
XPeer: A Self-organizing XML P2P Database

System⋆

Carlo Sartiani, Paolo Manghi, Giorgio Ghelli, and Giovanni Conforti

Dipartimento di Informatica - Università di Pisa
Via F. Buonarroti 2 - 56127 - Pisa - Italy

{sartiani, manghi, ghelli, confor}@di.unipi.it

Abstract. This paper describes XPeer, a zero-administration system
for sharing and querying XML data. The system allows users to share
XML data without significant human intervention, and to pose XQuery
FLWR queries against them.The proposed system can be used in any
application field, being a general purpose XML p2p DBMS, even though
its main application is the management of resource descriptions in GRID

environments.

1 Introduction

The last few years have seen the emerging of the peer-to-peer (p2p) computa-
tional paradigm. This model extends existing ideas about distributed and client-
server computing, blurring the distinction between clients and servers. Systems
conforming to this paradigm appear as open-ended and dynamic networks of
peers willing to share computational resources, ranging from CPU cycles to lo-
cal data, and even to algorithms (for instance, knowledge discovery algorithms).

The p2p paradigm was recently adopted in the database community to over-
come the limitations of distributed database systems, namely the static topology
and the heavy administration work, and to exploit the dissemination of data
sources over the Internet.

One key factor in the success of p2p systems, mostly in the field of content
sharing, is their easy administration. On the contrary, existing distributed data-
base systems require heavy administration efforts, both in the design phase and
at run-time: indeed, these systems are based on the presence of global and local
schemas, together with their mappings, whose definition and maintenance are
a duty of the DBA. Nevertheless, existing p2p systems for XML databases still
require significant administration tasks: in Piazza [1], for instance, human in-
tervention is still necessary for defining schema mappings between peers, which
implies significant efforts for the DBA, and decreases the dynamicity of the sys-
tem.

⋆ This work was partly funded by the FIRB GRID.IT project.

Our Contribution This paper describes a zero-administration p2p system for
sharing and querying XML data (XPeer). The system allows users to share XML
data and to pose XQuery FLWR queries against them without any significant
human intervention (the user still has to write her own queries). The system,
based on a hybrid p2p architecture, self-organizes its superpeer network, and
allows for arbitrary changes in the network topology.

Paper Outline The paper is organized as follows. Section 2 describes some im-
portant issues that emerge in the management of p2p XML databases. Section
3, then, presents an overview of the system, while Section 4 illustrates the sys-
tem architecture in more detail. Section 5, next, outlines the techniques used in
XPeer for processing queries. Section 6, then, discusses some related works. In
Section 7, finally, we draw our conclusions and describe some future work.

2 Issues in P2P XML Data Management

The problem of managing p2p XML databases is quite complex. The source of
most issues is the dynamic nature of these systems, where both data and topology
may suddenly change. Hence, a closer look at these aspects is necessary.

Changing topology Peer-to-peer systems are usually described as open-ended

networks of peers willing to share resources. Peers are autonomous, in the sense
that they are free to choose the data to contribute to the system, to manage local
data without external constraints, and to connect and disconnect at any time.
As a consequence, the system is formed by a collection of nodes S = {p1, . . . , pn}
that can evolve over time.

Topology changes mostly affect the indexing structures used for routing
queries. For instance, if a node pi containing data (let’s say a set of XML nodes
s) relevant for a query q suddenly becomes unreachable, then any index entry
associating pi to s should be updated to avoid unnecessary messages, or, in the
worst case, run-time problems.

Local updates Peer autonomy implies that peers have the right to update their
data, even if shared, at any time. In particular, peers can perform both value

and schema changing updates (unlike in relational databases, the loose structure
of XML data blurs the distinction between value and schema updates).

Value and schema updates influence query mediation and query routing
since sudden data changes may invalidate existing query plans or routing struc-
tures, hence imposing potentially expensive updates of distributed index struc-
tures. Moreover, most schema-driven data management approaches (see [1]) are
severely affected by local updates, hence requiring human intervention for adapt-
ing the system to the new data.

3 XPeer Overview

In this Section we provide a quick overview of the architecture of XPeer, as well
as of its data model and query language.

3.1 Basics

XPeer is an XML p2p database system, which manages data dispersed over an
open-ended network of autonomous peers. In XPeer no constraints are imposed
over exported data, i.e., a peer may export whatever kind of data, provided that
data are encoded in the XML format, and described by a schema, and it may
freely update its local data; moreover, nodes can join and leave the system at
any time, so the system has a dynamic topology. Exported data are integrated in
a blind way, i.e., no global schema is defined: this solution allows for a significant
decrease in the administration load of the system. Of course, this fundamental
choice restricts the applicability of the approach to situations where schema
mapping can be avoided, or can be performed out of the p2p system (i.e., by
a local schema adapter). We believe the choice is perfectly reasonable in the
application field we are targeting first (resource description).

XPeer adopts a hybrid p2p architecture [2], where peer nodes may also per-
form administrative tasks. System nodes, hence, may act both as peers and as
superpeers.

Databases hosted by XPeer can be queried with a proper subset of XQuery.
Due to the complexity of the system, and, in particular, to the changing topology
of the system, no guarantee about the completeness of query results can be pro-
vided; this, in turn, implies that queries containing set conditions or aggregation
functions may be incorrectly answered [3].

XPeer is a general purpose XML p2p database system, so it can be used in
any application field. Still, its main application is the management of resource
descriptions in a GRID-like environment: in particular, XPeer should form the
basic infrastructure for extending (and, eventually, replacing) the LDAP-based

resource discovery layer of existing GRID systems.

3.2 Data model and Query Language

Data in the system are represented as in most XML database systems, i.e., as
unordered forests of node-labeled trees. Each tree is augmented with the indi-
cation of the hosting peer (location in the following) as well as with a freshness
parameter fr, which indicates when the last update on the tree was performed
(⊥ indicates that the freshness is undefined, and it is necessary to ensure that
the model is closed). To support freshness parameters, the data model has a
universal constant τ , which denotes the current global time in the system: since
query results are assumed to be incomplete, the assumption of the existence of
a global time is feasible.

The query language of choice is the FLWR subset of XQuery [4] without
universally quantified predicates and sorting operations (the orderby clause). The

choice of the FLWR core of XQuery distinguishes XPeer from most existing p2p
systems, which are limited to simple key-lookup queries, or to linear path queries,
and which require significant modifications to support full database queries [5].

4 XPeer Architecture

XPeer is a hybrid p2p system composed by a dynamic set S = {p1, . . . , pn} of
autonomous peers, which share data and execute global queries on the data-
base. Some nodes in S (in most cases, those with adequate computational power
and/or network bandwidth) perform administration tasks too: these nodes, called
superpeers, form a set SP ⊆ S. Peers become superpeers on a voluntary basis,
and retain their peer role. We favor a hybrid p2p architecture wrt a hierarchi-
cal one (e.g., the GRID GRIS/GIIS system) since it offers more robustness to
failures and it can adapt more easily to network changes.

4.1 Peer Network

Peers share XML data and execute queries on top of these data. Peers export
a description of the data being shared in the form of a tree-shaped DataGuide
[6], called tree-guide, which is automatically inferred from the data by means of
a tree search algorithm. Leaf nodes in the schema are endowed with statistical
information about value ranges, to allow the system to better identify relevant
data sources during query compilation. The following Example shows a sample
XML document and its tree-guide.

Example 1. Consider the following document, hosted by a peer p1, describing
buildings in a real-estate market database.

<market>

<buildings>

<building>

<desc> Marvelous luxury house in the Hamptons </desc>

<location> Hamptons </location>

<price> 1600000 </price>

</building>

<building>

<desc> Very nice flat in the Upper East Side </desc>

<location> Upper East Side, Manhattan </location>

<price> 1350000 </price>

<type> comdo </type>

</building>

<building>

<desc> Elegant luxury house in the countryside </desc>

<location> Greensboro </location>

<price> 1700000 </price>

</building>

</buildings>

</market>

market

buildings

building

desc location note price

[1350k,1700k]

Fig. 1. A sample tree-guide.

The corresponding tree-guide contains each distinct path in the document,
endowed with statistical information about value ranges (e.g., the range 1350000−
1700000 for price elements), as shown in Figure 1.

Peers are logically organized into clusters of nodes, where each cluster con-
tains one superpeer, which is in charge with the management of the cluster: the
compilation of user queries and the management of peer information. Peer clus-
tering allows the system to decrease the efforts required for compiling queries.
To this aim, clusters are formed, whenever it is possible, on a schema-similarity

basis, i.e., peers exporting data with similar schemas are clustered together (the
system still works even if nodes in the same cluster have very different schemas).

Inside any cluster, some peer may (partially or totally) replicate the content
of other peers in the cluster. Replicas are built to balance the workload in the
cluster and to exploit peers with huge computational resources, and are valid
up to a given time. The replication process, as many other processes in XPeer,
happens on a voluntary basis.

4.2 SuperPeer Network

Superpeers have the duties of tracking topology changes, managing schema in-
formation, and compiling user queries. Superpeers are organized to form a tree,
where each node hosts schema information about its children; superpeers having
the same father form a group (which is very close to a peer cluster). The resulting
logical topology is shown in Figure 2.

Superpeers host two kinds of schema information about their children: the list
of the schemas of their children (the schema list); and the union of these schemas
(the superpeer schema). The schema list is used during query compilation for
identifying relevant data sources, or superpeers whose descendants can contain
relevant data; the superpeer schema, instead, is passed to the father as schema
of the superpeer, and it is built without any schema integration activity, so that
no human assistance is required. Since tree-guides may have, in the worst case,
the same size as the documents they are representing, the schema of the root
super-peer may have, in the worst scenario, the same dimension as the whole

peers & clusters

groups

Fig. 2. Overall logical system architecture.

p2p database. However, as shown in [6], this may happen only when a) each
local database is formed by non-overlapping rooted paths, and b) there are no
local databases having some common rooted path; this scenario is so infrequent
that we can safely use tree-guides as document schemas. The following Example
shows a sample superpeer schema.

Example 2. Consider the following XML document, hosted by a peer p2, de-
scribing seller information in the real-estate market.

<market>

<sellers>

<seller>

<name> Patrick Bateman </name>

<address> 25, Park Avenue </address>

<phone> ... </phone>

</seller>

<seller>

<name> Tim Price </name>

</seller>

</sellers>

</market>

This document can be represented by the tree-guide shown in Figure 3(a).
Assuming that both peers p1 (see Example 1) and p2 have the same superpeer
sp, then the superpeer schema of sp is depicted in Figure 3(b).

4.3 Network Evolution

The topology of the network can evolve over time. To adapt the organization of
the superpeer hierarchy to changes in the network, superpeers may split clusters
and groups, and may ask for new superpeers. In particular, when the workload

market

sellers

seller

address name

(a) Another sample
tree-guide.

market

buildings

building

desc location note price

sellers

seller

address name

(b) A superpeer schema.

Fig. 3. Another tree-guide and a super-peer schema.

for a given superpeer sp becomes too hard, sp first tries to relocate some of its
children in other clusters/groups (network balancing); if the problem persists,
sp then asks the system for new superpeers, and delegates them part of its
workload (network extension); if the workload is still too heavy, sp can finally
disconnect some of its children (peer de-gnoming). On the other hand, when the
workload for a given superpeer sp becomes too light, sp may decide to import
some children from busy superpeers, or it may decide to relocate its children to
another superpeer, and then to exit the superpeer network (network contraction).

5 XPeer Query Processing

XPeer supports the FLWR core of XQuery, the standard query language for
XML data being developed by W3C [4]. Since data are usually dispersed among
many peers, XPeer does not support the preservation of document order in query
results.

FLWR queries are translated into algebraic expressions, and are executed
on the system by relying on data-integration-like techniques. To speed up query
execution and to decrease peer and superpeer workload, the system exploits
mechanisms for replicating peer content, and for caching query plans and query
results; these mechanisms can be ignored on an explicit request by the user.

5.1 XPeer Query Algebra

The query algebra of XPeer, further described in Appendix A and in [7], is
an evolution of the query algebra for centralized XML data described in [8].
The query algebra consists of three classes of operators. The first class contains
operators that navigate unordered forests of node-labeled trees, binding nodes
to variables, and that build new XML trees from existing variables bindings
(path and return); the second class, instead, contains operators for manipulating
tuples of variable bindings, as in standard OO query algebras [9] [10] (σ, π, ✶,
DJoin, etc); the third class, finally, is formed by operators for managing locations

(the algebraic counterpart of peers), and, in particular, for uniting their content
(LocUnion) and for inserting replication constraints into query plans (Choice).
Since location choices are guarded by temporal parameters, the query algebra
data model has been enriched with the universal constant τ , describing the
system global time, and with time labels for locations.

The following example shows a sample algebraic expression.

Example 3. Consider the following XQuery query:

for $b in input()//building,

$d in $b/desc,

$p in $b/price

return <entry> {$d, $p} </entry>

This query returns the description and the price of each building in the
real-estate market database. Assume that the database (db1) is formed by data

dispersed over locations loc1, loc11, loc13, and loc17, and that loc11(db1) is repli-
cated at loc17 till time δ; furthermore, assume that the query was submitted
at time τ ′ so that τ ′ < δ. Then, the query can be expressed by the following
algebraic expression:

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](

(loc1 • (loc11 |δdb1 loc17) • loc13 • loc17)
1(db1)))

5.2 Query Compilation

Query compilation is performed in two phases. In the first step, a query is submit-
ted by the user to a peer pi. pi translates the query into a triple Q = (q, τ ′, δτ ′),
where q is a location-free algebraic expression, i.e., an algebraic expression with
“holes” (called spots) in place of locations, τ ′ is the query submission time, and
δτ ′ is a user-defined freshness parameter; in particular, δτ ′ indicates that the
system may use replicas and caches synced after time τ ′ − δτ ′ , and allows the
user to specify freshness and quality requirements for the result of the query
(e.g., δτ ′ = 0 means that only up-to-date caches and replicas can be used, while
δτ ′ = ∞ means that any existing cache or replica can be used).

In the second phase, pi sends the query Q to the superpeer network, via the
superpeer of its own cluster, for the compilation of a location assignment ρ, i.e.,
a function assigning unions (•) and choices (|) of locations to location spots.
This compilation is performed in a hierarchical way by matching the twigs of
q with schema information, and by traversing the superpeer hierarchy till any
interesting location has been detected. In particular, the super-peer responsible
for the cluster of pi matches the twigs of the query with the schemas of its
children peers, hence finding all relevant locations in the cluster; then, the super-
peer sends the query to the super-peer responsible for its group, which in turn
matches the query twigs against the schemas of its children, and resend the
query to clusters that may contain relevant data. The query is also propagated
up in the hierarchy to find all relevant locations. The query compilation process,
hence, requires the system to propagate the query till the root of the super-
peer network, but still limits the exploration of the network to a fraction of the
hierarchy.

Once the location assignment ρ is computed, ρ is passed to the issuing peer
pi for query execution; by making pi responsible for the execution of its query,
the system minimizes the load of the superpeer network.

The following Example shows how query compilation is performed.

Example 4. Consider the query of Example 3, and assume that the system has
the structure shown in Figure 4, where p1 and p2 contain the documents de-
scribed in Examples 1 and 2 respectively, while p3, p4, and p5 contain data
about loans and mortgages.

Suppose that a user submits the query of Example 3 at peer p2. p2 builds
the following location-free algebraic expression

p1 p2

sp1

c1

sp3

sp2

p4
c2

p3 p5

Fig. 4. Another system topology.

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](spot1))

and then sends this expression to sp1. sp1 matches the query twig against
the list of tree-guides of its peers, hence finding p1 relevant for the query, and
then propagates the query to sp2; sp2, in turn, matches the query twig over its
schema list, hence excluding the descendants of sp3 from the query plan. The
final query is shown below.

returnentry[ν$d,ν$p](
path(//,$b,in)building[(/,$d,in)desc[∅],(/,$p,in)price[∅]](loc1))

5.3 Query Execution

Once the issuing peer pi has received the location assignment ρ for a query Q,
it applies common algebraic rewriting to the fully specified algebraic expression,
such as selection push-down and distribution of unions, and then starts executing
the query, which is split into single-location sub-queries that are sent to the
corresponding peers; pi waits for query results, and then executes operations,
such as joins, involving data coming from multiple sources. Query subexpressions
are locally optimized and executed by system peers, hence allowing each peer to
choose the best execution strategy for any given algebraic expression.

Query decomposition is performed by exploiting an algorithm close to that of
YAT [11]: the algorithm just browses the algebraic tree in the search of maximal
single-location subexpressions, which correspond to peer sub-queries.

6 Related Works

In this Section we briefly review existing works on XML p2p databases.

Maier’s System In [12] authors describe a coordinator-free architecture for dis-
tributed XML query processing in the context of p2p systems. The proposed
architecture is tailored for the needs of bio-informatics applications, but it can
be safely adopted in other p2p applications.

The proposed architecture is based on two key ideas: mutant query plans

(MQP) [13], and multi-hierarchic namespaces. An MQP is a logical query plan,
where leaf nodes may consist of URN/URL references, or of materialized XML
data. MQPs are themselves serialized as XML elements, and are exchanged
among the nodes of the system. When a node S receives an MQP P, S can
resolve URN references, materialize URL references, evaluate MQP sub-plans,
re-optimize MQP sub-plans, or just route P to another server; when P is reduced
to XML code only, it is sent to the target node, i.e., the node originating the
query. As a consequence, an MQP traverses the system, carrying partial results
and unevaluated sub-plans, until it is fully evaluated, i.e., it becomes a constant
XML fragment.

MQPs are routed in the system according to information derived from multi-
hierarchic namespaces. Indeed, authors assume that data contributed by peers
are semantically connected, i.e., they are part of the same namespace. A names-
pace is formed by several category hierarchies, e.g., a hierarchy for geographical
information and one for item features in a garage-sale p2p application. As in
OLAP systems, single hierarchies form the dimensions of an hypercube; con-
tiguous portions of the hypercube are called interest areas. Interest areas are
generated to match the data provided by peers, i.e., a peer P can provide data
belonging to a single interest area.

The proposed system heavily exploits the semantic homogeneity of the data
supplied by peers, hence it appears not adequate when data are semantically
heterogeneous. Moreover, while MQPs allow the system to avoid centralization
points, the correctness of their routing algorithms in the presence of network
problems is far from being clear.

DBGlobe In [14] authors describe DBGlobe, a p2p system for global computing.
The key points of the project are the management of mobile peers, which may
relocate over time, the use of services for dealing with heterogeneity and mis-
matching problems, as well as the use of Active XML [15] as the paradigm for
service invocation/execution and data exchange.

The architecture of the DBGlobe system is a 3-level hierarchical architecture.
The first level contains the system peers (called Primary Mobile Objects). The
second level, instead, contains Cell Administration Servers, which have the duty
to manage the underlying network. The network itself is divided into contiguous
cells, just like the network for mobile phones, each cell being managed by a CAS.

On top of the first two levels of DBGlobe, which form the infrastructure of
the system, the third level contains the components devoted to offer application-

oriented services, ranging from the management of communities (i.e., groups
of peers whose contents and services are semantically correlated) to the collec-
tion of user query results when a given user goes offline. As for network cells,
communities are managed by Community Administration Servers (CoaSs).

The location of nodes containing interesting services is performed by relying
on an index structure called Multi-Level Bloom Filter.

Although very interesting, the DBGlobe system requires heavy administra-
tion activities for its build-up and its maintenance; moreover, it is not clear how
the system can react to failures in its administrative layers.

Piazza In [1] authors give an overview of Piazza, a peer data management sys-
tem for XML data. The Piazza project focuses on the use of schemata, and, in
particular, on the definition of schema integration and mapping techniques for
p2p systems.

The architecture of Piazza is basically a hierarchical p2p architecture, where
peers are fully autonomous, and may contribute data with schemas, while a cen-
tral node hosts an index structure structure for query routing and performs query
reformulation. Each peer has a schema, the peer schema, which describes how
the given peer views the data offered by the system; while the Piazza approach is
based on the assumption that all peers share similar views of the world, these vi-
sions are usually different, so the need for peer schema reconciliation techniques
emerges. Moreover, the peer schema is somehow independent from the schema
of the data the peer may store, so a second class of mappings is required.

Peers contributing data also have a second schema, the storage schema, which
describes the structure of the data; both the peer schema and the storage schema
conform to the XML Schema specification [16].

Peer schemas represent the peer vision of the world. As a consequence, each
query submitted by a given peer P is posed against the peer schema of P , and it
must be reformulated to work against the storage schema of the relevant peers in
the system. To this purpose, Piazza supports two kinds of schema mappings: peer
descriptions, which relate two or more peer schemas, and storage descriptions,
which map the data stored at one peer into the peer’s view of the world.

Unlike common integration systems, no centralized mediated schema exists,
query reformulation being executed by solely using peer descriptions and schema
descriptions. Moreover, the set of peer descriptions of a given system is sparse,
i.e., a peer schema is mapped into a few other schemas, in order to decrease
the efforts required for schema integration, and to simplify the extension of the
system with new peers.

Peer and schema descriptions are expressed by means of inclusion relations
with virtual documents (views). This choice allows the system to exploit tech-
niques for query reformulation over views, and, in particular, GAV and LAV
techniques.

Peer and schema descriptions are stored in a centralized node, which also
hosts a data indexing structure. This index is used for filtering the list of relevant
peer identified during query reformulation, hence it allows the system to decrease
the number of false positives in a query plan. The index structure hosts data
summaries as well as other information about data and peers.

While very promising, the Piazza approach still requires human intervention
for the definition of schema mappings.

7 Conclusions and Future Work

This paper describes the architecture of XPeer, a p2p XML data management
system. The system supports the FLWR core of XQuery, and allows the user
to execute queries on the global database; global queries are translated into
algebraic expressions, which are then decomposed and sent to the relevant peers.

The architecture of the system is self-organizing, in that the superpeer net-
work can adapt its structure to changes in the system network topology and in
the query workload. Furthermore, the system requires no human intervention
for its administration, hence being a zero-administration DBMS.

XPeer is a general purpose XML p2p database system, so it can be used in
any application field. Still, its main application is the management of resource
descriptions in a GRID-like environment: in particular, XPeer should form the
basic infrastructure for extending (and, eventually, replacing) the LDAP-based

resource discovery layer of existing GRID systems.
XPeer is currently being implemented on top of an existing persistent XML

query engine, so at this time no remarks about its performance and scalability
properties can be done. In addition to implementing XPeer, we are currently
investigating the problem of correctness of query results in the presence of in-
complete query plans.

References

1. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: data management infras-
tructure for semantic web applications. In: Proceedings of the Twelfth International
World Wide Web Conference, WWW2003, Budapest, Hungary, 20-24 May 2003,
ACM (2003) 556–567

2. Yang, B., Garcia-Molina, H.: Designing a Super-peer Network. In: Proceedings of
the 19th International Conference on Data Engineering (ICDE), Bangalore, India,
5-8 March 2003, IEEE Computer Society (2003)

3. Sartiani, C.: On the Correctness of Query Results in
XML P2P Databases (2003) Manuscript draft. Available at
http://www.di.unipi.it/∼sartiani/papers/rocketman.pdf.

4. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: An XML Query Language. Technical report, World Wide Web Con-
sortium (2003) W3C Working Draft.

5. Harren, M., Hellerstein, J. M., Huebsch, R., Thau Loo, B., Shenker, S., Stoica, I.:
Complex Queries in DHT-based Peer-to-Peer Networks. In: IPTPS 2002, pages
242-259

6. Goldman, R., Widom, J.: DataGuides: Enabling query formulation and optimiza-
tion in semistructured databases. In: VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29, 1997, Athens, Greece, Mor-
gan Kaufmann (1997) 436–445

7. Sartiani, C.: A Query Algebra for XML P2P Databases (2003) Manuscript draft.
Available at http://www.di.unipi.it/∼sartiani/papers/eve.pdf.

8. Sartiani, C., Albano, A.: Yet Another Query Algebra For XML Data. In Nasci-
mento, M.A., Özsu, M.T., Zäıane, O., eds.: Proceedings of the 6th International

Database Engineering and Applications Symposium (IDEAS 2002), Edmonton,
Canada, July 17-19, 2002. (2002)

9. A. M. Alashqur, Stanley Y. W. Su, and Herman Lam. Oql: A query language for
manipulating object-oriented databases. In Peter M. G. Apers and Gio Wiederhold,
editors, Proceedings of the Fifteenth International Conference on Very Large Data

Bases, August 22-25, 1989, Amsterdam, The Netherlands, pages 433–442. Morgan
Kaufmann, 1989.

10. Sophie Cluet and Guido Moerkotte. Classification and optimization of nested
queries in object bases. Technical report, University of Karlsruhe, 1994.

11. Siméon, J.: Intégration de sources de données hétérogènes. PhD thesis, Université
Paris XI (1999)

12. Papadimos, V., Maier, D., Tufte, K.: Distributed Query Processing and Catalogs
for Peer-to-Peer Systems. In: CIDR 2003, First Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 5-8, 2003. (2003)

13. Papadimos, V., Maier, D.: Mutant query plans. Information & Software Technol-
ogy 44 (2002) 197–206

14. Pitoura, E., Abiteboul, S., Pfoser, D., Samaras, G., Vazirgiannis, M.: DBGlobe:
a service-oriented P2P system for global computing. Sigmod Record 32 (2003)
77–82

15. Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., Weber, R.: Active XML:
Peer-to-Peer Data and Web Services Integration. In: 28th International Conference
on Very Large Data Bases (VLDB 2002), Hong Kong, China, August 20-23, 2002,
Proceedings, Morgan Kaufmann (2002) 1087–1090

16. Thompson, H.S., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1:
Structures. Technical report, World Wide Web Consortium (2002) W3C Recom-
mendation.

A Query Algebra

A.1 Data Model and Term Language

t ::= t1, . . . , tn | n[t] | n
n ::= (oid, loc, fr)label
loc : (dbname → t, (dbname, loc) → t)
where label ∈ Σ∗, fr ∈ N ∪ {⊥}, and
loc1 and loc2 are partial functions.

Node Functions
label(n) = label
oid(n) = oid
loc(n) = loc
freshness(n) = fr

A.2 Env and Tuples Operations

Four basic operations are defined on Env structures and tuples.

1. t.A = tj where A = labelj (where t is a tuple) (field extraction)

2. t.
→

A= {ti1, . . . , tip} where
→

A = (labeli1, . . . , labelip
) (repeated field extrac-

tion)

3. t ↓
→

A= [labeli1 : ti1, . . . , labelip : tip] where
→

A = (labeli1 , . . . , labelip
)

4. •, a concatenation operator between tuples (known as tup concat in other
algebras).

A.3 Support Operators

1. e[x] = {[x : t] | t ∈ e}
2. child(t) =

(a) if t = vB, then child(t) = {}
(b) if t = (oid) [t1, . . . , tn], then child(t) = {ti | i ∈ 1, . . . , n}

3. descendant(t) = child(t) ∪
⋃

ti∈child(t) descendant(ti)

4. self(t) = {t1, . . . , tn | t = t1, . . . , tn}
5. self − descendant(t) = self(t) ∪ descendant(t)
6. nav(op)(label)(t) =

(a) if op = (), then nav(op)(label)(t) = {ti | t = t1, . . . , tn ∧ label(ti) =
label}

(b) if op = (/), then nav(op)(label)(t) = {t
′

j | t = t1, . . . , tn∧∃i ∈ 1, . . . , n :

t
′

j ∈ child(ti) ∧ label(t
′

j) = label}

(c) if op = (//), then nav(op)(label)(t) = {t
′

j | t = t1, . . . , tn, ∃i ∈

1, . . . , n : t
′

j ∈ self − descendant(ti) ∧ label(t
′

j) = label}

A.4 Basic Operators

Map χf (e) = {f(t) | t ∈ e}

TupJoin e1 ✶Pred e2 = {t1 • t2 | t1 ∈ e1 ∧ t2 ∈ e2 ∧ Pred(t1, t2)}

DJoin e1 < e2 >= {y • x | y ∈ e1, x ∈ e2(y)}

Selection σPred(e) = {t | t ∈ e, Pred(t)}

Projection π→

A
(e) = {t ↓

→

A | t ∈ e}

A.5 Operators on Locations

LocUnion loc1 • loc2 = ((loc1
1 ⊕ loc1

2), (loc
2
1 ∪ loc2

2)) where:

loc1

1 ⊕ loc1

2 = {(dbname, t) | (dbname, t) ∈ loc1

1∧
∧∄t′ : (dbname, t′) ∈ loc1

2}∪
{(dbname, t) | (dbname, t) ∈ loc1

2∧
∧∄t′ : (dbname, t′) ∈ loc1

1}∪
{(dbname, (t1, t2)) | (dbname, t1) ∈ loc1

1∧
∧(dbname, t2) ∈ loc1

2}

Choice

loc1 |δdb loc2 = loc1

loc1 |δdb loc2 = loc2

A.6 Path

Input filters grammar

(1)F ::= F1, . . . , Fn |
| (op, var, binder)label[F] | ∅

(2)op ∈ {/, //, }
(4)var ∈ label ∪ { }
(5)binder ∈ { , in, =}

pathf (t) =

1. if f = f1, . . . , fm and t = t1, . . . , tn, then pathf (t) = pathf1
(t) TupJoin(true)

. . . TupJoin(true) pathfm
(t)

2. if f = (, , binder)label[∅] and t = t1, . . . , tn, then pathf(t) = {};
3. if f = (, , binder)label[F] and t = t1, . . . , tn, then pathf(t) = pathF (nav()(label)(t));
4. if f = (op, l, in)label[∅] and t = t1, . . . , tn, then pathf(t) = nav(op)(label)(t)[l];
5. if f = (op, l, =)label[∅] and t = t1, . . . , tn, then pathf(t) = {[l : nav(op)(label)(t)]};
6. if f = (op, l, in)label[F] and t = t1, . . . , tn, then pathf (t) =

⋃
ti∈nav(op)(label)(t){[l :

ti]}TupJoin(true)pathF (ti);
7. if f = (op, l, =)label[F] and t = t1, . . . , tn, then pathf (t) = {[l : nav(op)(label)(t)]}

TupJoin(true) pathF (nav(op)(label)(t))};
8. if f = (op, ,)label[∅] and t = t1, . . . , tn, then pathf(t) = {};
9. if f = (op, ,)label[F] and t = t1, . . . , tn, then pathf (t) = pathF (nav(op)(label)(t));

10. path∅(t) = {};

A.7 Return

Output filters grammar

(1)OF ::= OF1, . . . , OFn | n[OF] | val
(2)val ::= n | var | f(var)

returnof (e) =

1. if of = n, then returnof (e) =
⋃p

i=1 n where e = {t1, . . . , tp}, oid(n) = νoid,
loc(n) = (∅, ∅), and freshness(n) = τ ;

2. if of = var, then returnof (e) = {refresh oid(t.var) | t ∈ e};

3. if of = label[of
′

], then returnof (e) =
⋃p

i=1 n[returnof ′ ({ti})] where e =
{t1, . . . , tp}, oid(n) = νoid, loc(n) = (∅, ∅), and freshness(n) = τ ;

4. if of = of1, . . . , ofk, then returnof (e) =
⋃p

i=1 returnof1
({ti}), . . . , returnofk

({ti})
where e = {t1, . . . , tp}.

5. if of = f(var), then returnof (e) = f(returnvar(e));

where

1. refresh oid(t1, . . . , tn) = refresh oid(t1), . . . , refresh oid(tn)
2. refresh oid((oid, loc, fr)label[t]) = (ν(oid), loc, fr)label[refresh oid(t)]
3. refresh oid((oid, loc, fr)label) = (ν(oid), loc, fr)label

