. This network has 61 M parameters.
We use AlexNet coupled with batch normalization layers [43].

Train: In each iteration of training, images are resized to have 256 pixel at
their smaller dimension and then a random crop of 224 × 224 is selected for
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Fig. 5. This figure compares the imagenet classification accuracy on Top-1 and Top-5
across training epochs. Our approaches BWN and XNOR-Net outperform BinaryCon-
nect (BC) and BinaryNet (BNN) in all the epochs by large margin (∼17 %).

Table 1. This table compares the final accuracies (Top1 - Top5) of the full preci-
sion network with our binary precision networks; Binary-Weight-Networks (BWN) and
XNOR-Networks (XNOR-Net) and the competitor methods; BinaryConnect (BC) and
BinaryNet (BNN).

Classification accuracy (%)

Binary-weight Binary-input-binary-weight Full-precision

BWN BC [11] XNOR-Net BNN [11] AlexNet [1]

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

56.8 79.4 35.4 61.0 44.2 69.2 27.9 50.42 56.6 80.2

training. We run the training algorithm for 16 epochs with batche size equal
to 512. We use negative-log-likelihood over the soft-max of the outputs as our
classification loss function. In our implementation of AlexNet we do not use the
Local-Response-Normalization (LRN) layer3. We use SGD with momentum =
0.9 for updating parameters in BWN and BC. For XNOR-Net and BNN we used
ADAM [42]. ADAM converges faster and usually achieves better accuracy for
binary inputs [11]. The learning rate starts at 0.1 and we apply a learning-rate-
decay = 0.01 every 4 epochs.

Test: At inference time, we use the 224×224 center crop for forward propagation.
Figure 5 demonstrates the classification accuracy for training and inference

along the training epochs for top-1 and top-5 scores. The dashed lines represent
training accuracy and solid lines shows the validation accuracy. In all of the
epochs our method outperforms BC and BNN by large margin (∼17 %). Table 1
compares our final accuracy with BC and BNN. We found that the scaling factors
for the weights (α) is much more effective than the scaling factors for the inputs
(β). Removing β reduces the accuracy by a small margin (less than 1% top-1
alexnet).

Binary Gradient: Using XNOR-Net with binary gradient the accuracy of top-1
will drop only by 1.4 %.

3 Our implementation is followed by https://gist.github.com/szagoruyko/dd032c
529048492630fc.

https://gist.github.com/szagoruyko/dd032c529048492630fc
https://gist.github.com/szagoruyko/dd032c529048492630fc
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Fig. 6. This figure shows the classification accuracy; (a) Top-1 and (b) Top-5 measures
across the training epochs on ImageNet dataset by Binary-Weight-Network and XNOR-
Network using ResNet-18.

Table 2. This table compares the final classification accuracy achieved by our binary
precision networks with the full precision network in ResNet-18 and GoogLenet archi-
tectures.

ResNet-18 GoogLenet

Network variations Top-1 Top-5 Top-1 Top-5

Binary-weight-network 60.8 83.0 65.5 86.1

XNOR-network 51.2 73.2 N/A N/A

Full-precision-network 69.3 89.2 71.3 90.0

Residual Net: We use the ResNet-18 proposed in [4] with short-cut type B.4.

Train: In each training iteration, images are resized randomly between 256 and
480 pixel on the smaller dimension and then a random crop of 224×224 is selected
for training. We run the training algorithm for 58 epochs with batch size equal
to 256 images. The learning rate starts at 0.1 and we use the learning-rate-decay
equal to 0.01 at epochs number 30 and 40.

Test: At inference time, we use the 224×224 center crop for forward propagation.
Figure 6 demonstrates the classification accuracy (Top-1 and Top-5) along

the epochs for training and inference. The dashed lines represent training and
the solid lines represent inference. Table 2 shows our final accuracy by BWN and
XNOR-Net.

GoogLenet Variant: We experiment with a variant of GoogLenet [3] that uses
a similar number of parameters and connections but only straightforward convo-
lutions, no branching5. It has 21 convolutional layers with filter sizes alternating
between 1 × 1 and 3 × 3.

4 We used the Torch implementation in https://github.com/facebook/fb.resnet.torch.
5 We used the Darknet [44] implementation: http://pjreddie.com/darknet/image

net/#extraction.

https://github.com/facebook/fb.resnet.torch
http://pjreddie.com/darknet/imagenet/#extraction
http://pjreddie.com/darknet/imagenet/#extraction
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Table 3. In this table, we evaluate two key elements of our approach; computing the
optimal scaling factors and specifying the right order for layers in a block of CNN
with binary input. (a) demonstrates the importance of the scaling factor in training
binary-weight-networks and (b) shows that our way of ordering the layers in a block
of CNN is crucial for training XNOR-Networks. C,B,A,P stands for Convolutional,
BatchNormalization, Active function (here binary activation), and Pooling respectively.

Binary-Weight-Network

Strategy for computing α top-1 top-5

Using equation 6 56.8 79.4

Using a separate layer 46.2 69.5

(a)

XNOR-Network

Block Structure top-1 top-5

C-B-A-P 30.3 57.5

B-A-C-P 44.2 69.2

(b)

Train: Images are resized randomly between 256 and 320 pixel on the smaller
dimension and then a random crop of 224 × 224 is selected for training. We run
the training algorithm for 80 epochs with batch size of 128. The learning rate
starts at 0.1 and we use polynomial rate decay, β = 4.

Test: At inference time, we use a center crop of 224 × 224.

4.3 Ablation Studies

There are two key differences between our method and the previous network
binarization methods; the binarization technique and the block structure in our
binary CNN. For binarization, we find the optimal scaling factors at each itera-
tion of training. For the block structure, we order the layers in a block in a way
that decreases the quantization loss for training XNOR-Net. Here, we evaluate
the effect of each of these elements in the performance of the binary networks.
Instead of computing the scaling factor α using Eq. 6, one can consider α as a
network parameter. In other words, a layer after binary convolution multiplies
the output of convolution by an scalar parameter for each filter. This is similar
to computing the affine parameters in batch normalization. Table 3a compares
the performance of a binary network with two ways of computing the scaling
factors. As we mentioned in Sect. 3.2 the typical block structure in CNN is not
suitable for binarization. Table 3b compares the standard block structure C-B-
A-P (Convolution, Batch Normalization, Activation, Pooling) with our structure
B-A-C-P. (A, is binary activation).

5 Conclusion

We introduce simple, efficient, and accurate binary approximations for neural
networks. We train a neural network that learns to find binary values for weights,
which reduces the size of network by ∼32× and provide the possibility of load-
ing very deep neural networks into portable devices with limited memory. We
also propose an architecture, XNOR-Net, that uses mostly bitwise operations to
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approximate convolutions. This provides ∼58× speed up and enables the possi-
bility of running the inference of state of the art deep neural network on CPU
(rather than GPU) in real-time.

Acknowledgements. This work is in part supported by ONR N00014-13-1-0720,
NSF IIS- 1338054, Allen Distinguished Investigator Award, and the Allen Institute for
Artificial Intelligence.
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