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Imaging of crystalline phase distributions in heterogeneous materials, either

plane projected or in virtual cross sections of the object under investigation, can

be achieved by scanning X-ray powder diffraction employing X-ray micro beams

and X-ray-sensitive area detectors. Software exists to convert the two-

dimensional powder diffraction patterns that are recorded by these detectors

to one-dimensional diffractograms, which may be analysed by the broad variety

of powder diffraction software developed by the crystallography community.

However, employing these tools for the construction of crystalline phase

distribution maps proves to be very difficult, especially when employing micro-

focused X-ray beams, as most diffraction software tools have mainly been

developed having structure solution in mind and are not suitable for phase

imaging purposes.XRDUA has been developed to facilitate the execution of the

complete sequence of data reduction and interpretation steps required to

convert large sequences of powder diffraction patterns into a limited set of

crystalline phase maps in an integrated fashion.

1. Introduction

Similar to the use of X-ray fluorescence spectrometry or

energy dispersive X-ray spectrometry for the recording of

elemental maps of heterogeneous materials (Lombi et al.,

2011; Newbury & Ritchie, 2013), X-ray powder diffraction

(XRPD) can be employed for the mapping of crystalline phase

distributions (De Nolf et al., 2011; Manceau et al., 2002).

Although this has been technically feasible for two decades by

using monochromatic pencil beams (most often at synchrotron

beamlines) in combination with area detectors and motorized

sample stages, relatively few studies report the practical use of

this analytical method. This may be attributed to some of the

limitations of XRPD imaging. The need for a focused X-ray

beam geometry decreases the sensitivity of XRPD imaging

(even at a synchrotron) with respect to traditional diffracto-

metry. Furthermore, XRPD data analysis relies on the

assumption that for every set of lattice planes there is an equal

volume of crystallites that contribute to their diffraction, an

assumption that is only met in the presence of many randomly

oriented crystals (‘ideal powders’). The first limitation

prevents trace components from being imaged, while the

second restriction limits the types of materials that can be

imaged, especially with micrometre or sub-micrometre spatial

resolution. The XRPD analysis tool presented in this paper

greatly expands the application area of XRPD imaging by

allowing ‘non-ideal powders’, with fewer crystallites in the

X-ray beam than typically required for successful XRPD

analysis, to be identified and imaged.

Two-dimensional scanning experiments, which yield plane-

projected crystalline phase distributions, most often find their

application in cultural heritage (Leon et al., 2010; Riekel et al.,

2010; Cotte et al., 2008; Welcomme et al., 2007; Sciau et al.,

2006; Lichtenegger et al., 2005; Dooryhée et al., 2005; Tamura

et al., 2002; Manceau et al., 2002; Rindby et al., 1997). A

summary of tomographic applications, in which crystalline

phase distributions in a virtual cross section of the object

under investigation were visualized, is given by Álvarez-

Murga et al. (2012). The term XRPD imaging will be used to

refer to both types of investigation, since from a data analysis

point of view they are very similar.

The difficulty of performing successful XRPD imaging

experiments is twofold. In order to compose images of

reasonable dimensions, typically thousands to tens of thou-

sands of diffraction patterns are recorded. The identification

of all crystalline phases present in such an extended series is a

daunting task when dedicated analysis tools are unavailable.

This is the first hurdle. Secondly, non-ideal powders (leading

to Debye rings that are visibly composed of individual Bragg

reflections as opposed to smooth Debye rings for ideal

powders) and peak overlap often render crystalline distribu-

tion maps difficult or impossible to interpret. Most published

XRPD imaging studies (not employing XRDUA) provide

distribution maps on the basis of single Bragg peak intensities,

which does not allow this problem to be tackled and is

therefore only applicable to ideal powders. Some studies do

take the entire diffraction pattern into account by combining

existing data analysis tools: Palancher et al. (2011) report the
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use of the Rietveld scaling factor as a mapping quantity,

Korsunsky et al. (2011) report the use of full pattern fitting for

the imaging of strain in dental prostheses, and Jacques et al.

(2013) report linear combination fitting of diffraction patterns

and modelling of their derived pair distribution functions.

Although full pattern analysis does improve treatment of non-

ideal powder data, XRDUA provides additional features that

allow for a more robust and less case-specific processing of

such data.

Since the start of its development in 2004 (De Nolf &

Rickers, 2005), XRDUA has evolved to become a research

tool that covers the entire data processing sequence from raw

diffraction data to crystalline phase distributions. Several

studies employing XRDUA have been published by the

authors, most often employing XRPD with micrometre spatial

resolution. In the field of cultural heritage, XRPD imaging of

paint fragment cross sections allowed the description of

pigment degradation pathways such as the blackening of the

red pigment mercury sulfide employed by, for example,

Rubens (Radepont et al., 2011) and the degradation of the

yellow pigment cadmium yellow used, for example, by Ensor

(Van der Snickt et al., 2009) and Van Gogh (Van der Snickt et

al., 2012). Next to analysis of paint fragments on a micro scale,

the use of XRPD imaging for pigment-specific hidden painting

investigations has been explored (De Nolf et al., 2011). Other

applications are the analysis of car paint (De Nolf & Janssens,

2010), the characterization of catalysts used in the production

of H2 from natural gas (Basile et al., 2010), uranium speciation

studies (Lind et al., 2013, 2009; Denecke et al., 2008) and the

characterization of monumental limestone protection treat-

ments (Vanmeert et al., 2013). Non-affiliated studies using

XRDUA have been reported: the characterization of cement

and cement hydration (Voltolini et al., 2013; Valentini et al.,

2011; Artioli et al., 2010), partial decomposition of TiH2

(Jiménez et al., 2012), and phase transformations of zirconia-

based dental prostheses (Mochales et al., 2011).

In this article, an overview will be given of the capabilities of

XRDUA while highlighting several critical aspects of the data

analysis process of the investigations mentioned above.

2. Targeted experiments
A schematic representation of a typical micro-XRPD

(m-XRPD) imaging experiment at a synchrotron beamline is

shown in Fig. 1. The combination of a monochromator with

appropriate focusing optics (De Nolf et al., 2009) yields a

monochromatic (low-divergence) pencil beam which, after

diffraction from crystalline material with crystal sizes that are

two or more orders of magnitude smaller than the beam size,

causes Debye rings to appear on a flat X-ray-sensitive area

detector. This transmission arrangement is more common than

reflection geometry as the elongated footprint of the X-ray

beam on the sample in reflection geometry reduces the spatial

resolution with respect to transmission geometry and distorts

two-dimensional scanning images. X-ray optics such as Kirk-

patrick–Baez (K–B) mirror systems can compensate for this

anisotropy in beam footprint at the cost of a reduced flux and

therefore a reduced sensitivity with respect to a transmission

geometry with the same spatial resolution. Furthermore,

positioning a sample at the same distance from the detector as

the calibration standard employed to determine this distance

(discussed in x3.1) is practically harder to achieve in reflection

geometry than in transmission geometry. Changes in sample–

detector distance make identification of crystalline phases in a

diffraction pattern difficult or impossible, depending on the

magnitude of the resulting shifts in Bragg peak positions. In

diffraction pattern fitting, however (discussed in x3.4), the

exact sample–detector distance can be determined by

XRDUA for each phase, similar to the zero-shift refinement

for diffractometers included in traditional Rietveld refinement

software.

A two-dimensional scanning experiment consists of the

stepwise movement of the object under investigation, in a

plane that is (usually but not necessarily) perpendicular to the

primary X-ray beam, while recording diffraction patterns after

each step (Fig. 1a). Each pattern contains diffraction infor-

mation of all crystalline material present in the intersection

volume of the X-ray beam and the sample. The crystalline

phase maps that can be reconstructed from these data there-

fore represent plane-projected distributions. Alternatively, the
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Figure 1
Two-dimensional projective (a) and tomographic (b) scanning XRPD experiments in transmission geometry with the primary X-ray beam along the Z
axis of the sample coordinate system. The aim of these experiments is to visualize crystalline phase distributions projected on the scanning plane [XY
plane in (a)] or to visualize crystalline phase distributions in a virtual cross section of the object [YZ plane in (b)].
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vertical translation in the scanning experiment can be replaced

by a rotation around the vertical axis, i.e. the axis perpendi-

cular to the horizontal translation direction and the primary

X-ray beam (Fig. 1b). The resulting compound maps can be

converted by tomographic reconstruction algorithms to maps

that represent crystalline phase distributions in a virtual cross

section of the sample.

3. Data processing

Although many functionalities of XRDUA are also present in

different two-dimensional diffraction pattern analysis tools

and in powder diffraction analysis programs, in XRDUA they

are adapted specifically to the needs of XRPD imaging

experiments and integrated with one another to cover the

entire sequence of data transformations from raw diffraction

patterns to crystalline phase distribution maps. The different

steps in this process will be discussed in the order in which

they are usually performed. A more detailed description can

be found elsewhere (De Nolf, 2013).

3.1. Image corrections and calibration

The first task in processing two-dimensional diffraction

patterns is to relate their pixel values to a quantity that can be

theoretically described in terms of the diffracted intensity

from a powder (Appendix A) and to relate their position to

the geometrical variables in this theoretical description.

Unwanted artefacts can be removed from the diffraction

patterns manually (by masking off areas), by intensity

thresholding, or by an automated process in the case of zingers

(caused by radioactive decay and cosmic radiation) or

saturation (occurring in CCD cameras owing to over-

exposure). Background and/or dark current can be removed

by subtracting appropriate images or by applying a two-

dimensional analogue of peak stripping, an iterative filtering

algorithm originally developed to describe the background in

X-ray fluorescence spectra (Campbell et al., 1986). Spatial

distortions in tapered fibre optic cameras can be corrected

using a fiducial plate (Hammersley et al., 1996). Differences in

detector pixel response can be corrected by flat field correc-

tion (Hammersley et al., 1996).

Analogously to other two-dimensional diffraction pattern

analysis software, patterns of diffraction standards can be used

for determining the experimental parameters that allow the

assignment of scattering angle (2�), d spacing (d) and scat-

tering vector length (Q) values to any point in the detector

plane (see Appendix B). The calibration process can be based

on a powder diffraction file from a database, on a list of d

spacings or on d spacings manually assigned to selected Debye

rings. These Debye rings can take the form of any conic

section (ellipse, hyperbola, parabola or line). Since the posi-

tion of the primary X-ray beam on the detector has been

chosen as one of the calibration parameters, a detector

orientation in which the detector plane is parallel to the

primary X-ray beam cannot be described. Amongst the cali-

bration parameters, two or three detector orientation para-

meters are usually considered, depending on the software

package used (Hammersley et al., 1996; Kumar, 2005). The

three-angle description causes the calibration problem to be

overdetermined so that an infinite number of solutions exist

with which the standard diffraction pattern can be described.

The two-angle description yields only one solution. As a

consequence, however, the azimuthal angle of the diffracted

radiation in the spherical coordinate system of the sample (see

Fig. 6 in Appendix A) is only known up to an azimuthal shift

(see Appendix B). To determine this shift, an additional

parameter can be supplied in XRDUA: the azimuth of the

horizontal YZ plane (Fig. 1) in the detector image. At a

synchrotron beamline, this plane is often the plane of the

synchrotron storage ring.

3.2. Azimuthal integration

After image correction and calibration, the two-dimen-

sional diffraction pattern is subjected to an additional

correction (see Appendix A) whereby the recorded irradiance

per pixel (SI units: J m�2 s�1) is converted to radiant intensity

(SI units: J sr�1 s�1) by taking the distance of each detector

pixel to the sample and the angle between the detector surface

normal and the propagation direction of the diffracted

radiation into account (see Appendix C).

Finally, the azimuthal dependency of the radiant intensity is

removed by what is commonly known as azimuthal integra-

tion, to obtain a traditional diffractogram as a function of

scattering angle 2�. Since not all Debye rings are fully covered

by a rectangular area detector, azimuthal averaging is

employed (see Appendix D). XRDUA also provides the

possibility to use the azimuthal median (50% percentile) or

any other percentile instead of the average. This will discard

single spots from large crystals that happen to be in Bragg

orientation at certain positions and orientations in a scanning

experiment, which may distort the relative Bragg peak

intensities significantly. This problem is commonly encoun-

tered when employing a micrometre-sized X-ray beam to

examine heterogeneous materials.

3.3. Explorative processing

To assist in identifying the crystalline phases present in the

diffraction patterns of a two-dimensional scanning or tomo-

graphic XRPD data set and to provide immediate feedback on

the data collected during an experiment, XRDUA incorpo-

rates an automated data processing mode called explorative

processing. The only information needed to start such a

process is the geometrical parameters determined by calibra-

tion, the settings of the required image corrections, the

dimensions of the scan and the location where diffraction

images will be saved (or are already present). The process

converts raw two-dimensional diffraction patterns to one-

dimensional diffractograms (see Appendix D). Meanwhile,

regions of interest (ROIs) can be selected in 2� space in order

to plot their intensity as a distribution map (see Fig. 2).

Comparing different ROI maps allows for finding correlations

between different Bragg peaks, although correlated maps do
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not necessarily represent the distribution of a single phase. In

the painting analysis example of Fig. 2, the Bragg peaks with

similar intensity distribution maps originate most likely from

one pigment or ground layer material used in the painting, but

not necessarily from one chemical compound; in the case of

paintings, it is conceivable that pigments are mixed or degra-

dation products formed over time. Single diffraction patterns

(one-dimensional or two-dimensional) can be investigated

from pixels within these ROI maps or averaged over an area

determined by intensity thresholding of these maps (see

Fig. 3). An alternative to the average diffraction pattern is the

superimposed diffraction pattern, in which the resulting 2�-bin

intensities (one-dimensional) or pixel intensities (two-dimen-

sional) are the maximum of the 2�-bin or pixel intensities of

the individual diffractions patterns. The average has the

tendency to suppress the contribution of large single crystals

as their diffraction spots appear and disappear in the diffrac-

tion patterns originating from different areas in the scan. This

suppression is useful for the identification of fine-grained

phases with the occasional larger crystals, as the relative Bragg

peak intensities in the averaged diffraction pattern will be

closer to the ones of an ideal powder. In contrast to the

average diffraction pattern, the

superimposed diffraction pattern

preserves the intensities of all

diffraction spots that appear in each

individual diffraction pattern. This can

be employed to identify coarsely

grained phases as more crystal orien-

tations are present in the super-

imposed diffraction pattern than in

the individual diffraction patterns. As

a result, the relative Bragg peak

intensities of a coarsely grained phase

in the superimposed diffraction

pattern will be closer to the ones of an

ideal powder than the relative Bragg

peak intensities in individual diffrac-

tion patterns.

3.4. Identification and modelling

Aided by the explorative proces-

sing, a mathematical model can be

constructed that will allow the auto-

mated fitting of all diffractograms in a

scan by a combination of ‘structural’

and ‘structureless’ Bragg peak groups.

The identification of all crystalline

phases relies on powder diffraction

database searches (Faber & Fawcett,

2002) based on single diffraction

patterns selected in an intelligent way

from ROI maps as described above.

Identified phases can be added to the

model used by XRDUA to fit diffrac-

tograms (see Appendix D):

Irietð2�Þ ¼ Ibkg 2�ð Þ

þ
P

j

Sj
P

H

F2
jHCjH�̂�j 2� � 2�jH

� �

: ð1Þ

This model contains a background

term Ibkgð2�Þ and a linear combination

(summation over j with coefficients Sj)

of peak groups in which the shape of

each peak is described by a profile

function �̂�j. Each group j contains the

Bragg peaks of one crystalline phase;
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Figure 2
Explorative processing of scanning XRPD data (beamline ID15, ESRF, Grenoble, France): (1) point-
wise scanning of an object through a focused X-ray beam to raster the field of view, acquiring a
diffraction pattern for each pixel; (2) online correction and azimuthal integration of raw data; (3)
online extraction and update of representative patterns (e.g. average or superimposed); (4) online
extraction and update of Bragg peak intensity maps with linear background subtraction; (5)
comparison of these maps to determine particular pixels or regions from which diffraction data should
be combined (e.g. average or superimposed) for identification purposes.
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the index H runs over the different diffraction peaks within a

group. The factor Sj denotes the total peak intensity scaling

factor of each phase, FjH denotes the structure factor and CjH

contains the part of the Lorentz–polarization factor that is not

removed during azimuthal integration (see Appendix D).

Peak shapes (�̂�j) can be described by any of the following

functions: Gaussian, Lorentzian, pseudo-Voigt, split pseudo-

Voigt, Thompson–Cox–Hastings pseudo-Voigt and Pearson

VII. Profile shape parameters (width, mixing parameter, decay

parameter etc.) can be fitted as independent parameters, or

they can be described as a function of

scattering angle 2� using an empirical

relation such as the well known

Cagliotti peak width function. If the

X-ray source has more than one emis-

sion line, each Bragg peak in each peak

group included in the model is multi-

plied accordingly.

When phase identification yields a

complete crystal structure, peak posi-

tions (2�jH) and relative intensities

(F2
jH CjH) are parameterized as a func-

tion of the sample–detector shift, the

unit-cell parameters, and the fractional

coordinates, site occupation factors and

isotropic displacement parameters of

the atoms in the asymmetric unit. The

sample–detector shift is the difference

between the position of the calibration

standard and the position of the sample,

which generally changes during a

scanning experiment. The number of

(non-extinct) Bragg peaks and their

Miller indices are determined on the

basis of a given space group setting

selected from the 530 settings listed in

International Tables for Crystal-

lography (Bertaut, 2006). Parameters

can be constrained during fitting by

absolute box constraints (composed of

the minimum lower and maximum

upper values a parameter can take) or

by box constraints relative to the initial

value. Additionally, atomic positions

can be restricted according to their

Wyckoff position. The nonlinear least-

squares refinement based on a model

which contains peak groups that are

parameterized in this way is commonly

known as Rietveld refinement; there-

fore a group of Bragg peaks originating

from a compound with known crystal

structure is referred to as a Rietveld

model.

Powder diffraction databases often

contain information on the space-group

symmetry and the unit-cell dimensions

of a compound without any atomic

information. Instead, relative peak

intensities are supplied. A group of

Bragg peaks based on this information

is referred to as a Pawley model. Since
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Figure 3
Fitting model construction by sequential replacement of structureless PD models by Rietveld
models, based on the information presented by XRDUA after (and during) explorative processing.
Data were collected at beamline ID15 (ESRF, Grenoble, France).
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Bragg peaks are still determined by space-group symmetry,

their positions are still parameterized by the sample–detector

distance and the unit-cell parameters. On the other hand, the

relative intensities (given by the product F2
jHCjH in the Riet-

veld model) are now parameterized by considering squared

structure factors F2
jH as independent fit parameters and not as

a function of atomic parameters.XRDUA allows, however, the

preservation of the relative peak intensities from the database,

in which case the scaling factor Sj is used as the only opti-

mizable parameter to describe peak intensities, just as in a

Rietveld model. A Rietveld model can always be converted to

a Pawley model in those cases where the atomic parameters

are considered to be fixed.

Finally, when phases cannot be identified, peaks can be

grouped together on the basis of explorative processing and

integrated into the model without any structural information

associated. In this case, both relative intensities (F2
jH) and peak

positions (2�jH) become independent fit parameters, and the

number of peaks is no longer determined by space-group

symmetry. Just as the Bragg peak intensities within one group

of peaks can be described by one scaling factor Sj if desired, so

can the Bragg peak positions be described by the sample–

detector shift and an isotropic unit-cell deformation factor,

which describes an isotropic increase or decrease in the unit-

cell volume without knowledge of the actual dimensions of

this unit cell. A group of Bragg peaks that does not require

any structural information is referred to as a pattern decom-

position (PD) model. A Pawley model can always be

converted to a PDmodel if the unit-cell parameters are known

and considered to be constant.

To construct a fitting model that can describe all diffraction

patterns in a scan, peak groups are sequentially added to this

model until all Bragg peaks in the diffractograms extracted by

explorative processing are described. During such a sequential

identification process, PD groups are often used to describe

those peaks that are still unidentified, after which these peak

groups are exported from XRDUA to be used in PDF data-

base (http://www.icdd.com/) searching, thereby removing the

peaks in the diffractogram that have already been identified

and avoiding peak overlap problems. Either a list of peak

positions and intensities can be extracted or the refined 2�

profile of one or more PD groups can be exported as a one-

dimensional diffractogram.

This iterative process is illustrated in Fig. 3 for the projec-

tive XRPD scan that has been pre-processed in Fig. 2. First the

compounds that are associated with the most intense Bragg

peaks in the entire map are identified (marked green in Fig. 2).

By comparing the ROI intensity maps, it can be seen that the

intensity distribution maps of those peaks all resemble ROI

map 8. A database search of the diffraction pattern that

corresponds to the most intense pixel of this map (Fig. 3a),

reveals the presence of zincite (ZnO) and a minor component

(calcite, CaCO3). Both compounds are constituents of the

ground layer of the scanned painting. To identify the other

crystalline phases present, a set of Bragg peak intensity maps

with different distributions is selected during the explorative

processing. For each of these maps, the average of the

diffraction patterns that correspond to pixels with an intensity

above an appropriate threshold is calculated. In Fig. 3(b), one

of the distribution maps that visualize the strawberries in the

illustration is chosen (ROI map 4). The superposition of the

diffraction patterns that belong to pixels with an intensity

above 50% of the maximum intensity is fitted with the struc-

tural model that was constructed so far, including zincite and

calcite. The unindexed Bragg peaks are added to a PD model,

after which the pattern is fitted again. In this case, a database

search on the fitted PDmodel (which can be converted to a list

of d spacings or a diffraction pattern, depending on what is

expected by the database software) yields only one compound,

namely the red cinnabar (HgS). With a model that now

contains three Rietveld models (zincite, calcite and cinnabar),

the compound(s) that are distributed as shown in ROI map 6,

are identified (Fig. 3c). An 80% intensity threshold is

employed to calculate the representative diffraction pattern as

a result of the lower signal-to-noise ratio in map 6 compared to

map 4. On the basis of the small peaks that could not be fitted

by the model which already includes the previously identified

phases, the presence of hematite was revealed.

This iterative fitting and identification process allows for a

systematic and robust construction of a model that can be used

for autonomous fitting of the entire data set (see Fig. 3d). It is

systematic in the sense that the entire 2� range is scanned for

distributions that would often not be discovered via the use of

statistical data mining approaches such as principal compo-

nent analysis (Stumpe et al., 2012). It is robust in the sense that

the presence of small unidentified peaks is clearly brought to

the attention of the experimentalist, minimizing the chance for

minor compounds to be overlooked. While adding structures

to the fitting model after identification, peak shapes and

constraints of the corresponding parameters can be deter-

mined phase by phase, thereby increasing the robustness of

the final model that is used to fit all measured diffraction

patterns.

In the case where some phases cannot be identified [such as

the green pigment in Fig. 3(d)], the structureless PD model

remains part of the fitting model, so that at least a distribution

map can be extracted from the data. The investigation of

possible peak overlap, single reflections in the two-dimen-

sional diffraction patterns and relationships between uniden-

tified peaks are all issues that should be carefully investigated

in such cases.

3.5. Crystalline phase distribution maps

Automatic fitting of diffraction patterns with the model

described above yields a distribution map for each indepen-

dent fit parameter in this model. For imaging purposes (the

most common application of scanning XRPD), the maps of the

total intensity scaling factors Sj are used, since Sj is propor-

tional to the total volume of scattering material (provided

attenuation can be neglected). Two examples of the resulting

phase abundance maps are shown in Fig. 4. In the first example

(Fig. 4a), the scaling factor maps of all identified pigments and

grounding compounds in a physical cross section of a paint
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fragment embedded in resin allow for the visualization of the

layered composition of the fragment. The same can be

achieved with tomography when physical cross sectioning of

the materials under investigation should be avoided (Fig. 4b).

Note that the use of structureless models allows for the

mapping of unidentified phases or non-Bragg diffracting

phases such as the support used to fix the paint fragment for

tomography in Fig. 4(b) (the red distribution, reconstructed

from a PD model describing the fibre diffraction of the

supporting polymer tape).

Different tomographic reconstruction algorithms are

implemented in XRDUA (De Nolf, 2013) to convert Y!

scaling factor maps to YZ maps (see Fig. 1). The algebraic

reconstruction technique (Kak & Slaney, 2001), the simulta-

neous algebraic reconstruction technique (Kak & Slaney,

2001) and ordered subset expectation maximization (Hudson

& Larkin, 1994), together with filtered back projection (Toft,

1996), have the advantage of fast convergence and the ability

to visualize sharply aligned features, but the disadvantage of

adding noise to the final distribution maps. The maximum

likelihood expectation maximization algorithm (Shepp &

Vardi, 1982) and the simultaneous algebraic reconstruction

technique (Kak & Slaney, 2001) on the other hand reduce

noise, are robust in the presence of artefacts in the Y! maps

(common in m-XRPD tomography, as rotation will cause some

larger crystals to be oriented in Bragg orientation at some

angle) but smooth out sharply aligned features (De Nolf,

2013).

As an example, the results of a tomography experiment on

an Rh-coated alloy are given in Fig. 5. A metallic foam

consisting of an FeCrAlY alloy was electrochemically coated

with rhodium, magnesium and aluminium. The result is used

as a catalyst in the production of hydrogen from natural gas

(Basile et al., 2010). A single strut was isolated from the foam

and subjected to XRPD tomography to study the phase

composition of the coating: catalytically active Rh0 is present

next to corundum (�-Al2O3), intended to protect the alloy

from further corrosion, and a spinel phase (MgAl2O4) that is a

leftover product of the coating process.

4. Installation and usage

XRDUA is written in Interactive Data Language (IDL) and is

released under the GPLv3 license. Both source code and
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Figure 5
Characterization of the catalytic coating on a metallic foam by means of
XRPD tomography. A single strut of 135 mm in diameter was isolated
from the foam, glued to the tip of a glass capillary and irradiated with a
18.7 keV X-ray beam focused by a K–B mirror system to 1.9 � 1.2 mm
(horizontal � vertical). The tomography experiment was performed at
the MicroXAS beamline (SLS, Villigen, Switzerland) with a translation
range of 180 mm with 1.5 mm step size (i.e. slight oversampling) and a
rotation range of 180� with 1.2� step size. The 18 271 diffraction patterns
were collected with 1 s exposures by a Pilatus 100K hybrid pixel detector
(Dectris).

Figure 4
Investigation of the layered composition of two different paint fragments,
the first by two-dimensional scanning of a physical cross section (a) and
the second by tomography of the paint fragment ‘as sampled’ (b). The
embedded paint fragment (a) was mapped at beamline PO6 (Petra III,
Hamburg, Germany) with a 21 keV X-ray beam focused by a K–B mirror
system to 0.4 � 0.4 mm (horizontal � vertical). An area of 127 � 91 mm
was scanned with 1 mm steps, yielding 11 430 diffraction patterns that
were collected with 1 s exposures by a Pilatus 300K hybrid pixel detector
(Dectris). The tomography scan (b) was performed at beamline L
(HASYLAB, Hamburg, Germany) with a translation range of 750 mm
with 15 mm step size and a rotation range of 180� with 1.2� step size. The
28.8 keV X-ray beam was focused with a single-bounce elliptical capillary
to 15 � 15 mm. The 3111 diffraction patterns were collected with an
exposure of 5 s by a MarCCD165 camera (Marresearch).
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executable (to be executed under the freely available IDL

Virtual Machine) are available from http://xrdua.ua.ac.be/.

5. Conclusions

In this contribution, a tool has been presented which covers

the complete data processing from two-dimensional powder

diffraction patterns to crystalline phase distributions. Since

X-ray powder diffraction is a well established method, several

tools already exist which cover different aspects of this

process. In practice, however, the actual reconstruction of

phase distributions from large numbers of diffraction patterns

proves to be very difficult for complex compositions, especially

on a micrometre scale. XRDUA has been shown to have the

ability to solve these issues by providing a phase identification

strategy and azimuthal integration and fitting methods

adapted to the processing of non-ideal powder patterns, taking

into account the entire diffraction pattern as opposed to single

Bragg peaks.

APPENDIX A

Diffracted intensity from a powder

The diffracted intensity (irradiance) of a monochromatic

X-ray beam from a powder under the kinematic approxima-

tion, taking into account self-absorption for a sample with

plate-like geometry (see Fig. 6) as derived by De Nolf (2013),

is given by

IdiffðR; ’; 2�Þ ¼ IbkgðR; ’; 2�Þ

þ
X

j

Sj

R2

X

H

F2
jH LPjHð’; 2�ÞAð’; 2�Þ �̂�jð2� � 2�jHÞ; ð2Þ

Sj ¼ Iin
r2e�

3Sbeam

8�U2
j

�j

�L

: ð3Þ

(R, ’, 2�): spherical coordinates as defined in Fig. 6 (radius,

azimuth, polar angle).

Idiff: diffracted irradiance (SI units: J m�2 s�1).

Ibkg: fluorescence or scattering not contributing to Bragg

scattering (SI units: J m�2 s�1).

j: index loops over the crystalline phases present.

H: Miller index.

FjH: structure factor.

LPjH: Lorentz–polarization factor.

A: attenuation factor.

�̂�j: normalized peak profile as a function of scattering angle 2�

at position 2�jH.

Sj: Rietveld scaling factor of phase j (SI units: J s�1).

Iin: irradiance at the sample of the incoming radiation (SI

units: J m�2 s�1).

�j: volume fraction of phase j with respect to the total sample

volume contributing to Bragg scattering.

Uj: unit-cell volume (SI units: m3).

�L: linear attenuation coefficient of the homogeneous plate-

like powder sample (SI units: m�1).

re: classical electron radius (SI units: m).

�: wavelength of the incoming radiation (SI units: m).

Sbeam: footprint area of the parallel X-ray beam with the plate-

like powder sample (SI units: m2).

In practice, the summation over H is reduced owing to the

presence of symmetrically equivalent reflections, thereby

introducing the well known reflection multiplicity factor. The

Lorentz–polarization factor for the geometry in Fig. 6 is given

by (De Nolf, 2013)

LPjHð’; 2�Þ ¼
Pð’; 2�Þ

sin � sin 2�jH
; ð4Þ

Pð’; 2�Þ ¼ 1� Kð’Þ þ Kð’Þ cos2 2�; ð5Þ

Kð’Þ ¼
1� Pmono cos 2’

2
; ð6Þ

Pmono ¼
sð1þ sPlinÞ � s cosm2�c

�

�

�

�ð1� sPlinÞ

ð1þ sPlinÞ þ cosm2�c
�

�

�

�ð1� sPlinÞ
: ð7Þ

P: polarization factor.

Pmono: part of the polarization factor depending on the

monochromator, with m ¼ 2n (n: number of monochromator

crystals) and s ¼ 1 for vertically and s ¼ �1 for horizontally

diffracting monochromators.

2�c: scattering angle from the monochromator crystals.

Plin: linear degree of polarization in the horizontal (YZ) plane

of the incoming radiation.

The attenuation of the incoming and diffracted beam for a

plate-like powder sample is described by the following

attenuation factor (De Nolf, 2013):
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Figure 6
Diffraction from a powder sample with plate-like geometry. The incoming
wavevector is denoted as k (red) while the diffracted wavevector is
denoted kscat (green). A point with coordinates (x, y, z) in the sample
coordinate system can be described in spherical coordinates (R, ’, 2�)
where ’ is the azimuth and 2� is the polar angle and also the scattering
angle since k coincides with the Z axis. Depending on 2� and on the
orientation of the surface normal nsurf, transmission geometry applies to
one part of a diffraction cone (path through the sample) and reflection
geometry to another part.
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Að’; 2�Þ¼

cos�s
cos �s � cos 2�s

exp �
�L

cos�s
xe

� �

1� exp �	Dð Þ½ �

ðcos 2�s 6¼ cos �sÞ;

�LD

cos 2�s
exp �

�L

cos �s
xe

� �

ðcos 2�s ¼ cos�sÞ;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð8Þ

cos �s ¼ cosð’� ’surfÞ sin 2�s sin 2� þ cos 2�s cos 2�; ð9Þ

	 ¼ �L

1

cos 2�s
�

1

cos�s

� �

: ð10Þ

2�s: polar angle of the surface normal of the plate-like powder

sample.

�s: angle between the surface normal and the scattering

direction, depending on the azimuth ’s of the surface normal.

D: thickness of the plate-like powder sample (SI units: m).

xe: for parts of a diffraction cone with transmission geometry

xe = D and for parts with reflection geometry xe = 0 (SI units:

m).

APPENDIX B

Calibration

The experimental parameters of an XRPD setup can be

calculated from the Debye rings of a known powder. The

detector orientation (�, �, 
) in the sample coordinate system

(see Fig. 7) cannot be completely determined as each set of

Debye rings can also originate from detector orientation (�0, 0,


 0), with (De Nolf, 2013)

cos �0 ¼ cos � cos �; tan 
 0 ¼
tan 
 tan�þ sin �

tan �� tan 
 sin �
: ð11Þ

The azimuth ’ of a point on an (�, �, 
)-oriented detector

plane is related to the azimuth ’0 of an (�0, 0, 
 0)-oriented

detector plane through an azimuthal shift �:

’0 ¼ ’þ �; sin � ¼ � sin �= sin �0: ð12Þ

The geometric parameters of a setup in the (�0, 0, 
 0)

geometry are related to the known d spacings dH of a

diffraction standard as follows (De Nolf, 2013):

tan2 2� ¼
�

ðxd cos 

0 þ yd sin 


0Þ
2

þ ð�xd sin 

0 þ yd cos 


0Þ
2
cos2 �0

�

=½tz � ð�xd sin 

0 þ yd cos 


0Þ sin �0�2; ð13Þ

xd ¼ pxðxpix � xcenÞ; ð14Þ

yd ¼ pyðypix � ycenÞ; ð15Þ

2� ¼ 2 arcsin½�=ð2dHÞ�: ð16Þ

xpix; ypix: coordinates of a point in the detector image (units:

pixel).

xcen; ycen: coordinates of the direct beam in the detector image

(units: pixel).

px � py: pixel size (units: m2 pixel�1)

xd; yd: coordinates of a point in the detector image with

respect to the direct beam (SI units: m).

tz: sample–detector distance (SI units: m).

The experimental parameters that can be determined by

recording a pattern from a diffraction standard are �, xcen, ycen,

tz, �
0 and 
 0. The parameters that need to be provided to the

program are the pixel size px � py of the camera and the

azimuthal shift � (required for the polarization and attenua-

tion factor in Appendix A). When a spatial distortion

correction is applied, the pixel size is calculated from the

distance between the holes in the calibration grid used for the

correction (Hammersley et al., 1994; De Nolf, 2013).

APPENDIX C

Measured intensity from a powder

The recorded diffraction pattern is related to the diffracted

irradiance (Appendix A) through the diffracted radiant

intensity as follows (De Nolf, 2013):

Jdiffð’; 2�Þ ¼ IdiffðR; ’; 2�ÞR
2

¼ Ibkgð’; 2�Þ

þ
P

j

Sj
P

H

F2
jH LPjHð’; 2�ÞAð’; 2�Þ �̂�jð2� � 2�jHÞ

¼ Icorðxpix; ypixÞJcorð’; 2�Þ; ð17Þ

Icor ¼
Idet � Idark

Iff � Idark
; ð18Þ

spherical : Jcorð’; 2�Þ ¼ Pff=ð4�Þ;

plane : Jcorð’; 2�Þ ¼ Pfft
2
z cos

2 �0= cos3  ;

none : Jcorð’; 2�Þ ¼ Pfft
2
z cos

2 �0=ðpxpy cos
3  Þ;

8

<

:

ð19Þ

 ¼ sin �0 sin 2� sin ’0 þ cos�0 cos 2�: ð20Þ

Jdiff : diffracted radiant intensity (SI units: J sr�1 s�1).

Idet: recorded diffraction pattern (units: detector units, DU).

Idark: recorded dark current image (units: DU).

Iff : recorded flat field image (units: DU).
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Figure 7
Relation between the sample and detector coordinate system.
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Pff (spherical): power of the spherical flood field (SI units:

J s�1).

Pff (plane): irradiance of the flat flood field (SI units:

J m�2 s�1).

Pff (none): conversion factor (units: J DU�1).

 : the angle between the detector surface normal and the

propagation direction of the diffracted radiation.

When using a flood field generated by a fluorescent material

at the sample position (approximately spherical), the angle

between the propagation direction of the diffracted beam and

the detector surface normal is intrinsically taken into account

when dividing by the flood field image. In the case of a plane

flood field (spherical field originating from a point far away

from the detector) the incident angle on the detector surface is

accounted for in the Jcor factor. However, the differences in

pixel sensitivity due to a different incident angle on the

detector surface are not corrected for. In the case where no

flat field correction is applied, differences in pixel sensitivity

are not levelled out, but the incident angle on the detector

surface is still taken into account.

APPENDIX D

Azimuthal integration

Conversion of the recorded diffraction pattern, or more

precisely the diffracted radiant intensity Jdiff as a function of

azimuthal and polar angle derived from it (see Appendix C),

to a one-dimensional diffractogram suitable for Rietveld

refinement is achieved by inverse mapping, in which the

diffraction pattern is interpolated on a (’, 2�) grid and after-

wards integrated along the azimuth ’. To facilitate the

azimuthal integration, the azimuth-dependent polarization

and attenuation factor are removed from Jdiff:

Japð’; 2�Þ ¼ Jdiffð’; 2�ÞA
�1ð’; 2�ÞP�1ð’; 2�Þ sin �

¼ Ibkgð’; 2�Þ þ
P

j

Sj
P

H

F2
jH CjH �̂�jð2� � 2�jHÞ; ð21Þ

CjH ¼ 1=sin 2�jH : ð22Þ

The part of the Lorentz term dependent on 2� is also

removed. Since the other part depends on the Bragg peak

position 2�jH, it is preserved in the factor CjH. Azimuthal

integration of Jap yields Iriet, which can be modelled using

Rietveld refinement:

Irietð2�Þ ¼
1

b� a

Z

b

a

Japð’; 2�Þ d’

¼ Ibkgð2�Þ þ
P

j

Sj
P

H

F2
jH CjH �̂�j 2� � 2�jH

� �

ð23Þ

or in the discrete case (with equally spaced azimuthal bins)

Irietð2�iÞ ¼
1

’n � ’1

X

n

j¼1

Japð’j; 2�iÞ�’ ¼
1

n

X

n

j¼1

Japð’j; 2�iÞ:

ð24Þ

The last expression shows that the diffractogram Iriet is

obtained by averaging Jap, which is sampled on a discrete (’,

2�) grid, over the azimuth ’. Averaging is used instead of

summation to handle Debye rings that are not completely

captured by the area detector.
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