
XPath Satisfiability in the Presence of DTDs

Michael Benedikt
Bell Laboratories

benedikt@research.bell-labs.com

Wenfei Fan
Univ. of Edinburgh & Bell Labs

wenfei@inf.ed.ac.uk

Floris Geerts
Univ. of Limburg & Univ. of Edinburgh

fgeerts@inf.ed.ac.uk

ABSTRACT
We study the satisfiability problem associated with XPath
in the presence of DTDs. This is the problem of determin-
ing, given a query p in an XPath fragment and a DTD D,
whether or not there exists an XML document T such that
T conforms to D and the answer of p on T is nonempty.
We consider a variety of XPath fragments widely used in
practice, and investigate the impact of different XPath op-
erators on satisfiability analysis. We first study the problem
for negation-free XPath fragments with and without upward
axes, recursion and data-value joins, identifying which fac-
tors lead to tractability and which to NP-completeness. We
then turn to fragments with negation but without data val-
ues, establishing lower and upper bounds in the absence
and in the presence of upward modalities and recursion.
We show that with negation the complexity ranges from
PSPACE to EXPTIME. Moreover, when both data values
and negation are in place, we find that the complexity ranges
from NEXPTIME to undecidable. Finally, we give a finer
analysis of the problem for particular classes of DTDs, ex-
ploring the impact of various DTD constructs, identifying
tractable cases, as well as providing the complexity in the
query size alone.

1. INTRODUCTION
XPath [6] has been widely used in XML query languages
(e.g., XSLT, XQuery), specifications (e.g., XML Schema),
update languages (e.g., [25]), subscription systems (e.g., [5])
and XML access control (e.g., [8]). There is thus a need to
study fundamental properties of the XPath language, and
in particular to investigate static analyses of XPath queries.

The most basic static analysis of a query language is satis-
fiability: given a query in the language, does there exist a
document (or database) on which it returns a nonempty an-
swer? Satisfiability analysis of XPath is important for XML
query and update optimization. Consider, for instance, an
XML query construct commonly used: “for $x in p c($x)”,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005 June 1315, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1595930620/05/06 . . . $5.00.

where p is an XPath expression and c($x) is a query or
update. If one can decide, at compile time, that p is not
satisfiable, then the unnecessary computation of c($x) can
be simply avoided. Furthermore, XPath satisfiability is crit-
ical as a foundation for other consistency problems, such as
information leakage in security views [8], type-checking of
transformations [14], and consistency of XML specifications.

For relational languages, satisfiability analysis is fairly triv-
ial for positive queries such as (union of) conjunctive queries
and positive fragments of Datalog, while it is trivially unde-
cidable for the most prominent query languages with nega-
tion, such as relational calculus and stratified Datalog. For
this reason, static analysis for relational languages has fo-
cused on the containment problem. In contrast, XPath sat-
isfiability analysis is neither trivial nor futile. A variety of
factors contribute to its complexity, such as the operators
allowed in XPath queries, combinations of these operators,
as well as their interaction with a schema.

Analysis of XPath satisfiability. We now examine fac-
tors which XPath satisfiability analysis should take into ac-
count.

XPath Fragments. The XPath 1.0 standard [6] contains a
large array of operators. We consider several dichotomies,
focusing on operators commonly found in practice.

• positive vs. non-positive: XPath allows qualifiers to
be built up with a general negation operator, enabling
it to express non-monotone queries; queries without
negation, referred to as positive queries, can be ex-
pressed in existential logic, while queries with negation
may have existential and universal quantifiers;

• downward vs. upward: some XPath queries specify
downward traversal (child, descendant), while others
also have upward modalities (parent, ancestor);

• recursive vs. non-recursive: some queries express
navigation along the descendant (resp. ancestor) axis,
while others only use the child (resp. parent) axis;

• qualified vs. non-qualified: queries may or may not
contain qualifiers (predicates testing properties defined
in terms of other queries);

• with vs. without data values: queries may or may
not contain comparisons of data values reached via dif-
ferent navigation paths, expressing joins.

Even positive XPath queries defined in terms of simple op-
erators may be unsatisfiable.

Furthermore, as will be seen later, with different combi-
nations of these operators, the complexity of satisfiability
analysis ranges from PTIME to undecidable. From a prac-
tical point of view, many applications typically use only a
limited set of operators. For example, XML Schema speci-
fies integrity constraints with an XPath fragment that does
not support upward modalities. This motivates the study
of satisfiability for various XPath fragments (i.e., different
combinations of operators).

The impact of schema. XML documents often come with a
schema, typically a DTD. Any practical static analysis must
take the schema into account. A DTD is far more complex
than a relational schema, and it imposes structural con-
straints such as co-existence of certain siblings (by means
of concatenation in the regular expressions within a DTD),
exclusive relations on siblings (disjunction), as well as a lim-
ited form of negation (excluding certain children). These
constraints interact with XPath queries in an intricate way.
Indeed, as will be seen later, satisfiability analysis is signifi-
cantly impacted by the presence or absence of recursion (cy-
cles) and disjunction in a DTD. The role of a schema gives
the XPath satisfiability problem an additional dimension.

XPath vs. other query formalisms. For relational query lan-
guages with negation, e.g., SQL, the satisfiability problem
is typically undecidable. For XPath the picture is far from
clear, even in the presence of data values. While XPath is
a rich language, it operates on documents whose underlying
navigational structure is restricted to be a tree. Further-
more, XPath is a modal language, which, unlike relational
calculus and the tree patterns of [1], does not allow the ex-
plicit use of free variables. As a result XPath queries can
“see” only one node at a time when navigating a tree. This
restriction becomes more prominent in the presence of data
values or negation, since it allows only a restricted form of
data joins to be expressed. This makes the expressive power
of XPath quite distinct from other XML query languages,
particularly from XML query algebras [12, 23]. The limited
expressiveness significantly decreases the complexity of sat-
isfiability analysis in the presence of negation. We will show
that in the absence of data values the satisfiability problem
for XPath fragments with negation is in EXPTIME, and if
recursive axes are further disallowed, it is in PSPACE. This
contrasts with first-order logic over trees, the most natu-
ral example of a tree query language with explicit variables:
there the satisfiability problem has non-elementary complex-
ity [24], even when only the child relation is present.

Taken together, these factors lead to a rich spectrum of lan-
guages and satisfiability problems with features quite dis-
tinct from containment analysis and relational satisfiability.

Main results. Here we present a comprehensive picture of
the satisfiability problem for a variety of XPath fragments
in the presence and in the absence of DTDs.

Positive XPath. We begin with a minimal XPath fragment

with only the child axis in the presence of DTDs. We then
investigate the impact of adding qualifiers, union, upward
traversal (the parent axis), recursion (the descendant and
ancestor axes) and data values, one at a time, establishing
the complexity of the satisfiability problem for each of these
fragments. We show that the complexity here ranges from
PTIME to NP-complete (Section 4).

XPath with negation. We then investigate a minimal XPath
fragment with negation. Since negation makes sense only
in the presence of qualifiers, we begin with the XPath frag-
ment with qualifiers, negation and the child axis. We show
that the satisfiability problem for this fragment is PSPACE-
complete in the presence of DTDs. We then look at the
impact of adding upward modality and recursion, one at
a time. The complexity here will vary between PSPACE-
complete and EXPTIME-complete. Finally, we show that
the combination of data values and negation makes a big
difference, by adding data values to these fragments. We
find that the complexity is in NEXPTIME in the absence of
recursive and upward axes, and is undecidable in the general
case (Section 5).

Particular DTDs. To explore the impact of different DTD
constructs on XPath satisfiability analysis and to under-
stand the interaction between XPath queries and DTD con-
structs, we also investigate XPath satisfiability under var-
ious restricted DTDs. More specifically, we consider non-
recursive DTDs, fixed DTDs, and disjunction-free DTDs
(i.e., the regular expressions in a DTD do not contain dis-
junction; we do not consider other kinds of restricted DTDs
like star-free, 1-unambiguous or order-independent DTDs).
We show that the worst-case complexity does not diminish
when the DTD is fixed, but can decrease dramatically in
the absence of DTD recursion or disjunction. Finally, we
revisit the satisfiability problem for all these fragments in
the absence of DTDs. We show that for positive XPath, the
absence of DTDs simplifies satisfiability analysis, but this is
not the case for those fragments with negation (Section 6).

Reductions between problems. We also provide basic results
for the connections between XPath satisfiability and XPath
containment, between XPath satisfiability analysis in the
presence of DTDs and that in the absence of DTDs, and be-
tween XPath satisfiability under arbitrary DTDs and under
a simple normal form of DTDs. These give us the first re-
sults for the containment problem for XPath fragments with
the general XPath negation operator, show that XPath sat-
isfiability in the absence of DTDs can be reduced to XPath
satisfiability in the presence of DTDs, and allow us to sim-
plify our proofs when handling DTDs (Section 3).

We establish matching upper and lower bounds in all the
cases without data values, and several complexity results for
fragments with data values. To our knowledge, this work is
the first detailed theoretical study of XPath satisfiability in
the presence of DTDs, under restricted DTDs, and in the
absence of DTDs. A variety of techniques are used to prove
these results, including alternating tree automata, rewrit-
ing systems, finite-model theoretic constructions, bounded-
branching results, and a wide range of reductions.

Brief comparison with prior work. Static analysis of
XML queries has for the most part been developed along
the lines laid down in the relational theory. In the relational
setting, the emphasis has been on the containment problem
(given Q1 and Q2, does Q1 always return a subset of Q2)
for positive queries. There is limited practical or theoretical
motivation for satisfiability study in the relational case: a
user can never propose a conjunctive query that is “nonsen-
sical”, so there is no pressing need to check this; and for more
general relational queries, a complete satisfiability checking
is theoretically impossible. In analogy with this, prior work
on XPath static analysis has concentrated on the contain-
ment problem for positive query fragments [7, 16, 20, 28].
These are the analogs of positive queries for tree-like data,
asserting the existence of a certain kind of tree as a sub-
structure of the document. Since many of these formalisms
allow constraints among multiple nodes or the explicit use
of variables, their expressiveness and succinctness compared
to XPath 1.0 is not clear. While the satisfiability problem is
subsumed by the complement of the containment problem
for XPath, we will see that the upper bounds on satisfiabil-
ity derived from previous work on containment for positive
XPath fragments are far from tight. Moreover, for frag-
ments with the XPath negation operator, upward modalities
and data-value joins, the containment problem has not been
studied, with or without DTDs. Thus previous results for
XPath containment shed little light on XPath satisfiability
analysis.

As we have remarked, XPath satisfiability is both theoret-
ically interesting and practically important, in contrast to
its relational counterpart. However, to our knowledge, the
satisfiability problem has only been studied for (positive)
tree-patterns [13] in the presence of (restricted) DTDs, and
for certain XPath fragments in the absence of DTDs [10].
A major exception is [15] which proves EXPTIME upper
and lower bounds on XPath with negation and all axes, but
without data values, in the presence of DTDs. The results
of [15] are discussed in Section 5. The satisfiability problem
for a number of practical and interesting fragments, espe-
cially those with negation and data values, has not been
studied, with or without DTDs. A more detailed overview
of related work can be found in Section 7.

Organization. Section 2 reviews DTDs and XPath frag-
ments. Sections 3, 4, 5 and 6 establish technical results as
outlined above. Section 7 summarizes our main results and
discusses related work. We refer for the proofs to the full
version of the paper.

2. NOTATIONS: DTDS AND XPATH FRAG

MENTS

In this section, we first review DTDs [4] and then define the
fragments of XPath [6] studied in this paper.

2.1 DTDs
Without loss of generality, we represent a Document Type
Definition (DTD [4]) D as (Ele, Att, P, R, r), where (1) Ele
is a finite set of element types, ranged over by A, B, . . . ; (2)
r is a distinguished type in Ele, called the root type; (3)
P is a function that defines the element types: for each A

in Ele, P (A) is a regular expression over Ele; we refer to
A → P (A) as the production of A; (4) Att is a finite set of
attribute names, ranged over by a, b, . . . ; and (5) R defines
the attributes: for each A in Ele, R(A) is a subset of Att.
We do not consider additional DTD features such as default
values and attribute domains.

An XML document is typically modeled as a (finite) node-
labeled tree [4], with nodes additionally annotated with
values for attributes. We refer to this as an XML tree.
An XML tree T satisfies (or conforms to) a DTD D =
(Ele, Att, P, R, r), denoted by T |= D, if (1) the root of
T is labeled with r; (2) each node n in T is labeled with
an Ele type A, called an A element; the label of n is de-
noted by lab(n); (3) each A element has a list of children
(subelements) such that their labels are in the regular lan-
guage defined by P (A); and (4) for each a ∈ R(A), each A
element n has a unique a attribute value which we denote
by n.a. We call T an XML tree of D if T |= D.

We also study the following special forms of DTDs.

A normalized DTD is a DTD in which for each A in Ele,
P (A) is of the following form:

α ::= ǫ | B1, . . . , Bn | B1 + · · · + Bn | B∗

where ǫ is the empty word, Bi is a type in Ele (referred to
as a child type of A), and ‘+’, ‘,’ and ‘∗’ denote disjunc-
tion, concatenation and the Kleene star, respectively (here
we use ‘+’ instead of ‘|’ to avoid confusion). We will see later
(Proposition 3.4) that there is often no loss of generality in
restricting to normalized DTDs.

A DTD D is said to be disjunction-free if for any element
type A ∈ Ele, P (A) does not contain disjunction ‘+’.

A DTD D is recursive if the dependency graph of D (which
contains an edge (A, B) iff B is in P (A)) has a cycle.

A recursive DTD D may not have any XML tree T such
that T |= D. This is because some element type A in D
is non-terminating, i.e., there exists no finite subtree rooted
at A that satisfies D. One can determine whether an el-
ement type A in D is terminating or not in O(|D|) time,
where |D| is the size of D; indeed, it can be reduced to the
emptiness problem for a CFG, which can be determined in
linear time (cf. [11]). Thus to simplify the discussion, in the
sequel we assume that all element types in a DTD are termi-
nating. All the complexity results (lower bounds and upper
bounds) in this paper remain unchanged in the presence of
non-terminating element types.

Example 2.1: Consider an instance φ = C1 ∧ · · · ∧ Cn of
3SAT (cf. [22]), where Ci = l(i,1) ∨ l(i,2) ∨ l(i,3), and li,j is a
literal of the form xs or x̄s, and xs is a propositional variable.
Assume that the variables in φ are x1, . . . , xk. Given φ,
we define a DTD Dφ = (Ele, Att, P, R, r), where Ele =
{r, T, F, X1, . . . , Xk}, Att = ∅, and P, R are as follows:

P : r → X1, . . . , Xk, Xi → T + F , for i ∈ [1, k];
T → ǫ, F → ǫ;

R: R(A) = ∅, for any A ∈ Ele

An XML tree of Dφ lists all the variables Xi under the root,
and gives a truth value (T or F) under each Xi. The DTD
is normalized and non-recursive; it is not disjunction free.

✷

2.2 XPath Fragments
Over an XML tree, an XPath query specifies the selection
of nodes in the tree. Assume a (possibly infinite) alphabet
Σ of labels. We define the largest class of XPath queries
considered in this paper, referred to as X (↓, ↓∗, ↑, ↑∗,∪, [], =
,¬), syntactically as follows:

p ::= ǫ | l | ↓ | ↓∗ | ↑ | ↑∗

| p/p | p ∪ p | p[q],

where ǫ and l denote the empty path (the self-axis) and a
label in Σ (the child-axis); ‘↓’ and ‘↓∗’ stand for the wildcard
(child) and the descendant-or-self-axis, while ↑ and ↑∗ de-
note the parent-axis and ancestor-or-self-axis, respectively;
‘/’ and ‘∪’ denote concatenation and union, respectively;
and finally, q in p[q] is called a qualifier and is defined by:

q ::= p | lab() = A | p/@a op ‘c’ | p/@a op p’/@b

| q1 ∧ q2 | q1 ∨ q2 | ¬q,

where p, p′ are as defined above, A is a label in Σ, op is
either ‘=’ or ‘6=’, a, b stand for attributes, c is a constant
(string value), and ∧,∨,¬ stand for and (conjunction), or
(disjunction) and not (negation), respectively.

A query p in X (↓, ↓∗, ↑, ↑∗,∪, [], =,¬) over an XML tree
T is interpreted as a binary predicate on the nodes of T ,
while a qualifier is interpreted as a unary predicate. More
specifically, for any nodes n in T , T satisfies p at n iff
T |= ∃n′ p(n, n′), where T |= p(n, n′) and the associated
version for qualifiers, T |= q(n), are defined inductively on
the structure of p, q, as follows:

1. if p = ǫ, then n = n′;

2. if p = l, then n′ is a child of n, and is labeled l;

3. if p = ↓, then n′ is a child of n, regardless of its label;

4. if p = ↓∗, then n′ is either n or a descendant of n;

5. if p = ↑, then n′ is the parent of n;

6. if p = ↑∗, then n′ is either n or an ancestor of n;

7. if p = p1/p2, then there exists a node v in T such that
T |= p1(n, v) ∧ p2(v, n′);

8. if p = p1 ∪ p2, then T |= p1(n, n′) ∨ p2(n, n′);

9. if p = p1[q], then T |= p1(n, n′) and T |= q(n′), where
q is a unary predicate of the following cases:

(a) q is p2: then T |= ∃n′′ p2(n
′, n′′);

(b) q is lab() = A: then the label of n′ is A;

(c) q is p2/@a op ‘c’: then T |= ∃n1 (p2(n
′, n1) ∧

n1.a op ‘c’), where n1.a denotes the value of the
a attribute of n1; that is, there exists a node n1

in T such that T |= p2(n
′, n1), n1 has attribute a

and n1.a op ‘c’;

(d) q is p2/@a op p′
2/@b: then T satisfies the ex-

istential formula: T |= ∃n1 ∃n2 (p2(n
′, n1) ∧

p′
2(n

′, n2) ∧ n1.a op n2.b);

(e) q is q1 ∧ q2: then T |= (q1(n
′) ∧ q2(n

′));

(f) q is q1 ∨ q2: then T |= (q1(n
′) ∨ q2(n

′));

(g) q is ¬q′: then T 6|= q′(n′); for instance, if q is ¬p2,
then T |= ∀n′′ ¬p2(n

′, n′′).

Here n is referred to as the context node. If T |= p(n, n′)
then we say that n′ is reachable from n via p. We use n[[p]]
to denote the set of all the nodes reached from n via p, i.e.,
n[[p]] = {n′ | n′ ∈ T, T |= p(n, n′)}.

We say that an XML tree T satisfies a query p, denoted by
T |= p, iff T |= ∃n p(r, n), where r is the root of T . In other
words, r[[p]] 6= ∅, i.e., the set of nodes reachable from the root
of T via p is nonempty. Similarly, we talk about T satisfying
a qualifier q if T |= q(r). To simplify the discussion, we focus
on the satisfiability of XPath queries applied to the root of
T . The complexity results of this paper remain intact for
arbitrary context nodes.

We also investigate various fragments of the language
X (↓, ↓∗, ↑, ↑∗,∪, [], =,¬). We denote a fragment X by list-
ing the operators supported by X : the presence or absence
of negation ‘¬’, data values ‘=’, upward traversal ‘↑’ (‘↑∗’),
recursive axis ‘↓∗’ (‘↑∗’), qualifiers ‘[]’, wildcard ‘↓’, and
union and disjunction ‘∪’ (the absence of ‘∪’ indicates that
neither union nor disjunction is allowed). The concatena-
tion operator ‘/’ is included in all the fragments by default.
For example, a small fragment with negation is X (↓, [],¬)
(note that ‘¬’ can only appear in qualifiers), and the largest
positive fragment is X (↓, ↓∗, ↑, ↑∗,∪, [], =).

All these fragments have been found useful in practice. For
example, X (↓, ↓∗,∪) is used by XML Schema to specify
integrity constraints, and X (↓, ↓∗, []) is the class of tree-
pattern queries studied in [1, 21, 27].

Example 2.2: Recall the 3SAT instance φ and the DTD
Dφ given in Example 2.1. One can use a query p in X (∪, [])
to encode φ, where p is specified as:

p = ǫ[q1 ∧ · · · ∧ qn]

qi = XP(li,1) ∨ XP(li,2) ∨ XP(li,3)

where XP(lj,j) = Xs/T if li,j is xs, and
XP(lj,j) = Xs/F if li,j is x̄s.

Indeed, φ is satisfiable iff there is an XML tree T of the
DTD Dφ such that T |= p. ✷

Example 2.3: Consider the DTD D = (Ele,Att, P, R, r),
where Ele = {r, A}, Att = ∅, and P, R are as follows:

P : r → A∗;
R: R(r) = R(A) = ∅.

Consider the XPath query p = B. Then it is clear that there
exists no XML tree T of the DTD D such that T |= p. ✷

3. THE SATISFIABILITY PROBLEM

We are interested in the satisfiability problem for XPath
queries considered together with a DTD: that is, whether
a given XPath query p and a DTD D are satisfiable by an
XML tree. We say that an XML tree T satisfies p and D,

denoted by T |= (p, D), if T |= p and T |= D. If such a T
exists, we say that (p,D) is satisfiable.

Formally, for a fragment X of XPath we define the XPath
satisfiability problem SAT(X) as follows:

PROBLEM: SAT(X)
INPUT: A DTD D, an XPath query p in X .
QUESTION: Is there an XML document T such that

T |= (p,D)?

Below we present several basic results for SAT(X).

3.1 Satisfiability in the Absence of DTDs
The satisfiability problem for a fragment X in the absence of
DTDs is the problem of determining, given any query p in
X , whether or not there is an XML tree T such that T |= p.

This version of the satisfiability problem for X is actually a
special case of SAT(X), since it can be reduced to SAT(X)
when the input DTD is fixed to range over DTDs of the
form Dp = (Elep, Attp, Pp, Rp, rp), where (1) Elep consists
of a distinct label X as well as all the labels A mentioned
in p in the form of a sub-query A or a qualifier lab() = A;
(2) Attp consists of all the attribute names a, b mentioned
in p in the form of a qualifier p/@a op ‘c’ or p/@a op p′/@b;
(3) for each A ∈ Elep, the production for A is defined to
be A → (A1 + · · · + An)∗, where Elep = {A1, . . . , An}; (4)
Rp(A) is defined to be Attp; and (5) rp is one of Ai’s in
Elep. The connection between this satisfiability problem
and SAT(X) is encapsulated in the following.

Proposition 3.1: For any fragment X of XPath queries
defined above and any query p in X , there exists an XML
tree T such that T |= p iff there exists an XML tree T ′ such
that T ′ |= (p,D), where D has the form of Dp given above.

✷

For a query p, there are at most O(|p|) many such DTDs D
(by allowing rp to range over all the element types in Elep),
and the size of such D is in O(|p|2). As a result, since all
the upper bounds for SAT(X) established in this paper are
with respect to complexity classes containing PTIME, they
also hold for the satisfiability problem for X in the absence
of DTDs. However, we shall see that for some fragments X ,
the complexity for its satisfiability problem in the absence of
DTDs can be much lower than its counterpart for the same
fragment X in the presence of DTDs.

3.2 XPath Satisfiability and Containment
The containment problem for a fragment X in the presence
of DTDs, denoted by CNT(X), is the problem to determine,
given any queries p1, p2 ∈ X and a DTD D, whether or not
for any XML tree T of D, r[[p1]] ⊆ r[[p2]], where r is the root
of T . That is, whether the answer to p1 is contained in the
answer to p2 over all the XML trees of D. If this holds then
we say that p1 ⊆ p2 under D.

For any fragment X , SAT(X) is reducible to the complement

of CNT(X). Indeed, given any query p ∈ X and DTD D,
(p, D) is satisfiable iff p1 6⊆ ∅D, where ∅D is a special query
that returns an empty set over any XML tree of D. Note
that ∅D is definable in any of our X ’s (e.g., ∅D can be defined
to be A where A is not an element type of D). Recall that
for a complexity class K, coK stands for {P̄ | P ∈ K}. So we
have observed:

Proposition 3.2: For any class X of XPath queries defined
above, if CNT(X) is in K for some complexity class K, then
SAT(X) is in coK. Conversely, if SAT(X) is K-hard, then
CNT(X) is coK-hard. ✷

We shall see that the upper bound for SAT(X) is often much
lower than its counterpart for CNT(X). Furthermore, for
many fragments X considered in this paper, (e.g. the frag-
ments X (. . . ,¬) with negation) the complexity of CNT(X)
has not been established by previous work.

For fragments X supporting certain operators, SAT(X) and
the complement problem of CNT(X) actually coincide. Con-
sider the following two cases.

• The class X(bl, [],¬) of Boolean queries, i.e., queries of
the form ǫ[q], in any class X (. . . , [],¬) with negation
and qualifiers;

• Any class containing negation and closed under the
inverse operator defined by inverse(↓) = ↑ and
inverse(↓∗) = ↑∗.

Proposition 3.3: For any class X(bl, [],¬) of Boolean
queries, CNT(X(bl, [],¬)) is reducible in constant time to the
complement of SAT(X(bl, [],¬)). For any class X with nega-
tion and closed under inverse, CNT(X) is reducible in linear
time to the complement of SAT(X). ✷

In Section 5, we will apply Propositions 3.2 and 3.3 to
get complexity results for CNT(X) based on the results for
SAT(X) established later on. To the best of our knowledge,
our complexity results for CNT(X) are the first results for
the containment problem for the fragments with negation.

3.3 XPath Satisfiability and Normalized

DTDs
A mild variant of SAT(X) for a fragment X is the problem
to determine, given any query p ∈ X and any normalized
DTD D, whether or not there is an XML tree T such that
T |= (p, D). Let us refer to this problem as the satisfiability
problem for X under normalized DTDs. The next result tells
us that for many fragments X , SAT(X) and satisfiability
for X under normalized DTDs are polynomially equivalent,
i.e., there are PTIME reductions in both directions.

Proposition 3.4: For any class X of XPath queries that
allows ‘∪’ and ‘↓’ (and in addition, label test lab() = A if X
allows upward modalities), there exists a linear-time func-
tion N from DTDs to normalized DTDs, and there exists a
PTIME computable function f : X → X such that, for any
DTD D and any XPath query p ∈ X , there exists an XML

tree T such that T |= (p, D) iff there exists an XML tree
T ′ such that T ′ |= (f(p), N(D)). Moreover, N(D) does not
introduce DTD constructs (‘, +, ∗’) not already in D. ✷

Since the satisfiability problem for X under normalized
DTDs is a special case of SAT(X), this proposition says that
it suffices to consider normalized DTDs when proving either
upper or lower bounds for fragments satisfying the restric-
tion above; we will make use of this frequently in our proofs.

4. POSITIVE XPATH QUERIES

In this section we study satisfiability of XPath queries with-
out negation, namely, queries in X (↓, ↓∗, ↑, ↑∗,∪, [], =), re-
ferred to as positive XPath queries. We investigate SAT(X)
for various sub-classes X of this fragment.

As observed in [2], positive XPath queries in the fragment
X (↓, ↓∗, ↑, ↑∗,∪, []) can be expressed in a fragment of posi-
tive existential first-order logic (∃+FO) over trees, built up
from unary label predicates, binary predicates child and
descendant, and closed under ∧,∨ and ∃. A mild (two-
sorted) extension of the fragment ∃+FO can express queries
in X (↓, ↓∗, ↑, ↑∗,∪, [], =), by supporting unary attribute
function, and equality and inequality on attribute values.
This fragment does not use universal quantifiers (∀).

Given this existential characterization, it is not surprising
that the satisfiability problem is in NP. However, we will
find that for even limited positive languages it is NP-hard.
We start with a small fragment X (↓, ↓∗,∪), i.e., the down-
ward fragment without qualifiers and data values. We then
investigate the impacts of different operators on the com-
plexity of satisfiability analysis of positive XPath queries,
extending X (↓, ↓∗,∪) by adding qualifiers, upward traver-
sal, recursive axes and data values.

Downward XPath queries without qualifiers. We
first consider X (↓, ↓∗,∪) queries. There exists an algorithm
(based on dynamic programming) that, given any DTD D
and any query p in X (↓, ↓∗,∪), decides whether or not (p, D)
is satisfiable in O(|p| × |D|2) time, where |p| and |D| denote
the sizes of p and D, respectively. Thus we have:

Theorem 4.1: SAT(X (↓, ↓∗,∪)) is in PTIME. ✷

Recall that the containment problem CNT(X (↓, ↓∗,∪)) is
EXPTIME-complete [20]. This shows that satisfiability
analysis is quite different from its containment counterpart.

In contrast to Theorem 4.1, the satisfiability problem for
X (↓, ↓∗,∪) becomes trivial in the absence of DTDs.

Proposition 4.2: In the absence of DTDs, all queries in
X (↓, ↓∗,∪) are always satisfiable. ✷

Obviously, this is an extreme case where the presence of
DTDs complicates satisfiability analysis. This result is a
special case of Theorem 6.10, which, along with the remain-
ing complexity results for the satisfiability problem in the
absence of DTDs, will be presented in Section 6.

Downward XPath queries without qualifiers. We now
study X (↓, ↓∗,∪, []), i.e., the extension of X (↓, ↓∗,∪) by
adding qualifiers. The result below shows that adding qual-
ifiers does make our lives harder: the satisfiability problem
becomes intractable, even in the absence of recursion (↓∗),
and without either disjunction (union ∪) or wildcard (↓).

Proposition 4.3: The following problems are NP-hard:

1. SAT(X (↓, []));

2. SAT(X (∪, [])).
✷

Proof sketch. These are verified by reduction from
3SAT, which is NP-complete (cf. [22]). A reduction from
3SAT to SAT(X (∪, [])) has been given in Examples 2.1 and
2.2. The reduction to SAT(X (↓, [])) can be found in the full
version of the paper.

Upward XPath queries without qualifiers. Alterna-
tively we extend X (↓, ↓∗,∪) by allowing upward modalities.
The presence of upward modalities also complicates satisfi-
ability analysis: the satisfiability problem also becomes in-
tractable, even in the absence of recursion (↓∗, ↑∗), union
(∪) and qualifiers ([]). This is shown by the result below,
which can also be proved by reduction from 3SAT.

Proposition 4.4: SAT(X (↓, ↑)) is NP-hard. ✷

Adding recursion and data values. For positive XPath
queries with qualifiers, the presence of recursion and data
values does not increase the complexity of satisfiability anal-
ysis. Indeed, below we show that adding recursion and data
values does not move the problem beyond NP.

Theorem 4.5: SAT(X (↓, ↓∗, ↑, ↑∗,∪, [], =)) is in NP. Fur-
thermore, SAT(X) is NP-complete for any fragment X of
X (↓, ↓∗, ↑, ↑∗,∪, [], =) that supports either (↓, []), or (∪, []),
or (↓, ↑). ✷

Proof sketch. The upper bound is proved by provid-
ing a NP algorithm for checking the satisfiability of queries
in X (↓, ↓∗, ↑, ↑∗,∪, [], =) in the presence of DTDs. For a
given a query p and DTD D, the algorithm first computes
a so-called skeleton Tp of p and then guesses an embed-
ding of Tp (or witness skeleton) in a tree using D, with-
out explicitly constructing the tree. The main result is
that it is sufficient to guess a witness skeleton of bounded
depth. More specifically, a witness skeleton can be obtained
by guessing at most |p| paths in D of length bounded by
(|p|+ |p|2)×|D|, and then verifying whether these paths can
expand to a tree conform with D. This can be done in time
O(|witness skeleton| × |D|). The NP-completeness follows
from this and Propositions 4.4 and 4.3. ✷

In contrast, it has been shown in [20, 28] that in the presence
of DTDs, the containment problem CNT(X) is EXPTIME-
hard in the presence of DTDs, when X is either X (↓∗,∪)

or X (↓, ↓∗, []); and it is in EXPTIME for X (↓, ↓∗,∪, []).
Neither XPath’s data value equality nor upward modalities
are considered in [20, 28].

5. XPATH FRAGMENTS WITH NEGA

TION

In this section we show that allowing negation in qualifiers
makes satisfiability analysis different in nature. With nega-
tion one must deal with both universal and existential quan-
tifiers. In contrast to positive XPath queries, adding data
values and/or recursion to XPath fragments with negation
has an enormous effect: with recursive axes, it makes the
satisfiability problem undecidable, while without recursion
there is a jump to NEXPTIME. That is, the interaction be-
tween recursion, data values and negation is rather intricate.

Most previous work on XPath containment/satisfiability
bounds [7, 10, 13, 16, 20, 28] has considered either
no negation or restricted negation. From the EXP-
TIME lower bounds on containment in [20, 28] plus
Proposition 3.3, we get an EXPTIME lower bound for
SAT(X (↓, ↓∗, ↑, ↑∗,∪, [],¬)). [15] considers an extension of
XPath which includes X (↓, ↓∗, ↑, ↑∗,∪, [],¬), and proves an
EXPTIME bound via reduction to dynamic logic. We in-
clude this result here for completeness.

We first study the impact of negation by investigating
SAT(X (↓, [],¬)). We then gradually extend X (↓, [],¬) by
adding upward modalities, recursion, and data values, in-
vestigating the impact of these operators on satisfiability
analysis in the presence of negation.

Non-recursive XPath queries with negative quali-

fiers. We first consider fragments of XPath with negation
but without recursion. The result below tells us three things.
First, the presence of negation makes satisfiability analysis
PSPACE-hard. Second, the bound is tight. Third, in con-
trast to Propositions 4.3 and 4.4 for positive XPath queries,
further extending X (↓, [],¬) by allowing union (∪) and up-
ward modality (↑) does not make the analysis harder. The
upper-bound proofs involve radically different techniques
from those used in either the NP membership in the pre-
vious section, or the EXPTIME bounds of [20].

Theorem 5.1: SAT(X) is PSPACE-complete for any frag-
ment X that (1) contains X (↓, [],¬), and (2) is contained
in X (↓, ↑,∪, [],¬). ✷

Proof sketch. For the lower bound, we show that
SAT(X (↓, [],¬)) is PSPACE-hard by reduction from
3QSAT, a well-known PSPACE-complete problem (cf. [22]).
For the upper bound, we show that SAT(X (↓, ↑,∪, [],¬)) is
in PSPACE by first establishing a linear bound on the max-
imum branching needed in a witness model. Using this we
then provide a NPSPACE algorithm for checking the satisfi-
ability of queries in X (↓, ↑,∪, [],¬) in the presence of DTDs
(recall that PSPACE = NPSPACE).

More specifically, for a given query p and DTD D, the algo-
rithm first computes an ordered list Q of all the sub-queries
in p. Next, the algorithm is implemented by using a func-

tion check(n, s), which (a) takes a node n labeled A and a
natural number s as input, (b) guesses a subtree rooted at
n that conforms to the DTD D and has a depth bounded
by |p| − s, without explicitly constructing the subtree (here,
we use the bound on the maximum branching needed), and
(c) evaluates all the queries q in Q at all the nodes in the
subtree; it returns for each q ∈ Q a Boolean formula, de-
noted by sat(q, n), which is either true if q is satisfied at n
in the subtree, false if q is not satisfied at n in the subtree,
or which tells what should be evaluated at the parent of n
in order to establish the truth value (in the presence of ↑).
The size of sat(q, n) is bounded by |p|.

The computation can be done in NPSPACE although it
takes exponential time in |D|. The algorithm does not ex-
plicitly construct the XML tree, which is of possibly expo-
nential size; instead, at any time it only constructs a par-
tial subtree of size O(k × |p|). Here k is the bound on the
maximum branching needed. At each of its node a list of
size O(|p|2) is used, bringing the total space complexity to
O(k × |p|3). ✷

Recursive XPath queries with negative qualifiers.

We now study the impact of recursion (↓∗, ↑∗) on satisfi-
ability analysis. Recall from Theorem 4.5 that the presence
of recursion does not make the analysis harder for positive
XPath queries. In contrast, Theorem 7 ii) of [15] implies
that the addition of recursion to X (↓, [],¬) makes the prob-
lem EXPTIME-hard. The upper bound in the same theo-
rem implies that the bound above is tight, even when up-
ward traversal (↑, ↑∗) and union (∪) are allowed (indeed, [15]
shows that this upper bound holds even in the presence of
specialized DTDs and sibling axes in queries).

Theorem 5.2: [15] SAT(X) is EXPTIME-complete for
any fragment X that (1) contains X (↓, ↓∗, [],¬), and (2) is
contained in X (↓, ↓∗, ↑, ↑∗,∪, [],¬). ✷

Adding data values. In contrast to Theorem 4.5, which
shows that the presence of data values does not compli-
cate satisfiability analysis of positive XPath queries, we next
show that adding data values to fragments with negation has
an enormous impact on the analysis.

Theorem 5.3: SAT(X (↓, ↑, ↓∗, ↑∗,∪, [], =,¬)) is undecid-
able. ✷

Proof sketch. This is verified by reduction from the
halting problem for two-register machines, which is known
to be undecidable (cf. [3]). ✷

The good news is that not every fragment with negation and
data values is beyond reach: below we show that the sat-
isfiability problem in the presence of data values and nega-
tion is still decidable for non-recursive downward queries.
Unlike the previous results, the proof uses a finite-model-
theoretic construction. While the decidability of the satisfi-
ability problem remains open if the upward axis ↑ is further
added, we show that the “hardness” increases compared to
the fragment without data equality.

Theorem 5.4: (1) SAT(X (↓,∪, [], =,¬)) is in NEXP-
TIME, (2) SAT(X (↑, [], =,¬)) is EXPTIME-hard. ✷

Proof sketch. We prove the lower bound by reduction
from the two-player corridor tiling game, and the upper
bound by first establishing a small model property for sat-
isfiable queries in X (↓, ↑,∪, [], =,¬), and then showing that
the existence of such a model can be decided in NEXPTIME.

More specifically, for a given query p and DTD D, we show
that if (p, D) has a model (i.e., there exists an XML tree
satisfying (p,D)), then it has a small model of exponential
size in |p| and |D|. The nondeterministic decision algorithm
then works as follows: first guess a model T of exponen-
tial size in |p| and |D|, and then check whether T satisfies
(p, D). The latter can be done in polynomial time in |T |
and |p| (cf. [9]), and thus the algorithm is in NEXPTIME.
Note that it is not necessary to guess and check all possible
data values for attributes; the decision algorithm only needs
to guess a binary relation ‘=’ between the attribute values
and between attribute values and constants mentioned in p.
Such a relation has a size bounded by O(|p|2). ✷

These results indicate that XPath with negation and data
values is very close to the border of decidability, and which
side a particular fragment falls on depends on syntactic re-
strictions on axes and qualifier constructs.

Containment analysis in the presence of negation.

The results above, along with Propositions 3.2 and 3.3, give
us complexity results for the containment problem CNT(X)
for XPath fragments X with negation in the presence of
DTDs.

Corollary 5.5: For the containment problem CNT(X) in
the presence of DTDs,

1. CNT(X (↓, [],¬)) is PSPACE-hard;

2. CNT(X (↓, ↑,∪, [],¬)) is PSPACE-complete;

3. CNT(X (↓, ↓∗, [],¬)) is EXPTIME-hard;

4. CNT(X (↓, ↓∗, ↑, ↑∗,∪, [],¬)) is EXPTIME-complete;

5. CNT(X (↓, ↑,∪, [], =,¬)) is EXPTIME-hard;

6. CNT(X (↓,∪, [], =,¬)) is in coNEXPTIME;

7. CNT(X (↓, ↑, ↓∗, ↑∗,∪, [], =,¬)) is undecidable.

✷

6. SATISFIABILITY ANALYSIS UNDER

RESTRICTED DTDS

The hardness results in the previous section leave open
the possibility that feasible algorithms exist for restricted
DTDs that may occur often in practice. We thus investi-
gate whether or not restricted DTDs simplify the analysis
of XPath satisfiability. More specifically, we study SAT(X)
for XPath fragments X in the following four settings: (1)
when DTDs are non-recursive; (2) when DTDs are fixed;
(3) when DTDs are disjunction-free; and (4) in the absence
of DTDs, which, as shown by Proposition 3.1, is reducible to

a special case of SAT(X). We show that for some restricted
DTDs and some fragments X , SAT(X) has lower complex-
ity. Note that the upper bounds for SAT(X) also hold for
the restricted analysis: if SAT(X) is in a complexity class
K, then satisfiability analysis is also in K under restricted
DTDs.

6.1 Nonrecursive DTDs
A non-recursive DTD D has the property that for any
XML tree T conforming to D, the depth of T , i.e., the
length of the longest path from the root to a leaf of T ,
is bounded by |D|. This simplifies the analysis of XPath
queries with recursive axes (↓∗, ↑∗). Specifically, for any
X (↓, ↓∗,∪, . . .), i.e., a fragment with ↓, recursion ↓∗, union
∪ and possibly other operators, SAT(X (↓, ↓∗,∪, . . .)) and
SAT(X (↓,∪, . . .)) are quadratic-time equivalent under non-
recursive DTDs, where X (↓,∪, . . .) denotes the same frag-
ment without ↓∗. Indeed, there is a quadratic-time reduction
from SAT(X (↓, ↓∗,∪, . . .)) to SAT(X (↓,∪, . . .)). Intuitively,
given a non-recursive DTD D, one can eliminate recursion
in a query by replacing ↓∗ with (ǫ ∪ ↓ ∪ . . . ∪ ↓|D|), where
↓n abbreviates the n-fold concatenation of ↓; similarly for
X (↑, ↑∗,∪, . . .), i.e., a fragment with ↑, ↑∗, ∪ and other op-
erators. This is stated below.

Proposition 6.1: Under non-recursive DTDs, the follow-
ing problems are quadratic-time equivalent:

1. SAT(X (↓, ↓∗,∪, . . .)), SAT(X (↓,∪, . . .));

2. SAT(X (↑, ↑∗,∪, . . .)), SAT(X (↑,∪, . . .));

3. SAT(X (↓, ↓∗, ↑, ↑∗,∪, . . .)), SAT(X (↓, ↑,∪, . . .));

where X (↓, ↑,∪, . . .) supports the same set of operators as
X (↓, ↓∗, ↑, ↑∗,∪, . . .) except ↓∗, ↑∗; similarly for X (↓,∪, . . .)
and X (↑,∪, . . .). ✷

From the proposition it follows that the EXPTIME problem
of Theorem 5.2 collapses to PSPACE (Theorem 5.1), and
that SAT(X (↓, ↓∗,∪, [], =,¬)) is now known to be decidable
(Theorem 5.4) under non-recursive DTDs.

Corollary 6.2: Under non-recursive DTDs,

1. SAT(X (↓, ↓∗, ↑, ↑∗,∪, [],¬)) is in PSPACE, and

2. SAT(X (↓, ↓∗,∪, [], =,¬)) is in NEXPTIME.

That is, they are equivalent to SAT(X (↓, ↑,∪, [],¬)) and
SAT(X (↓,∪, [], =,¬)), respectively. ✷

One might be tempted to think that non-recursive DTDs
might also lower the NP, PSPACE, and EXPTIME bounds
given earlier. However, the proofs of Propositions 4.3, 4.4,
Theorem 5.1 and the lower bound of Theorem 5.4 all utilize
non-recursive DTDs. Hence:

Corollary 6.3: Under non-recursive DTDs,

1. SAT(X (↓, [])), SAT(X (∪, [])) and SAT(X (↓, ↑)) are
NP-hard;

2. SAT(X (↓, [],¬)) is PSPACE-hard.

3. SAT(X (↑,∪, [], =,¬)) is EXPTIME-hard.

✷

6.2 Fixed DTDs
Under fixed DTDs, the satisfiability problem SAT(X) is to
determine, given any query p ∈ X , whether or not there
exists an XML tree T that satisfies both p and a fixed DTD
D0. Here D0 is not an input, but is predefined. Together
with other restrictions, fixed DTDs may simplify the analy-
sis of SAT(X). For example, the observation below contrasts
with the EXPTIME hardness in Theorem 5.2.

Proposition 6.4: SAT(X(↓, ↓∗, ↑, ↑∗,∪, [],¬)) is
in PTIME under fixed, non-recursive DTDs. Fur-
thermore, if the DTDs do not contain Kleene star,
SAT(X (↓, ↓∗, ↑, ↑∗,∪, [], =,¬)) is in PTIME. ✷

Proof sketch. If the fixed DTD D0 has no Kleene star,
then there are only a constant number of tree instances of
D0, all of size bounded by a constant (More specifically,
these constants are functions of |D0|). The algorithm now
simply evaluates the query p on each instance in PTIME [9]
and checks whether any of the query results is non-empty.

If D0 has a Kleene star, then we show that there exists a
(constant) number of non-recursive DTDs Di, each not using
the Kleene star, and such that (p,D) is satisfiable iff (p,Di)
is satisfiable for some Di. The result now follows from the
previous case. ✷

Unfortunately, fixed DTDs do not make our lives much eas-
ier: all the fragments studied in Propositions 4.3 and 4.4
remain intractable under fixed DTDs. These results require
more involved encoding arguments than the ones given in
Section 4, since the former relied heavily on varying DTDs.

Theorem 6.5: Under fixed DTDs, the following problems
are NP-hard:

1. SAT(X (∪, [])),

2. SAT(X (↓, [])),

3. SAT(X (↓, ↑)).

✷

The next result shows that the PSPACE (Theorem 5.1) and
the EXPTIME (Theorems 5.2, 5.4) lower bounds remain
intact under fixed DTDs; and worse still, so does the unde-
cidability (Theorem 5.3). These results are proven by reduc-
tion from 3QSAT, the two player corridor tiling game and
the halting problem for two-register machines, respectively.

Theorem 6.6: Under fixed DTDs,

1. SAT(X (↓, [],¬)) is PSPACE-hard;

2. SAT(X (↓, ↓∗, [],¬)) is EXPTIME-hard;

3. SAT(X (↑, [], =,¬)) is EXPTIME-hard;

4. SAT(X (↓, ↑, ↓∗, ↑∗,∪, [], =,¬)) is undecidable.

✷

6.3 DisjunctionFree DTDs
Recall that a DTD is disjunction-free if no productions
in it contain disjunction ‘+’ (Section 2). The fact that

disjunction-free DTDs are easier to analyze was already
noted in other contexts [13, 14]. The absence of disjunction
makes satisfiability analysis simpler for certain fragments.
Below we show that for a fragment that contains X (↓, [])
and X (∪, []), satisfiability analysis becomes tractable.

Theorem 6.7: Under disjunction-free DTDs,
1. SAT(X (↓, ↓∗,∪, [])) is in PTIME (O(|p|×|D|2), where

p, D are input query and DTD, respectively);

2. SAT(X (↓, ↑)) is in PTIME (O(|p| × |D|2)).
✷

Proof sketch. For the fragment X (↓, ↓∗,∪, []), the al-
gorithm is based on dynamic programming and is similar to
the proof of Theorem 4.1. The reason that we now can allow
for qualifiers is that for disjunction-free DTDs, there is no
choice in the labels of the children of any context node and
hence the truth value of a conjunction of qualifiers is easily
determined.

The algorithm for the second fragment X (↓, ↑) first performs
a translation from queries in X (↓, ↑) to queries in X (↓, [])
and then applies the algorithm of the previous case. ✷

However, once we extend X (∪, []) and X (↓, []) by adding
data values (=) or upward axes, the disjunction-free distinc-
tion no longer affects the worst-case behavior.

Theorem 6.8: Under disjunction-free DTDs, the following
problems are NP-hard:

1. SAT(X (∪, [], =)),

2. SAT(X (↓, [], =)),

3. SAT(X (↓, ↑,∪, [])).
The last result holds under fixed, disjunction-free DTDs. ✷

The absence of disjunction in DTDs also has little impact
on fragments with negation: the PSPACE and EXPTIME
lower bounds are robust under disjunction-free DTDs. This
is because one can encode much of the semantics of disjunc-
tion in terms of a combination of the Kleene star in a DTD
and XPath qualifiers with negation, as shown in the proof
of the next result, which extends the proofs of Theorems 6.6
(for the first two) and 5.4 (for the last one).

Corollary 6.9: Under disjunction-free DTDs,
1. SAT(X (↓, [],¬)) is PSPACE-hard;

2. SAT(X (↓, ↓∗, [],¬)) is EXPTIME-hard;

3. SAT(X (↑, [], =,¬)) is EXPTIME-hard.
The first two hold under fixed, disjunction-free DTDs. ✷

6.4 In the Absence of DTDs
As hinted already in Section 4, the absence of DTDs notably
simplifies the analysis of SAT(X) for certain classes X .

Theorem 6.10: In the absence of DTDs,
1. all queries in X (↓, ↓∗,∪, []) are satisfiable if label test

(i.e., lab() = A) is disallowed in qualifiers; if label test
is allowed, SAT(X (↓, ↓∗,∪, [])) is in PTIME (O(|p|3),
where p is input query);

2. SAT(X (↓, ↑, [])) is in PTIME (O(|p2|));

3. SAT(X (↓, ↑, =)) is in PTIME (O(|p|3)).
✷

Proof sketch. For the fragment X (↓, ↓∗,∪, []) the al-
gorithm is based on dynamic programming. The algorithm
basically checks whether there are conflicting label tests pre-
venting a query to be satisfiable. Although the algorithm is
similar to the algorithm in the proof of Theorem 4.1, here
we can easily deal with qualifiers in the absence of DTDs.
Indeed, because of the existential semantics of X (↓, ↓∗,∪, [])
and the absence of DTDs, we can freely generate a separate
branch for each qualifier in a conjunction of qualifiers on
which the qualifier is satisfied.

For the second fragment X (↓, ↑, []), the algorithm normal-
izes the input query p such that ↑ does not appear in the
scope of ↓ anymore. After the normalization, we simply
check whether the first axis is not ↑, and if in every qualifier
the label equalities are propositional consistent.

Finally, for the fragment X (↓, ↑, =) we rely again on a
normalization step. More specifically, we bring any query
into the form η1[q1]/ . . . /ηk[qk], where ηi is either ↓ or A,
qi = Gi ∧ Hi, Gi is a conjunction of conjunctive atoms, Hi

is a conjunction of expressions p1/@a op p2/@b, and pi is
in the normal form. Here a conjunctive atom is of the form
ǫ/@a op ǫ/@b, ǫ/@a op ‘c’ or lab() = A.

Since all label tests and label equalities are neatly organized
in a normalized query, we can check its satisfiability by in-
ductively checking the consistency of label tests and label
equalities. ✷

But as with the disjunction-free distinction, in the presence
of data value equality (=) or upward modalities (↑), the lack
of a DTD does not help matters. The proofs of the result
below follows from that of Theorem 6.8. Its last part also
follows from the results of [10].

Corollary 6.11: In the absence of DTDs, the following
problems are NP-hard:

1. SAT(X (∪, [], =)),

2. SAT(X (↓, ↑,∪, [])).
✷

As in the settings of disjunction-free and fixed DTDs, the
absence of DTDs does not simplify satisfiability analysis of
fragments with negation. This is verified by the results be-
low; the proofs for the first two are mild extensions of their
counterparts for disjunction-free DTDs (Corollary 6.9), and
the proof for the last one is a variation of that of Theo-
rem 5.4.

Corollary 6.12: In the absence of DTDs,
1. SAT(X (↓, [],¬)) is PSPACE-hard;

2. SAT(X (↓, ↓∗, [],¬)) is EXPTIME-hard;

3. SAT(X (↑, [], =,¬)) is EXPTIME-hard.
✷

7. CONCLUSION AND RELATED WORK

We have studied the satisfiability problem for a variety of
XPath fragments in the presence of DTDs, in the absence
of DTDs, and under restricted DTDs.

The main complexity results are summarized in Table 1,
annotated with their corresponding theorems.

Under arbitrary (any) DTDs, the table shows that the com-
plexity of SAT(X) ranges from PTIME to NP-complete
when X is a positive XPath fragment. When negation is
added, the complexity ranges from PSPACE-complete to un-
decidable, depending on different combinations of the nega-
tion operator, the recursive axes and data-value joins.

Under non-recursive (non-rec) DTDs, the satisfiability prob-
lem becomes much simpler for XPath fragments with recur-
sive axes; however, the absence of DTD recursion does not
help satisfiability analysis of XPath fragments without re-
cursive axes. The absence of disjunction (+-free) in DTDs
simplifies satisfiability analysis of positive XPath fragments,
but does not help fragments with negation. Fixing the DTD
has little impact on the worst-case analysis, while the ab-
sence of DTDs (DTD-free) diminishes the complexity for
positive fragments but not for those fragments with nega-
tion.

Our analysis of XPath fragments with negation and data
values is still preliminary. An open question is the complex-
ity of SAT(X (↓, ↑, ↓∗, ↑∗,∪, [], =,¬)), i.e., the largest frag-
ment with recursive and upward axes, negation and data-
value joins, in the absence of DTDs, DTD disjunctions, or
DTD recursion. Another open question is the decidability
of SAT(X (↓, ↓∗,∪, [], =,¬)), i.e., the largest downward frag-
ment. We only know that the problem is decidable either
under non-recursive DTDs, or in absence of the recursive
axis (↓∗). Finally, it would also be interesting to see if the
NEXPTIME bound for non-recursive DTDs remains valid
when queries have access to a document ordering.

Related work. The containment problem has been stud-
ied for several XPath fragments in the absence and in the
presence of DTDs [7, 16, 20, 28, 15]. Most of the work
on containment (except [20, 15]) focuses on positive XPath,
without upward axes and data-value joins. We have shown
that the upper bounds inherited from containment are not
tight for satisfiability. Similarly, our bounds do not im-
ply anything about containment analysis for those positive
fragments studied previously. In the presence of negation,
Propositions 3.3 and 3.2 allow our upper and lower bounds
to be carried over to the containment problem for the cor-
responding fragments.

While [20] proves bounds on containment in the presence
of negation and data values (without upward axes), it does
not consider the general XPath negation operator, and in-
stead negation is tied to particular equality comparisons.
Data values in [20] are introduced in the form of variables.
Variables are not an XPath 1.0 notion, and they change the
modal nature of the language dramatically. Since this se-

↓ ↓∗ ↑ ↑∗ ∪ [] = ¬ any DTDs nonrec. DTDs fixed DTDs ‘+’-free DTDs DTD-free

+ + + PTIME PTIME PTIME PTIME PTIME
(Th 4.1) (Th 4.1) (Th 4.1) (Th 4.1) (Th 3.1, 4.1)

+ + NP-complete NP-complete NP-complete PTIME PTIME
(Th 4.5) (Th 6.3, 4.5) (Th 6.5, 4.5) (Th 6.7) (Th 6.10)

+ + NP-complete NP-complete NP-complete PTIME PTIME
(Th 4.5) (Th 6.3, 4.5) (Th 6.5, 4.5) (Th 6.7) (Th 6.10)

+ + NP-complete NP-complete NP-complete PTIME PTIME
(Th 4.5) (Th 6.3, 4.5) (Th 6.5, 4.5) (Th 6.7) (Th 6.10)

+ + + + NP-complete NP-complete NP-complete PTIME PTIME
(Th 4.5) (Th 6.3, 4.5) (Th 6.5,4.5) (Th 6.7) (Th 6.10)

+ + + NP-complete NP-complete NP-complete NP-complete PTIME
(Th 4.5) (Th 6.3, 4.5) (Th 6.5, 4.5) (Th 6.8, 4.5) (Th 6.10)

+ + + NP-complete NP-complete NP-complete NP-complete NP-complete
(Th 4.5) (Th 6.3, 4.5) (Th 6.5, 4.5) (Th 6.8, 4.5) (Th 6.11, 4.5)

+ + + + NP-complete NP-complete NP-complete NP-complete NP-complete
(Th 4.5) (Th 6.3, 4.5) (Th 6.8, 4.5) (Th 6.8, 4.5) (Th 6.11, 4.5)

+ + + + + + + NP-complete NP-complete NP-complete NP-complete NP-complete
(Th 4.5) (Th 6.3, 4.5) (Th 6.5, 4.5) (Th 6.8, 4.5) (3.1, 6.11, 4.5)

+ + + PSPACE-com PSPACE-com PSPACE-com PSPACE-com PSPACE-com
-plete (Th 5.1) -plete (6.2, 6.3) -plete (6.6, 5.1) -plete (6.9, 5.1) -plete (6.12,5.1)

+ + + + + PSPACE-com PSPACE-com PSPACE-com PSPACE-com PSPACE-com
-plete (Th 5.1) -plete (6.2, 6.3) -plete (6.6, 5.1) -plete (6.9, 5.1) -plete (6.12,5.1)

+ + + + EXPTIME-com PSPACE-com EXPTIME-com EXPTIME-com EXPTIME-com
-plete (Th 5.2) -plete (6.2, 6.3) -plete (6.6, 5.2) -plete (6.9, 5.2) -plete (6.12,5.2)

+ + + + + + + EXPTIME-com PSPACE-com EXPTIME-com EXPTIME-com EXPTIME-com
-plete (Th 5.2) -plete (6.2, 6.3) -plete (6.6, 5.2) -plete (6.9, 5.2) -plete (6.12,5.2)

+ + + + EXPTIME-hard EXPTIME-hard EXPTIME-hard EXPTIME-hard EXPTIME-hard
(Th 5.4) (Cor 6.3) (Th 6.6) (Cor 6.9) (Cor 6.12)

+ + + + + NEXPTIME NEXPTIME NEXPTIME NEXPTIME NEXPTIME
(Th 5.4) (Th 5.4) (Th 5.4) (Th 5.4) (Th 3.1, 5.4)

+ + + + + + + + undecidable ? undecidable ? ?
(Th 5.3) (Th 6.6)

Table 1: The main results: the complexity of SAT(X) for various fragments X under different DTDs

mantics of negation and data values is different from ours,
our results do not imply the results of [20], and vice versa.

[15] is concerned principally with extensions of XPath, but
contains bounds on equivalence and satisfiability for the
largest fragments we consider that lack data value equality.
[15] proves an EXPTIME upper bound on satisfiability for
an extension of XPath, which implies an EXPTIME bound
for SAT(X (↓, ↓∗, ↑, ↑∗,∪, [],¬)). Indeed, the results of [15]
imply an EXPTIME upper bound on the extension of this
fragment with the sibling axes (which we do not consider), in
the presence of specialized DTDs (roughly speaking, XML
Schema), rather than just DTDs. A corresponding EXP-
TIME hardness result for navigational XPath can be derived
from a lower bound on query equivalence of the “XCore”
language of [15] (see Section 5).

Closest in spirit to our paper are [10, 13], which are general
studies of the satisfiability problem. [10] differs from our
work in both the set of operators it considers (e.g., without
data values), and in that it assumes the absence of DTDs.
It gives PTIME bounds in the presence of qualifiers, sib-
ling axes, upward axes, and a root test. We do not con-
sider sibling axes here, but our results suffice to show that
these bounds do not hold in the presence of DTDs. The
proofs of [10] also imply that the satisfiability problem is
NP-complete when downward axes are supplemented by an
intersection operator. The intersection operator is not avail-
able in XPath 1.0, so we do not consider it here. Finally,

[10] shows that satisfiability is NP-hard in the presence of
a complement operator, which is again not supported by
XPath. Instead. we consider here the XPath negation oper-
ator, proving both lower and upper bounds. Note that our
results would also carry over to show that XPath fragments
with all of the features of [10] is in EXPTIME.

[13] considers a tree pattern formalism with expressiveness
incomparable to XPath. These are tree-shaped, positive
queries, with data value equality and inequality along with
a node-equality test. Note that node-equality can be used
to simulate the intersection operation of [10]. [13] shows
that the satisfiability problem is NP-complete for several re-
strictions of this pattern language in the absence of DTDs.
It also investigates the satisfiability of tree pattern queries
with limited use of data joins (these can only occur “con-
junctively”) and node equality and inequality under non-
recursive disjunction-free DTDs. Since these results im-
pose severe syntactic restrictions, all of which make sense
only within the particular pattern formalism rather than in
XPath, it is difficult to compare the results with ours on
positive XPath. [13] does not deal with negation, nor can
the XPath negation operator be simulated in the formalism
of [13].

Minimization, rewriting and optimization are studied for
tree patterns and XPath [1, 9, 21, 27]. Expressiveness of
XPath is investigated in [2, 17, 18, 19]. No bounds for sat-
isfiability follow from these works.

There are several powerful logical formalisms on trees for
which satisfiability is decidable, principally Monadic Second
Order Logic (MSO) [26]. All the XPath fragments we con-
sider that omit data-value equality can be translated into
MSO, thus giving a decision procedure. However, MSO
on trees (and even first-order logic) has a non-elementary
satisfiability problem [24]. Restricted logics such as the µ-
calculus do admit EXPTIME decision procedures. While
the expressiveness of the µ-calculus is incomparable with
XPath, one of our results (Theorem 5.2) relies heavily on
the principal technique used for proving µ-calculus decid-
ability. For the fragments with data values we know of no
semantics-preserving translation into an existing formalism.

Acknowledgment. We thank Kousha Etessami and Kedar
Namjoshi for helpful discussions. We also thank Peter Bune-
man and Leonid Libkin for their comments. Wenfei Fan
is supported in part by EPSRC GR/S63205/01, EPSRC
GR/T27433/01 (the Engineering and Physical Sciences Re-
search Council, UK) and NSFC 60228006 (National Science
Foundation, China). Floris Geerts is postdoctoral researcher
of the FWO Vlaanderen and is supported in part by EPSRC
GR/S63205/01.

8. REFERENCES
[1] S. Amer-Yahia, S. Cho, L. Lakshmanan, and

D. Srivistava. Minimization of tree pattern queries. In
SIGMOD, 2001.

[2] M. Benedikt, W. Fan, and G. M. Kuper. Structural
properties of XPath fragments. In ICDT, 2003.

[3] E. Börger, E. Grädel, and Y. Gurevich. The Classical
Decision Problem. Springer, 1997.

[4] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. W3C
Recommendation, Feb 1998.
http://www.w3.org/TR/REC-xml.

[5] C. Chan, P. Felber, M. Garofalakis, and R. Rastogu.
Efficient filtering of XML documents with XPath
expressions. In ICDE, 2002.

[6] J. Clark and S. DeRose. XML Path Language
(XPath). W3C Recommendation, Nov. 1999.

[7] A. Deutsch and V. Tannen. Containment for classes of
XPath expressions under integrity constraints. In
KRDB, 2001.

[8] W. Fan, C. Chan, and M. Garofalakis. Secure XML
querying with security views. In SIGMOD, 2004.

[9] G. Gottlob, C. Koch, and R. Pichler. Efficient
algorithms for processing XPath queries. In VLDB,
2002.

[10] J. Hidders. Satisfiability of XPath expressions. In
DBPL, 2003.

[11] J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Languages and Computation (2nd
Edition). Addison Wesley, 2000.

[12] H. Jagadish, L. Lakshmanan, D. Srivastava, and
K. Thompson. TAX: A tree algebra for XML. In
DBPL, 2001.

[13] L. Lakshmanan, G. Ramesh, H. Wang, and Z. Zhao.
On testing satisfiability of tree pattern queries. In
VLDB, 2004.

[14] W. Martens and F. Neven. Frontiers of tractablity for
typechecking simple XML transformations. In PODS,
2004.

[15] M. Marx. XPath with conditional axis relations. In
EDBT, 2004.

[16] G. Miklau and D. Suciu. Containment and equivalence
for a fragment of XPath. JACM, 51(1):2–45, 2004.

[17] T. Milo, D. Suciu, and V. Vianu. Typechecking for
XML transformers. In PODS, 2001.

[18] M. Murata. Extended path expressions for XML. In
PODS, 2001.

[19] F. Neven and T. Schwentick. Expressive and efficient
languages for tree-structured data. In PODS, 2000.

[20] F. Neven and T. Schwentick. XPath containment in
the presence of disjunction, DTDs, and variables. In
ICDT, 2003.

[21] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking forward. In XMLDM, 2002.

[22] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[23] S. Paparizos, Y. Wu, L. Lakshmanan, and
H. Jagadish. Tree logical classes for efficient evaluation
of XQuery. In SIGMOD, 2004.

[24] L. Stockmeyer. The complexity of decision problems
in automata thoery and logic. Technical report, MIT,
1974.

[25] G. Sur, J. Hammer, and J. Siméon. An XQuery-based
language for processing updates in XML. In PLAN-X,
2004.

[26] J. Thatcher and J. Wright. Generalized finite
autoamta with an application to a decision problem of
second-order logic. Math. Systems Theory, 2:57–82,
1968.

[27] P. T. Wood. Minimising simple XPath expressions. In
WebDB, 2001.

[28] P. T. Wood. Containment for XPath fragments under
DTD constraints. In ICDT, 2003.

