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ABSTRACT
Contemporary wireless multi-hop networks operate much
below their capacity due to the poor coordination among
transmitting nodes. In this paper we present XPRESS, a
cross-layer backpressure architecture designed to reach the
full capacity of wireless multi-hop networks. Instead of a
collection of poorly coordinated wireless routers, XPRESS
turns a mesh network into a wireless switch. Transmissions
over the network are scheduled using a throughput-optimal
backpressure algorithm. Realizing this theoretical concept
entails several challenges, which we identify and address with
a cross-layer design and implementation on top of our wire-
less hardware platform. In contrast to previous work, we im-
plement and evaluate backpressure scheduling over a TDMA
MAC protocol, as it was originally proposed in theory. Our
experiments in an indoor testbed show that XPRESS can
yield up to 128% throughput gains over 802.11.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms
Algorithms, Design, Experimentation

Keywords
Backpressure scheduling and routing

1. INTRODUCTION
Existing networks are designed in layers, where protocols

operate independently at each layer of the network stack.
This approach provides flexibility with a modular design
and standardization, but it may result in severe performance
degradation when these protocols do not cooperate well.
This is usually the case of wireless multi-hop networks, where
noise and interference at lower layers affect the routing and
congestion control performed at upper layers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’11, September 19–23, 2011, Las Vegas, Nevada, USA.
Copyright 2011 ACM 978-1-4503-0492-4/11/09 ...$10.00.

A common approach to address these performance issues
is then to modify a single layer of the protocol stack, while
keeping other layers intact. Cross-layer architectures offer
a radical alternative by advocating cooperation among the
multiple layers of the protocol stack. At the core of these
architectures is the backpressure scheduling algorithm [24],
which, in theory, achieves the network capacity.

Translating this theoretical concept into a practical sys-
tem, however, entails several challenges, mainly due to its
idealized assumptions. In essence, backpressure assumes a
globally synchronized time-slotted MAC protocol as well
as a central controller that computes and disseminates a
schedule (i.e., a set of links allowed to transmit) for each
time slot. Moreover, the schedule computation requires the
global knowledge of per-flow queue backlogs and network
state (i.e., link quality and link interference pattern), which
therefore must be measured at the wireless nodes and pro-
vided to controller in a timely manner. Recently, practical
backpressure systems that relax some of these assumptions
and approximate the backpressure algorithm on top of the
802.11 MAC protocol have been proposed [2, 20, 27]. Even
though these approaches have shown performance benefits,
the step towards a practical system implementing optimal
backpressure scheduling has not yet been made.

In this paper we present XPRESS, a throughput-optimal
backpressure architecture for wireless multi-hop networks.
In XPRESS, a mesh network is transformed into a wireless
switch, where packet routing and scheduling decisions are
made by a backpressure scheduler. XPRESS is composed of
a central controller, which performs backpressure scheduling
based on the measured wireless network state, and also of
the wireless nodes, which periodically provide the network
measurements and execute the computed schedule using a
cross-layer protocol stack. The implementation of XPRESS
on our 802.11 platform resulted in novel techniques that
overcome the above-mentioned backpressure challenges and
have a wider applicability to the design of centralized multi-
hop wireless systems. Our contributions are as follows.

First, the XPRESS cross-layer stack gracefully integrates
the transport, network, and MAC layers. In order to achieve
synergy among these layers on our programmable 802.11
platform, we had to implement (a) a congestion control
scheme to ensure the scheduler operates within the capacity
region; (b) a coordination mechanism between network-layer
flow queues and MAC-layer link queues, which enables per-
link queue implementation on memory-constrained wireless
interfaces; and (c) a multi-hop TDMA MAC protocol that
not only ensures global synchronization among nodes, but



also enables coordinated transmissions within slot bound-
aries according to the exact backpressure schedule.
Second, we find that a TDMA MAC on top of 802.11

PHY results in binary interference patterns. This relaxes
the channel state estimation requirement from exact values
to binary state (i.e., delivery ratios are close to 0% or 100%),
which allows us to efficiently find the link transmission sets
and accurately estimate the queue backlogs of the network.
Complementary techniques, such as multi-slot schedule com-
putations and speculative scheduling, reduce the protocol
overhead further and provide the scheduler at the controller
with a longer computation time budget at the expense of
outdated, but still accurate, network state.
Third, we propose an interference estimation mechanism

with only O(N) measurement complexity that allows the
backpressure scheduler to determine at the TDMA frame
time scale the links which can transmit without interference.
The mechanism uses received signal strength (RSS) as well
as an adaptive technique based on packet loss to cope with
the RSS measurement limitations of 802.11.
Fourth, our evaluations in an indoor testbed show that

XPRESS provides close to perfect fairness in small-scale
centralized WLANs and 63%–128% throughput gains over
802.11 in multi-hop mesh configurations. We also show
that XPRESS accurately emulates the optimal backpressure
schedule and delivers relatively low delays when operating
close to capacity.
Finally, we provide an analysis of the communication and

computation overhead of XPRESS and identify different sys-
tem design choices and limitations.

2. BACKPRESSURE SCHEDULING
The backpressure algorithm was introduced in [24] as a

scheduling policy that maximizes the throughput of wire-
less multi-hop networks. Assuming slotted time, the basic
idea of backpressure scheduling is to select the “best” set of
non-interfering links for transmission at each slot. We now
describe this idea in a 4-node network with two flows, black
and gray, from node A toD, depicted in Figure 1. Each node
maintains a separate queue for each flow. For each queue,
the number of backlogged packets is shown. Assume that we
have two link sets, {(A,B), (C,D)} and {(A,C), (B,D)},
shown as continuous and dashed lines, respectively. The
links in each set do not interfere and can transmit in the
same time slot.
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Figure 1: Backpressure scheduling in a network with
two flows, black and gray, from A to D. Links in sets
{(A,B), (C,D)} (continuous) and {(A,C), (B,D)}
(dashed) can be scheduled in the same slot.

The scheduler executes the following three steps at each
slot. First, for each link, it finds the flow with the maximum
differential queue backlog. For example, for link (A,B), the
gray flow has a difference of 0 packets and the black flow
has a difference of 3 packets. The maximum value is then
assigned as the weight of the link (see Figure 1). Second,
the scheduler selects the set of non-interfering links with the
maximum sum of weights for transmission. This requires
to compute the sum of link weights for each possible set.
In the example, set {(A,B), (C,D)} sums to 3 + 7 = 10
and set {(A,C), (B,D)} sums to 4 + 5 = 9. The scheduler
then selects the set with the maximum sum of weights, i.e.,
{(A,B), (C,D)}, to transmit at this slot. Finally, packets
from the selected flows are transmitted on the selected links,
i.e., black flow on link (A,B) and gray flow on link (C,D).
The same computation is then performed at every slot.

2.1 Backpressure Algorithm
More formally, the backpressure scheduling algorithm con-

sists of the following steps executed for each time slot.

Flow scheduling and routing: For each link (i, j), select
the flow f∗

ij with the maximum queue differential backlog

f∗
ij = argmax

f∈F
(qfi − qfj ), (1)

where qfi and qfj are the queue backlogs for flow f at nodes
i and j, respectively, and F is the set of flows. Equation (1)
implicitly performs routing by selecting the link (i, j) that
each flow may use during the slot. The weight wij of each
link is then selected as the weight of flow f∗

ij :

wij = max
f∈F

(qfi − qfj ). (2)

Link scheduling: Select the optimal link capacity vector
µ∗ = (μ∗

ij) that satisfies

µ∗ = argmax
µ∈Λ

∑

(i,j)

μijwij , (3)

where µ = (μij) are the link capacity vectors. The capacity
μij of each link (i, j) is the maximum rate in bits/s that
the link can transmit subject to the channel state and the
interference due to the other links in the vector. The set of
all feasible link capacity vectors define the capacity region Λ.

Transmission: During the time slot, a selected link (i, j)
transmits a packet from flow f∗

ij using rate μ∗
ij .

2.2 Congestion Control
The backpressure algorithm is throughput-optimal when

the flow rates are within the capacity region. This issue can
be addressed by combining the backpressure algorithm with
the network utility maximization (NUM) framework, orig-
inally proposed for wireline networks [8]. This framework
leads to a simple distributed congestion control algorithm
where the source s of each flow f adjusts the flow rate xf as

x∗
f = argmax

xf≥0
Uf (xf )− xfq

f
s = U ′−1

f (qfs ), (4)

where qfs is the queue backlog for flow f at the source s and
U ′−1

f (qfs ) is the inverse of the first derivative of the utility

function Uf (.) at the point qfs . In [4, 6, 11], it is proven that
the congestion control scheme of Equation (4) regulates the
flow rates to be within the capacity region and cooperates
with the backpressure scheduler to maximize throughput.



3. XPRESS DESIGN
This section presents the XPRESS system, a cross-layer

backpressure architecture for wireless multi-hop networks.
To our knowledge, XPRESS is the first system to imple-
ment backpressure scheduling over a time-slotted MAC, as
it was originally proposed in theory. We first provide a high-
level system overview and then we detail the data plane and
control plane designs. Finally, we describe the design of our
backpressure scheduler with speculative scheduling.

3.1 Overview
In XPRESS the wireless network is composed of several

mesh access points (MAPs), a few gateways (GWs), and a
mesh controller (MC), as depicted in Figure 2. We use the
term “node” to refer to a mesh node that can be either a
MAP or a GW. The MAPs provide wireless connectivity to
mobile clients and also operate as wireless routers, intercon-
necting with each other in a multi-hop fashion to forward
user traffic. Mobile clients communicate with MAPs over
a different channel, and thus are not required to run the
XPRESS protocol stack. The GWs are connected to both
the wireless network and the wired infrastructure, and pro-
vide a bridge between the two. The MC is responsible for
the coordination of the wireless transmissions in the net-
work, and it is analogous to a switching control module. In
our design, the MC is deployed in a dedicated node in the
wired infrastructure and connects to the gateways through
high-speed links. In an alternative design, the MC could be
implemented within one of the gateways, if necessary.

MAP

GW MC

Internet

Figure 2: The XPRESS architecture, composed of
mesh access points, gateways, and a mesh controller.

At a high level, the operation of XPRESS is described
as follows. XPRESS runs a slotted MAC protocol, where a
sequence of slots are organized into frames. For each slot,
XPRESS selects a set of non-interfering links to transmit
based on the flow queue lengths and the network state. Each
node thus maintains per-flow queues, and monitors adjacent
links to estimate interference and losses. The queue lengths
and network monitoring results are periodically transmitted
to the MC over an uplink control channel. Upon reception
of this information, the MC updates its local topology and
interference databases, and runs the backpressure scheduler
to calculate the throughput-optimal schedule for multiple
upcoming slots (i.e., a frame). The MC then disseminates
the resulting schedule to the nodes over a downlink control
channel. The nodes in turn apply the new schedule for trans-
missions in the next frame. This cycle repeats periodically.

3.2 Data Plane
The XPRESS data plane spans across the transport, net-

work, and MAC layers of the protocol stack, as depicted
in Figure 3. The transport and network layers implement
congestion control and flow scheduling, respectively. The
MAC layer implements link scheduling and a TDMA MAC
protocol. The organization of these modules into host OS
kernel and network interface card firmware depends on the
architecture used. For convenience, Figure 3 shows this or-
ganization on our testbed devices (cf. Section 6), where the
full MAC firmware resides on the wireless cards while the
upper layers reside in the host OS kernel. In the figure,
diamonds represent packet classifiers, while circles represent
packet schedulers. The data flow from left to right are outgo-
ing packets originating from the applications to the wireless
medium; the data flow in the opposite direction are incom-
ing packets that are routed or delivered to the applications.
Packets in the slotted wireless medium (far right), which
are neither incoming nor outgoing, represent transmissions
between two other nodes in the network.
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Figure 3: The data plane at XPRESS nodes. Dia-
monds are packet classifiers while circles are packet
schedulers. Rate control and flow scheduling occur
at the kernel; link scheduling occurs at the firmware.

XPRESS flows: In XPRESS, a flow is defined at the IP
layer by its source and destination mesh nodes. Our design is
general and can easily accommodate other flow definitions.
However, compared to the usual 5-tuple flow definition of
source and destination IP addresses, source and destination
transport ports, and transport protocol (i.e., TCP or UDP),
this design decision reduces processing and communication
overhead in XPRESS at the expense of flow granularity.

Congestion control and flow scheduling: Locally orig-
inated packets first pass through a flow classifier, represented
by the left-most diamond in Figure 3. Each flow has two
individual queues, namely, a pre-queue (PreQ) and a flow
queue (FlowQ). After classification, packets are inserted into
the PreQ and must pass through the congestion controller,
represented by the faucet handle in the figure. Congestion
control is performed according to Equation (4) and depends
only on the length of the local FlowQ. A longer FlowQ re-
duces the allowed input rate, while a shorter FlowQ allows
a higher rate. After congestion control, packets enter the
FlowQ and wait to be scheduled. The kernel-space packet
scheduler is synchronized with the slotted MAC with respect
to time and link queue state. Just shortly before a sched-
uled transmission slot starts, the kernel scheduler dequeues
a packet from the scheduled FlowQ and sends it down to the
firmware link queue for transmission.



Link scheduling: The MAC protocol keeps an individual
queue for each neighbor in order to enable link scheduling,
which allows a higher spatial reuse than node scheduling.
As packets dequeued from the FlowQ arrive at the link-level
packet classifier, they are classified according to the desti-
nation MAC address and inserted into the appropriate link
queues (LinkQ). The slotted MAC, realized by a TDMA
MAC protocol (cf. Section 4.3), maintains network-wide
node synchronization, and ensures that transmissions occur
strictly within slot boundaries. When a transmission slot
starts, the MAC protocol dequeues a packet from the sched-
uled LinkQ and transmits it over the air. If the transmission
fails and the retransmission limit is not reached, the packet
remains in the appropriate LinkQ until the next slot for the
same neighbor.

Packet reception and forwarding: Once a packet is
received, it is first filtered based on the destination MAC
address and then inserted into a single receive queue (RxQ)
at the firmware. The packet is delivered to the network layer
at the kernel, where it is routed and tagged for local delivery
or forwarding. In the latter case, the packet is inserted into
the respective FlowQ and waits to be scheduled, just like a
locally-generated packet after passing congestion control.

3.3 Control Plane
The different system components must exchange control

information to coordinate the network-wide transmissions.
Figure 4 depicts the XPRESS control plane with its different
components at the mesh controller (MC) and a mesh access
point (MAP). The uplink control channel is represented by
the arrows labeled from 1 to 3, while the downlink control
channel is represented by arrows 4 and 5. There is also an
internal control channel (dashed arrow) between the MAC
and the the kernel packet scheduler, to synchronize them
with respect to time and link queue (LinkQ) state.
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Figure 4: The XPRESS control plane and its system
components. Numbered arrows indicate messages
exchanged every frame, whereas the dashed arrow
represents an internal message exchanged every slot
between the firmware and the kernel of the MAP.

Uplink channel: Each node runs an actuator application
that communicates with the controller application at the
MC. A schedule computation cycle begins at the start of a
new frame. At this point, the TDMA MAC protocol notifies
the actuator about the new frame and piggybacks in the
same message the link statistics collected during the last

frame (e.g., received signal strength and delivery ratio). This
is the Step 1 in Figure 4. The actuator then collects the
FlowQ lengths (Step 2), combines all information and sends
it to the MC using the uplink channel (Step 3).

Mesh controller (MC): The zoom of the MC in Fig-
ure 4 shows the different steps taken for the calculation of a
TDMA frame schedule composed of N slots. First, the link
statistics are used to estimate the network state, namely, in-
terference relations and link loss rates. We explain this step
in Section 5. The FlowQ lengths are also collected and fed
into a backpressure scheduler. The scheduler then uses the
FlowQ lengths and network state to compute the network
schedule, using the backpressure algorithm (cf. Section 2)
and our speculative scheduling technique, which we detail
in Section 3.4.

Downlink channel: When the schedule computation is
finished, the MC disseminates the new schedule using the
downlink control channel (Step 4). The actuator receives
this packet and forwards the new schedule both to the OS
kernel as well as to the MAC layer (Step 5). The TDMA
MAC starts using this new schedule for data transmission
in the next frame. Packets will then be dequeued from the
FlowQs to the LinkQs in accordance with this new schedule.

3.4 Backpressure Scheduler
XPRESS introduces a speculative scheduling technique

to reduce scheduling overhead. This technique computes
a schedule for a group of slots on a TDMA frame basis and
performs the optimal backpressure computation for all slots
in the frame based on speculated network queue state.

Figure 5 depicts the speculative scheduling operation. At
the start of TDMA frame k, the MC computes a schedule
S(k + 1) for all data slots of the next frame k + 1. This ap-
proach provides the MC with a time budget of one TDMA
frame to perform optimal computations. However, it comes
at the expense of uncertainty due to changes in the queue
backlogs during frame k. These changes are due to incoming
packets at the source node of each flow, wireless losses, and
the schedule S(k) executed by the nodes during the slots of
frame k. The MC addresses this uncertainty using the sched-
ule S(k) it computed during the previous frame k−1, as well
as the FlowQ lengths Q(k) and source rate estimates R(k)
provided by the mesh nodes at the start of frame k. Addi-
tionally, as explained in Section 5, the scheduler uses only
links of high packet delivery ratios which reduces the uncer-
tainty of wireless losses.

Control
subframe

MC

MAP

subframe
Data

S(k+  )1
S(k)

Q(k),R(k)

DOWN UP

Computation of schedule

Execution of schedule S(k)

Frame k

Figure 5: Queue sampling and schedule computa-
tion in XPRESS. FlowQ lengths Q(k) and rates R(k)
provided at the start of frame k are used to estimate
Q(k + 1) and compute the schedule S(k + 1) for the
next frame k + 1.



First, the MC computes an estimate Q̂(k+1) of the queue
backlogs at the start of frame k+1. The MC updates Q(k)
by adding R(k) to the flow queue of each source node as
an estimate of the number of incoming packets at frame k.
Then, the MC locally emulates the transmissions of schedule
S(k) on this updated queue state, that is, for each slot,
the scheduled FlowQs of transmitters are decremented and
the FlowQs of receivers are incremented until Q̂(k + 1) is
obtained.
Given Q̂(k + 1), the MC computes the schedule of the

first slot of frame k + 1 with the backpressure algorithm
(Section 2). After this computation, the MC updates the
scheduled FlowQs, creating a new queue estimate for the
second slot (see Figure 4). The rate R(k) is also used to up-
date the queue estimate of each slot according to the input
rate at each source. With the new queue estimate, the back-
pressure algorithm computation is repeated. This process
continues for the following slots, until the schedule S(k+1)
of all data slots of frame k+1 are calculated. After the com-
putation, the MC transmits this schedule to the mesh nodes
for execution during frame k + 1. In Section 6.4 we experi-
mentally validate our speculative scheduling technique and
show that the estimated queue backlog Q̂ closely follows the
actual backlog Q.

4. XPRESS IMPLEMENTATION
The XPRESS design is general and can be realized on a

wide range of platforms. In this section, we describe the
main components of our cross-layer implementation in the
Linux OS and the firmware of our WiFi cards. We follow
a top-down approach and describe these components in the
order of the outgoing data path in Figure 3.

4.1 Congestion Control
Congestion control is performed only at the source node

of each flow by adjusting the flow input rate in accordance
with Equation (4). More precisely, the source rate xf of
each flow f is continuously adjusted to the optimal rate
x∗
f = U ′−1

f (qfs ) for the flows to remain within the capacity

region. In XPRESS, we use Uf (xf )=K log(xf ) as the util-
ity function, where K is a constant parameter defined later
in Section 6. The logarithmic function allows a good trade-
off between fairness and efficiency in wireless networks [19].
The maximum allowed rate of each flow is then periodically
adjusted to x∗

f =K/qfs , where qfs is the length of the FlowQ
of flow f at the source s.
We implement this congestion control in the Linux kernel

between the PreQ and FlowQ. Locally generated outgoing
packets are intercepted using the Linux Netfilter local-out
hook. These packets are classified by flow and put into their
respective PreQ. A per-flow token-bucket rate controller ad-
justs the rate at which they are allowed to enter the FlowQ.
This rate control is performed by periodically inserting to-
kens into the bucket according to the optimal rate x∗

f . When
there are enough tokens in the bucket, a packet is dequeued
from the PreQ and sent to the FlowQ.

4.2 Queues and Scheduler
Flow queues: Outgoing packets are intercepted using the
Netfilter post-routing hook in the Linux kernel. Intercepted
incoming packets that have been routed, and thus are ready
to be forwarded, are classified and put into the correspond-
ing FlowQ. We pass the FlowQ backlog information to the

actuator module through the Linux /proc interface. The
actuator in turn forwards this information over the uplink
control channel to the MC for schedule computation.

Backpressure scheduler: In our speculative scheduling,
the schedule for each slot is computed at the MC using the
backpressure algorithm (cf. Section 2). In Section 5, we
show that this can be reduced to a maximum weight in-
dependent set (MWIS) computation in our system due to
binary interference. The MWIS computation is an NP-hard
problem in theory and can be computationally intensive in
practice. Our C++ implementation is based on an algorithm
for enumerating maximal independent sets at the beginning
of each frame [15]. We then find the MWIS using a linear
search over the independent sets. For efficiency, these sets
could be stored in a heap structure keyed by their weights.
At each slot, queue lengths change, which triggers a heap
update. After the update, the new MWIS can be found as
the root of the heap.

The MC runs on a Linux PC with a quad-core 2.7 GHz
AMDOpteronR© computer, with 16 GB RAM. In our testbed
the execution time of our MWIS implementation on the MC
never exceeded 100 μs. In Section 7 we show that the MWIS
problem can be solved efficiently for practical network sizes.

Kernel packet scheduler: The packet scheduler, in turn,
is implemented in the MAPs as a kernel thread that waits for
the computed schedule. The schedule contains information
about which flows to transmit in each slot, as well as the
next hop to be used by each flow. Based on this schedule
and the instantaneous LinkQ lengths (see below), the packet
scheduler decides when to dequeue packets from the FlowQs
and send them to the LinkQs.

Link queues: We implement LinkQs as individual neigh-
bor queues at the firmware level to allow link scheduling.
Individual neighbor queues are needed in link scheduling to
prevent head-of-line blocking caused by a single common
transmission queue. This problem may occur if we have
wireless losses and the packet at the head of the queue is
destined for a different neighbor than the one assigned for
the slot, resulting in no packet transmitted during that slot.

Cross-layer queue synchronization: Implementing link
scheduling at the firmware is challenging due to the limited
memory of wireless cards. As an example, our platform can
only hold about a dozen full-size packets in the firmware at
any time. As a result, the kernel and the firmware must be
tightly synchronized with respect to both memory utiliza-
tion and time to avoid memory-exhaustion blocking and slot
under-utilization. Memory-exhaustion blocking occurs if a
given LinkQ has accumulated too many packets, leaving no
memory space for other queues. Once the firmware memory
is full, no more packets can be sent from the FlowQs to any
LinkQ. At the same time, the kernel must send a sufficient
number of packets to populate the different LinkQs of the
upcoming slots. In this case, transmission slots will remain
unused if the scheduled LinkQ is empty.

We implement a cross-layer queue synchronization to ad-
dress these issues. The firmware periodically advertises its
LinkQ lengths as well as the current time slot to the kernel.
In our implementation, this occurs at every slot for a tight
synchronization. The kernel uses this information to send
each packet to the firmware just two slots before its actual
transmission, unless the corresponding LinkQ already has a
sufficient number of packets in its queue.



4.3 TDMA MAC Protocol
We implement a time-slotted MAC protocol in the firm-

ware of our 802.11a/b/g cards and disable inherent CSMA
functionality, including carrier sensing, backoff, RTS/CTS
and NAV. This gives us full control of transmission times
and allow us to divide the MAC operation into frames and
time slots. In our implementation, each TDMA frame is
composed of a group of slots, which are divided into a control
subframe (CS) followed by a data subframe (DS). We adopt
our multi-hop TDMA slot synchronization protocol in [9] to
synchronize MAPs over the wireless channel during the CS.
After the control slots, nodes are synchronized and the rest
of the frame is composed of data slots. Each data slot is
assigned to a particular set of non-interfering links based
on the schedule computed by the MC. The MAC packet
scheduler receives this schedule from the actuator, and then
takes care of transmitting packets according to the schedule
and within slot boundaries. The actuator notifies the MAC
about the new schedule as soon as it receives it from the
MC. In our case, a new schedule is applied on every frame.

5. INTERFERENCE ESTIMATION
We now introduce the design of our interference estima-

tion technique to provide the backpressure scheduler with
the link transmission sets and the corresponding capacities
of their links. The capacity μij of each link (i, j) is estimated
on a TDMA frame time scale as Pij × Rij where Pij is the
packet delivery ratio (PDR) and Rij is the PHY rate of link
(i, j) during the TDMA frame.
Finding the link transmission sets and their capacities is

a challenge because each link capacity depends on both the
channel condition and the interference created by the other
links in the set. A direct approach would be to enumerate
and schedule each link set in the same slot, and then measure
the PDR of their links. In a network with L links and Nr

PHY rates, this requires O(Nr × 2L) measurements during
each TDMA frame, which is prohibitive.
In order to understand how interference manifests in our

TDMA system, we perform the following experiment for all
link pairs that do not share a node in our testbed1. The links
of each pair simultaneously transmit backlogged UDP traffic
for 1 minute using broadcast packets at 24 Mbps PHY rate.
During this time, the receivers measure the received signal
strength (RSS) and PDR values at each TDMA frame. Fig-
ure 6 depicts the CDF of the measured PDRs. We observe
that interference creates a binary pattern where only 10% of
links have intermediate PDR values between 0% and 90%.
The dominance of the binary pattern is due to the clock
synchronization of the TDMA protocol and the way 802.11a
MAC decodes packets. According to our measurements, the
TDMA protocol keeps the node clocks synchronized within
4 μs. Thus, interfering transmissions overlap with packet
reception at the very beginning of the 802.11a MAC pream-
ble, where capture effect is weak [10]. This is independent
of PHY data rate because it occurs at the beginning of the
MAC preamble, where the lowest PHY data rate is used.
The binary interference phenomenon has important im-

plications on our system. First, it is enough to estimate
“low” or “high” PDR rather than exact values. Second, the
link transmission sets consist only of links with “high” PDR

1In our current implementation, nodes have a single radio;
therefore, links that share a common node always interfere.
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Figure 6: The cumulative distribution function
(CDF) of the TDMA frame PDR of links trans-
mitting backlogged in pairs at 24 Mbps using the
TDMA MAC protocol.

and can be identified as the independent sets of a binary
conflict graph. This bypasses exhaustive enumeration and
measurement on all 2L link combinations to determine the
link transmission sets. Finally, the link scheduling problem
of the backpressure algorithm, i.e., Equation (3), reduces
from an exhaustive search over all link capacity vectors to
a maximum weight independent set (MWIS) problem in the
conflict graph.

5.1 Interference Measurement
Nodes in XPRESS measure the RSS of each neighbor from

the synchronization beacons they transmit in the control
subframe of each TDMA frame. Each node has an assigned
slot in this subframe, at which the node transmits its beacon
using the lowest 802.11a PHY rate (i.e., 6 Mbps) without in-
terference. This results in one RSS measurement per frame
for each link. Based on these measurements, we estimate
the signal-to-interference ratio (SIR) of a link (i, j) under
the interference of a transmitting node k as the difference
Sij − Skj , between Sij , the RSS of link (i, j), and Skj , the
RSS of link (k, j), both in dBm. If the SIR of the link ex-
ceeds a threshold, which depends on the PHY rate, the link
PDR is estimated “high.” Since RSS values are independent
of PHY rate, this approach can estimate the PDR of all
transmission sets for all PHY rates and reduce the number
of measurement complexity from O(NR × 2L) to O(N).

Despite its advantages, this RSS approach can be far from
perfect for two reasons. First, the RSS values reported by
802.11 wireless cards can be highly inaccurate due to the
type of hardware, poor calibration, environmental condi-
tions, location, temperature, multi-path effects, and external
interference. Second, it relies on the RSS of decoded packets
and hence cannot detect hidden interferers which are within
interference range, but not within communication range.

To address these limitations, we use PDR measurements
to complement the previous RSS technique. During the data
subframe of each TDMA frame, the MAC at each node i
estimates the PDR of link (i, j) as the fraction of successful
MAC transmissions. At the end of the TDMA frame, the



MAC reports these measurements to the mesh controller
(MC). This information is then used by the MC to update
the conflict graph at each TDMA frame, as we show next.

5.2 Conflict Graph Update
The MC uses a conflict graph to represent interference in

the network. A vertex vij in the conflict graph corresponds
to the link (i, j) in the network graph. An edge between
vertices vij and vkl denotes interference between links (i, j)
and (k, l) in either the DATA or ACK directions. The vertex
independent sets in the conflict graph correspond to the link
transmission sets.
The conflict graph update mechanism is executed at each

TDMA frame, after the MC receives the RSS and PDR mea-
surements. The conflict graph construction occurs in two
stages. The first stage uses the RSS measurements and the
second stage refines it further with the PDR measurements.

First stage: Recall that Sij is the RSS of link (i, j) mea-
sured at node j once per frame. If Sij is not measured,
the transmission from i to j is estimated outside of com-
munication and interference range. First, the MC creates
a vertex vij in the conflict graph if Sij ≥ γR

j , the RX sen-
sitivity threshold of receiver j at PHY rate R. Then, the
MC adds an edge between each pair of vertices vij and vkl
in the conflict graph if either they share a common node or
if the SIR of DATA or ACK directions is less than the SIR
receiver threshold δRj at PHY rate R.

Second stage: For each link (i, j) selected by the first stage,
the MC checks its reported PDR value Pij . If Pij ≥ 90%, the
link remains in the conflict graph. Otherwise, the MC finds
the link transmission set Iij where this link failed the most,
by inspecting the schedule of the previous TDMA frame.
Among the links in Iij , some were outside the interference
range and some were hidden interferers. The MC identifies
the hidden interferers using the connectivity graph. Using
this graph, one-hop neighbors are defined as the nodes from
which a beacon is received; two-hop neighbors are the one-
hop neighbors of these neighbors, and so on. To reduce the
search space, we assume that the hidden interferers of link
(i, j) are those transmitters in Iij which are two-hop neigh-
bors of either i or j. For each such node k, the algorithm
adds an edge between vertex vij and vertex vkl in the con-
flict graph. If link (i, j) fails again in the same set Iij during
the next TDMA frame, the three-hop neighbors of i and j
can be considered, until the hidden interferers are detected.

6. TESTBED EVALUATION
In this section, we evaluate XPRESS in an indoor testbed.

We first describe our testbed and experimental methodology
(Section 6.1), followed by results in single-hop (Section 6.2)
and multi-hop scenarios (Section 6.3). Finally, we validate
the estimations in our speculative scheduling (Section 6.4).

6.1 Experimental Methodology
Figure 8 shows our 8-node testbed deployed in one floor

of our premises. This is a typical office environment with
cubicles and glass meeting booths. Each node is a PC with
1.6 GHz CPU, 512MB RAM, and 80GB HD for storing mea-
surement data. Each node runs the XPRESS software in
the Linux kernel 2.6.28 and has a Technicolor WiFi card
with a proprietary firmware that runs our multi-hop TDMA
MAC protocol detailed in [9]. The WiFi cards are set to

operate at 5 GHz in the 802.11a frequency band. The MC
node is a dedicated Linux PC with a quad-core 2.7 GHz
AMD OpteronR© computer, with 16 GB RAM. The execu-
tion time of our MWIS implementation on the MC did not
exceed 100 μs, which means that we can support TDMA
slots of size 100 μs and above.

Figure 8: Our wireless indoor testbed (40×8 m2).

In our testbed, the TDMA control subframe consists of 8
slots of 625 μs each, resulting in a total of 5 ms. In these
slots, each node broadcasts its clock synchronization beacon
at 6 Mbps PHY rate to other mesh nodes in the testbed,
based on the protocol in [9]. The TDMA data subframe
consists of 152 slots of 625 μs each, for a total of 95 ms.
This results in a TDMA frame duration of 100 ms and a
control overhead of 5%.

In our current implementation, the uplink and downlink
control channels are implemented using a reliable Ethernet
connection instead of wireless transmissions in the TDMA
control subframe. In our evaluation, however, we take the
actual control overhead into account by making each slot in
the control subframe larger than the duration required by
the synchronization beacon. According to our analysis in
Section 7, the 5-ms control subframe provides enough time
to transmit all uplink and downlink control information at
6 Mbps in our 8-node testbed.

Due to our dense deployment, we take the following steps
to enable multi-hop routing and spatial reuse. First, we
use the minimum transmission power of our WiFi platform
(12 dBm). Second, we experimentally determine 24 Mbps as
the highest PHY rate that can create multi-hop topologies
without severely compromising link reliability. These power
and PHY rate settings result in a total of 20 single links
with a PDR higher than 90%, and in 20 link pairs with
a PDR higher than 90% for each link when transmitting
simultaneously. This provides enough spatial reuse for our
testbed size and density.

In our experiments, we compare XPRESS to 802.11 DCF.
For XPRESS, we fix the PHY rate for the data subframe to
24 Mbps. At this rate, the SIR threshold is defined as 17 dB
based on the profile of RSS versus PDR collected for each
link. The profile was constructed by offline measurements
of links transmitting alone and in pairs. The 17 dB was
the highest threshold that enabled a PDR greater than 90%
in most cases. We set the upper limit of XPRESS FlowQs
to 400 packets. The congestion control parameter K was
experimentally determined as 100, a value that allowed a
single link to achieve its full capacity for our logarithmic
utility function.

For 802.11 DCF we use both a fixed 24 Mbps PHY rate
and the automatic PHY rate adaptation scheme of our WiFi
card (noted as auto-rate hereafter). We also disable the
RTS/CTS exchange because it creates a high overhead for
802.11 DCF at the relatively high rate of 24 Mbps.
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(a) 2 APs, 1 client each.
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(b) 3 APs, 1 client each.
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(d) 3 APs, 1 client each.

Figure 7: The throughput and fairness in centralized WLAN scenarios.

In order to maintain repeatability across different testruns,
we select a 5-GHz channel free of external interference and
set the MAC retransmission limit to 7 for both XPRESS
and 802.11. We use Iperf [7] to generate UDP traffic with
1470-byte payload packets and measure throughput as the
goodput received at the flow destination.

6.2 Single-Hop WLAN Performance
In WLAN scenarios, XPRESS can operate as a centralized

WLAN architecture, such as a wireless home network with
a few APs controlled by the home gateway or an enterprise
WLAN with lightweight APs and a central controller.
We consider several WLAN scenarios and present results

for 2 APs and 3 APs, each with 1 client. Their results are
representative for other scenarios that we tested. For each
scenario, we considered all possible combinations of nodes
in our testbed.
Figures 7(a) and 7(b) depict the aggregate throughput for

both XPRESS and 802.11. The figures show that XPRESS
yields roughly 18 Mbps for most configurations in both sce-
narios. This is the maximum UDP throughput of a single
link at 24 Mbps PHY rate, hence, XPRESS scheduled links
in sequence. Figures 7(c) and 7(d) depict the cumulative dis-
tribution function (CDF) of the Jain’s Fairness Index (JFI)
and show that the JFI of XPRESS is always close to unity,
demonstrating almost perfect fairness.
We see that the aggregate XPRESS throughput is spread

below and above the 802.11 throughput. When XPRESS
performs sequential scheduling, 802.11 may achieve a higher
throughput in two cases: when it performs successful parallel
scheduling and/or when 802.11 auto-rate increases the PHY
rate above 24 Mbps. For example, in Figure 7(a) parallel
scheduling in 24-Mbps 802.11 achieves higher throughput
than XPRESS for 17% of the configurations; the higher PHY
rates discovered by 802.11 auto-rate increased this fraction
to 35%. However, for the majority of the configurations
(83% and 65% respectively), XPRESS achieves much higher
throughput, mainly due to successfully coping with hidden
terminals and collisions. Figure7(b) shows the same trend
and we observed the same in other scenarios we tested.
XPRESS schedules links in parallel in a few configura-

tions. In these cases, XPRESS doubles the throughput,
while the best 802.11 results are slightly lower due to 802.11
fairness issues, shown in Figures 7(c) and 7(d). However,
XPRESS achieves perfect fairness in these scenarios.
In summary, XPRESS can provide stable throughput and

almost perfect fairness in small-scale WLANs, while still
achieving higher throughput than 802.11. On the other
hand, 802.11 achieves variable throughput and, when 802.11

achieves a higher throughput than XPRESS, it may result
in unfairness.

6.3 Multi-Hop Mesh Performance
We now evaluate XPRESS in multi-hop mesh scenarios,

consisting of line, gateway-centric, and multi-path scenarios.

Line scenario: We consider several single-path/single-flow
configurations, ranging from one to six hops. For each con-
figuration, we restrict the scheduler to use only the links
in the path and perform repeated testruns with a 10-Mbps
UDP traffic load. Figure 9 depicts the average throughput
of XPRESS and 802.11 versus the number of hops. The
throughput of XPRESS decreases rapidly with the number
of hops until 4 hops, where spatial reuse on the path starts
being exploited. On the other hand, 802.11 continues to de-
crease rapidly even after 4 hops. The relative improvement
of XPRESS over 802.11 increases with the path length. For
instance, for an offered load of 10 Mbps, 802.11 achieves
3.3 Mbps at 4 hops, 2.2 Mbps at 5 hops, and 1.7 Mbps at
6 hops. On the other hand, XPRESS is able to transmit at
4.3 Mbps at 4 hops (30% gain), 4.2 Mbps at 5 hops (91%
gain), and 3.5 Mbps at 6 hops (106% gain). This gain is
due to the hidden/exposed terminals in 802.11 and the spa-
tial reuse in XPRESS, which starts at 5 hops, where the
aggregate throughput is 5 × 4.2 = 21 Mbps, as opposed to
4 × 4.3 = 17.2 Mbps at 4 hops. These results demonstrate
the benefits of XPRESS backpressure scheduling over 802.11
DCF in achieving the full path capacity by efficient coordi-
nation of transmissions.
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Figure 9: The throughput of a line topology for both
802.11 and XPRESS for an offered load of 10 Mbps.
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Figure 10: The throughput, number of hops, and delay for the multi-path experiment.

Gateway-centric scenario: We consider a typical mesh
scenario of a 2-hop gateway-centric topology with 2 flows,
A → B → C and B → C, originating from two MAPs, A
and B, toward a gateway C over a single path. Both flows
have the same UDP source rate. Figure 11 presents the
per-flow throughput versus the offered load of each flow.
From the figure, we can see that both flows can simul-

taneously sustain up to 5 Mbps offered load each, for both
XPRESS and 802.11. Above this, the aggregate throughput
of 802.11 decreases and unfairness occurs at the expense
of the 2-hop flow. On the other hand, XPRESS achieves
consistently higher per-flow and aggregate throughput than
802.11. We can see that XPRESS serves both flows fairly
until 6 Mbps. This is roughly the capacity of the network,
where the 2-hop flow consumes 6 + 6 = 12 Mbps and the
1-hop flow consumes 6 Mbps (i.e., a total of 18 Mbps). As
the source rate increases, we see that the medium time is
still equally shared between the two flows. However, the
longer flow needs two hops to reach the gateway, which re-
duces its throughput by half. On the other hand, the lack
of coordination in 802.11 results in wireless losses due to se-
vere contention, resulting in high throughput loss. At the
highest source rate, the aggregate 802.11 throughput is only
7.9 Mbps, while XPRESS achieves 14.0 Mbps (77% gain).
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Figure 11: The throughput of two flows A → B → C
and B → C in a GW-centric 2-hop topology.

Multi-path scenario: We now investigate the ability of
XPRESS to exploit multi-path capabilities in our testbed.
In these experiments, packets may travel different paths be-
tween the same source and destination, depending on the
per-slot instantaneous differential queue backlogs. We in-
vestigate two different aspects: throughput and end-to-end
delay. We set up a UDP flow between nodes 4 and 19,
the farthest nodes in our testbed, and allow the XPRESS
scheduler to use all possible links in the testbed. We com-
pare XPRESS with 802.11 at fixed 24 Mbps PHY rate and
auto-rate using the best path computed based on the ETX
routing metric, through nodes 4, 22, 21, 18, 19 (cf. Figure 8).

Figure 10(a) depicts the received throughput at node 19
versus the input source rate at node 4. The throughput
of XPRESS increases linearly with the offered load until
5.5 Mbps, after which it remains stable at the maximum of
5.7 Mbps. On the other hand, 802.11 reaches only 3.5 Mbps
(63% gain for XPRESS) with a fixed rate of 24 Mbps and
2.5 Mbps (128% gain for XPRESS) with auto-rate, after
which throughput declines. The decline in 802.11 at high
input rate occurs because of hidden terminal collisions along
the 4-hop path, which trigger packet retransmissions and
reduce the end-to-end throughput. XPRESS does not suffer
from hidden terminals and is able to sustain the maximum
throughput. From the figure, we can also see that 802.11
auto-rate receives less throughput than 802.11 with 24 Mbps
under high load. This occurs because the collisions often
cause auto-rate to fall back to low PHY rates.

We now investigate the delay properties of XPRESS. In
Figure 10(b), we see the cumulative distribution function
(CDF) of the path hop count taken by each packet, and in
Figure 10(c) we see the delay measured after the rate con-
troller at the source. Figure 10(b) shows that, under high
loads, almost all packets follow 3-hop or 4-hop paths. As the
load decreases, however, an increasing fraction of packets fol-
lows longer paths. At the lowest load of 1 Mbps, a fraction
of 20% of the packets followed a path between 25 and 30
hops. The reason is that queues are small and the differen-
tial backlogs are not effective in path differentiation; this is
an inherent property of backpressure scheduling. However,
as shown in Figure 10(c), the delay of the slowest packets
under 1 Mbps load does not exceed 100 ms. Thus, despite
the long paths taken, once these packets exit the conges-
tion controller and enter the backpressure scheduler, they
are delivered to the destination in less than a TDMA frame



duration. Delays increase after 5 Mbps load, which is close
to the capacity limit of 5.7 Mbps shown in Figure 10(a).
However, for all offered loads beyond the capacity limit, the
additional delay is limited to about 50 ms. In this case, the
FlowQs are always full and the scheduler delay is dominated
by the maximum FlowQ buffer sizes. Also, the delays are
finite, which indicates that the congestion controller feeds
the backpressure scheduler with rates within the network
capacity region.

6.4 Validating Queue Estimations
We now evaluate the queue estimation accuracy of the

speculative technique in our scheduler (cf. Section 3.4). At
each slot in the last 60-second multi-path experiment, we
collect the estimated FlowQ backlog Q̂ and the actual FlowQ
backlog Q of each node, obtaining more than 700,000 sam-
ples. Figure 12 shows the cumulative distribution function
(CDF) of the error Q̂−Q in the queue backlog estimates for
all samples during the experiment. We see that the maxi-
mum error is only 5 packets, which is very small compared
to the tens or hundreds of packets backlogged at the FlowQs
at each node. This validates that XPRESS estimates queue
backlogs correctly. Moreover, the small error supports the
claim that the the throughput achieved by XPRESS in Fig-
ure 10(a) is indeed very close to the network capacity, in
addition to being significantly higher than 802.11.
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Figure 12: The cumulative distribution function
(CDF) of the absolute error in the backlog estimate

Q̂ − Q for each node at each slot. The estimates are
close to the actual queue lengths, indicating that
XPRESS achieves the network capacity.

7. OVERHEAD ANALYSIS
We now analyze the processing and communication over-

head in XPRESS. Our goal is to understand how it scales
for larger, yet practical, networks (e.g., 20, 50, 100 nodes)
and the corresponding design trade-offs.

Computation overhead: In theory, the maximum weight
independent set (MWIS) problem is NP-hard. However,
Wang [26] experimentally shows that for practical MWIS
problems in wireless multi-hop networks, the computation
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(a) The mean MWIS computation time as a func-
tion of the number of links in the network. The
implementation was on CPLEX running on top of
an Intel 2.83GHz E5440 CPU with 16 GB RAM.

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

10
2

10
3

Number of nodes

C
om

m
un

ic
at

io
n 

ov
er

he
ad

 (
m

s)

 

 

R =   1 Mbps, C = 100

R =   1 Mbps, C =   10

R =   1 Mbps, C =     1

R =   5 Mbps, C = 100

R = 10 Mbps, C = 100

R = 50 Mbps, C = 100

(25 nodes, 10 ms)

(b) The per-frame communication overhead as a
function of the number of MAPs, for values of C
and R. We assume B = 256, D = 10, Q = 64,
Ns = 50, and Np = 10.

Figure 13: The (a) computation overhead at the MC
and (b) the communication overhead of XPRESS.

time increases polynomially with the number of links and
linearly with the average number of interferers of each link.

Figure 13(a) is derived from the data in [26] and shows
the mean MWIS computation time versus the number of
links, for average densities I of 5, 10, and 30 interferers per
link. With this figure, one can make design decisions about
the frequency of the MWIS computation and the degree of
multi-path routing. For example, consider a network with
25 nodes and 1-ms TDMA slots. Figure 13(a) shows that
the MWIS computation in a very dense (I = 30) network
of 50 links takes 1 ms, hence it can run for every time slot.
At the same density, the MWIS computation for 200 links
takes 10 ms and hence can run once every 10 slots. In this
case, the intermediate 10 slots would either reuse the last
computed MWIS schedule or resort to heuristics to compute
potentially sub-optimal schedules. Another alternative is
for the MC to prune a few links, which reduces the MWIS



computation time and allows per-slot computations at the
cost of less available paths.

Communication overhead: The communication overhead
is the time to transmit the control information on the uplink
and downlink control channels (cf. Figure 5). Assume that
these channels can deliver this information at R bps. The
downlink channel disseminates the synchronization beacon
and C schedules for all N nodes. Each schedule specifies the
selected set of links and the corresponding flows allowed to
transmit. In the worst case, all nodes are selected for trans-
mission in the same schedule. Thus, each schedule can be
encoded with at most N(log2 F + log2 D) bits, where F is
the maximum number of flows and D is the maximum node
degree in the network. If B bits are used for the synchro-
nization beacon, an upper bound on the downlink time is

TD =
CN(log2 F + log2 D) +B

R
. (5)

The uplink overhead consists of N control packets sent
by the nodes to the MC. Each packet contains the queue
backlogs of all flows at the node, as well as the ID, the RSS,
and the PDR of each neighbor. The uplink time TU is thus

TU =
N

R

[
F log2 Q+D(log2 N + log2 Ns + log2 Np)

]
, (6)

where Q is the maximum FlowQ size, Ns is the number of
RSS levels measured by the wireless cards, and Np is the
number of PDR levels.
If we assume that there are only flows between the nodes

and the gateway (i.e., F = 2N), we see from Equations (5)
and (6) that, for large network sizes, the uplink overhead
O(NF ) is higher than the downlink overhead O(N log2 F ).
However, for practical network sizes, they may be compara-
ble depending on C.
Figure 13(b) plots the total control overhead time TU+TD

as a function of N for values of R and C, assuming F = 2N .
With this figure, one can make design decisions between the
number of schedules C and the rate R. For instance, when
R = 1 Mbps, we see that increasing C from 10 to 100 only
doubles the total overhead, i.e., same effect as halving R.
This holds for any R and it occurs because, when C = 100,
the uplink and downlink overhead become comparable. For
the 25-node XPRESS network previously discussed, assume
a requirement of 1-ms TDMA slots, with a control subframe
of 10 ms and a data subframe of 100 ms (i.e., 10% overhead).
Figure 13(b) shows that this requirement can be satisfied
with R ≥ 5 Mbps and C = 100 schedules.

8. RELATED WORK
Backpressure architectures: The backpressure algorithm
was introduced by Tassiulas and Ephremides [24] and, since
then, a significant effort has been dedicated to distributed
approximations which guarantee a fraction of the capacity
region [12]. These algorithms maintain the slotted TDMA
MAC protocol assumption of the original algorithm, but
have not yet been translated to real implementations. On
the other hand, recent work applies backpressure ideas to
build practical systems on top of existing MAC protocols,
such as 802.11. Akyol et al. [2] modify the 802.11 contention
window to prioritize links with a higher differential backlog.
Radunovic et al. [20] enhance the performance of multi-path
TCP transfers with a simplified backpressure scheme on top
of 802.11. In a similar fashion, Aziz et al. [3], Ryu et al. [22],

and Warrier et al. [27] approximate backpressure scheduling
using prioritization in 802.11. Moeller et al. [16] build a
backpressure routing architecture over 802.15.4 to enhance
data collection in wireless sensor networks. Most of these
works [2, 3, 20, 27] assume a separate routing protocol.

These approaches were important steps to show practical
improvements of backpressure-inspired protocols over reg-
ular CSMA/CA. However, it is not clear how close they
are to the throughput optimality of XPRESS, since they are
constrained by the CSMA/CA MAC interference estimation
limitations, such as hidden and exposed terminals.

Centralized 802.11 architectures: Vendors, like Cisco,
Aruba, and Meru Networks, offer centralized architectures
for enterprise 802.11 wireless LANs. In these architectures,
a central controller coordinates downlink transmissions from
the APs to the clients. With a similiar goal, Liu et al. [13]
and Srivastava et al. [23] propose centralized architectures to
schedule AP transmissions. XPRESS shares the centralized
philosophy of these architectures, but also has fundamental
differences. For instance, these architectures only schedule
single-hop transmissions from the AP to the clients and use
heuristics for scheduling. On the other hand, XPRESS con-
trols the entire multi-hop wireless backbone and implements
a throughput-optimal scheduler.

Interference estimation: Existing techniques for interfer-
ence estimation can be broadly classified as passive or active.
Passive approaches require monitors deployed throughout
the wireless network to collect traffic traces, which are later
analyzed offline [5, 14]. Active approaches, on the other
hand, use the available infrastructure to inject test packets
into the network and measure interference. Padhye et al. [17]
measure interference by comparing the throughput of two
links, when transmitting in isolation and in parallel. Al-
tough accurate, this technique requires extensive downtime
to test all link pairs. Ahmed et al. [1] propose an online ap-
proach where APs periodically silence their clients and run a
quick interference tests. This technique, however, is limited
to the downlink of single-hop wireless LANs. For multi-hop
networks, Vutukuru et al. [25] propose a passive technique to
learn about transmission conflicts. This approach exploits
several exposed terminals unused by 802.11, but it does not
address hidden interferers. Finally, several works measure
received signal strength (RSS) to predict packet delivery ra-
tios (PDR) [13, 18, 21]. In addition to RSS measurements,
the XPRESS interference estimation design measures PDR
during each TDMA frame to detect hidden interferers and
refine the network conflict graph.

9. DISCUSSION
While XPRESS has shown significant improvements over

802.11, there are a few issues that must be dealt with for
efficient operation. In this section, we describe these issues
and present new research directions inspired by XPRESS.

TCP support: XPRESS operates at the IP layer and
therefore any transport protocol, including TCP, can run
on top of XPRESS. Efficient TCP operation, however, re-
quires handling out-of-order packets, due to the backpres-
sure multi-path routing, and supporting variable TCP packet
sizes over the XPRESS TDMA MAC. Out-of-order packets
have been addressed with delayed packet delivery in [20]
and variable packet sizes could also be addressed with ex-
tra implementation effort. Integrating TCP with an opti-



mal backpressure scheduler and understanding their inter-
actions, however, is a challenge for future research.

Rate adaptation: The XPRESS design applies to both
single-rate and multi-rate systems. For instance, the binary
conflict graph representation holds for multiple rates, and
the RSS-based interference measurement complexity O(N)
is independent of the rate. However, the main challenge in
multi-rate systems is that the MWIS computational com-
plexity increases with the number of rates. We believe that
efficient rate adaptation in a centralized multi-hop network
like XPRESS is a challenging topic for future investigation.

10. CONCLUSIONS
We presented the design and implementation of XPRESS,

a backpressure architecture for wireless multi-hop networks.
Our design leverages a centralized controller for obtaining
throughput-optimal scheduling. In contrast to previous work,
we integrated backpressure scheduling with a TDMA MAC
protocol to allow precise timing in transmissions. Moreover,
we introduced a novel interference estimation technique and
an efficient speculative backpressure scheduler. Our results
in an indoor testbed confirm that XPRESS achieves the full
network capacity. Already in seemingly simple network con-
figurations with limited spatial reuse, XPRESS shows up to
128% gains over 802.11. In our future work, apart from TCP
and multi-rate support, we intend to evaluate XPRESS in
larger networks and conduct a comparison with CSMA/CA
backpressure implementations. We believe our work opens
up interesting avenues in wireless network system design,
showing that optimal centralized routing and scheduling are
feasible for small- to medium-sized wireless multi-hop net-
works. For larger networks, we believe that the design prim-
itives of the XPRESS cross-layer protocol stack can lead to
new distributed wireless architectures beyond 802.11.
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and S. Savage. Jigsaw: Solving the Puzzle of Enterprise
802.11 Analysis. In Proc. ACM SIGCOMM, 2006.

[6] Atilla Eryilmaz and R. Srikant. Joint Congestion Control,
Routing, and MAC for Stability and Fairness in Wireless

Networks. IEEE Journal on Sel. Areas in Comm.,
24(8):1514–1524, Aug. 2006.

[7] iperf. http://dast.nlanr.net/projects/iperf.
[8] F. Kelly, A. Maulloo, and D. Tan. Rate Control in

Communication Networks: Shadow Prices, Proportional
Fairness and Stability. Journal of the Operational Research
Society, 49:237–252, 1998.

[9] D. Koutsonikolas, T. Salonidis, H. Lundgren,
P. LeGuyadec, C. Hu, and I. Sheriff. TDM MAC Protocol
Design and Implementation for Wireless Mesh Networks. In
Proc. ACM CoNEXT, Dec. 2008.

[10] J. Lee, J. Ryu, S. Lee, and T. Kwon. Improved Modeling of
IEEE 802.11a PHY through Fine-grained Measurements.
Computer Networks, 54(4), Mar. 2009.

[11] X. Lin and N. B. Shroff. Joint Rate Control and Scheduling
in Multihop Wireless Networks. In CDC, Dec. 2004.

[12] X. Lin and N. B. Shroff. The Impact of Imperfect
Scheduling on Cross-Layer Congestion Control in Wireless
Networks . IEEE Transactions on Networking,
14(2):302–315, Apr. 2006.

[13] X. Liu, A. Sheth, M. Kaminsky, K. Papagiannaki,
S. Seshan, and P. Steenkiste. DIRC: Increasing Indoor
Wireless Capacity Using Directional Antennas. In Proc.
ACM SIGCOMM, Aug. 2009.

[14] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Analyzing the Mac-Level Behavior of Wireless Networks in
the Wild. In Proc. ACM SIGCOMM, Aug. 2006.

[15] K. Makino and T. Uno. New algorithms for enumerating all
maximal cliques. In In Proc. 9th Scandinavian Workshop
on Algorithm Theory, Humlebaek, Denmark, Jul. 2004.

[16] S. Moeller, A. Sridharan, B. Krishnamachari, and
O. Gnawali. Routing Without Routes: The Backpressure
Collection Protocol. In Proc. IEEE/ACM IPSN, Apr. 2010.

[17] J. Padhye, S. Agarwal, V. Padmanabhan, L. Qiu, A. Rao,
and B. Zill. Estimation of Link Interference in Static
Multi-hop Wireless Networks. In Proc. ACM Internet
Measurement Conference (IMC), Oct. 2005.

[18] L. Qiu, Y. Zhang, F. Wang, M. Han, and R. Mahajan. A
General Model of Wireless Interference. In Proc. ACM
MobiCom, Oct. 2007.

[19] B. Radunovic and Jean-Yves Le Boudec. Rate Performance
Objectives of Multihop Wireless Networks. IEEE
Transactions on Mobile Computing, 3(4):334–349, 2004.

[20] B. Radunovic, C. Gkantsidis, D. Gunawardena, and P. Key.
Horizon: Balancing TCP over Multiple Paths in Wireless
Mesh Network. In Proc. ACM MobiCom, Sep. 2008.

[21] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, , and
J. Zahorjan. Measurement-Based Models of Delivery and
Interference. In Proc. ACM SIGCOMM, Sep. 2006.

[22] J. Ryu, V. Bhargava, N. Paine, and S. Shakkottai.
Back-Pressure Routing and Rate Control for ICNs. In Proc.
ACM MobiCom, Sep. 2010.

[23] V. Shrivastava, N. Ahmed, S. Rayanchu, S. Banerjee,
S. Keshav, K. Papagiannaki, and A. Mishra. CENTAUR:
Realizing the Full Potential of Centralized WLANs through
a Hybrid Data Path. In Proc. ACM MobiCom, Sep. 2009.

[24] L. Tassiulas and A. Ephremides. Stability Properties of
Constrained Queuing Systems and Scheduling Policies for
Maximum Throughput in Multihop Radio Networks. IEEE
Transactions on Automatic Control, 37(12):1936–1948,
Dec. 1992.

[25] M. Vutukuru, K. Jamieson, and H. Balakrishnan.
Harnessing Exposed Terminals in Wireless Networks. In
Proc. NSDI, Apr. 2008.

[26] P. Wang. Throughput Optimization of Urban Wireless
Mesh Network. In Ph.D. Thesis, Department of Electrical
and Computer Engineering, University of Delaware, 2009.

[27] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee. DiffQ:
Practical Differential Backlog Congestion Control for
Wireless Networks. In Proc. IEEE INFOCOM, Apr. 2009.


