
The growing complexity of embedded
multi-processor architectures for digi-
tal media processing will soon require
highly scalable communication infra-
structures. Packet switched Net-
works-on-Chip (NoC) have been
proposed to support the trend for
Systems-on-Chip integration. In this
paper, an advanced NoC architecture,
called Xpipes, targeting high perform-
ance and reliable communication for
on-chip multi-processors is intro-
duced. It consists of a library of soft
macros (switches, network interfaces
and links) that are design-time com-
posable and tunable so that domain-
specific heterogeneous architectures
can be instantiated and synthesized.
Links can be pipelined with a flexible
number of stages to decouple link
throughput from its length and to get
arbitrary topologies. Moreover, a tool
called XpipesCompiler, which auto-
matically instantiates a customized
NoC from the library of soft network
components, is used in this paper to
test the Xpipes-based synthesis flow
for domain-specific communication
architectures.

Keywords: Systems-on-Chip, Net-
works-on-chip, pipelining, reliability,
soft macros, network instantiation

Xpipes:

A Network-on-Chip
Architecture
for Gigascale
Systems-on-Chip

Abstract

©
D

IG
IT

A
L

S
TO

C
K

Feature

Davide Bertozzi and Luca Benini

18 IEEE CIRCUITS AND SYSTEMS MAGAZINE 1540-7977/04/$20.00©2004 IEEE SECOND QUARTER 2004

Introduction

T
he integration of an entire system onto the same
silicon die (System-on-Chip, SoC) has become tech-
nically feasible as an effect of the increasing inte-

gration densities made available by deep sub-micron
technologies and of the computational requirements of
the most aggressive applications in the multimedia, auto-
motive and ambient intelligence domain.

SoCs represent high-complexity, high-value semicon-
ductor products that incorporate building blocks from
multiple sources (either in-house made or externally sup-
plied): in particular, general-purpose fully programmable
processors, co-processors, DSPs, dedicated hardware
accelerators, memory blocks, I/O blocks, etc. Even
though commercial products currently exhibit only a few
integrated cores (e.g., a RISC general purpose MIPS core
and a VLIW Trimedia processor for the Philips Nexperia
platform for multimedia applications), in the next few
years technology will allow the integration of thousands
of cores, making a large computational power available.

In contrast to past projections, which assumed that
technology advances only needed to be linear and that all
semiconductor products would deploy them, today the
introduction of new technology solutions is increasingly
application driven [1]. As an example, let us consider
ambient intelligence, which is considered the new para-
digm for consumer electronics. Systems designed for
ambient intelligence will be based on high-speed digital
signal processing, with computational loads ranging from
10 MOPS for lightweight audio processing, 3 GOPS for
video processing, 20 GOPS for multilingual conversation
interfaces and up to 1 TOPS for synthetic video genera-
tion. This computational challenge will
have to be addressed at manageable
power levels and affordable costs [2], and
a single processor will not suffice, thus
driving the development of more and more
complex multi-processor SoCs (MPSoCs).

In this context, the performance of
gigascale SoCs will be limited by the abil-
ity to efficiently interconnect pre-
designed and pre-verified functional
blocks and to accommodate their com-
munication requirements, i.e. it will be
communication—rather than computa-
tion- dominated. Only an interconnect-
centric system architecture will be able
to cope with these new challenges.

Current on-chip interconnects consist
of low-cost shared communication re-

sources, where an arbitration logic is needed for the seri-
alization of bus access requests: only one master at a time
can drive the bus. In spite of its low complexity, the main
drawback of this solution is its lack of scalability, which
will result in unacceptable performance degradation (e.g.,
contention-related delays for bus accesses) when the
level of SoC integration will exceed a dozen of cores.
Moreover, the connection of new blocks to a shared bus
increases its associated load capacitance, resulting in
more energy consuming bus transactions.

State-of-the-art communication architectures make
use of evolutionary approaches, such as full or partial
crossbars, allowing a higher degree of parallelism in
accessing communication resources, but in the long term
more aggressive solutions are required.

A scalable communication infrastructure that better
supports the trend of SoC integration consists of an on-
chip packet-switched micro-network of interconnects,
generally known as Network-on-Chip (NoC) architecture
[3, 4, 5]. The basic idea is borrowed from traditional
large-scale multi-processors and the wide-area net-
works domain, and envisions on-chip router (or
switch)-based networks on which packetized commu-
nication takes place, as depicted in Fig. 1. Cores access
the network by means of proper interfaces, and have
their packets forwarded to destination through a multi-
hop routing path.

The scalable and modular nature of NoCs and their
support for efficient on-chip communication poten-
tially leads to NoC-based multi-processor systems
characterized by high structural complexity and func-
tional diversity.

19SECOND QUARTER 2004 IEEE CIRCUITS AND SYSTEMS MAGAZINE

Davide Bertozzi and Luca Benini are with the Dipartimento Elettronica Informatica Sistemistica, University of Bologna, Via Risorgimento, 2,
40136 Bologna, Italy. E-mail: {dbertozzi,lbenini}@deis.unibo.it.

Network
Interface

CPU

RAM

DSP
Link

MPEG
Co-processor

CPU
Switch

On-Chip
Micro

Network

Figure 1. Example of Network-on-Chip architecture.

An important design decision for NoCs concerns
topology selection. Several researchers [5, 6, 7, 8] envi-
sion NoCs as regular tile-based topologies (such as
mesh networks and fat trees), which are suitable for
interconnecting homogeneous cores in a chip multi-
processor. Of course, the network topology depends on
system functional requirements, hence on the size and
the placement of the integrated modules. In general, SoC
integration potentially encompasses heterogeneous
technologies and specialized components (used by
designers to optimise performance at low power con-
sumption and competitive cost), leading to the integra-
tion of heterogeneous cores having varied functionality,
size and communication requirements [9]. This might
motivate the adoption of custom, domain-specific irreg-
ular topologies [10].

As an example, consider the implementation of an
MPEG4 decoder [11], depicted in Fig. 2(b), where blocks
are drawn roughly to scale and links represent inter-block
communication. First, the embedded memory (SDRAM)
is much larger than all other cores and it is a critical com-
munication bottleneck. Block sizes are highly non-uni-
form and the floorplan does not match the regular,
tile-based floorplan showed in Fig. 2(a). Second, the total
communication bandwidth to/from the embedded
SDRAM is much larger than that required for communica-
tion among the other cores. Third, many neighbouring
blocks do not need to communicate. Even though it may
be possible to implement MPEG4 onto a homogeneous
fabric, there is a significant risk of either under-utilizing
many tiles and links, or, at the opposite extreme, of
achieving poor performance because of localized conges-
tion. These factors motivate the use of an application-spe-
cific on-chip network [12].

This paper illustrates an embodiment of the concept
of NoC represented by the Xpipes NoC architecture devel-

oped at University of Bologna [13]. Xpipes aims at pro-
viding high performance and reliable communication for
gigascale SoCs. While describing the basic building
blocks of this solution, the main NoC design principles
will be briefly explained, detailing the specific contribu-
tion of Xpipes to the fast-evolving research activity in the
domain of NoC-based communication architectures.

Xpipes has been designed as a library of highly para-
meterised soft macros (network interface, switch and
switch-to-switch link), which are design-time tunable and
composable. Therefore, arbitrary topologies can be
instantiated and the challenging issue of heterogeneous
NoC design can be addressed. In fact, an illustrative exam-
ple will show how Xpipes can be employed in a design
space exploration framework, wherein the ability of sev-
eral customized NoC topologies to efficiently accommo-
date the communication requirements of an application is
investigated and compared.

Design Challenges for On-Chip

Communication Architectures

Designing communication architectures for highly inte-
grated deep sub-micron SoCs is a non-trivial task that
needs to take into account the main challenges posed by
technology scaling and by exponentially increasing sys-
tem complexity. A few relevant SoC design issues are
hereafter discussed:

■ Technology issues. While gate delays scale down
with technology, global wire delays typically
increase or remain constant as repeaters are
inserted. It is estimated that in 50 nm technology,
at a clock frequency of 10 GHz, a global wire delay
can be up to 6–10 clock cycles [3]. Therefore, lim-
iting the on-chip distance travelled by critical sig-
nals will be key to guarantee the performance of
the overall system, and will be a common design

guideline for all kinds of system
interconnects. Synchronization
of cores on future SoCs will be
unfeasible due to deep sub-
micron effects (clock skew,
power associated with clock dis-
tribution trees, etc.), and an
alternative scenario consists of
self-synchronous cores that com-
municate with one another
through a network-centric archi-
tecture [14]. Finally, signal
integrity issues (cross-talk,
power supply noise, soft errors,
etc.) will lead to more transient
and permanent failures of sig-
nals, logic values, devices and

20 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2004

CORE

AU

VU

BAB

DSP

RAST

SDRAM

UPS

SRAM

SRAM

MCPU

ADSP

RISC

(a) (b)

Figure 2. Homogeneous versus heterogeneous architectural template. (a) Tile-Based
On-Chip Multi-Processor. (b) MPEG-4 MPSoC.

interconnects, thus raising the reliability concern
for on-chip communication [15]. In many cases,
on-chip networks can be designed as regular
structures, allowing electrical parameters of wires
to be optimised and well controlled. This leads to
lower communication failure probabilities, thus
enabling the use of low swing signalling tech-
niques [16], and to the capability of exploiting
performance optimisation techniques such as
wavefront pipelining [17].

■ Performance issues. In traditional busses, all com-
munication actors share the same bandwidth. As
a consequence, performance does not scale with
the level of system integration, but degrades sig-
nificantly. Though, once the bus is granted to a
master, access occurs with no additional delay.
On the contrary, NoCs can provide much better
performance scalability. No delays are experi-
enced for accessing the communication infra-
structure, since multiple outstanding transactions
originated by multiple cores can be handled at the
same time, resulting in a more efficient network
resource utilization. However, given a certain net-
work dimension (e.g., number of instantiated
switches), large latency fluctuations for packet
delivery could be experienced as a consequence
of network congestion. This is unacceptable when
hard real time constraints of an application have
to be met, and two solutions are viable: network
overdimensioning (for NoCs designed to support
best-effort traffic only) or implementation of ded-
icated mechanisms to provide guarantees for tim-
ing constrained traffic (e.g., loss-less data
transport, minimal bandwidth, bounded latency,
minimal throughput, etc.) [18].

■ Design productivity issues. It is well known that
synthesis and compiler technology development
does not keep up with IC manufacturing technolo-
gy development [19]. Moreover, time-to-market
needs to be kept as low as possible. The reuse of
complex pre-verified design blocks is efficient
means to increase productivity, and regards both
computation resources and the communication
infrastructure [20]. It would be highly desirable to
have processing elements that could be employed
in different platforms by means of a plug-and-play
design style. To this purpose, a scalable and mod-
ular on-chip network represents a more efficient
communication infrastructure compared with
shared bus-based architectures. However, the
reuse of processing elements is facilitated by the
definition of standard network interfaces, which
also make the modularity property of the NoC

effective. The Virtual Socket Interface Alliance
(VSIA) has attempted to set the characteristics of
this interface industry-wide [21]. OCP [21] is
another example of standard interface sockets for
cores. It is worth remarking that such network
interfaces also decouple the development of new
cores from the evolution of new communication
architectures. Finally, let us observe that NoC
components (e.g., switches or interfaces) can be
instantiated multiple times in the same design (as
opposed to the arbiter of traditional shared
busses, which is instance-specific) and reused in
a large number of products targeting a specific
application domain.

The above-mentioned issues are extensively dis-
cussed in [3, 5]. Some commercial SoC interconnects,
such as the Sonics MicroNetwork [23] and the STBUS
interconnect from STMicroelectronics are examples of
evolutionary architectures which provide designers
with a degree of freedom to instantiate different bus-
based topologies. More radical solutions have been
explored. Dally and Lacy sketch the architecture of a
VLSI multi-computer using 2009 technology [24], where
communication is based on packet switching. This sem-
inal work draws upon the past experiences in designing
parallel computers and reconfigurable architectures
(FPGAs and their evolutions) [12, 25–27]. Most of the
proposed NoC platforms are packet switched and exhib-
it regular structure. Examples are mesh interconnec-
tions [7, 28] and fat-trees [29].

The need to map communication requirements of het-
erogeneous cores may lead to the adoption of irregular
topologies. The Aethereal NoC design framework present-
ed in [30] aims at providing a complete infrastructure for
developing heterogeneous NoCs with end-to-end quality
of service guarantees. The network supports guaranteed
throughput (GT) for real time applications and best effort
(BE) traffic for timing unconstrained applications. Sup-
port for heterogeneous architectures requires highly con-
figurable network building blocks, customisable at
instantiation time for a specific application domain. For
instance, the Proteo NoC [31] consists of a small library of
predefined, parameterised components that allow the
implementation of a large range of different topologies,
protocols and configurations.

The Xpipes interconnect [13] and its synthesizer
XpipesCompiler [32] push this approach to the limit, by
instantiating an application specific NoC from a library of
composable components providing reliable and latency
insensitive operation.

NoC Architecture

In general, the most relevant tasks of a network interface

21SECOND QUARTER 2004 IEEE CIRCUITS AND SYSTEMS MAGAZINE

(NI) are: (i) hiding the details about network communica-
tion protocol to the cores, so that they can be developed
independently of the communication infrastructure, (ii)
communication protocol conversion (from end-to-end to
network protocol), (iii) data packetization (packet assem-
bly, delivery and disassembly).

The former objective can be achieved by means of
standard interfaces, such as VCI [21] and OCP [22],
whose main characteristics are a high degree of config-
urability to adapt to the core’s functionality and the
independence of the request and response phases, thus
supporting multiple outstanding requests and pipelin-
ing of transfers.

Data packetization is a critical task for the network
interface, and has an impact on the communication laten-
cy, in addition to the latency of the communication chan-
nel. Messages that have to be transmitted across the
network are usually partitioned into fixed-length packets.
Packets in turn are often broken into message flow con-
trol units called flits. In the presence of channel width con-
straints, multiple physical channel cycles can be used to
transfer a single flit. A phit is the unit of information that
can be transferred across a physical channel in a single
step. Flits represent logical units of information, as
opposed to phits that correspond to physical quantities.
In many implementations, a flit is set to be equal to a phit.

The packet preparation process consists of building
the packet header, payload and packet tail. The header
contains the necessary routing and network control infor-
mation (e.g., the source and destination address). When
source routing is used, the destination address is ignored
and replaced with a route field that specifies the route to
destination. This overhead in terms of packet header is
counterbalanced by a simpler routing logic at the net-
work switches: they simply have to look at the routing
fields in the packets and route them over the specified
switch output port. The packet tail indicates the end of a
packet and usually contains parity bits for error-detecting
or error-correcting codes. Packetizing data deals effec-
tively with communication errors. In fact, packet bound-
aries contain the effect of errors and allow error recovery
on a packet-by-packet basis.

The task of the switch is to carry packets injected into
the network to their final destination, following a statical-
ly defined or dynamically determined routing path. The
switch transfers packets from one of its input ports to one
or more of its output ports.

The switch design is usually characterized by a power-
performance trade-off: power-hungry switch memory
resources can be required by the need to support high
performance on-chip communication. A specific design of
a switch may include both input and output buffers or
only one type of buffers. Input queuing uses fewer

buffers, but suffers from head-of-line blocking. Virtual
output queuing has a higher performance, but at the cost
of more buffers. Network flow control (or routing mode)
specifically addresses the limited amount of buffering
resources in switches. Three policies are feasible in this
context [33].

In store-and-forward routing, an entire packet is
received and entirely stored before being forwarded to
the next switch. This is the most demanding approach in
terms of memory requirements and switch latency. Also
virtual cut-through routing requires buffer space for an
entire packet, but allows lower latency communication, in
that a packet is forwarded as soon as the next switch
guarantees that the complete packet will be accepted. If
this is not the case, the current router must be able to
store the whole packet.

Finally, a wormhole routing scheme can be employed to
reduce switch memory requirements and to permit low
latency communication. The first flit of a packet contains
routing information, and header flit decoding enables the
switches to establish the path and subsequent flits sim-
ply follow this path in a pipelined fashion by means of
switch output port reservation. A flit is passed to the next
switch as soon as enough space is available to store it,
even though there is not enough space to store the whole
packet. If a certain flit faces a busy channel, subsequent
flits have to wait at their current locations and are there-
fore spread over multiple switches, thus blocking the
intermediate links. This scheme avoids buffering the full
packet at one switch and keeps end-to-end latency low,
although it is more sensitive to deadlock and may result
in low link utilization.

Guaranteeing quality of service in switch operation is
another important design issue, which needs to be
addressed when time-constrained (hard or soft real time)
traffic is to be supported. Throughput guarantees or
latency bounds are examples of time-related guarantees.

Contention related delays are responsible for large
fluctuations of performance metrics, and a fully pre-
dictable system can be obtained only by means of con-
tention-free routing schemes. With circuit switching, a
connection is set up over which all subsequent data are
transported. Therefore, contention resolution takes place
at set-up at the granularity of connections, and time-
related guarantees during data transport can be given. In
time division circuit switching (see [23] for an example),
bandwidth is shared by time division multiplexing con-
nections over circuits.

In packet switching, contention is unavoidable since
packet arrival cannot be predicted. Therefore arbitra-
tion mechanisms and buffering resources must be
implemented at each switch, thus delaying data in an
unpredictable manner and making it difficult to provide

22 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2004

guarantees. Best effort NoC architectures can mainly
rely on network overdimensioning to bound fluctuations
of performance metrics.

Finally, the design of communication (switch-to-switch
and network interface-to-switch) links represents a criti-
cal issue with respect to the system performance. As
geometries shrink, gate delay improves much faster than
the delay in long wires. Therefore, the long wires increas-
ingly determine the maximum clock rate, and hence per-
formance, of the entire design. The problem becomes
particularly serious for domain-specific heterogeneous
SoCs, where the wire structure is highly irregular and may
include both short and extremely long switch-to-switch
links. Techniques have to be devised to decouple link
throughput from its length and to allow functionally cor-
rect operation of the switches in presence of mis-aligned
inputs due to the unequal length of the input links.

Next, implementation details about Xpipes network
building blocks are provided, illustrating the specific
design choices and how the above-mentioned issues have
been addressed.

XPipes Architecture Overview

Xpipes targets Multi-GHz heterogeneous packet-switched
NoCs, thanks to the design of high performance network
building blocks and to their instantiation time flexibility.
The Xpipes design process was therefore partitioned into
two relevant stages: (i) development of highly parameter-
izable network components, written in synthesizable Sys-
temC; (ii) definition of a NoC instance by specifying
parameters of the composable soft macros and an arbi-
trary network topology. A XpipesCompiler tool has been
developed for this purpose.

The high degree of parameterisation of Xpipes network
building blocks regards both global network-specific
parameters and block-specific parameters.
The former ones include flit size, degree of
redundancy of error control logic, address
space of the cores, maximum number of
hops between any two nodes, maximum
number of bits for end-to-end flow control,
etc. On the contrary, parameters specific
to the network interface are: type of inter-
face (master, slave or both), flit buffer size
at the output port, content of routing
tables for source-based routing, other
interface parameters to the cores such as
number of address/data lines, maximum
burst length, etc. Parameterisation of the
switches mainly regard the number of I/O
ports, the number of virtual channels for
each physical output link and the link
buffer size. Finally, the length of each indi-

vidual link can be specified in terms of number of
repeater stages, as will be discussed next.

Xpipes network interfaces use OCP as point-to-point
communication protocol with the cores, and take care of
protocol conversion to adapt to the network protocol.
Data packetization results in the packet partitioning pro-
cedure illustrated in Fig. 3. A flit type field allows to iden-
tify the head and the tail flit, and to distinguish between
header and payload flits.

The NoC backbone relies on a wormhole switching
technique and makes use of a static routing algorithm
called street sign routing. Routes are derived by the net-
work interface by accessing a look-up table based on the
destination address. Such information consists of direc-
tion bits read by each switch and indicating the output
port of the switch that flits belonging to a certain packet
have to be directed to. This routing algorithm allows a
lightweight switch implementation as no dynamic deci-
sions have to be taken at the switching nodes.

One of the main Xpipes design guidelines was the
support for communication reliability. It was achieved
by means of distributed error detection with link level
retransmission as error recovery technique. Although
a distributed approach to error detection causes a
higher area overhead at the network nodes compared
with an end-to-end solution, it is better able to contain
the effects of error propagation, for instance prevent-
ing packets with corrupted header from being directed
to the wrong path. In order to counterbalance this
overhead, error detection with retransmission of
incorrectly received data was preferred to error cor-
rection, since this latter requires complex energy-inef-
ficient decoders. If average bit error rate is not high,
performance penalty caused by retransmissions as
perceived from the application can be neglected and

23SECOND QUARTER 2004 IEEE CIRCUITS AND SYSTEMS MAGAZINE

Packet

Header (Path) Header (Path) Header Payload Payload

Flit 1 Flit 2 Flit 3 Flit 4 Flit 10

Head Flit Tail Flit

Flit Type 00 Flit Type 01 Flit Type 01 Flit Type 01 Flit Type 11

Figure 3. Packet partitioning into flits.

error detecting schemes have been showed to mini-
mize average energy-per-bit [15]: as a consequence,
they were the reference choice to provide communi-
cation reliability in Xpipes.

The retransmission policy implemented in Xpipes is
GO-BACK-N. Flits are transmitted continuously and the
transmitter does not wait for an ACK after sending a flit.
Such an ACK is received after a round-trip delay. When a
NACK is received, the transmitter backs up to the flit that
is negatively acknowledged and re-sends it in addition to
the N succeeding flits that were transmitted during the
round-trip delay. At the receiver, the N-1 received flits fol-
lowing the corrupted one are discarded regardless of
whether they were received error-free or not. GO-BACK-
N trades-off inefficiency in bus usage (retransmission of
many error-free flits) with a moderate implementation
cost, and was preferred to a selective-repeat scheme,
wherein only those flits that are negatively acknowl-
edged are retransmitted but more buffering resources
are required at the destination switch.

In Xpipes switches, different error detecting decoders
can be instantiated at design time, as a function of their
latency and redundancy (additional parity lines) over-
head and of their error detection capability, that has to
be compared with the estimated (technology-depend-
ent) bit error rate and the required mean time between
failures (MTBF). The considered error detecting codes

were several versions of the Hamming code and of the
Cyclic Redundancy Check (CRC) Code, each one charac-
terized by a different minimum distance and hence error
detection capability. The ultimate objective was to
select, for each supply voltage and flit size, coding
schemes providing a MTBF of at least 1 year, and to suc-
cessively select among them a scheme that minimizes
decoding latency and/or redundancy.

Finally, it is worth noting that the support for high per-
formance communication was provided in Xpipes by
means of proper design techniques for the basic network
components (such as link pipelining, deeply pipelined
switches, latency insensitive component design). Imple-
mentation details about the network building blocks are
provided below.

Network Link
A solution to overcome the interconnect-delay problem
consists of pipelining interconnects [34, 35]. Wires can
be partitioned into segments (or relay stations, which
have a function similar to the one of latches in a
pipelined data path) whose length satisfies pre-defined
timing requirements (e.g., the desired clock speed of the
design). In this way, link delay is changed into latency,
but the data introduction rate is not bound by the link
delay any more. Now the latency of a channel connect-
ing two modules may end up being more than one clock

cycle. This requires the system
to be composed of modules
whose behavior does not depend
on the latency of input communi-
cation channels [34].

Xpipes interconnect makes
use of pipelined links and of
latency-insensitive operation of
its building blocks. Switch-to-
switch links are subdivided into
basic segments whose length
can be tailored to the desired
clock frequency that needs to be
achieved in the design. In this
way, the system operating fre-
quency is not bound by the
delay of long links. According to
the link length, a certain number
of clock cycles is needed by a flit
to cross the interconnect. If net-
work switches are designed in
such a way that their functional
correctness depends on the flit
arriving order and not on their
timing, the input links of the
switches can be different and of

24 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2004

Flits at Source Switch Destination SwitchLink

Retransmission

Transmission

Flit ACK

Flit NACK

ACK/NACK
Propagation

Goback N

D C
C B A

A

A

D

D

D C B

C

C

B

B

B A

D C B A A

A

ABD C B A

D C B A

D C B A

D C B

ACK=1

ACK=1 ACK=0

ACK=0

Figure 4. Pipelined link model and latency-insensitive link-level error control.

any length. These design choices are at the basis of
latency insensitive operation of the NoC and allow the
construction of an arbitrary network topology and
hence support for heterogeneous architectures.

Fig. 4 illustrates the link model, which is equivalent to
a pipelined shift register. Pipelining has been used both
for data and control lines. The figure also illustrates how
pipelined links affect the operation of latency-insensi-
tive link-level error control: the retransmission of a cor-
rupted flit between two successive switches is
represented. Multiple outstanding flits propagate across
the link during the same clock cycle. When flits are cor-
rectly received at the destination switch, an ACK is
propagated back to the source, and after N clock cycles
(where N is the link length expressed in terms of number
of repeater stages) the flit will be discarded from the
buffer of the source switch. On the contrary, a corrupt-
ed flit is NACKed and will be retransmitted in due time.

Switch
A schematic representation of a switch for the Xpipes
NoC is illustrated in Fig. 5. The example configuration

exhibits 4 inputs, 4 outputs and 2 virtual channels mul-
tiplexed across the same physical output link. Switch
operation is latency insensitive, in that correct opera-
tion is guaranteed for arbitrary link pipeline depth. For

25SECOND QUARTER 2004 IEEE CIRCUITS AND SYSTEMS MAGAZINE

In[1] Out[1]

In[2]

Out[2]

2N+M
FlitsOut[3]In[3]

Out[0]

In[0]

4×4 Switch

Figure 5. Example of a 4×4 switch configuration with 2 vir-
tual channels.

CRC_Decoder[3]
crc_ACK[3]

crc_ACK[2]

crc_ACK[1]

crc_ACK[0]

CRC_Decoder[2]

CRC_Decoder[1]

CRC_Decoder[0]

Error
Detection

Logic

In[0]

In[1]

In[2]

In[3]

Out[0]

Which In
ACK Valid

ACK
ACK/

NACK

ACK/

NACK

ACK/

NACK

Matching
Input
and

Output
Ports

Arbiter Mux Stage Virtual
Channel
Arbiter

Virtual
Channel
Registers

Forward
Flow

Control

Output
Link

Arbiter

Figure 6. Architecture of the output module for each Xpipes switch output port.

latency insensitive operation, the switch has virtual
channel registers to store 2N + M flits, where N is the
link length (expressed as number of basic repeater
stages) and M is a switch architecture
related contribution (12 cycles in this
design). The reason is that each transmit-
ted flit has to be acknowledged before
being discarded from the buffer. Before an
ACK is received, the flit has to propagate
across the link (N cycles), an ACK/NACK
decision has to be taken at the destina-
tion switch (a portion of M cycles), the
ACK/NACK signal has to be propagated
back (N cycles) and recognized by the
source switch (remaining portion of M
cycles). During this time, other 2N + M
flits are transmitted but not yet ACKed.

Output buffering was chosen for
Xpipes switches, and the resulting archi-
tecture consists of multiple replications
of the same output module reported in
Fig. 6, one for each switch output port.
All switch input ports are connected to
the each module’s inputs. Flow control
signals generated by each module (such

as ACK and NACK for incoming flits) are collected by a
centralized switch unit, which directs them back to the
proper source switch.

26 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2004

Initiator
Core

OCP
Request

Datastream

OCP
Master

OCP
Response

Start_
Receive_
Response

Header
Builder

Receive
Response

Enable_New_Read

Lutword
NumSB

Req_Tx

Busy_Builder

Flit
Builder

Out_Flit

Req_Tx

Busy_Buf

Output
Output
Buffer to

NoC

Request Path

Response Path

Synchro

Datastream

Req_Tx

Busy_Receive

Network Interface Slave

Input

from
NoC

Figure 7. Architecture of Xpipes network interface slave.

Lutword

Flit

Dir Dir Dir Dir Dir

NumSB=5
FTYPE

Routing Path

Header or Payload

Header or Payload

Reg_Datastream

Datastream

Regpark

Regflit

Figure 8. Mechanism for building header flits.

27
SECOND QUARTER 2004 IEEE CIRCUITS AND SYSTEMS MAGAZINE

As can be observed from Fig. 6, each output module is
deeply pipelined (7 pipeline stages) so to maximize the
operating clock frequency of the switch. The CRC
decoders for error detection work in parallel with switch
operation, thereby hiding their latency.

The first pipeline stage checks the header of incom-
ing packets on the different input ports to determine
whether those packets have to be routed through the
output port under consideration. Only matching pack-
ets are forwarded to the second stage, which resolves
contention based on a round-robin policy. Arbitration is
carried out when the tail flit of the preceding packet is
received, so that all other flits of a packet can be prop-
agated without contention related delay at this stage. A
NACK for flits of non-selected packets is
generated. The third stage is just a multi-
plexer, which selects the prioritised input
port. The following arbitration stage
keeps the status of virtual channel regis-
ters and determines whether flits can be
stored into the registers or not. A header
flit is sent to the register with the great-
est number of free locations, and fol-
lowed by successive flits of the same
packet. The fifth stage is the actual
buffering stage, and the ACK/NACK
response at this stage indicates whether
a flit has been successfully stored or not.
The following stage takes care of forward
flow control: a flit is transmitted to the
next switch only when adequate free reg-
ister locations are available at the output
port of interest of the destination switch.
Finally, a last arbitration stage multiplex-
es the virtual channels on the physical
output link on a flit-by-flit basis, thereby improving net-
work throughput.

Network Interface
The Xpipes network interface provides a standardized
OCP interface to networked cores. The NI for cores
that initiate communication (initiators) needs to turn
OCP-compliant transactions into packets to be trans-
mitted across the network. It represents the slave side
of an OCP end-to-end connection (the master side
being the initiator core), and it is therefore referred to
as network interface slave (NIS). Its architecture is
showed in Fig. 7.

The NIS has to build the packet header, which has to
be spread over a variable number of flits depending on
the length of the path to the destination node. The look-
up table containing static routing information is
accessed by the HEADER_BUILDER block and the desti-

nation address is used as table entry. In this way, two
routing fields are extracted: numSB (the number of hops
to destination) and lutword (the actual direction bits
read from the look-up table). Together with the core
transaction related information (datastream), they are
forwarded to the FLIT_BUILDER block, provided the
enable signal busy_builder is not asserted.

Based on the input data, the module FLIT_BUILDER
has the task of building the flits to be transmitted via
the output buffer OUTPUT_BUFFER, according to the
mechanism illustrated in Fig. 8. Let us assume that a
packet requires numSB = 5 hops to get to the destina-
tion, and that the direction to be taken at each switch is
expressed by DIR. The module FLIT_BUILDER builds the

Application

Application
Specific

NoC
Definition

Xpipes Library

NI
Files

Switch
Files

Link
Files

Instantiation
Software

Routing
Tables

XpipesCompiler

SystemC
Files of
Whole
Design

Figure 9. NoC synthesis flow with XpipesCompiler.

VU AU
MED
CPU

RAST

SDRAM SRAM
1

SRAM
2

IDCT,
ETC.

ADSP
UP

SAMP BAB RISC

190
0.5

60
40

40

600

250

500
173

67032
9100.5

Figure 10. Core graph representation of an MPEG4 design
with annotated average communication requirements.

first flit by concatenating the flit type field with path
information. If there is some space left in the flit, it is
filled with header information derived from the input
datastream. The unused part of the datastream is stored
in a regpark register, so that a new datastream can be
read from the HEADER_BUILDER block. The following
header and/or payload flits will be formed by combin-
ing data stored in regpark and reg_datastream. No par-
tially filled flits are transmitted to make transmission
more efficient. Finally, the module OUTPUT_BUFFER
stores flits to be sent across the network, and allows
the NIS to keep preparing successive flits also when the
network is congested. Size of this buffer is a design
parameter.

The response phase is carried out by means of two
modules. SYNCHRO receives incoming flits and reads
out only useful information (e.g., it discards routing
fields). At the same time, it contains buffering resources
to synchronize the network’s requests to transmit the
remaining flits of a packet with the core consuming
rate. The RECEIVE_RESPONSE module translates useful
header and payload information into OCP-compliant
response fields.

When a read transaction is initiated by the initiator
core, the HEADER_BUILDER block asserts a start_
receive_response signal that triggers the waiting phase
of the RECEIVE_RESPONSE module for the requested
data. As a consequence, the NIS supports only one out-
standing read operation to keep interface complexity
low. Although no read after read transactions can be ini-
tiated unless the previous one has been completed, an
indefinite number of write transactions can be carried
out after an outstanding read or write has been initiated.

The architecture of a network interface master is simi-
lar to the one just described, and is not reported here for
lack of space.

Domain-Specific Network-on-Chip Synthesis Flow

The individual components of SoCs are inherently het-
erogeneous with widely varying functionality and com-
munication requirements. The communication infras-
tructure should optimally match communication pat-
terns among these components. Looking for the most effi-
cient solution can be a (possibly automated) step of a
more general design methodology of custom domain-spe-
cific NoCs, and Xpipes could be used within this frame-
work as a library of components for the synthesis of the
selected NoC configuration.

Therefore, for a Xpipes-based design methodology,
a tool is needed to automatically instantiate network
building blocks (switches, network interfaces and
links) from the library of composable soft macros
described in SystemC. XpipesCompiler [32] is the tool

28 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2004

vu

vu

au

au

vuau

s1

s1

s2 s2

s2

s3

s3

s3

s3

s3

s3

s2s2s2

s1

s1

s2

s3

s3

s8

s2

s2

s1
Raster
izer

Raster
izer

Raster
izer

SRAM
Media
CPU

RISC
CPU

RISC
CPU

RISC
CPU

Media
CPU

Media
CPU

DDR
SDRAM

DDR
SDRAM

DDR
SDRAM

BAB
Calc

BAB
Calc

BAB
Calc

Up
Samp

Up
Samp

Up
Samp

Audio
DSP

Audio
DSP

Audio
DSP

s2 s1

iDCT,
etc

iDCT,
etc

iDCT,
etc

SRAM

SRAM

SRAM

SRAM

SRAM

s1—3×3 s2—4×4 s3—5×5

s3—3×3 s8—8×8

s1—5×5 s2—3×3 s3—4×4

(a)

(b)

(c)

Figure 11. NoC configurations for the MPEG4 decoder. (a)
MESH NoC. (b) Application-specific NoC No.1. (c) Application-
specific NoC No.2.

designed to automatically instantiate a Xpipes-based
application-specific NoC for heterogeneous on-chip
multi-processors.

The complete XpipesCompiler-assisted NoC design
flow is depicted in Fig. 9. From the specification of an
application, the designer (or a high-level analysis and
exploration tool) creates a high-level view of the SoC
floorplan, including nodes (with their network inter-
faces), links and switches. Based on the clock speed
target and link routing, the number of pipeline stages
for each link is also determined. The information on
the network architecture is then specified in an input
file for the XpipesCompiler. Routing tables for the net-
work interfaces are also specified. The tool takes the
Xpipes library of soft network components as an addi-
tional input. The output is a SystemC hierarchical
description, which includes all switches, links, net-
work nodes and interfaces and specifies their connec-
tivity. Then the final description can be compiled and
simulated at the cycle-accurate and signal-accurate
level. At this point, the description can be fed to back-
end RTL synthesis tools for silicon implementation.

In a nutshell, the XpipesCompiler generates a set of net-
work component instances that are custom-tailored to
the specification contained in its input network descrip-
tion file. This tool allows a very instructive comparison of
the effects (in terms of area, power and performance) of
mapping applications on customized domain-specific
NoCs and regular mesh NoCs.

As an example, let us focus on the MPEG4 decoder
already introduced in this paper. Its core graph rep-
resentation together with its average communication
requirements are presented in Fig. 10. The edges are
annotated with the average bandwidth requirements
of the cores in MB/s. Customized application-specific
NoCs that closely match the application’s communi-
cation characteristics have been manually developed
and compared with a regular mesh topology. The dif-
ferent NoC configurations are presented in Fig. 11. In
the MPEG4 design considered, many of the cores
communicate with each other through the shared
SDRAM. So a large switch is used to connect the
SDRAM (Fig. 11(b)), while smaller switches are
instantiated for the other cores. An alternative cus-
tom NoC is also considered
(Fig. 11(c)): it is an opti-
mised mesh network, with
superfluous switches and
switch I/Os removed. We
refer to this solution as a
“distributed” custom NoC,
as opposed to the “central-
ized” one.

Area (in 0.1 um technology) and power estimates
for different NoC configurations are reported in Table
I. As it can be observed, area and power savings are
achieved with the custom configurations. However,
the distributed solution turns out to be more effec-
tive, mainly because the centralized approach makes
use of a very large switch. In fact, since power dissi-
pation on a switch increases non-linearly with
increase in switch size, there is more power dissipa-
tion on the switches of the custom NoC1 (that has an
8×8 switch) than in the mesh NoC. However, most of
the traffic traverses short links in this custom NoC,
thereby providing marginal power savings for the
whole design. Power and area savings achieved by the
custom NoC2 are more significant thanks to the use of
smaller switches.

Fig. 12 reports the variation of average packet laten-
cy (for 64 B packets, 32 bit flits) with link bandwidth.
Custom NoCs, as synthesized by XpipesCompiler, have
lower packet latencies, as the average number of
switches and link traversals is lower. At the minimum
plotted bandwidth value, almost 10% latency saving is
achieved. Moreover, the latency increases more rapid-

29SECOND QUARTER 2004 IEEE CIRCUITS AND SYSTEMS MAGAZINE

A
vg

 P
ac

k
La

t (
in

 C
y)

50

48

46

44

42

40

38

36

34

32

Mesh
Cust1
Cust2

2.22.43.03.2 2.62.8

BW (in GB/s)

Figure 12. Average packet latency as a function of the link
bandwidth.

Table 1.
Area and power estimates for the MPEG4-related NoC configurations.

NoC Configuration Area (mm2) Ratio Mesh/Cust Power (Mw) Ratio Mesh/Cust

Mesh 1.31 114.36
Custom 1 0.86 1.52 110.66 1.03
Custom 2 0.71 1.85 93.66 1.22

ly with the mesh NoC as the link bandwidth decreases.
Also, custom NoCs have better link utilization: around
1.5 times the link utilization of a mesh topology.

Overall, it should be observed that area, power and
performance optimisations by means of custom NoCs
turn out to be more difficult for MPEG4 than for other
applications such as Video Object Plane Decoders
(VOPD) and Multi-Window Displayers [32]. In fact, the
MPEG4 core graph shows that almost all cores commu-
nicate with many other cores (thus requiring many
switches) and most of the traffic traverses the larger
switches connected to the memories (thus generating
high power dissipation). On the contrary, a custom NoC
can be generated for VOPD by observing that a half of
the cores communicate with more than a single core.
This motivates a configuration of the custom NoC, hav-
ing less than half the number of switches than the mesh
NoC. In this way, the custom NoC consumes about 5.7
times less area and 2.7 times less power than the corre-
sponding mesh NoC.

These examples show that customized domain-specif-
ic NoCs exhibit large potentials for power minimization
of gigascale on-chip multi-processors, and push the
development of design exploration frameworks helping
designers to assess the effectiveness of alternative cus-
tom NoC architectures. Xpipes and its synthesizer have
been designed as key elements of such a NoC exploration
and synthesis flow.

Conclusions

Current application and technology trends motivate a
paradigm shift in on-chip interconnect architectures
from bus-based solutions to packet-switched Net-
works-on-Chip. This paper analyses the key drivers
for the development of packet-switched on-chip
micro-networks and introduces a NoC architecture
targeting high performance and reliable communica-
tion for domain-specific SoCs. Xpipes is a library of
soft macros (switches, network interfaces and links)
that are design-time composable and tunable, well
suited for irregular topologies. An example NoC syn-
thesis flow has also been illustrated, wherein a com-
piler tool (XpipesCompiler) is used to automatically
instantiate customized network building blocks from
the Xpipes library.

Xpipes and related NoC design efforts are mostly
focused on revisiting the architectural foundations of
the on-chip communication. This is, however, only a
facet of a much more complex challenge, namely, the
development of a comprehensive architectural, soft-
ware and operating system infrastructure required to
efficiently support the next generation large-scale
multi-processor Systems-on-Chip.

Bibliography
[1] A. Allan, D. Edenfeld, W.H. Joyner, Jr, A.B. Kahng, M. Rodgers, and Y.

Zorian, “2001 Technology Roadmap for Semiconductors,” IEEE Comput-

er, pp. 42–53, Jan. 2002 .

[2] F. Boekhorst, “Ambient intelligence, the next paradigm for consumer

electronics: How will it affect silicon?,” ISSCC 2002, vol. 1, pp. 28–31,

Feb. 2002.

[3] L. Benini and G. De Micheli, “Networks on chips: A new SoC para-

digm,” IEEE Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[4] P. Wielage and K. Goossens, “Networks on silicon: Blessing or night-

mare?,” in Proc. Of the Euromicro Symp. on Digital System Design DSD02,

Sept. 2002, pp.196–200.

[5] W.J. Dally and B. Towles, “Route packets, not wires: On-chip inter-

connection networks,” Design and Automation Conf. DAC01, Jun. 2001,

pp. 684–689.

[6] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet

switched interconnections,” Design, Automation and Testing in Europe

DATE00, Mar. 2000, pp. 250–256.

[7] S. Kumar, A. Jantsch, J.P. Soininen, M. Forsell, M. Millberg, J. Oeberg,

K. Tiensyrja, and A. Hemani, “A network on chip architecture and design

methodology,” IEEE Symp. on VLSI ISVLSI02, Apr. 2002, pp. 105–112.

[8] S.J. Lee et al., “An 800 MHz Star-Connected On-Chip Network for

Application to Systems on a Chip,” ISSCC03, Feb. 2003.

[9] S. Ishiwata et al., “A single chip MPEG-2 codec based on customiz-

able media embedded processor,” IEEE JSSC, vol. 38, no. 3, pp. 530–540,

Mar. 2003.

[10] H. Yamauchi et al., “A 0.8 W HDTV video processor with simultane-

ous decoding of two MPEG2 MP@HL streams and capable of 30 frames/s

reverse playback,” ISSCC02, vol. 1, Feb. 2002, pp. 473–474.

[11] E. B. Van der Tol and E.G.T. Jaspers, “Mapping of MPEG4 decoding

on a flexible architecture platform,” SPIE 2002, Jan. 2002, pp. 1–13.

[12] H. Zhang et al., “A 1 V heterogeneous reconfigurable DSP IC for wire-

less baseband digital signal processing,” IEEE Journal of SSC, vol. 35,

no.11, pp. 1697–1704, Nov. 2000.

[13] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini,

“Xpipes: A latency insensitive parameterized network-on-chip architec-

ture for multi-processor SoCs,” ICCD03, Oct. 2003, pp. 536–539.

[14] ITRS 2001. Available: http://public.itrs.net/Files/2001ITRS/ Home.htm

[15] D. Bertozzi, L. Benini, G. De Micheli, “Energy-reliability trade-off for

NoCs,” in Networks on Chip, A. Jantsch and Hannu Tenhunen, eds., Dor-

drecht: Kluwer, 2003, pp. 107–129.

[16] H. Zhang, V. George, and J.M. Rabaey, “Low-swing on-chip signaling

techniques: Effectiveness and robustness,” IEEE Trans. on VLSI Systems,

vol. 8, no. 3, pp. 264–272, Jun. 2000.

[17] J. Xu, and W. Wolf, “Wave pipelining for application-specific net-

works-on-chips,” CASES02, Oct. 2002, pp. 198–201.

[18] K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko, A.

Radulescu, E. Rijpkema, E. Waterlander, and P. Wielage, “Guaranteeing

the quality of services in networks on chip,” in Networks on Chip, A.

Jantsch and Hannu Tenhunen, eds. Dordrecht: Kluwer, 2003, pp. 61–82.

[19] ITRS 1999. Available: http://public.itrs.net/files/1999_SIA_Roadmap/

[20] A. Jantsch and H. Tenhunen, “Will networks on chip close the pro-

ductivity gap?,” in Networks on Chip, A. Jantsch and Hannu Tenhunen,

eds. Dordrecht: Kluwer, 2003, pp. 3–18.

[21] VSI Alliance. Virtual Component Interface Standard, 2000.

[22] OCP International Partnership. Open Core Protocol Specification, 2001.

[23] D. Wingard, “MicroNetwork-based integration for SoCs,” Design

Automation Conf. DAC01, Jun. 2001, pp. 673–677.

[24] W.J. Dally and S. Lacy, “VLSI architecture: Past, present and future,”

30 IEEE CIRCUITS AND SYSTEMS MAGAZINE SECOND QUARTER 2004

Conf. Adv. Research in VLSI, 1999, pp. 232–241.

[25] D. Culler, J.P. Singh, and A. Gupta, Parallel Computer Architecture, a

Hardware/Software Approach, San Moteo, MA: Morgan Kaufmann, 1999.

[26] K. Compton and S. Hauck, “Reconfigurable computing: A survery of

system and software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171–

210, Jun. 2002.

[27] R. Tessier and W. Burleson, “Reconfigurable computing and digital

signal processing : A survey,” Journal of VLSI Signal Processing, vol. 28,

no. 3, pp. 7–27, May–Jun. 2001.

[28] Dale Liu et al., “SoCBUS : The solution of high communication band-

width on chip and short TTM,” invited paper in Real Time and Embedded

Computing Conf., Sept. 2002.

[29] J. Walrand and P. Varaja, High Performance Communication Networks,

San Francisco: Morgan Kaufmann, 2000.

[30] E. Rijpkema, K. Goossens, A. Radulescu, J. van Meerbergen,

P. Wielage, and E. Waterlander, “Trade offs in the design of a router with

both guaranteed and best-effort services for networks on chip,” Design

Automation and Test in Europe DATE03, Mar. 2003, pp. 350–355.

[31] I. Saastamoinen, D. Siguenza-Tortosa, and J. Nurmi, “Interconnect IP

node for future systems-on-chip designs,” IEEE Work on Electronic

Design, Test and Applications, Jan. 2002, pp. 116–120.

[32] “XpipesCompiler: A Tool for Instantiating Application Specific Net-

works-on-Chip,” submitted to DATE 2004.

[33] J. Duato, S. Yalamanchili, and L. Ni, Interconnection networks: An

Engineering Approach, IEEE Computer Society Press, 1997.

[34] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli, “Theo-

ry of latency-insensitive design,” IEEE Trans. On CAD of ICs and Systems,

vol. 20, no. 9, pp. 1059–1076, Sept. 2001.

[35] L. Scheffer, “Methodologies and tools for pipelined on-chip inter-

connects,” Int. Conf. On Computer Design, 2002, pp. 152–157.

Luca Benini received the B.S. degree
(summa cum laude) in electrical engi-
neering from the University of Bologna,
Italy, in 1991, and the M.S. and Ph.D.
degrees in electrical engineering from
Stanford University in 1994 and 1997,
respectively. He is an associate professor

in the Department of Electronics and Computer Science
in the University of Bologna. He also holds visiting
researcher positions at Stanford University and the
Hewlett-Packard Laboratories, Palo Alto, CA.

Dr. Benini’s research interests are in all aspects of
computer-aided design of digital circuits, with special
emphasis on low-power applications, and in the
design of portable systems. On these topics, he has
published more than 200 papers in international con-
ference proceedings and journals. He is a co-author of
two books: Dynamic Power Management, Design
Techniques and CAD tools, Kluwer 1998, and Memory
Design Techniques for Low Energy Embedded Sys-
tems, Kluwer 2002.

Dr. Benini is a member of the technical program com-
mittee for several technical conferences, including the
Design Automation Conference, the International Sympo-

sium on Low Power Design and the International Sympo-
sium on Hardware-Software Codesign; he is a vice pro-
gramme chair for the 2004 Design, Automation and Test
in Europe.

Davide Bertozzi received the PhD
degree in Electrical Engineering and
Computer Science from University of
Bologna (Italy) in 2003.

He currently holds a Post-Doc posi-
tion at the same University. He has
been a visiting researcher at Stanford

University, NEC Research America and Philips
Research Labs. His research interests include Multi-
Processor System-on-Chip Architectures, with partic-
ular emphasis on the communication infrastructure
and on its high-performance and energy-efficient
implementation.

31SECOND QUARTER 2004 IEEE CIRCUITS AND SYSTEMS MAGAZINE

Fourteenth International Workshop on

September 15–17, 2004

The PATMOS objective is to provide a forum to discuss and investigate the
emerging problems in methodologies and tools for the design of next generations
of integrated circuits and systems. The technical program will focus on speed and
low-power aspects, with particular emphasis on modeling, characterization, de-
sign and architectures.

Contributions are invited for regular presentations and discussion sessions. Elec-
tronic submission is required and should follow the style for the final publication.
Check the workshop web-page (http://www.vlsi.ee.upatras.gr/patmos04) for com-
plete author and submission instructions. Submitted papers will be reviewed for-
mally and anonymously by several reviewers.

Proposals for panel sessions and special sessions are encouraged and must be
received not later than March 14, 2004.

* Deadline for paper submission:
* Notification of acceptance: May 16, 2004
* Deadline for final paper submission: June 13, 2004

General Co-Chairs
Vassilis Paliouras
paliuras@ee.upatras.gr

Odysseas Koufopavlou
odysseas@ee.upatras.gr
University of Patras
Electrical and Computer
Engineering Dept.,
26500 Patras, Greece
Phone: +30 2610 997 319
Fax: +30 2610 994 798

CALL FOR PAPERS

PATMOS 2004

Power and Timing Modeling, Optimization and Simulation

http://www.vlsi.ee.upatras.gr/patmos04

March 14, 2004
Author’s Schedule

Program Chair
Prof. Enrico Macii
enrico.macii@polito.it
Politecnico di Torino
Dip. di Automatica e Informatica
Corso Duca degli Abruzzi 24
10129 Torino, Italy
Phone: +39-011-564 7074
Fax: +39-011-564 7099

Isle of Santorini, Greece

