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Abstract

Saliency methods can aid understanding of deep neural

networks. Recent years have witnessed many improvements

to saliency methods, as well as new ways for evaluating

them. In this paper, we 1) present a novel region-based at-

tribution method, XRAI, that builds upon integrated gradi-

ents [26], 2) introduce evaluation methods for empirically

assessing the quality of image-based saliency maps (Per-

formance Information Curves (PICs)), and 3) contribute an

axiom-based sanity check for attribution methods. Through

empirical experiments and example results, we show that

XRAI produces better results than other saliency methods

for common models and the ImageNet dataset.

1. Introduction

Saliency methods link a deep neural network’s (DNN)

prediction to the inputs that most influence that prediction.

These capabilities can be useful in a wide range of con-

texts, including debugging a model’s prediction, verifying

that the model is not learning spurious correlations [17], and

inspecting the model for issues related to fairness [19]. In

this paper, we focus on image-based saliency methods.

A rich set of image-based saliency methods have been

developed over the years (e.g., [24, 29, 14, 26, 3, 6]). One

common approach of determining salient inputs is to rely

on the changes in the model output, such as gradients of

the output with respect to the input features. For example,

Integrated Gradients (IG) determines the salient inputs by

gradually varying the network input from a baseline to the

original input and aggregating the gradients [26]. While

existing saliency methods provide very compelling results,

there are opportunities to further improve identification of

the most important inputs leading to a model’s prediction.

Given the potential utility of saliency methods, recent re-

search has begun to critically examine these techniques and

has proposed various methods for evaluating them. These
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evaluation methods provide ways to validate the saliency

method’s outputs (e.g., to ensure they can be relied upon

to explain model behavior) [2, 1], or to empirically mea-

sure the methods’ outputs, enabling comparison of two or

more techniques. For example, “sanity checks” have been

developed that help determine whether a saliency method’s

results meaningfully correspond to a model’s learned pa-

rameters [1], while Sensitivity-n [2] empirically measures

the quality of a saliency method’s output by comparing the

change in the output prediction to the sum of attributions.

Figure 1. Comparison of Integrated Gradients (middle) and the

proposed XRAI method (right) at 5% area threshold for object

class “balloon”. Areas that may have high pixel-level attributions

are removed at the region level as they sum up close to zero.

In this paper, we make three sets of contributions. First,

we propose a novel region-based saliency method, XRAI

(Figure 2), based on the widely used Integrated Gradi-

ents (IG) [26]. Our method first over-segments the im-

age, then iteratively tests the importance of each region,

coalescing smaller regions into larger segments based on

attribution scores. Through examples and empirical re-

sults, we show that this strategy yields high quality, tightly

bounded saliency regions that outperform existing saliency

techniques. Importantly, XRAI can be used with any DNN-

based model as long as there is a way to cluster the input

features into segments through some similarity metric (e.g.

color similarity in images).

Second, we add to the growing body of sanity checks for

attribution methods [1] by introducing a perturbation-based

sanity check that can be used to test the reliability of an at-

tribution method. Our sanity check can be seen as a relaxed
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Figure 2. XRAI is a saliency method that incrementally grows attribution regions. In this figure, the most important regions for classifying

the image as “goldfinch” are revealed for different area thresholds: the technique first identifies one bird (3%), then two birds (10%). The

pool of possible segments to choose from are represented by the colored regions (XRAI segments). A saliency heatmap indicates which of

these regions provide the most predictive power (XRAI heatmap). Finally, the most salient segments at area threshold of 10% (according

to XRAI’s ranking) are shown. Notice that XRAI constructs the bird from numerous segments and does not solely rely on segment quality.

version of the Sensitivity-N measure [2], where we require

features that cause non-zero change in the output to have at

least non-zero attributions. In applying this sanity check,

we found that Gradients [4, 22], Gradients*Input, and Inte-

grated Gradients can sometimes fail it, even for very sensi-

tive features that cause the prediction to completely change

with minimal modification. A key insight from this sanity

check is that compared to pixel-level IG attributions, region-

level sums of pixel-attributions are more robust (Figure 1).

Finally, we introduce a pair of evaluation metrics for em-

pirically assessing the quality of saliency techniques: Accu-

racy Information Curves (AICs) and Softmax Information

Curves (SICs), both similar in spirit to receiver operating

characteristics displays (ROC). These measurement meth-

ods are inspired by the bokeh effect in photography, which

consists of focusing on objects of interest while keeping the

rest of the image blurred. In a similar fashion, we start with

a completely blurred image and gradually sharpen the im-

age areas that are deemed important by a given saliency

method. Gradually sharpening the image areas increases

the information content of the image. We then compare the

saliency methods by measuring the approximate image en-

tropy (e.g., compressed image size) and the model’s perfor-

mance (e.g., model accuracy). Collectively, we dub these

metrics Performance Information Curves (PICs). We vali-

date these techniques by showing how rankings of popular

saliency methods’ outputs align with visual results.

In sum, this paper makes the following contributions:

• We introduce XRAI1, a novel region-based attribution

method. XRAI can be applied to any DNN model,

yields empirically superior results to other methods,

and achieves performance that is competitive with

other techniques.

• We introduce a perturbation-based sanity check for

testing saliency methods.

• We introduce two metrics for measuring the quality

1See https://github.com/PAIR-code/saliency for the implementation

and more details.

of attribution methods, Accuracy Information Curves

and Softmax Information Curves. We demonstrate

their utility and validity by applying them to popular

saliency methods run on the ImageNet dataset with In-

ception [28] and Resnet50 [13] models as well as com-

paring them with the standard localization metrics.

The rest of the paper is structured as follows. We first re-

view related work, then introduce a perturbation-based san-

ity check. We then describe XRAI and its implementation.

We introduce two evaluation methods, Accuracy Informa-

tion Curves and Softmax Information Curves to comple-

ment existing evaluation metrics for saliency methods. We

then present results from a series of experiments that com-

pare XRAI with GradCAM, Gradient, Gradient*Input, and

IG with different baselines, and show representative sam-

ples of each technique on the ImageNet dataset [18]. The

overall diagram of our evaluation and attribution methods

can be found in Figure 3.

2. Related Work

Numerous methods of attributing inputs to output pre-

dictions have been proposed. One set of methods modify

the inputs and measure the effect this perturbation has on

the output by performing a forward pass through the net-

work with these modified inputs [10, 5]. As an example,

[29] proposed a method to visualize the prediction score of

the correct class as a function of a gray patch occluding the

original image. LIME [17] fits a simpler local model to ap-

proximate the prediction surface by querying the model in

a close neighborhood of the original input.

While perturbation based-methods allow one to directly

estimate the impact of a feature subset on the output, they

require multiple queries to the model, making them slow

[30]. Moreover, performance degrades as a function of the

number of features. Finally, the nonlinear nature of neu-

ral networks means that the results are only reliable for

the exact subset and modification of the features, making

it challenging to obtain a reliable estimate for all perturba-

tions (i.e., there is exponential complexity if one tries every
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Figure 3. (a) Input leopard image. (b) XRAI’s segmentation process. First, the image is over-segmented to many overlapping regions of

various shapes, then the segments are gradually added with respect to their integrated gradients density. The ranking of region importance

can be recovered from the trajectory. In this case, XRAI reconstructed the leopard’s face, yielding a correct classification, then added the

body and rest of the image. (c) Diagram of the evaluation method for a single image and a given area threshold. The unfocused image and

salient region mask get combined to produce the saliency-focused image. This image is fed back to the classifier to measure performance.

subset of features).

A second set of approaches calculate attributions by

back-propagating the prediction score through each layer of

the network, back to the input features. These methods are

in general faster than perturbation-based methods since they

usually require a single or constant number of queries to the

neural network (independent of the number of input fea-

tures). Some examples include Guided Backprop [24], De-

ConvNet [29], Integrated Gradients [26], Layer-wise Rel-

evance Propagation [3], SmoothGrad [23], Deep-Lift [20],

GradCAM [19], Gradients*Input [21], and others [15, 16].

The method proposed in this paper, XRAI, falls within this

family of attribution methods.

Recently, the reliability and validity of saliency meth-

ods have been critically examined. In particular, researchers

have discovered that many saliency maps are fragile against

adversarial attacks [11]. Adebayo et al. [1] introduced a set

of sanity checks for saliency methods to ensure they pro-

duce valid results. Specifically, they introduced two gen-

eral classes of sanity checks: similarity metrics and vi-

sualizations. In applying these checks, they found that

some saliency methods produce similar outputs regardless

of whether a model is trained or completely random. This

result indicates that some saliency methods’ results cannot

be considered completely reliable explanations for a trained

model’s behavior. In the context of this paper’s research,

they found that Integrated Gradients did not convincingly

pass the visualization sanity check. As we show later, our

technique introduces some key modifications to Integrated

Gradients that enables it to successfully pass this sanity

check.

Our measurement methods are related to the smallest

sufficient region, where the goal is to find the smallest re-

gion such that the prediction is the correct class [8]. How-

ever, we do not constrain the measurement to the smallest

region and formulate our metrics as importance ranking of

all regions in the image with respect to their attribution. Al-

though the smallest sufficient region gives a high level in-

sight, it fails to capture less important but potentially useful

or problematic regions in the image.

3. Perturbation Sanity Check

In this section, we propose an axiom that functions as a

sanity check for the attribution methods. While this axiom

motivated XRAI (described in the next section), it is appli-

cable to any attribution method.

Axiom 1 Perturbation-ǫ: Given ǫ, for every feature xi in

an input x = [x1, ..., xN ] where all features except for xi

are fixed, if the removal (setting xi = 0) of feature xi causes

the output to change by ∆y, then Perturbation-ǫ is satisfied

if the inequality attr(xi) ≥ ǫ ∗∆y is satisfied.

This axiom can be seen as a relaxation of Sensitivity-1

from [2]. More specifically, the right and left sides of the

inequality are exactly equal to each other for ǫ = 1 when

Sensitivity-1 is satisfied. Note that even for cases when

Sensitivity-1 is not satisfied, this axiom should be satisfied

for a large enough 0 < ǫ ≤ 1 since this implies that the

features that change the output after removal should have

non-zero attributions.

We propose a simple simulation to test this axiom. A

neural network ideally learns to approximate a function

f(x) for any input x. We can directly sample f with some

properties to test the axiom. For the sake of simplicity, as-

sume two pixel images where the input features are x1 and

x2. We define the function as:

f(x1, x2) =

{

1.0 if x1 = 127 and x2 = 127

uniform ∼ [0.0, 0.5] if x1, x2 ∈ grid

(1)

We use bi-cubic interpolation to obtain a smooth con-

tinuous function from a 20x20 grid in the range [0, 255].
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One instance of this function is illustrated in Figure 4. By

construction, this function peaks at (127, 127) and any small

change in x1 or x2 will sharply drop the classification score.

Specifically, any point on the grid except for (127, 127) is

less than 0.5, flipping the prediction to negative. For an at-

tribution method to satisfy Perturbation-ǫ for an ǫ ≈ 0, it

needs to attribute a small non-zero value to both x1 and x2

for all functions of the form defined in Equation 1. Our san-

ity check is then to sample many of these functions and test

the saliency method for each run. The saliency method fails

the test if there are some instances of this function where

the attribution of one or both of the input features is zero

(or ǫ close to zero, from the axiom).

We now show that some of the popular pixel-level at-

tribution methods do not pass this simple sanity check.

First, the gradient with respect to inputs at the peak is zero.

Therefore, it is easy to show that Gradient [22] and Gradi-

ent*Input [21] do not pass, and attribute zero to all features.

Even in the case of real networks, the gradient around the

peak can be non-zero but point to an arbitrary direction, fail-

ing the test with non-zero probability that grows with ǫ. It

has been previously observed that even when there isn’t a

peak, gradients fail at saturated areas [26]. Integrated Gra-

dients (IG) tackles this issue by using a baseline image and

computing the gradients along a path. By construction, IG

satisfies the Completeness property, which guarantees that

at least some features get non-zero attribution in the case

when the softmax value is non-zero.

Figure 4 shows the attribution values of x1 and x2 for In-

tegrated Gradients. Surprisingly, Integrated Gradients can

have zero attribution for x1 or x2 in some cases, even when

the input is at the peak. This is problematic, because the at-

tribution of a very important pixel is heavily influenced by

the behavior of a neural network in regions that are far away

and not important for the classification around the peak.

We expect some degree of locality where far away behavior

should not affect the attributions for a particular input.

It is important to emphasize that for all generated func-

tions, both x1 and x2 are equally important around the

peak. The difference between the runs is due to the dif-

ferent model behavior outside the ”true label” classification

region. In practice, these differences in behavior can be

caused by different model weight initializations or learning

rates. A good attribution method should be immune to these

factors.

We observed that although individual pixels can be un-

reliable for Integrated Gradients, larger regions that cover

the objects of interest have more reliable attributions. Fig-

ure 6 shows an example of this phenomenon for an image

with a cat and a dog. Based on this observation, we pro-

pose a region-based method based on a modified version of

Integrated Gradients.

4. XRAI

In this section we first describe the XRAI algorithm, then

explain its behavior and validate its reliability. The high-

level steps to compute XRAI are shown in Algorithm 1.

Algorithm 1 XRAI

1: Given image I , model f and attribution method g

2: Over-segment I to segments s ∈ S

3: Get attribution map A = g(f, I)
4: Let saliency mask M = 0, trajectory T = []
5: while S 6= ∅ and area(M) < area(I) do

6: for s ∈ S do

7: Compute gain2: gs =
∑

i∈s\M
Ai

area(s\M)

8: end for

9: ŝ = argmaxs gs
10: S = S \ ŝ
11: M = M ∪ ŝ

12: Add M to list T

13: end while

14: return T

Segmentation We use Felzenswalb’s graph-based

method in the skimage python package [9] for segmenta-

tion. Segmentation methods usually have multiple sets of

parameters that change the number and the shape of the seg-

ments. We do not want the attribution results to depend on a

particular set of hyper-parameters or the quality of the seg-

mentation method. For this reason, we segment the image

multiple times using different parameter sets. More specifi-

cally, we use a scale parameter within the set [50, 100, 150,

250, 500, 1200] and ignore segments smaller than 20 pix-

els (the scale parameter mainly affects the size of the seg-

ments). For a single parameter, the union of segments yields

the entire image. Therefore, the union of all segments yields

an area equal to six times the image area, with the result be-

ing that individual segments overlap significantly.

Segment boundaries typically align with edges in the im-

age. To derive saliency maps, it is desirable that the seg-

ments include edges, since attributions on either side of a

thin edge are often related to each other. For that purpose,

we dilate the segment masks by 5 pixels to obtain our final

set of segments.

Attribution For attribution, XRAI uses Integrated Gra-

dients with black and white baselines. This choice is moti-

vated as follows.

With the Integrated Gradients technique, using a black

image as baseline reduces attribution of dark input pixels.

For example, the dark pixels on the beetle in Figure 5 are not

attributed, although they may be more important than the

2Both s \ M and s ∪ M are possible as gain functions. We report

results on union, but the subtraction can produce better results; see the

open source implementation for more details.
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Figure 4. IG pixel-level attributions are not reliable. Although any deviation from the input x1 = 127, x2 = 127 has significant impact on

the output score, integrated gradients may assign 0 attribution to either one of the pixels.

Figure 5. Black baseline IG fails to attribute center of the black

beetle, attributing bright background pixels instead (center). The

B+W baselines result in attribution of both bright and dark pixels

(right).

brighter ones. In fact, an RGB value of (0, 0, 0) will receive

exactly 0 attribution. This is apparent from the Integrated

Gradients’ formula:

IGi(x) = (xi − x′
i)

∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xi

dα (2)

where (xi − x′
i) is the difference between the input pixel i

and the corresponding baseline pixel.

More generally, any single baseline integrated gradient

will be insensitive to pixels that are equal or close to the

baseline image. One alternative in practice is to use multiple

random baselines. This approach has two drawbacks. First,

the resulting saliency maps are not consistent and change at

every run due to the randomness of the baseline. Second,

this method is more likely to introduce patterns that cause

spurious attributions due to random weighing of pixels with

respect to their closeness to the random baseline.

To address these issues, XRAI uses black and white

baselines. In this way, the sum of the weight term for any

pixel in the image is guaranteed to be 1.0 since |x− 1.0|+
|x − 0.0| = 1.0 ∀x ∈ [0.0, 1.0], where x is the input

pixel value and 1.0 and 0.0 correspond to black and white

baselines. Therefore, all pixels get an equal chance of con-

tributing to the attributions regardless of the distance from

the baselines. In addition, this method produces consistent

saliency maps.

Selecting regions To select regions, XRAI leverages the

fact that IG satisfies Sensitivity-N [2], where the sum of all

attributions for an input is equal to the input softmax value

minus the baseline softmax value. Given two regions, the

one that sums to the more positive value should be more

important to the classifier. From this observation, XRAI

starts with an empty mask, then selectively adds the regions

that yield the maximum gain in the total attributions per

area. The algorithm runs until it obtains the full image as

the mask or runs out of regions to add. One can see the tra-

jectory of masks as the importance ranking of the regions.

Figure 6. (Left) A single image that contains both “cat” and “dog”

and attributions calculated w.r.t. object class “cat”. Although there

are negative and positive pixel level attributions, the overall sum

of IG attributions within the bounding box of the “cat” is positive

and the bounding box of the “dog” is negative. XRAI uses that

information to find truly salient areas. (Right) Gradients taken

for the image with respect to the “cat” class. Regardless of the

selected class, gradients act as an edge detector and attribute both

objects.

It has been reported that it is easier for humans to under-

stand regions instead of pixels [27]. Methods such as Grad-

CAM have regions with inherent smoothing due to map-

ping from a lower resolution convolutional layer to the in-

put layer. Although they produce smoother regions due to

this effect, it is usually a side effect. XRAI also constructs
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smooth areas, which typically encapsulate the whole object

by merging salient segments. While the segments XRAI

produces often correspond to human intuition about what

constitutes a semantically meaningful region, there is noth-

ing explicitly encoded in XRAI’s algorithm to choose seg-

ments that align with how humans perceive images.

4.1. XRAI: Behavior and validation with sanity
checks

In this section, we describe the features of XRAI that

help to create reliable output, as well as how it is more ro-

bust against sanity checks described in Section 3 and Ade-

bayo et al. [1].

Gradient-based methods work by measuring the sensi-

tivity of model output with respect to changes in individual

input features. This is accomplished by taking the partial

derivative ∂f
∂xi

of input feature i. The partial derivatives

do not directly reveal whether a particular input feature is

contributing to a predicted class or not; they merely show

whether the changes in the input change the model predic-

tion. As a result, some of the features may not be relevant

to the predicted class but still have high attribution.

An example of this issue can be demonstrated with an

image of a cat and dog Figure 6. Even if a model classifies

the image as containing a cat, the derivatives of the dog pix-

els produce non-zero attributions since removing the dog

changes the cat prediction. This happens because remov-

ing the dog reduces the softmax output associated with the

dog class. As a result, the softmax output of the cat in-

creases. Due to this limitation, gradient-based methods can

act as edge detectors [1] by attributing any high contrast re-

gions that change the softmax output of any of the possible

classes, including classes different from the prediction.

XRAI addresses this issue by identifying regions that

are relevant to the predicted class and discarding irrelevant

ones. It is inspired by the “Completeness” properties of IG

[26], which states that the sum of all attributions is equal

to the difference between the model output at the input x

and the baseline x′. That means that the image regions that

truly contribute to the predicted class should have high pos-

itive attribution; regions that are unrelated to the prediction

should have near-zero attribution; and regions that contain

competing classes should have negative attribution. This

quality can be demonstrated with Figure 6 as well. If we

start with an empty image and add the region with the cat,

the output of the model will change from near 0.0 to 1.0.

Thus, due to the “Completeness” properties, the delta of the

attributions must be positive. The introduction of the region

with the dog causes the output of the model to drop from 1.0
to 0.6, thus changing the attributions by −0.4. Likewise, if

changing the background does not change the model pre-

diction, the attribution of the background is near-zero.

XRAI also addresses the reliability issue of individual

pixels (Section 3) by combining individual pixels into a

group of pixels. As Figure 4 shows, even though the at-

tribution of individual pixels x1 and x2 are unreliable, their

combination always adds up to 1.0.

Adebayo et al. [1] raise valid concerns about the relia-

bility of saliency methods in general, and propose an image

similarity-based sanity check that checks the similarity of

the saliency map as they gradually randomize the layers of

a neural network. The test fails if the saliency method pro-

duces very similar attribution maps for random and trained

neural networks, showing that the attributions are not corre-

lated to the trained model. An analysis of IG suggests that

its attributions for random networks are uncorrelated with

those of trained networks [25]. Our method operates on top

of IG’s outputs, which shows that if IG is dependent on the

model, then XRAI will depend on it as well. Adebayo et

al. also suggest performing a visual analysis for attribu-

tions from a random and trained neural network. Figure 7

demonstrates that IG with Black and White baselines passes

this test.

Figure 7. Attributions produced by IG with black+white base-

lines for a network trained with random labels (left) versus at-

tributions for network trained with correct labels (right). When

black+white baselines are used, the random network attributes ran-

domly, whereas the trained network attributes digit pixels. There-

fore, IG with black+white baselines passes the sanity check [1].

5. Assessing Attribution Quality Through

Blurring and Iterative Testing

Conducting quantitative evaluations of attribution meth-

ods is desirable but challenging. One of the primary diffi-

culties with saliency methods is that, unlike many machine

learning tasks, there is no ground truth for comparison,

which makes it difficult to obtain precise numerical results.

One common practice to address this challenge is to find the

smallest subset of features that yield the correct classifica-

tion [8]. If the saliency method is in fact identifying pixels

important to the model’s prediction, this should be reflected

in the model’s output for the reconstructed image (e.g., the

model should predict the same class as in the original im-

age). However, the nonlinear nature and high dimension-

ality of neural networks also make it difficult to assess the

effect of a subset of features on the output in isolation. For

example, it has been observed that merely masking the im-

age pixels out of the region of interest causes unintended
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effects due to the sharp boundary between the masked and

salient region [8]. It is therefore crucial to minimize such

adversarial effects when testing for the importance of a fea-

ture subset.

Figure 8. XRAI (2nd row) compared to Integrated Gradients with

random baselines (3rd row) and GradCam (bottom row). Grad-

Cam can produce blobby regions, whereas XRAI tend to create

regions tightly bound around identified objects.

Based on these observations, we start with a blurred ver-

sion of the image (effectively removing information from

the image, see Fig. 3), add back the pixels the saliency

method determines are important, measure the entropy of

the resulting image, and performing classification on this

new image. Model results (e.g., accuracy) are then mapped

as a function of the calculated entropy, or information level,

for each input image (the rationale for using image entropy

is expanded below). We call the resultant plots Performance

Information Curves (PICs). These plots allow one to more

easily compare saliency methods.

The strategy of gradually re-introducing content and

monitoring model outputs has the additional advantage of

revealing the most important pieces for the model’s predic-

tion, the next-to-most important pieces, and so on. For ex-

ample, imagine an image with a husky in the foreground

and snow on the background. Even when the husky is the

most important region and leads to correct classification, it

is valuable for the practitioner to discover that the back-

ground snow is also an important region. In addition, start-

ing with a blurred image instead of directly masking the

salient pixels produces more realistic images. As observed

in Figure 3, the resulting images look like real images with

the bokeh effect. From this point on, we will refer to the

blurred images with focused salient regions as bokeh im-

ages.

PICs are similar in spirit to ranking methods based on

the smallest sufficient region [8], but provide a more com-

plete view of a saliency method’s quality. To produce a PIC,

we aggregate the performance per information level over all

the samples in a dataset. The area under PIC, then, is used

to measure the performance of a saliency method. In this

sense, our measurement can be seen as analogous to the area

under Receiver Operating Characteristics (ROC) curves in-

stead of comparing the threshold at which a model has most

accuracy.

We propose two variants of PICs that vary in the mea-

sure of performance: Accuracy Information Curve (AIC)

and Softmax Information Curve (SIC). For AIC, the y-axis

is the accuracy calculated over all the images for each bin

of image information level. For SIC, the y-axis is the pro-

portion of the original label’s softmax for the bokeh versus

the softmax for the original image.

Using Information Level for Plots In plotting the quality

of a saliency map, one could potentially map the calculated

values (accuracy or softmax) as a function of the amount of

original content re-introduced in the bokeh image (or, more

generally, the proportion of the area of the saliency mask

to the area of the image). However, this approach heavily

penalizes saliency methods that produce connected and co-

herent regions. This is because a grainy saliency map can

span a significant area of the image for the same number of

pixels. This is counterintuivite from a human understanding

standpoint, since it is known that cluttered representations

result in higher cognitive load [27]. A small number of pix-

els representing edges can also convey more information

than pixels in smooth regions (e.g., a sketch of a cat is easy

to recognize compared to a little patch of fur on the cat, even

when they may contain the same number of pixels).

To address these issues, we use the entropy as the infor-

mation content in the image, and plot results as a function

of the amount of information in the input image. The com-

pressed size of an image can serve as a useful proxy for

the approximate entropy of an image, as it is not feasible

to exactly measure it. We use WebP [12], a popular lossless

image compression format, and define the information to be

the proportion of the compressed size of the bokeh image to

the original image.

6. Experiments

In this section, we evaluate and compare XRAI to other

popular saliency methods on ImageNet validation images

[18] using the measuring framework described in Section

5, as well as through visual inspection. We show that the

rankings of all the methods with respect to our measur-

ing framework align with general consensus, validating the

framework’s effectiveness.

6.1. Area under SIC and AIC

Based on the results in Figure 9 and Table 1, we see that

our measurement method agrees with what can be visually

observed in Figure 10. Random saliency performs poorly

from the standpoint of prediction at all information levels.
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Figure 9. Median softmax information curves (SIC) (Left) and accuracy information curves (AIC) (Right) of various saliency methods for

models Inception [28] and Resnet50 [13], respectively. XRAI outperforms all other methods while GradCam follows closely.

Figure 10. A visual comparison of all methods at a fixed area threshold (20%). When the image is not totally focused on the object of

interest (Norfolk terrier), the edge method chooses many unrelated areas. IG with different baselines produce grainy images. XRAI chooses

both dogs and produces the correct prediction when fed back to the image.

Table 1. Area under curve for SIC and AIC for all methods.
Method Resnet50-V2 Inception

SIC AIC SIC AIC

XRAI 0.749 0.728 0.720 0.727

GradCam 0.760 0.727 0.703 0.724

IG (B+W) 0.575 0.579 0.601 0.634

IG (4-Rand) 0.623 0.636 0.595 0.638

IG (Black) 0.515 0.527 0.530 0.576

Grad 0.521 0.532 0.480 0.543

Grad*Input 0.315 0.392 0.298 0.409

Edges 0.473 0.552 0.403 0.514

Random 0.445 0.473 0.278 0.401

This shows that the predictive power is truly affected by

which pixels are chosen, and is not coming from the blurry

background image.

The random baseline IG and black and white (B+W)

IG are significantly better than the black baseline IG. The

black and white baseline IG has the advantage of producing

deterministic saliency maps as well as running faster than

4-random basline since the runtime is proportional to the

number of baselines.

6.2. Visual analysis

Figure 10 shows sample output for a number of popular

methods for a fixed area threshold on an image with two

dogs. The variants of IG perform relatively well, but create

grainy regions. Edges get more background attribution than

within the dogs. This image visually demonstrates that the

edge method typically only performs well when there is a

single object that takes most of the image, as the only edges

belong to the true object in that case.

Because of the good performance of GradCAM (as ob-

served empirically and visually), we provide a more de-

tailed comparison of XRAI with GradCAM in Figure 8. In

particular, GradCAM tends to pick one region and gradu-

ally expand it as the threshold is increased. In compar-

ison, XRAI can focus on multiple areas. This effect is

illustrated in Figure 8 with the images of a parrot, dog

and starfish where our method covers the object of inter-

est tightly, whereas GradCAM produces smooth circular re-

gions. We also observe that in the presence of multiple ob-

jects, GradCAM tends to focus on an area in between the

objects of interest. In the case of snails and birds, one can

see that the focus is shifted towards the second object when

the area threshold is not enough to cover both objects.

6.3. Weakly Supervised Localization

We also ran standard localization metrics [7] on the Im-

ageNet segmentation dataset. Table 2 shows XRAI outper-

forming IG and GradCam on all of the metrics. Interest-

ingly, the rankings are similar to our SIC and PIC metrics.

These results indicate that our evaluation methods can be

used as a proxy to localization tests when ground truth seg-

ments are not available for a dataset.

Table 2. ImageNet segmentation dataset localization metrics.
method: AUC F1 MAE

IG B 0.710 0.674 0.219

IG 4RND 0.709 0.674 0.223

IG B+W 0.729 0.681 0.216

GradCAM 0.742 0.715 0.194

XRAI 0.836 0.786 0.149

7. Conclusion

In this paper, we propose a perturbation-based sanity

check for saliency maps, a new algorithm that uses region

information to improve upon integrated gradients (XRAI),

and a novel way of measuring the quality of saliency meth-

ods. Through experiments and example output, we demon-

strate that XRAI is superior to many other methods. We

also show that our proposed measurement methods align

with visual observations and standard localization metrics.
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