EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

XRL/Woflan: Verification and extensibility of an XML/Petri-net-
based language for inter-organizational workflows

Citation for published version (APA):

Verbeek, H. M. W., Aalst, van der, W. M. P., & Kumar, A. (2004). XRL/Woflan: Verification and extensibility of an
XML/Petri-net-based language for inter-organizational workflows. Information Technology and Management,
5(1-2), 65-110. https://doi.org/10.1023/B:ITEM.0000008077.91413.86

DOI:
10.1023/B:ITEM.0000008077.91413.86

Document status and date:
Published: 01/01/2004

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1023/B:ITEM.0000008077.91413.86
https://doi.org/10.1023/B:ITEM.0000008077.91413.86
https://research.tue.nl/en/publications/e88ac068-5e4c-4e6a-bf82-499f6a6b88ec

ﬁ“ Information Technology and Management 5, 65-110, 2004
“ © 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

XRL/Woflan: Verification and Extensibility
of an XML/Petri-Net-Based Language
for Inter-Organizational Workflows

H.M.W. VERBEEK * and W.M.P. VAN DER AALST {h.m.w.verbeek;w.m.p.v.d.aalst} @tm.tue.nl
Department of Information and Technology, Faculty of Technology Management,
Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands

AKHIL KUMAR akhil @computer.org
Smeal College of Business, Pennsylvania State University, University Park, PA 16802, USA

Abstract. In this paper, we present XRL/Woflan. XRL/Woflan is a software tool using state-of-the-art
Petri-net analysis techniques for verifying XRL workflows. The workflow language XRL (eXchange-
able Routing Language) supports cross-organizational processes. XRL uses XML for the representation
of process definitions and Petri nets for its semantics. XRL is instance-based, therefore, workflow defi-
nitions can be changed on the fly and sent across organizational boundaries. These features are vital for
today’s dynamic and networked economy. However, the features also enable subtle, but highly disruptive,
cross-organizational errors. On-the-fly changes and one-of-a-kind processes are destined to result in er-
rors. Moreover, errors of a cross-organizational nature are difficult to repair. XRL/Woflan uses eXtensible
Stylesheet Language Transformations (XSLT) to transform XRL specifications to a specific class of Petri
nets, and to allow users to design new routing constructs, thus making XRL extensibe. The Petri-net rep-
resentation is used to determine whether the workflow is correct. If the workflow is not correct, anomalies
such as deadlocks and livelocks are reported.

Keywords: workflow, inter-organizational, verification, extensibility, XML, WF-net

Today’s corporations often must operate across organizational boundaries. Phenomena
such as E-commerce, extended enterprises, and the Internet stimulate cooperation be-
tween organizations. Therefore, the importance of workflows distributed over a number
of organizations is increasing [3,4,21,28]. Inter-organizational workflow offers compa-
nies the opportunity to re-shape business processes beyond the boundaries of their own
organizations. However, inter-organizational workflows are typically subject to conflict-
ing constraints. On the one hand, there is a strong need for coordination to optimize the
flow of work in and between the different organizations. On the other hand, the organi-
zations involved are essentially autonomous and have the freedom to create or modify
workflows at any point in time. These conflicting constraints complicate the develop-
ment of languages and tools for cross-organizational workflow support.

* Corresponding author.

66 VERBEEK, VAN DER AALST AND KUMAR

Recent development in Internet technology, and the emergence of the “electronic
market makers”, such as ChemConnect, Ariba, CommerceOne, Clarus, staples.com,
Granger.com, VerticalNet, and mySAP.com have resulted in many XML-based stan-
dards for electronic commerce. The XML Common Business Library (xCBL) by Com-
merceOne, the Partner Interface Process (PIP) blueprints by RosettaNet, the Universal
Description, Discovery and Integration (UDDI), the Electronic Business XML (ebXML)
initiative by UN/CEFACT and OASIS, the Open Buying on the Internet (OBI) specifi-
cation, the Open Application Group Integration Specification (OAGIS), and the BizTalk
Framework are just some examples of the emerging standards based on XML. These
standards primarily focus on the exchange of data and not on the control flow among or-
ganizations. Most of the standards provide standard Document Type Definitions (DTDs)
or XML schemas for specific application domains (such as procurement). One of the
few initiatives that also address the control flow is RosettaNet. The Partner Interface
Process (PIP) blueprints by RosettaNet do specify interactions using UML activity di-
agrams for the Business Operational View (BOV) and UML sequence diagrams for the
Functional Service View (FSV) in addition to DTDs for data exchange. However, the
PIP blueprints are not executable and need to be predefined. Moreover, like most of
the standards, RosettaNet is primarily focusing on electronic markets with long-lasting
pre-specified relationships between parties with one party (such as the market maker)
imposing rigid business rules.

Looking at existing initiatives, it can be noted that (until recently):

(1) process support for cross-organizational workflow has been neglected since lion’s
share of attention has gone to data and

(2) mainly pre-specified standardized processes have been considered (such as, market
places, procurement, and so on).

Based on these observations, we developed the eXchangeable Routing Language (XRL).
The idea to develop a language like XRL was raised in [26] and the definition of the
language was given in [9]. XRL uses the syntax of XML, but contains constructs that
embed the semantics of control flow. Moreover, XRL supports highly dynamic one-of-
a-kind workflow processes. For example, we consider the “first trade problem”, that is,
the situation where parties have no prior trading relationship [29]. Clearly, the “first-
trade problem” is the extreme case of highly dynamic one-of-a-kind workflow processes
and therefore also the most difficult. To support highly dynamic one-of-a-kind workflow
processes, XRL describes processes at the instance level. Traditional workflow modeling
languages describe processes at the class or type level [23,27]. An XRL routing schema
describes the partial ordering of tasks for one specific instance. The advantages of doing
so are that:

(1) the workflow schema can be exchanged more easily,
(2) the schema can be changed without causing any problems for other instances, and

(3) the expressive power is increased.

XRL/WOFLAN 67

The other side of the picture is that we have additional overhead, and management in-
formation is harder to obtain. The fact that the schema can be exchanged more easily
outweighs, in our opinion, the additional overhead. The management information dis-
advantage can be lessened for a great deal when we restrict ourselves to changes that
preserve a number of inheritance relations [6].

Workflow-modeling languages typically have problems handling a variable num-
ber of parallel or alternative branches [7]. In our research on workflow patterns [7],
we compared the expressive power of many contemporary workflow management sys-
tems including COSA, HP Changengine, Forté Conductor, I-Flow, InConcert, MQ Series
Workflow, R/3 Workflow, Staffware, Verve, and Visual WorkFlo using a set of workflow
patterns (see http://www.tm.tue.nl/it/research/patterns/). Based on the workflow pat-
terns supported by these systems, and their relative use in practice, we carefully selected
the most relevant constructs for XRL. As a result, many of the workflow management
systems mentioned above can be covered by XRL, which makes XRL a kind of least
common multiple of these systems.

As was shown in [9], the semantics of XRL can be expressed in terms of Petri
nets [34,35]. Unfortunately, this semantics did not allow for a direct use of these theo-
retical results and tools. This limitation was recognized in [10]. In this paper, we present
a direct transformation from XRL to so-called WorkFlow nets (WF-nets), that is, the se-
mantics of XRL is given in terms of WF-nets. WF-nets are a special subclass of Petri nets
which possess an appealing correctness notion (the soundness property [1]), are based
on strong theoretical results (such as, the link between soundness, liveness, and bound-
edness [1]), and are supported by powerful software (such as, the tool Woflan [40]).
The transformation has been implemented in XSLT (eXtensible Stylesheet Language
Transformations) and resulted in the tool XRL/Woflan.

XRL/Woflan builds on the workflow verification tool Woflan [39,40].
Developers of contemporary workflow management systems have virtually neglected
correctness issues. As a result, in most workflow management systems, it is possible
to design workflows which suffer from anomalies such as deadlocks and livelocks with-
out any form of warning. Few tools provide any form of workflow verification support.
The tools Woflan [40] and Flowmake [38] are two noteworthy exceptions. To compli-
cate matters, more and more workflow management systems are used to support inter-
organizational business processes, for example, in the context of Business-To-Business
(B2B) E-commerce. Especially for open E-commerce (that is, doing business among
parties having no prior trading relationship), the workflow support should be trustwor-
thy in the sense that trading partners who do not know each other, and may even come
from different countries and cultures, may conduct business with the assurance that their
interests will be protected in the event that “things go wrong”, whether by accident,
negligence, or intentional fraud [29]. One of the prerequisites for this is the guaran-
tee that the workflow process definitions do not contain any logical errors. Therefore,
XRL/Woflan, the verification tool presented in this paper, is highly relevant for develop-
ers of inter-organizational workflows.

68 VERBEEK, VAN DER AALST AND KUMAR

The remainder of this paper is organized as follows. Section 1 introduces XRL and
gives an example of how a workflow can be represented in XRL. Section 2 introduces
WF-nets. Then section 3 provides the formal semantics of XRL in terms of WF-nets.
Based on these semantics, section 4 discusses the soundness of XRL routes, proposes
a verification procedure that exploits the structural properties of certain XRL constructs
and Petri-net-based reduction rules [34], and presents our tool XRL/Woflan. Section 5
demonstrates the extensibility of XRL by showing how new constructs may be added
to XRL. Section 6 relates this paper to known research. Section 7 concludes the paper.
Appendix A shows the DTD of XRL after the extensions from section 5 have been added.
Appendix B shows the XRL route for processing a customer order that is introduced in
section 1.

1. XRL: An XML based routing language

The focus of this paper is on verification and extensibility. Therefore, we limit ourselves
to only a brief introduction to XRL and the workflow management system XRL/Flower.

1.1. Syntax of XRL

The syntax of XRL is completely specified by the DTD [16] shown in figure 1. An XRL
route is a consistent XML document, that is, a well-formed and valid XML file with top
element route (see figure 1).

The structure of any XML document forms a tree. In case of XRL, the root element
of that tree is the route. A route contains exactly one routing element. A routing element
(RE) is an important building block of XRL. It can either be simple (no child routing
elements) or complex (one or more child routing elements). A complex routing element
specifies whether, when and in which order the child routing elements are done.

XRL provides the following routing elements:

Task: Offer the given task to some resource and wait until the task has been performed.
Afterwards, set all associated events.

Sequence: Start the child routing elements in the given order and wait until all have
been performed.

<!ENTITY % routing_element
"task|sequence|any_sequence|choice|condition|parallel_sync|parall
el_no_sync|parallel_part_sync|parallel_part_sync_cancel|wait_all
wait_any|while_do|terminate">
<!ELEMENT route ((%routing_element;), event*)>
<!ATTLIST route

name ID #REQUIRED

created_by CDATA #IMPLIED

date CDATA #IMPLIED>

Figure 1. The DTD of XRL.

XRL/WOFLAN

<!ELEMENT
<!ATTLIST
name ID

task (event*)>
task
#REQUIRED

address CDATA #REQUIRED

role CDATA #IMPLIED

doc_read NMTOKENS #IMPLIED
doc_update NMTOKENS #IMPLIED
doc_create NMTOKENS #IMPLIED
result CDATA #IMPLIED

status (ready|running|enabled|disabled|aborted|null) #IMPLIED

start_time NMTOKENS #IMPLIED
end_time NMTOKENS #IMPLIED
notify CDATA #IMPLIED>

<!ELEMENT
<!ATTLIST

name ID
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

event EMPTY>

event

#REQUIRED>

sequence ((%routing_element;|state)+)>
any_sequence ((%routing_element;)+)>
choice ((%routing_element;)+)>

condition ((true|false)*)>
condition

condition CDATA #REQUIRED>

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

true (%routing_element;)>

false (%routing_element;)>

parallel_sync ((%routing_element;)+)>
parallel_no_sync ((%routing element;)+)>
parallel_part_sync ((%routing element;)+)>
parallel_part_sync

number NMTOKEN #REQUIRED>

<!ELEMENT
<!ATTLIST

parallel_part_sync_cancel ((%routing element;)+)>

parallel_part_sync_cancel

number NMTOKEN #REQUIRED>

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

wait_all ((event_ref|timeout)+)>
wait_any ((event_ref|timeout)+)>
event_ref EMPTY>

event_ref

name IDREF #REQUIRED>

<!ELEMENT
<!ATTLIST

timeout ((%routing_element;)?)>
timeout

time CDATA #REQUIRED
type (relative|s_relative|absolute) "absolute">

<!ELEMENT
<!ATTLIST

while_do (%routing_element;)>
while_do

condition CDATA #REQUIRED>

<!ELEMENT
<!ELEMENT

terminate EMPTY>
state EMPTY>

Figure 1. (Continued.)

69

70 VERBEEK, VAN DER AALST AND KUMAR

Any_sequence: Start the child routing elements in any order and wait until all have
been performed.

Choice: Start one of the child routing elements and wait until it has been performed.

Condition: If the given condition holds, start the child routing elements of all frue child
elements in parallel and wait until all have been performed. Otherwise, start the child
routing elements of all false child elements in parallel and wait until all have been
performed. A condition may have any number (even none) of true and false child
elements.

Parallel_sync: Start the child routing elements in parallel and wait until all have been
performed.

Parallel_no_sync: Start the child routing elements in parallel but do not wait for any of
them.

Parallel_part_sync: Start the child routing elements in parallel and wait until the given
number of child routing elements has been performed.

Parallel_part_sync_cancel: Start the child routing elements in parallel, wait until the
given number of child routing elements has been performed and cancel the remaining
child routing elements if possible.

Wait_all: Wait until either all associated events are set, or wait until the given deadline
of some child timeout element has expired. If this timeout element has a child routing
element, start it and wait until is has been performed.

Wait_any: Wait until either at least one of the associated events is set, or wait until the
given deadline of some child timeout element has expired. If this timeout element has
a child routing element, start it and wait until is has been performed.

While_do: As long as the given condition holds, start the child routing element and
wait until it has been performed.

Terminate: End this workflow instance.

As mentioned before, the routing elements of XRL are based on a thorough analysis of
the workflow patterns supported by leading workflow management systems.

1.2. Example: An electronic bookstore

We illustrate XRL using an example inspired by electronic bookstores, such as Ama-
zon [13] and Barnes and Noble [14]. The activity diagram in figure 2 shows a typical
order flow. This figure gives the four parties or organizations involved (that is, customer,
bookstore, publisher and shipper), and the steps performed by each one. The arrows
show the sequence in which these steps are carried out. Some of the details of the real-
world process are omitted from this diagram for clarity.

The workflow represented by the sequence diagram is described in XRL in appen-
dix B. The XRL rendition covers the typical order flow of figure 2, and also some more
details. First, the customer places an order (task place_c_order). This customer order is
sent to and handled by the bookstore (task handle_c_order). The electronic bookstore is
a virtual company that has no books in stock. Therefore, the bookstore transfers the order
for the desired book to the first appropriate publisher (task place_b_order). We use the

XRL/WOFLAN

Customer

place_c_order

Bookstore

handle ¢ _order
place_b_order

Publisher

eval_b_order

b_accept

Shipper

s _request

eval_s_req

inform_publ)&

prepare b

send_book

s_accept

prepare_s

rec_book

rec_bill

send_bill

handle_payment

Figure 2. Typical order flow for an electronic bookstore.

71

term “bookstore order” for the transferred order. The publisher evaluates the bookstore
order (task eval_b_order). By shipping the XRL route back to the bookstore, the pub-
lisher informs the bookstore about the availability of the book. If the book is not avail-
able, the bookstore decides (task decide) to either search for an alternative publisher (task
alt_publ) or to reject the customer (task c_reject). If the customer receives a negative

72 VERBEEK, VAN DER AALST AND KUMAR

answer (task rec_decl), the workflow terminates. If the book is available (task c_accept),
the customer is informed (task rec_acc) and the bookstore continues processing the cus-
tomer order. The bookstore sends a request to the shipper (task s_request), the shipper
evaluates the request (task eval_s_req) and either accepts (task s_accept) or rejects (task
s_reject). If the bookstore receives a negative answer, it searches for another shipper.

After a shipper has been found, the publisher is informed (task inform_publ), the
publisher prepares the book for shipment (task prepare_b), and the book is sent from
the publisher to the shipper (task send_book). The shipper prepares the shipment to the
customer (task prepare_s) and actually ships the book to the customer (task ship). The
customer receives the book (task rec_book) and the shipper notifies the bookstore (task
notify). The bookstore sends the bill to the customer (task send_bill). After receiving
both the book and the bill (task rec_bill), the customer makes a payment (task pay). Then
the bookstore processes the payment (task handle_payment) and the inter-organizational
workflow terminates.

The XRL route shown in appendix B just illustrates some of the XRL routing
elements. The description is far from complete, for example, the detailed descriptions
of tasks and conditions have not been included. Please note that, since an XRL route
specifies the life cycle of a particular workflow instance (that is, work case), any instance
can be modified without reference to some underlying workflow schema type.

1.3. XRL/Flower

Based on the XRL semantics, we developed a workflow management system, named
XRIL/Flower, to support XRL. XRL/Flower benefits from the fact that it is based on both
XML and Petri nets. Standard XML tools can be deployed to parse, check, and handle
XRL documents. The Petri-net representation allows for a straightforward and succinct
implementation of the workflow engine. XRL constructs are automatically transformed
into Petri-net constructs. On the one hand, this allows for an efficient implementation.
On the other hand, the system is easy to extend:

For supporting a new routing primitive, only the transformation to the Petri-net format
needs to be added and the engine itself does not need to change.

Figure 3 shows the architecture of the toolset involving XRL/Flower and XRL/
Woflan. Using both the control flow data for the workflow case and the case specific
data, the Petri-net engine computes the set of enabled tasks, that is, the set of work items
that are ready. The engine sends this set to the work distribution module. Based on
information on the organizational roles and users, the work distribution module sends
e-mails offering the work item to certain users who are qualified to work on it. A user
would receive an e-mail notification with a URL pointing to new work item(s) waiting
for her. By clicking on the URL, the user accepts the work item; thus, the work item
becomes an activity for a specific user, and other users to whom the work item was also
offered are notified that it has already been accepted and is no longer available to them.
A user who has accepted an activity may perform work on it either at acceptance time or

XRL/WOFLAN 73

Server Host

Woflan
Process datj Qrganiz. data
PNML file Verification
to verfly results
- Verified Enabled

PNML file - tasks Work

XRL2PNML p Petrinet distribution
engine
module
4
XRL file

. Work item
(new instance)

Task
XSLT library Web server -
aneEt XSLT code Case data Work item
(new pool
template)
User requests Responses
Client PC y

Web client

Figure 3. A detailed architecture for implementing inter-organizational workflows using XRL/Woflan.

later. In order to enable a user to perform an activity, the web server fills the appropriate
form template with the case specific data for the activity. The user indicates completion
of an activity by, say, pressing a submit button. The web server stores the updated case
data and signals the Petri-net engine that the activity has been completed. The Petri-net
engine then recomputes a new set of work items that are ready. The user can also start
an XRL instance by sending the corresponding XRL file to the web server. The web
server forwards the XRL file to the XRL2PNML module that transforms XRL to PNML
(Petri-Net Markup Language), which is a standard representation language for a Petri
net in XML format [24].

Figure 4 shows how the XRL2PNML module makes the transformation from XRL
to PNML. First, it transforms the XRL file to two PNML files: one for verification and
one for enactment. The first PNML file (for verification) can be considerably smaller in
size than the second (for enactment), but their soundness characteristics are the same.

74 VERBEEK, VAN DER AALST AND KUMAR

XRL file to
enact
%@ansform into PNML using XRLZPNMD

Fixed XRL
file to enact

PNML Files

Gerify PNML using Woﬂw)
Verified
PNML Files

. . Verfication Ok f)) .
Fix XRL instance - Enact using Petri-net engine
Verified PNML file ~ _

Verification not Ok

Continue Abandon

Figure 4. Transformation from XRL to PNML.

The first PNML file is verified using the XRL/Woflan tool. Based on the result of the
verification, either the second PNML file is sent to the Petri-net engine for enactment,
or the user is informed that the XRL instance contains flaws. In the latter case, the user
may either abandon the new instance, or modify it to fix the errors. Of course, the fixed
instance is also verified before it is enacted. If the expressive power of the current XSLT
library does not satisfy the user’s needs, she may decide to extend this library by adding a
new template to it. Figure 5 shows how this is done. First, the user describes the DTD of
the new pattern. Second, she writes the XSLT code that will transform the new template
to the appropriate PNML code. After the new XSLT code is verified, it is incorporated
into the XSLT library.

2. WorkFlow nets

Before we present the new transformation, we briefly introduce some of the concepts
related to WF-nets. We assume some basic knowledge of Petri nets [34,35].

A Petri net that models the control-flow dimension of a workflow, is called a WF-
net. Recall that a WF-net specifies the dynamic behavior of a single case in isolation.

Definition 1 (WF-net). A Petri-net PN = (P, T, F) is a WorkFlow net (WF-net) if and
only if:
(1) There is one source place i € P, that is, one place without any predecessors.

(2) There is one sink place o € P, that is, one place without any successors.

XRL/WOFLAN 75

New pattern
to add

Describe DTD of pattern
Write XSLT code

Verify XSLT code

Update XSLT library Rewrite XSLT code
using XSLT library manager Ok
Cot OK

Abandon Continue

Figure 5. Adding a new template to the library.
(3) Everynode x € P UT is on a path from i to o.

A WF-net has one input place (i) and one output place (o) because any case han-
dled by the procedure represented by the WF-net is created when it enters the workflow
management system and is deleted once it is completely handled by the workflow man-
agement system, that is, the WF-net specifies the life-cycle of a case. The third require-
ment in definition 1 has been added to avoid ‘dangling tasks’, that is, tasks that do not
contribute to the processing of cases.

For sake of completeness, we mention that the original definition of WF-nets did
not include arc weights (sometimes also called multiple arcs). However, as mentioned
in [40], it is straightforward to extend WF-nets by allowing arc weights. For the remain-
der of this paper, we assume that arc weights are allowed in WF-nets.

The three requirements stated in definition 1 can be verified statically, that is, they
only relate to the structure of the Petri net. However, there is another requirement that
should be satisfied:

For any case, the procedure will terminate eventually and upon termination there is a
token in place o and all the other places are empty.

Moreover, there should be no dead tasks, that is, it should be possible to execute an arbi-
trary task by following the appropriate route through the WF-net. These two additional
requirements correspond to the so-called soundness property.

76 VERBEEK, VAN DER AALST AND KUMAR

Definition 2 (Soundness). A procedure modeled by a WF-net PN = (P, T, F) is sound
if and only if:

(1) For every state M reachable from state i, there exists a firing sequence leading from
state M to state o.

(2) State o is the only state reachable from state i with a token in place o.

(3) There are no dead transitions when starting in state i.

Note that the soundness property relates to the dynamics of a WF-net. The first
requirement in definition 2 states that starting from the initial state (state i), it is always
possible to reach the state with one token in place o (state 0). The second requirement
states that the moment a token is put in place o, all the other places should be empty.
The last requirement states that there are no dead transitions (tasks) in the initial state i.

In [1], it is shown that there is an interesting relation between soundness and well-
known Petri-net properties such as liveness and boundedness. A WF-net is sound if and
only if the short-circuited net (that is, the net obtained by linking the sink place to the
source place) is live and bounded. This result illustrates that standard Petri-net-based
analysis techniques can be used to verify soundness.

3. Semantics of XRL in terms of WF-nets

The DTD shown in figure 1 only describes the syntax of XRL and does not specify
the semantics. To provide operational semantics of the routing elements we transform
each routing element mentioned in the DTD into a Petri net. Such a transformation was
given in [9]. However, as indicated earlier, this transformation does not necessarily yield
WE-nets. Therefore, we have modified the transformation given in [9] such that XRL
routes are transformed into WF-nets. First, we discuss the problems we encountered
when trying to transform XRL routes into WF-nets. Second, we present for the route
and for each routing element its Petri-net semantics. Third, we transform the example
from section 1 (see appendix B for the XRL specification) into a WF-net.

3.1. Discussion of the semantics

In section 1 we already observed that the structure of an XRL document forms a tree,
with the route element as root. Many routing elements interface only with their parent
element and their child elements. For this reason, we propose to ‘copy’ this tree structure
to the resulting WF-net: Every routing element is replaced by some Petri-net fragment
that interfaces with the Petri nets associated with its parent child elements nets. The
exceptions to this rule are the terminate routing elements and the task, wait_all and
wait_any routing elements (when events are involved). We deal with these exceptions
later on; first we focus on the interface between a parent and a child element.

At first glance, only two places seem to be necessary for the communication be-
tween a parent and child: one from parent to child indicating that the child can be started,

XRL/WOFLAN 71

prev next done

exec si

begin end term

Figure 6. Basic routing element.

and one from child to parent indicating that the child has been performed. However, ac-
cording to the descriptions given in section 1, there are three routing elements that do not
wait until all child elements have been performed: parallel_no_sync, parallel_part_sync,
and parallel_part_sync_cancel. As a result, an instance might reach the point of comple-
tion while still, somewhere deep inside some subtree, elements still can be performed.
Take for instance the simple example where the route contains a parallel_no_sync con-
taining only one task. Because the parallel_no_sync does not wait until the task has been
performed, the entire instance might reach the point of completion before the task has
been accepted and started. Recall that soundness requires that the remainder of the entire
Petri net is empty when a token is put into the sink place, that is, a Petri-net fragment
associated with any routing element has to be empty at that point. Therefore, before
actually reaching completion, we have to wait until all these fragments are empty. For
this reason, we introduce a third communication place: from child to parent indicating
that the Petri-net fragment associated with the entire subtree of the child is now empty
of tokens.

Figure 6 shows the basic routing element. A token in place prev indicates that
the routing element can be started. A token in place exec indicates that the routing has
started. However, in many routing elements this exec place is redundant, and therefore
omitted. When the routing element has been performed, it puts a token in places next and
sig. The token in place next informs the parent that this element has been performed,
while the token in place sig indicates that the routing element is waiting until all de-
scending routing elements have been performed too, that is, until all subtrees are empty.
If all are empty, it puts a token in place done, indicating that it is now empty of tokens
except for the token in the done place.

When a terminate occurs, the entire instance, that is, the route itself, is to be com-
pleted. This clearly has an effect on the instance level. In Petri nets, it is hard to fore-
see all possible reachable states, and to add transitions such that from every reachable
state we can reach state 0. A simple observation alleviates this problem: If we by-
pass every task, wait_all, and wait_any, the instance automatically reaches completion!
The tasks need to be bypassed because we cannot allow that a task is started after a
terminate occurred. Both wait routing elements need to be bypassed because they are
not allowed to wait any longer after a terminate occurred. Note that this solution as-
sumes that running tasks are not preempted when a terminate occurs. As a result, we
can treat a terminate almost in a similar way as we treat an event. Because all tasks
need to have both places ferminate and nonterminate present, and all waits need to

78 VERBEEK, VAN DER AALST AND KUMAR

input output

begin

almost

N
g
i

A

; IR 2 : IO N :
E_'_'_y_'_*_:‘/_‘— B e R o e
begin end term
RE
\ %

Figure 7. Semantics of route.

have the place ferminate present, we incorporate the global part of the terminate in the
route.

Figure 7 shows the semantics of the route element, containing the terminate at
the instance level. For sake of clarity, a stub (drawn dotted) replaces the top routing
element (the only child routing element of the route element). Initially, place input
(which corresponds to place i in definition 1) contains one token, indicating that the
instance has not started yet. Transition begin starts the instance and

(1) starts the top child routing element,

(2) enables the terminate,

(3) enables all events, and

(4) enables every parallel_part_sync or parallel_part_sync_cancel.

Note that items (3) and (4) are explained later on and not shown in this net. Item (3) is
shown in figure 8 and item (4) is shown in figures 16 and 17.

After the top routing element and all its descendants have completed, transition
end initiates the completion phase of the instance. First, all events and the terminate are
reset (which happens while place almost contains a token). Second and last, transition
done completes the instance and

XRL/WOFLAN 79

a route N
begin almost done
““““ g
\] %
- N
setevent
nonevent
eventset event
- J

Figure 8. Event on global level.

(1) removes the token from place almost,

(2) disables the terminate,

(3) disables all events, and

(4) disables every parallel_part_sync and parallel_part_sync_cancel.

Again, items (3) and (4) are explained later on and not shown in this net.

Of course, if no terminates are present in the XRL route, the part concerning the
terminate is discarded from the semantics of the route.

Like terminate, events are defined on the top level of the instance, that is, the route
level, not on some local level deeply nested in some subtree: If some task in some
subtree sets a certain event, then some wait in some other subtree might be affected. For
this reason, events are handled on the instance level: For every event, we add a Petri-net
fragment that manages the event. Such a fragment interfaces only with the Petri nets
associated with the route itself (for enabling and disabling the event), tasks (for setting
the event), and both waits (for testing the event). On the instance level, two places
are introduced for every event: event and nonevent. Only one of them may contain a
token: Either the event has occurred (event contains a token) or not (nonevent contains a
token). When the instance is started, each event is enabled by putting a token into place
nonevent, and when the instance completes, it is disabled by removing the token from
that place. When the event has been set, transition reset can move the token from event
to nonevent when the instance is completing. A task sets the event by putting a token in
place setevent and waiting until a token is put into place eventset. The transitions set and
isset take care that the event is set when this place contains a token. They also take care
that this token is moved to place eventset when the event has been set. Figure 8 shows
an event on the instance level.

80 VERBEEK, VAN DER AALST AND KUMAR

4 route N
nonterminate terminate

. \ / %

\ /
a ™
begin bbegin bypass bend term

events

. /

r / \ ™

setevent eventset setevent eventset
_ event event,)

Figure 9. Semantics of task.
3.2. The Petri-net semantics

Figure 9 shows the semantics of the task routing element. When a task is started, what
happens depends on whether or not a terminate has occurred. If a terminate has occurred,
the transitions bbegin and bend bypass the normal execution of the task. Otherwise,
transition begin starts the execution by offering the task to some resources. After the
task has been performed by some resource, transition events has the appropriate events
set (could be none), and the task waits until these events are set. After all have been
set, transition end signals that the task has been performed. Because there are no child
routing elements, this automatically results in an empty subtree, which is signaled too.

Figure 10 shows the semantics of the sequence routing element. Transition begin
starts the sequence, and puts a token in the place prev of the first child routing element.
Doing so, this routing element can be started. When this routing element has been
performed, it puts a token in its place next. Transition next; moves this token to the
place prev of the next child routing element, and so on. When the last child routing
element has been performed, transition end puts a token in place next, signaling that
the entire sequence has been performed. After firing end, the sequence waits until all
descending routing elements have been performed. If all have been performed and hence
their subtrees are empty, transition term puts a token in place done.

Figure 11 shows the semantics of the any_sequence routing element. Transition
begin starts the any_sequence, and puts tokens in the place prev for every child routing
element, and a token in the place exec. The token in place exec guarantees the mutual

XRL/WOFLAN
-
prev next done
\
/prev_ y next
T o X
P
r--Y/..’, W
begin end
\ RE,
Figure 10. Semantics of sequence.
-

prev

next done

exclusion of the child routing elements. A child routing element can only start if place
exec contains a token, and when it starts, it removes that token. When the child routing
element has been performed and transition end fires, the token is put back. After all
child routing elements have been performed, the transition end puts a token in place
next, signaling that the entire any_sequence has been performed. After firing end, the
any_sequence waits until all descending routing elements have performed. If all have

Figure 11. Semantics of any_sequence.

been performed and hence heir subtrees are empty, it puts a token in place done.

Figure 12 shows the semantics of the choice routing element. Transition begin
starts the choice, and puts a token in every child’s prev place. The first child routing

81

82 VERBEEK, VAN DER AALST AND KUMAR

A 4

end,/)

next| dong

cc K sig K

LA oA
NN
end term
RE, Y

Figure 12. Semantics of choice.

element that fires its transition begin, disables the other child routing elements. After
this first child routing element has been performed, its transition end fires, which puts a
token in place join. As a result, transition end fires, signaling that the choice has been
performed. After firing end, the choice waits until the first child routing element and all
its descending routing elements have been performed. If all have been performed and
hence their subtrees are empty, the child’s transition ferm fires, followed by the choice’s
transition ferm, which puts a token in its place done.

Figure 13 shows the semantics of the condition routing element. Transition begin
starts the condition, and puts a token in place split. At this point, the condition is eval-
uated. If the condition is evaluated to true, transition tbegin fires, otherwise transition
fbegin fires. Assume without loss of generality that transition thegin fires. This transi-
tion puts a token in place fexec and enables the child routing element of every true child
element. After all these ‘grandchild’ routing elements have been performed, transition
tend fires, which puts tokens in places join and tsig. At this point, transition end fires,
signaling that the condition has been performed. After all descending routing elements
of the true child elements have also have been performed, transition tterm fires, followed
by transition ferm, which puts a token in place done.

Figure 14 shows the semantics of the parallel_sync routing element. Transition
begin starts the parallel_sync, and puts a token in the place prev for every child rout-
ing element. After all child routing elements have been performed, transition end fires,
which puts a token in place next. After firing end, the parallel_sync waits until all de-
scending routing elements have been performed. If all have been performed, transition
term fires, which puts a token in place done.

Figure 15 shows the semantics of the parallel_no_sync routing element. Transition
begin starts the parallel_no_sync, and puts a token in place prev for every child routing
element and a token in place exec. As a result of the token in place exec, transition

XRL/WOFLAN 83

prev next done

O
fbegin fexec fend fsig fterm

Figure 13. Semantics of condition.

prev next done

‘/\ 1 1 ‘/\ ,L 1
‘____:_Y::_; :ff:::- Piisiiaiuiag :}_‘I_‘:; -::?f:::.'
begin end end term
\ RE,| RE,)

Figure 14. Semantics of parallel_sync.

end can fire immediately, signaling that the parallel_no_sync has been performed. After
firing end, the parallel_no_sync waits until all descending child routing elements have
been performed. If all have been performed, transition ferm fires, which puts a token in
place done.

Figure 16 shows the semantics of the parallel_part_sync routing element. Transi-
tion begin starts the parallel_part_sync, and puts a token in place prev for every child
routing element and a token in place exec. After any child routing element has been per-

84

VERBEEK, VAN DER AALST AND KUMAR

prev

~

next done

iy

)
13 3oL
N N
v -
I__\L’._,

_AL

Figure 15. Semantics of parallel_no_sync.

route N

Figure 16. Semantics of parallel_part_sync.

formed, the appropriate transition count; fires, which moves the token to the place count.
After K tokens have been moved this way, that is, after at least K child routing elements
have been performed, transition end fires, signaling that the parallel_part_sync has been
performed, and puts a token in place next. Note that the place exec is not redundant for

XRL/WOFLAN 85

a route N

™~ .
| exec b sig
.

N 1

' oL

O

P gl A gt
oo _Jl_‘fg oA f::_y_‘f: ::?.JI_‘E):(' ¥
begin end term
RE, y

Figure 17. Semantics of parallel_part_sync_cancel.

this routing element: if we had removed the place exec, transition end could fire [N /K |
times. For instance, if there were 10 child routing elements (N = 10) and the given
number were 3 (K = 3), transition end could fire 3 times, signaling 3 times that the
parallel_part_sync has been performed, which is clearly an error. After firing end, the
parallel_part_sync waits until the remaining child routing elements and all descending
routing elements have been performed. If all have been performed, transition term fires,
which puts a token in place done.

To avoid problems with recurrent parallel_part_syncs, that is, if a parallel_part_sync
is embedded in a while_do, we prevent the parallel_part_sync to be recurrent by intro-
ducing the place free. As indicated in figure 16, transition begin of the route puts a token
in place free, and transition end of the route removes the token. Note that transition
begin has to fire before any routing element is started, and that end can only fire after all
routing elements have been performed.

Figure 17 shows the semantics of the parallel_part_sync_cancel routing element.
This semantics is an extension of the semantics of the parallel_part_sync: transitions
cancel; have been added. After it has been performed, any child routing element that
has not started yet can be cancelled by firing the appropriate transition cancel;. When
transition cancel; fires, it removes the token from the place prev of the ith child routing
element, and puts tokens in its places next and done.

Figure 18 shows the semantics of the wait_all routing element. Transition begin
starts the wait_all, and puts a token in place wprev. After firing begin, the wait_all waits
until

86 VERBEEK, VAN DER AALST AND KUMAR

4 route N

terminate
‘ \\

Iy

-
-

prev next done

\,
7
-
¢ (prevy next| Jdoneyprevy next| |doney

\eventref, X _eventreh, j5 i O O O O O
N é/ gt s d P ooxec A osig A

.) O RS O U S

)) I___Yx__’, _AL’__’, AL I___Yx__', Al :_’, SAL

event event begin end term begin end term

RE RE

_ event, A event, AL N J

Figure 18. Semantics of wait_all.

(1) all events referred to have occurred,
(2) aterminate has occurred, or
(3) any of deadlines associated with the timeouts are exceeded.

If all events referred to have occurred, transition wait fires, which puts tokens in places
wnext and wdone. If a terminate has occurred, transition twait fires, which also puts
tokens in places wnext and wdone. If a timeout occurs, the child routing element of this
timeout is started. After this child routing element has been performed, a token is put in
place wnext. After all descending routing elements of the timeout have been performed,
a token is put in place wdone. When place wnext contains a token, transition end fires,
signaling that the wait_all has been performed, and puts a token in place next. After
firing end, the wait_all waits until place wdone contains a token. If this place contains a
token, transition term fires and puts a token in place done.

Figure 19 shows the semantics of the wait_any routing element. Transition begin
starts the wait_any, and puts a token in place wprev. After firing begin, the wait_any
waits until either

(1) any event referred to has occurred,

XRL/WOFLAN 87

4 route)
terminate
Iy
- /
e N
prev next done

\, J
4 “~timeout, A
[] [] (A] [“] L‘ “ [“]
wait wait begin end term begin end term
N A |E 9
eventref eventref (prevy next| Jdoneyprevy next| |doney
L AN B/) ! . 2)
I exec A sig Poexec A osig A
T 2 S R O OISO NN
S @ I N ST B 2N A
event event begin end term begin end term
_ evemt, A event, RE A RE)

Figure 19. Semantics of wait_any.

(2) aterminate has occurred, or
(3) any of the timeouts occurs.

If any event referred to has occurred, its transition wait fires, which puts tokens in places
wnext and wdone. If a terminate has occurred, transition twait fires, which also puts
tokens in places wnext and wdone. If a timeout occurs, the child routing element of this
timeout is started. After this child routing element has been performed, a token is put in
place wnext. After all descending routing elements of the timeout have been performed,
a token is put in place wdone. When place wnext contains a token, transition end fires,
signaling that the wait_any has been performed, and puts a token in place next. After
firing end, the wait_any waits until place wdone contains a token. If this place contains
a token, transition ferm fires and puts a token in place done.

Figure 20 shows the semantics of the while_do routing element. Transition begin
starts the while_do, and puts a token in place next of its child routing element, and X
tokens in the place done, where X is a positive number that serves as a parameter to
limit the number of concurrent instances. After firing begin, the condition is evaluated
(by the enactment server). If the condition evaluates to true, the transition true fires,
which starts another iteration of the child routing element. If the condition evaluates
to false, transition end fires, signaling that the while_do has been performed and puts

88 VERBEEK, VAN DER AALST AND KUMAR

r N

prev next done

sig
begin end term

Y
]
e
: [
/
>
AN

previ_ > “ynext (" done
i exee A sig ;
s S i e A [S
begin end term
RE
NG /
Figure 20. Semantics of while_do.
s D

prev next done

-
-

[Y
\ y
L o

setterminate terminateset

_ route .

Figure 21. Semantics of terminate.

a token in place next. After firing end, the while_do waits until all descending routing
elements corresponding to all iterations have been performed. If all have, transition term
fires, which puts a token in place done. Note that a new iteration can only start, when at
most X — 1 previously started iterations are still running. Also note that X can be set to
a very large value when enacting the entire XRL route, but for verification purposes X
should be as small as possible: The larger X is, the larger the state space of the entire
resulting Petri net becomes.

Figure 21 shows the semantics of the terminate routing element. Recall that the
instance level part is incorporated in the semantics of the route element, cf. figure 7.

XRL/WOFLAN 89

Transition begin starts the terminate, and has the terminate set. Transition end fires if
the terminate has been set, signaling that the terminate has been performed, and puts a
token in place next. After firing end, transition ferm puts a token in place done.

At this point, all XRL routing elements can be transformed into Petri nets. By
starting with the XRL route and recursively transforming each child routing element
into its corresponding Petri-net semantics, one obtains a WF-net. As a result, we can
check the important soundness property introduced in the previous section. This will be
discussed in the next section.

The example shown in appendix B results in a WF-net containing 303 places and
275 transitions when applying the rules presented in this section. These numbers indicate
that the dynamic behavior of the XRL route presented in section 1 is complex. However,
this complexity is hidden from both the designer and the user.

4. Verification of XRL

This section discusses the soundness of an XRL route, that is, the soundness of the WF-
net it is transformed into. Recall that for soundness three requirements should hold.
The first requirement states that the final state o should be reachable, that is, proper
completion is possible. The second requirement states that completion is always proper,
that is, no tokens are left after completion. The third requirement states that for every
transition there is a way to fire it from the initial state i.

4.1. Structural analysis

By using structural analysis, we show that completion of an XRL route is always proper.

Lemma 1 (Coverage of a single routing element). Let RE be a routing element and let
PN be its Petri-net semantics as described in section 3. Then all places in PN can be
covered by two place invariants Prg and Qgrg, where Prg contains the places prev and
next with identical weights and Qrg contains the places prev and done with identical
weights.

Proof. By induction. Most of this proof is straightforward. For this reason, we
will restrict ourselves to two routing elements that serve as examples: task and paral-
lel_part_sync_cancel. For sake of simplicity, we assume that the invariants of the child
routing elements are recalibrated such that the places next and done have weight 1. As a
result, some weights might be fractions instead of natural numbers, but for the proof this
is irrelevant. For the task (#k for short), which serves as example for the induction base,
the invariants are as follows:

Py = prev + exec + wait + bypass 4+ next,
Qw« = prev + exec + wait 4 bypass 4+ sig 4 done.

90 VERBEEK, VAN DER AALST AND KUMAR

For the parallel_part_sync (ppsc for short), which serves as example for the induction
step, the invariants are as follows:

Pppse = prev + exec + next,

N
Oppse =2N x (prev + done) + free + <Z Prg; + QRE,-)
i=1

+ exec + count + (K + 1) x sig. O

Lemma 2 (Coverage of top routing element). Let R be an XRL route, let RE be the top
routing element in R, and let PN and PNgg be the Petri-net semantics of R and RE as
described in section 3. Then there exists a place invariant P; containing (i) the places
input and output with identical weight, and (ii) all places in PNgg.

Proof. By construction. P; = input 4 almost 4 output + Prg + ORge. O

Lemma 3 (Coverage of a single event). Let R be an XRL route, let E be an event and
let PN, and PN be their Petri-net semantics as described in section 3. Then there exists
a place invariant P containing (i) the place input and output with identical weight and
(i1) all places of PN.

Proof. By construction. The places event and nonevent are easily covered. However,
to cover setevent and eventset we need a variant of P;. Let PIE be equal to P, except
for the tasks where event E is set. For these tasks, the occurrence of place wait is
replaced by the expression Egeevent + Esetevent- 1t 1S straightforward to check that PlE
is a place invariant containing places input and output with identical weights. Then
Py = PIE + input + almost 4 output + Eevent + Enonevent- O

Lemma 4 (Coverage of all events). Let R be an XRL route and let S be the set of events
in R. Then there exists a place invariant P, containing (i) the places input and output
with identical weight, and (ii) all places corresponding to the events in S.

Proof. By construction. P, =) ,_. PE. O

Lemma 5 (Coverage of complete XRL route). Let R be an XRL route and let PNg
be its Petri-net semantics as described in section 3. Then there exists a place invari-
ant P containing (i) the places input and output with identical weight, and (ii) all places
in PN R-

Proof. By construction. To cover the places terminate and nonterminate we introduce
another variant of Py: P In P all occurrences of any terminate’s exec place is replaced
by the expression terminate + nonterminate. It is straightforward to check that P/
is a place invariant containing places input and output with identical weights. Then
P=P+ Pl +P,. O

XRL/WOFLAN 91
Theorem 6. Completion of an XRL route is always proper.

Proof. By lemma 5, place invariant P contains (i) places input and output with identical
weights, and (ii) all places of the Petri-net semantics of the XRL route. Because initially
only input is marked with one token, no other place can be marked when output is
marked. |

4.2. Behavioral analysis

By using behavioral analysis, we show that only certain XRL routing elements can in-
validate the other two soundness requirements.

Theorem 7. If every wait_all and every wait_any in an XRL route contains a timeout,
then completion of the XRL route is guaranteed.

Proof. By induction. It is straightforward to check that only a wait_all or wait_any that
does not contain a timeout can get stuck. Note that we assume that tasks are completed
eventually. O

Theorem 8. If every wait_all and every wait_any in an XRL route contains a timeout,
and if the XRL route contains no terminate, then no transition in the Petri-net semantics
of the route is dead.

Proof. 1t is straightforward to check that only a wait_all or wait_any that does not
contain a timeout can get stuck. It is also straightforward to check that some transitions
can only get by-passed by a terminate construct. U

Corollary 1. There are two possible causes for violation of soundness: (i) a wait_all or
wait_any gets stuck, or (ii) a terminate occurs.

In case a terminate occurs, the short-circuited transition in the short-circuited net
will be live: a terminate guarantees completion. In case a wait_all or wait_any gets
stuck, the short-circuiting transition (that is, the transition linking the place output to
input in the short-circuited net) will not be live.

4.3. Reduction techniques

With the semantics specified in terms of WF-nets, described in section 3, the theory and
tools for WF-nets can be deployed in a straightforward manner. This allows us to use
Woflan for verifying the correctness of an XRL route using criteria such as the soundness
property. Unfortunately, XRL routes with a lot of parallelism tend to have a large state
space, thus complicating verification from a computational point of view. Therefore,
we propose a verification procedure that consists of two optimization steps. In the first
step, the XSL transformation, which transforms the XRL route into a WF-net, reduces

92 VERBEEK, VAN DER AALST AND KUMAR

the WF-net by using structural properties of XRL. In the second step, Woflan reduces
the WF-net by applying the well-known liveness and boundedness preserving reduction
rules for Petri nets [34].

The first step is the reduction by the XSL transformation based on structural prop-
erties of XRL. Figures 9-21 show a place named done to accommodate the situation
where completion of a routing element does not automatically yield completion of its
descendants. This situation can only occur if the routing element ascends some par-
allel_no_sync, parallel_part_sync, or parallel_part_sync_cancel routing element. In all
other cases, there is no need to model things related to these done places. For instance,
assuming the routing element in figure 20 has no done place allows us to remove the
upper half of the Petri net (that is, REgone, Sig, term, and done). Similar simplifica-
tions are possible if no events are used. Moreover, we can apply the result presented
in [10]: a routing element without any event, wait_all, wait_any, or terminate is sound
and can therefore be replaced by the basic routing element shown in figure 6. Note
that this is consistent with the results in section 4. When these reduction rules are
applied, the XRL route shown in appendix B is transformed into a WF-net that con-
tains only 108 places and 105 transitions. Compared to the original WF-net, the re-
duced WF-net is considerably smaller and less complex. Note that several routing ele-
ments can be abstracted from, and that the resulting WF-net need not contain any done
places.

The second step is the reduction of the resulting WF-net by Woflan based on live-
ness and boundedness preserving reduction rules. Fragments of various routing elements
are connected by transitions. This introduces a lot of transitions that are not relevant for
the verification but introduce transient states. These and other parts of the WF-net can
be reduced enormously without losing information relevant for the verification. In sec-
tion 2, it was pointed out that soundness corresponds to liveness and boundedness [1].
This allows us to apply the well-known liveness and boundedness preserving reduction
rules for Petri nets [34]. These rules are shown in figure 22. Note that not all rules are
relevant for reducing a WF-net derived from an XRL route: for instance the fifth rule
will not be applied, because the only marked place in the WF net has no input arcs.
After these reduction rules are applied, the reduced WF-net mentioned under step 1
contains only 21 places and 18 transitions and is shown in figure 23. Table 1 shows
how the reductions affect the size (in number of places and transitions) of the example
WF-net.

After making the appropriate changes, the soundness results from section 4 still
hold upon applying these reduction rules. It is straightforward to check that the wait
transition in a wait_all or wait_any will not be reduced. Nor will be the terminate, if
present. Note that we do not apply the six WF-net-based reduction rules on the short-
circuited net, but on the original WF-net. As a result, the short-circuited transition will
still be present after the WF-net has been reduced. As mentioned in section 4, this
transition can be very useful when diagnosing the net.

XRL/WOFLAN 93

-
4

2 53
s

Figure 22. Liveness and boundedness preserving transformation rules.

4.4. Verification procedure

We propose a verification procedure that consists of three steps. In the first step, the
XRL route is transformed into a WF-net, taking into account the three reduction rules
based on the structure of XRL. In the second step, the resulting WF-net is reduced even
further using the six reduction rules based on the structure of the WF-net. In the third
step, we use Woflan to verify and diagnose the reduced WF-net.

Using standard Petri-net-based analysis tools, or dedicated tools such as Woflan, it
is easy to show that figure 23 is sound. Therefore, the XRL route shown in section 2 is

94 VERBEEK, VAN DER AALST AND KUMAR

input

no accept 4

accept

place/b_order

c¢_accept s_accept

Figure 23. The WF-net corresponding to the example XRL route in section 2 after both reductions.

Table 1
The effects of both reductions on the size of the example WF-net.
WF-net Number of places Number of transitions
Original 303 275
After XRL-based reduction 108 105
After both XRL-based and Petri-net-based reduction 21 18

correct, that is, free of deadlocks, livelocks and other anomalies. Note that figure 23 is
obtained after applying both types of reduction.

A final note on the terminate. If terminates are present, there might be tasks and
waits that have to complete before any terminate can occur. In such a task or wait, the
bypassing transitions are dead. However, these dead transitions do not correspond to
an error in the XRL route, they only befoul the diagnostic information. To get rid of
these dead transitions, we can add two additional routing elements to the route: A par-
allel_sync and a terminate. The parallel_sync will be the new top routing element and
will have the old top routing element and the additional terminate as child routing ele-
ments. As a result, a terminate can occur immediately after the instance has started, so
the set of tasks and waits that have to complete before any terminate can occur will be
empty.

4.5. The tool

XRL/Woflan is based on our workflow verification tool Woflan [39,40]. Woflan (http://
www.tm.tue.nl/it/woflan) is designed as a workflow-management-system-independent
analysis tool. In principle, it can interface with many workflow management systems.
At present, Woflan can also interface with the workflow products COSA (Thiel Logis-

XRL/WOFLAN 95

Table 2

Abbreviations.
Routing element Abbreviation Routing element Abbreviation
Any_sequence as Parallel_sync ps
Choice ce Restricted_parallel_sync ps
Condition cn Sequence S
Event e True t
Event_ref er Task tk
False f Timeout to
Fast_sequence fs Terminate tt
Parallel_no_sync pns Wait_all wl
Parallel_part sync pps Wait_any wy
Parallel_part_sync_cancel ppsc While_do wd

<xsl:template match="sequence" mode="id">
<xsl:apply-templates select=".." mode="id"/>/s<xsl:number/>
</xsl:template>

Figure 24. Identifying a sequence.

tics AG/Software Ley), METEOR (LSDIS), and Staffware (Staffware), and the BPR tool
Protos (Pallas Athena).

We have implemented the transformation from an XRL route into a WF-net using
an XSLT specification. This XSLT specification produces a Petri-Net Markup Language
(PNML) file. PNML is the standard Petri-net file format based on XML [24]. A sec-
ond XSLT specification has been implemented that enables Woflan to read these PNML
files.

The reduction rules based on the XRL structure have been implemented as an op-
tion in the first XSLT specification. The reduction rules based on the structure of the
WEF-net have been implemented as an option in Woflan.

PNML requires that every place, transition, and arc has a unique id. For this reason,
the identification of these objects is an important implementation issue. For diagnostic
purposes, it is vital that the names of the places and transitions are meaningful to the
developer of the XRL route. We use the fact that a route is structured as a tree. For
instance, we could identify a transition as transition begin of the second sequence of
the first parallel_sync of the third true of the condition of the second while_do of the
sequence of the route named route. To avoid long names as much as possible, we use
abbreviations to identify the different routing elements. Table 2 lists these abbreviations.
Figure 24 shows how a sequence is identified. The mode id is used to obtain the identi-
fication of any routing element. First, the sequence requests the id of its parent. Second,
it adds “/s”. Third, it adds its rank among the sibling sequences. The example transi-
tion mentioned is now identified by “route/sl/wd2/cnl/t3/psl/s2/begin”. For most routing
elements, this is fine, but we make an exception for tasks and events. These elements
have explicit XRL names, and we want to use these names to identify them. Suppose
the transition mentioned happens to be the transition begin of the task named task. Then

96 VERBEEK, VAN DER AALST AND KUMAR

<xsl:template match="task" mode="id">
<xsl:apply-templates select="/" mode="id"/>/<xsl:value-of
select="@name" />
</xsl:template>
Figure 25. Identifying a task.

» example.tpn - Waoflan 9 [=] B3
File View Disgnosis Help

2| M »>| ~| 2]

= Diagnosis
t/ The process definition is a workilow process definition
=t/ All conditions are proper
t# Al tasks are live
v/ Theworkilow procass definiion is sound
=) Properties
=t/ Process definition
= &7 Conditions: 21
Bt/ Tasks: 18
3 e-bookstorejacceptfisset
O e-bookstorefaccept/reset
3 e-bookstore/accept/set
O e-bookstore/begin
0 e-bookstore/done
O e-bookstore/rec_acc/end
O e-bookstore/s1/wdl fend
O e-bookstore/s1/wd1/s1/en f1/51/ps1 fend
 e-bookstore/s1 fwdl/s1/enl /1 /s1/psl fs1/enl fbegin
0 e-bookstore/s1 wdl/s1/cnl M1 /s1/psT /sl fenl 1 /81 /ps] fend
O e-bookstore/s1/wd1/s1/cnl /1 /s1/ps1/s1fenl M1/s1/ps1 fs1fwil fwait
3 e-bookstore/s1/wd1/s1/enl /11 /s1/ps1/s1/enl 1 /s1/psT/s2 vl fwait
3 e-bookstore/s1/wd1/s1/enl 1 /s1/pslfs1/fenl fibegin
3 e-bookstore/s1/wd1/s1/enl /1 /s1/ps1/s1/enl flend
0 e-bookstare/s1/wd1/s1/cnl /thegin
3 e-bookstore/s1 wdl/s1/enl fend
3 e-bookstore/s1 /wd1/s1/cnl fibegin
O e-bookstore/s1 /wdl ftrue
= W’ ‘Workflow process definition
= @ Condition propemess
v/ Task liveness

For Help, press Fi Soundness: &7

Figure 26. Woflan screendump.

it is identified by “route/task/begin”. Figure 25 shows how this is done. First, the task
requests the name of the top element, that is, of the route. Second, it adds “/”. Third, it
adds the value of its attribute name. Likewise, the transition set of the event named event
is identified by “route/event/set”.

Figure 26 shows a screendump of Woflan after it diagnosed the example XRL
route with all reductions applied. Clearly, after the transformation and both reductions,
the example XRL route corresponds to a sound WF-net. As a result, we may conclude
that the XRL route itself meets the soundness requirements. Therefore, we can take it
into production safely.

XRL/WOFLAN 97

5. Extensibility of XRL

Extensibility is an important feature of our approach. Therefore, the architecture of
figure 3 has been designed for extensibility. This means that an end-user can add his or
her own new routing elements to the DTD and implement them using this toolset. This
gives the end-user a powerful capability. We first describe the general approach and then
illustrate it with three examples.

The basic approach is as follows:

(1) Add a new routing element to the DTD of XRL.

(2) Specify the semantics of the new routing element in XSLT.

(3) Verify the XSLT specification of the new routing element.

(4) Add the XSLT specification to the library used in the transformation step.

Thus, for any new routing element it suffices to add it to the DTD and specify its cor-
responding Petri-net semantics in XSLT. However, XSLT is a very verbose format, and
editing XSLT specifications directly is cumbersome. For this reason, we use a set of
macros while editing XSLT specifications.

Now, consider the architecture shown in figure 3. Note that, in the context of this
architecture, the engine of XRL/Flower does not change after extending XRL in this
manner. To demonstrate the extensibility of XRL we discuss the effort it takes to add
two new routing elements.

The first new routing element we want to extend XRL with is a generalization of
both the any_sequence as the parallel_sync and is called restricted_parallel_sync. Basi-
cally, the restricted_parallel_sync is a parallel_sync restricted by a maximum number of
branches that can execute in parallel. If this number equals the number of branches, the
restricted_parallel_sync resembles a parallel_sync, if the number equals 1, it resembles
an any_sequence. The restricted_parallel_sync can be used when the parallel branches
share a limited number of identical resources. For example, a database might be involved
in all branches, and only a number of connections can be made to that database. First,
we add the following lines to the DTD shown in figure 1:

<!ELEMENT restricted_parallel_sync ((%routing element;)+)>
<!ATTLIST restricted_parallel_sync number NMTOKEN #REQUIRED>.

Note that the second line is added to specify the restrictive number of this element. The
first line of the DTD is also changed to add this element to the list of routing elements.
Second, the XSLT code of this routing element in terms of Petri nets is specified. Fig-
ure 27 shows the equivalent Petri net of the restricted_parallel_sync. The following
macro snippet shows the core of the restricted_parallel_sync:

rememberNumber ()
forEveryChildRE ()

switch ()

98 VERBEEK, VAN DER AALST AND KUMAR

- I

prev next done

\-

Figure 27. Semantics of restricted_parallel_sync.

caseNumber ()
arc("..",arc2_<xsl:number value="position()"/>,"..",
begin,"..", exec)
arc("..",arc3_<xsl:number value="position()"/>,"..",
exec,"..",end)

endCase ()

endSwitch ()
endFor ()

If K is the value of the number attribute, then the first K child routing elements add K
arcs from the parent’s begin transition to the parent’s exec place, and K arcs from that
exec place to the parent’s end transition. Third, we verify the restricted_parallel_sync.
This can be done in numerous ways. For example, we could take a representative
set of existing sound XRL instances and replace every parallel_sync by a restricted_
parallel_sync. After transforming these instances to PNML, we can verify them using
Woflan. If all are sound, verification is complete. Fourth and last, we add the restricted_
parallel_sync to the XSLT transformation library.

The second new routing element we want to extend XRL with is called
fast_sequence, and demonstrates that tasks need not be atomic in XRL. This routing
element executes a sequence of tasks such that when two tasks are in a fast_sequence,
the second task can start before the preceding task is completed, provided the preceding
task has started. Moreover, the second task can only complete if the preceding task is
completed. The fast_sequence is frequently seen for long-lived activities that can span
days or months. For instance, let the first task in the fast_sequence represent an approval
process, while the second represents the preparation for the actual construction. We
may want to specify that the preparation for the construction can start any time after the
approval process has been started and that it cannot be completed before the approval

XRL/WOFLAN 99

7 N

prev next done

sig
begin end term

Figure 28. Semantics of fast_sequence.

process has completed, because only then all things are fixed. To add this routing ele-
ment, we follow the steps as described above. First, we first add the following line to the
DTD shown in figure 1:

<!ELEMENT fast_sequence ((%routing_ element;)+)>.

The first line of the DTD is also changed to add this element to the list of routing el-
ements. Second, the XSLT code for this routing element is specified in terms of Petri
nets. Figure 28 shows the equivalent Petri net of the fast_sequence. The following macro
snippet shows the core of the fast_sequence:

forEveryNonLastChildRE ()

arc("..",arch_<xsl:number value="position()"/>,".",begin,
nextRE () ,prev)
arc("..",arc6_<xsl:number value="position()"/>,".", next,

nextRE (), end)
endFor ()
For every child routing element except the last, arcs are added that connect its begin
transition to the prev place of the next routing element, and its next place to the end
transition of that next routing element. After verifying the fast_sequence, we add it to
the XSLT transformation library.
As a third and final example, we extend XRL in such a way that an event can also

be reset. Note that, although this extends the functionality of XRL, this is not really a
new routing element. First, we extend the DTD with a type attribute for events:

<!ATTLIST event name ID #REQUIRED type(set|reset) "set">.

Possible values for the type attribute are set and reset, with set being the default
value. This ensures backward compatibility: if unspecified, set is assumed. Second, we

100 VERBEEK, VAN DER AALST AND KUMAR

4 route N
nonterminate terminate

L \ / %

\ /
e M
begin, bbegin bypass bend term

events

. /

R~
r / \\ \ \)
setevent eventset setevent everntset resetevent evenireset
_ event, event, event . J

Figure 29. Semantics of task after extending event.

update the appropriate semantics. Figure 29 shows the updated semantics of the task.
Depending on the type attribute, either the places setevent and eventset are connected to
transition events, or the places resetevent and eventreset. Figure 30 shows the updated
event on the global level. When the place setevent contains a token, the event is set, and
the token is moved to eventset. When the place resetevent contains a token, the event
is reset and the token is moved to eventreset. Note that it is possible to set and reset
an event simultaneously, in which case it is impossible to tell whether the event is set
or reset at the end. After verifying that the updates were specified correctly, the new
specifications replace the old ones in the library. Note that, after adding this extension,
the transformation form XRL to Petri nets does not necessarily result in a WF-net: if
a certain event is only reset in a route, then the corresponding event place will be an
additional source place. Because a route containing an event that can never be set is
evidently erroneous, we do not regard this as a problem. It even helps verifying the XRL
route: If some event place happens to be an additional source place, then that event is
only reset in the route.

After adding the XSLT specifications for both new XRL routing elements to the
XSLT transformation library, and replacing the old specifications by the new ones for
the third extension, both the enactment service (XRL/Flower) and the verification tool
(XRL/Woflan) support the new or updated routing elements.

Similarly, other new application-specific routing elements may be added on-the-fly
in this manner. Therefore, it is possible to create new application-specific workflow pat-
terns by writing XSLT routines that describe the semantics of the pattern. The patterns

XRL/WOFLAN 101

4 route N

————————————————

Y
AN

eventset event resetevent

Figure 30. Semantics of event on global level after extending event.

can then be incorporated into the DTD of XRL after they have been tested and veri-
fied with Woflan. We are currently developing a complete methodology for workflow
extensibility.

6. Related work

The following discussion of related research is organized according to various topics that
are covered in the paper.

6.1. Petri nets

The semantics of XRL is expressed in terms of Petri nets. Petri nets have been proposed
for modeling workflow process definitions long before the term “workflow management”
was coined and workflow management systems became readily available. Consider for
example the work on Information Control Nets, a variant of the classical Petri nets, in the
late seventies [17,18]. The readers interested in the application of Petri nets to workflow
management may refer to the two recent workshops on workflow management held in
conjunction with the annual International Conference on Application and Theory of Petri
Nets [8,33] and an elaborate paper on workflow modeling using Petri nets [1].

6.2. Workflow verification

Only a few papers in the literature focus on the verification of workflow process de-
finitions. In [22] some verification issues have been examined and the complexity of
selected correctness issues has been identified, but no concrete verification procedures
have been suggested. In [1,12] concrete verification procedures based on Petri nets have
been proposed. This paper builds upon the work presented in [1] where the concept of
a sound WF-net was introduced (see section 2). The technique presented in [12] has

102 VERBEEK, VAN DER AALST AND KUMAR

been developed for checking the consistency of transactional workflows including tem-
poral constraints. However, the technique is restricted to acyclic workflows and only
gives necessary conditions (that is, not sufficient conditions) for consistency. In [38]
a reduction technique has been proposed. This reduction technique uses a correctness
criterion which corresponds to soundness and the class of workflow processes consid-
ered are in essence acyclic free-choice Petri nets. Based on this reduction technique the
analysis tool FlowMake [37] has been developed. Flowmake can interface with the IBM
MQSeries Workflow product. Note that, although completely different techniques are
used, Flowmake is very similar to the tool Woflan used in this paper [40].

This paper differs from the above approaches because the focus is on interorgani-
zational workflows. Only a few papers explicitly focus on the problem of verifying the
correctness of interorganizational workflows [2,25]. In [2] the interaction between do-
mains is specified in terms of message sequence charts and the actual overall workflow
is checked with respect to these message sequence charts. A similar, but more formal
and complete, approach is presented by Kindler et al. in [25]. The authors give local cri-
teria, using the concept of scenarios (similar to runs or basic message sequence charts),
to guarantee the absence of certain anomalies at the global level.

6.3. Workflow standards

Clearly, the work presented in this paper is related to the standards developed by the
Workflow Management Coalition (WfMC, [27]). XPDL (XML Process Definition Lan-
guage [41], is the XML version of WEMC’s language to exchange workflow process de-
finitions (cf. Interface 1 of the reference architecture). Wf-XML [42] is an XML-based
language to support interoperability between multiple enactment services (cf. Interface 4
of the reference architecture). The scope of XRL can be compared to the combination
of XPDL and Wf-XML. However, there are some striking differences:

e XRL supports an abundance of routing constructs while XPDL supports only the very
basic ones (AND/XOR-split/join and loops),

e XRL is extensible with new routing primitives while XPDL only allows for additional
attributes,
e XRL is instance based, and

e XRL has formal semantics.

6.4. Cross-organizational workflows

Much work has been done on workflow transactions in the context of cross-organizational
workflows, for example [20,21,36]. However, this work typically considers correctness
issues at the task level rather than the process level. For example, the coordination model
and the service model presented in [20] are not explicitly addressing control flow prob-
lems resulting from causal relations (or the absence of such relations). The work con-
ducted in projects such as CrossFlow [21], WISE [28], OSM [31], and COSMOS [32]

XRL/WOFLAN 103

is highly relevant for the enactment of interorganizational workflows. However, these
projects do not consider the correctness issues tackled in this paper. Consider for ex-
ample the Common Open Service Market (COSM) infrastructure proposed in [31,32].
This infrastructure proposes mobile agents. The control-flow within each agent is man-
aged by a Petri-net-based workflow engine. Unfortunately, this work does not address
correctness issues at the process level.

6.5. Electronic commerce

Recent development in Internet technology, and the emergence of the “electronic
market makers”, such as ChemConnect, Ariba, CommerceOne, Clarus, staples.com,
Granger.com, VerticalNet, and mySAP.com have resulted in many XML-based stan-
dards for electronic commerce. The XML Common Business Library (xCBL) by Com-
merceOne, the Partner Interface Process (PIP) blueprints by RosettaNet, the Universal
Description, Discovery and Integration (UDDI), the Electronic Business XML (ebXML)
initiative by UN/CEFACT and OASIS, the Open Buying on the Internet (OBI) specifi-
cation, the Open Application Group Integration Specification (OAGIS), and the BizTalk
Framework are just some examples of the emerging standards based on XML. These
standards primarily focus on the exchange of data and not on the control flow among or-
ganizations. Most of the standards provide standard Document Type Definitions (DTDs)
or XML schemas for specific application domains (such as procurement). Initiatives that
also address the control flow are RosettaNet and ebXML:

RosettaNet. The Partner Interface Process (PIP) blueprints by RosettaNet do specify
interactions using UML activity diagrams for the Business Operational View (BOV)
and UML sequence diagrams for the Functional Service View (FSV) in addition to
DTDs for data exchange. However, the PIP blueprints are not executable and need to
be predefined. Moreover, like most of the standards, RosettaNet is primarily focusing
on electronic markets with long-lasting pre-specified relationships between parties
with one party (such as the market maker) imposing rigid business rules.

ebXML. Electronic Business XML (ebXML) is an interesting new framework for the
conduct of business between different enterprises through the exchange of XML based
documents. It consists of a set of specifications that together enable a modular, yet
complete electronic business framework. Among other things, the ebXML architec-
ture provides a way to define business processes and their associated messages and
content [19].

The ebXML initiative is designed for electronic interoperability, allowing busi-
nesses to find each other, agree to become trading partners and conduct business. It is a
joint initiative of the United Nations (UN/CEFACT) and OASIS, developed with global
participation for global usage. Another important feature of ebXML is the systematic
representation of company capabilities to conduct e-business in the form of a Collabo-
ration Protocol Profile (CPP). CPPs give companies a common XML format to describe
the industries, business processes, messages, and data-exchange technologies that they

104 VERBEEK, VAN DER AALST AND KUMAR

support in a structured way. With CPPs companies can agree on the business processes,
messages and technologies used to exchange business messages for a specific trading
need. These are expressed in a Collaborative Protocol Agreement (CPA), which is itself
an ebXML document. Thus, the CPA provides the technical features of the agreement in
automated form. The ebXML messages use the SOAP (Simple Object Access Protocol)
specification. SOAP is an XML application that defines a message format with headers
to indicate sender, receiver, and routing and security details.

The ebXML proposal looks promising; however, it lacks many of the richer routing
constructs that are present in XRL. Moreover, routing is modeled somewhat indirectly by
means of a Document envelope sent by one role and received by another. Nevertheless,
it appears that ebXML can solve the first-trade problem mentioned in the introduction.

6.6. Interorganizational workflows based on Petri nets

Finally, we would like to refer to two existing approaches toward interorganizational
workflows based on Petri nets. The first approach uses Documentary Petri Nets (DPN’s),
that is, a variant of high-level Petri nets with designated places for message exchange,
to model and enact trade procedures [15,29,30]. The Interprocs system is based on
these nets. The main difference between the Interprocs language and XRL is that XRL
is instance based and supports less structured and more dynamic processes. Another
approach combining Petri nets and interorganizational workflows is the P2P approach
described in [11]. This approach uses inheritance to align local workflows. In [11]
this approach is used to design an interorganizational workflow for a fictitious elec-
tronic bookstore similar to amazon.com or bn.com. A predecessor of the P2P approach
has also been applied to an interorganizational workflow in the Telecom industry [5].
An interesting topic for future research is to see how the inheritance concepts used in
[5,11] translate to XRL. We would also like to develop a more formal methodology for
verification of new workflow patterns like the ones we introduced in section 5.

7. Conclusion

XRL is an XML-based language for describing workflow enactments. Woflan is a tool
for the verification of Petri-net workflows. In this paper, we show how these two tech-
nologies can be combined together to create a powerful toolset for designing, verifying
and implementing extensible workflows.

We have presented a novel way to verify the correctness of XRL routes. XRL
routes are automatically transformed into WF-nets using XSLT. As a result, Woflan can
be used to verify the correctness of the XRL route. The analysis procedure is optimized
by exploiting dynamic properties of XRL routing elements and by using standard reduc-
tion rules at the Petri-net level [34]. We consider these verification capabilities essential
for inter-organizational workflows. As was argued in the introduction, contemporary
workflows need to be changed on the fly and sent across organizational boundaries. Un-
fortunately, the features also enable subtle, but highly disruptive, cross-organizational

XRL/WOFLAN 105

errors. On-the-fly changes and one-of-a-kind processes are destined to result in errors.
Moreover, errors of a cross-organizational nature are difficult to repair. Therefore, a lan-
guage such as XRL (that is, a language with formal semantics) and verification tools
such as XRL/Woflan are highly relevant for today’s dynamic and networked economy.

Appendix A. The extended DTD of XRL

This appendix shows the DTD of XRL after all extensions have been added. For sake of
clarity, the differences with the original DTD (see figure 1) are emphasized.

<!ENTITY % routing_element
"task|sequence|any_sequence|choice|condition| fast_sequence|
parallel_sync|parallel _no_sync|parallel_part_sync|
parallel_part_sync_cancel |restricted _parallel_ sync|wait_all]
wait_any|while_do|terminate">
<!ELEMENT route ((%routing_element;), event*)>
<!ATTLIST route

name ID #REQUIRED

created_by CDATA #IMPLIED

date CDATA #IMPLIED>
<!ELEMENT task (event*)>
<!ATTLIST task

name ID #REQUIRED

address CDATA #REQUIRED

role CDATA #IMPLIED

doc_read NMTOKENS #IMPLIED

doc_update NMTOKENS #IMPLIED

doc_create NMTOKENS #IMPLIED

result CDATA #IMPLIED

status (ready|running|enabled|disabled|aborted|null) #IMPLIED

start_time NMTOKENS #IMPLIED

end_time NMTOKENS #IMPLIED

notify CDATA #IMPLIED>
<!ELEMENT event EMPTY>
<!ATTLIST event

name ID #REQUIRED

type (set/reset) "set">
<!ELEMENT sequence ((%routing_element;|state)+)>
<!ELEMENT any_sequence ((%routing element;)+)>
<!ELEMENT choice ((%routing_element;)+)>
<!ELEMENT condition ((true|false)*)>
<!ATTLIST condition

condition CDATA #REQUIRED>
<!ELEMENT true (%routing_ element;)>
<!ELEMENT false (%routing_element;)>
<!ELEMENT fast_sequence ((%routing_element;)+)>
<!ELEMENT parallel_sync ((%routing element;)+)>
<!ELEMENT parallel_no_sync ((%routing_element;)+)>
<!ELEMENT parallel_part_sync ((%routing element;)+)>

106 VERBEEK, VAN DER AALST AND KUMAR

<!ATTLIST parallel_part_sync

number NMTOKEN #REQUIRED>
<!ELEMENT parallel_part_sync_cancel ((%$routing_element;)+)>
<!ATTLIST parallel_part_sync_cancel

number NMTOKEN #REQUIRED>
<!ELEMENT restricted_parallel_sync ((%routing element;)+)>
<!ATTLIST restricted parallel_ sync

number NMTOKEN #REQUIRED>
<!ELEMENT wait_all ((event_ref|timeout)+)>
<!ELEMENT wait_any ((event_ref|timeout)+)>
<!ELEMENT event_ref EMPTY>
<!ATTLIST event_ref

name IDREF #REQUIRED>
<!ELEMENT timeout ((%routing_element;)?)>
<!ATTLIST timeout

time CDATA #REQUIRED

type (relative|s_relative|absolute) "absolute">
<!ELEMENT while_do (%routing_element;)>
<!ATTLIST while_do

condition CDATA #REQUIRED>
<!ELEMENT terminate EMPTY>
<!ELEMENT state EMPTY>

Appendix B. The e-bookstore example

This appendix shows the XRL route for processing a customer order by the e-bookstore.
Note that most attributes have been omitted for brevity.

<!DOCTYPE route SYSTEM "xrl.dtd">
<route name="e-bookstore" created_by="H.M.W. Verbeek"
date="June 11, 2001">
<sequence>
<task name="place_c_order" address="customer"/>
<task name="handle_c_order" address="bookstore"/>
<while_do condition="No publisher found yet">
<sequence>
<task name="place_b_order" address="bookstore"/>
<task name="eval_b_order" address="publisher"/>
<condition condition="No publisher found yet">
<true>
<sequence>
<task name="decide" address="publisher"/>
<condition condition="Try alternative publisher">
<true>
<task name="alt_publ" address="publisher"/>
</true>
<false>
<sequence>
<task name="b_reject" address="publisher"/>

XRL/WOFLAN 107

<task name="c_reject" address="bookstore"/>
<task name="rec_decl" address="customer"/>
</sequence>
</false>
</condition>
</sequence>
</true>
<false>
<sequence>
<task name="b_accept" address="publisher"/>
<task name="c_accept" address="bookstore"/>
<parallel_sync>
<task name="rec_acc" address="customer">
<event name="accept"/>
</task>
<sequence>
<while_do condition="No shipper found yet">
<sequence>
<task name="s_request" address="bookstore"/>
<task name="eval_s_req" address="shipper"/>
</sequence>
</while_do>
<condition condition="Shipper found">
<true>
<sequence>
<task name="s_accept" address="shipper"/>
<task name="inform_publ" address="bookstore"/>
<task name="prepare_b" address="publisher"/>
<task name="send_book" address="publisher"/>
<task name="prepare_s" address="shipper"/>
<task name="ship" address="shipper"/>
<parallel_sync>
<sequence>
<task name="notify" address="shipper"/>
<task name="send_bill" address="bookstore"/>
<wait_all>
<event_ref name="accept"/>
</wait_all>
<task name="rec_bill" address="customer"/>
</sequence>
<sequence>
<wait_all>
<event_ref name="accept"/>
</wait_all>
<task name="rec_book" address="customer"/>
</sequence>
</parallel_sync>
<task name="pay" address="customer"/>
<task name="handle_payment" address="bookstore"/>
</sequence>

108

VERBEEK, VAN DER AALST AND KUMAR

</true>
<false>
<task name="s_reject" address="shipper"/>
</false>
</condition>
</sequence>
</parallel_sync>
</sequence>
</false>
</condition>
</sequence>

</while_do>

</sequence>
</route>

References

(1]
(2]
(3]
(4]
(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

W.M.P. van der Aalst, The application of Petri nets to workflow management, The Journal of Circuits,
Systems and Computers 8(1) (1998) 21-66.

W.M.P. van der Aalst, Interorganizational workflows: An approach based on message sequence charts
and Petri nets, Systems Analysis — Modelling — Simulation 34(3) (1999) 335-367.

W.M.P. van der Aalst, Loosely coupled interorganizational workflows: Modeling and analyzing work-
flows crossing organizational boundaries, Information and Management 37(2) (March 2000) 67-75.
W.M.P. van der Aalst, Process-oriented architectures for electronic commerce and interorganizational
workflow, Information Systems 24(8) (2000) 639-671.

W.M.P. van der Aalst and K. Anyanwu, Inheritance of interorganizational workflows to enable
business-to-business e-commerce, in: Proceedings of the 2nd International Conference on Telecom-
munications and Electronic Commerce (ICTEC’99), eds. A. Dognac, E. van Heck, T. Saarinnen et al.,
Nashville, Tennessee (October 1999) pp. 141-157.

W.M.P. van der Aalst and T. Basten, Inheritance of workflows: An approach to tackling problems
related to change, Theoretical Computer Science 270(1-2) (2002) 125-200.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski and A.P. Barros, Advanced workflow
patterns, in: 7th International Conference on Cooperative Information Systems (CooplS 2000), eds.
O. Etzion and P. Scheuermann, Lecture Notes in Computer Science, Vol. 1901 (Springer, Berlin,
2000) pp. 18-29.

W.M.P. van der Aalst, G. De Michelis and C.A. Ellis, eds., Proceedings of Workflow Management:
Net-Based Concepts, Models, Techniques and Tools (WFM’98), Lisbon, Portugal, June 1998 (UNI-
NOVA, Lisbon, 1998).

W.M.P. van der Aalst and A. Kumar, XML based schema definition for support of interorganizational
workflow, Information Systems Research 14(1) (2003) 23-46.

W.M.P. van der Aalst, HM.W. Verbeek and A. Kumar, Verification of XRL: An XML-based workflow
language, in: Proceedings of the 6th International Conference on CSCW in Design (CSCWD 2001),
eds. W. Shen, Z. Lin, J.-P. Barthes and M. Kamel, London, Ontario, Canada (July 2001) pp. 427-432.
W.M.P. van der Aalst and M. Weske, The P2P approach to interorganizational workflows, in: Proceed-
ings of the 13th International Conference on Advanced Information Systems Engineering (CAiSE’01),
eds. K.R. Dittrich, A. Geppert and M.C. Norrie, Lecture Notes in Computer Science, Vol. 2068
(Springer, Berlin, 2001) pp. 140-156

N.R. Adam, V. Atluri and W. Huang, Modeling and analysis of workflows using Petri nets, Journal of
Intelligent Information Systems 10(2) (1998) 131-158.

XRL/WOFLAN 109

[13]
[14]
[15]
[16]

[17]

(18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]
[27]
(28]
[29]
[30]

(31]

[32]
[33]

[34]

Amazon.com, Inc. Amazon.com, http://www.amazon.com (1999).

Barnes and Noble, bn.com. http://www.bn.com (1999).

R.W.H. Bons, R.M. Lee and R.W. Wagenaar, Designing trustworthy interorganizational trade pro-
cedures for open electronic commerce, International Journal of Electronic Commerce 2(3) (1998)
61-83.

T. Bray, J. Paoli, C.M. Sperberg-McQueen and E. Maler, eXtensible Markup Language (XML) 1.0,
2nd edn., http://www.w3.org/TR/REC-xml (2000).

C.A. Ellis, Information control nets: A mathematical model of office information flow, in: Proceed-
ings of the Conference on Simulation, Measurement and Modeling of Computer Systems, Boulder,
Colorado (ACM Press, 1979) pp. 225-240.

C.A. Ellis and G.J. Nutt, Modelling and enactment of workflow systems, in: Application and Theory
of Petri Nets 1993, ed. M. Ajmone Marsan, Lecture Notes in Computer Science, Vol. 691 (Springer,
Berlin, 1993) pp. 1-16.

Enabling Electronic Business with ebXML, White Paper, http://www.ebxml.org/white_papers/
whitepaper.htm.

D. Georgakopoulos, H. Schuster, A. Cichocki and D. Baker, Managing process and service fusion in
virtual enterprises, Information Systems 24(6) (1999) 429-456.

P. Grefen, K. Aberer, Y. Hoffner and H. Ludwig, CrossFlow: Cross-organizational workflow man-
agement in dynamic virtual enterprises, International Journal of Computer Systems, Science, and
Engineering 15(5) (2001) 277-290.

A.H.M. ter Hofstede, M.E. Orlowska and J. Rajapakse, Verification problems in conceptual workflow
specifications, Data and Knowledge Engineering 24(3) (1998) 239-256.

S. Jablonski and C. Bussler, Workflow Management: Modeling Concepts, Architecture, and Imple-
mentation (International Thomson Computer Press, London, UK, 1996).

M. Jungel, E. Kindler and M. Weber, The Petri Net Markup Language, in: Proceedings of AWPN
2000 — 7th Workshop Algorithmen und Werkzeuge fiir Petrinetze, ed. S. Philippi, Research Report
7/2000 (Institute for Computer Science, University of Koblenz, Germany, 2000) pp. 47-52.

E. Kindler, A. Martens and W. Reisig, Inter-operability of workflow applications: Local criteria for
global soundness, in: Business Process Management: Models, Techniques, and Empirical Studies,
eds. W.ML.P. van der Aalst, J. Desel and A. Oberweis, Lecture Notes in Computer Science, Vol. 1806
(Springer, Berlin, 2000) pp. 235-253.

A. Kumar and J.L. Zhao, Workflow support for electronic commerce applications, Decision Support
Systems 32(3) (2000) 265-278.

P. Lawrence, ed., Workflow Handbook 1997, Workflow Management Coalition (Wiley, New York,
1997).

A. Lazcano, G. Alonso, H. Schuldt and C. Schuler, The WISE approach to electronic commerce,
International Journal of Computer Systems, Science, and Engineering 15(5) (2001) 345-357.

R.M. Lee, Distributed electronic trade scenarios: Representation, design, prototyping, International
Journal of Electronic Commerce 3(2) (1999) 105-120.

R.M. Lee and R.W.H. Bons, Soft-coded trade procedures for open-edi, International Journal of Elec-
tronic Commerce 1(1) (1996) 27-49.

M. Merz, B. Liberman and W. Lamersdorf, Using mobile agents to support interorganizational
workflow-management, International Journal on Applied Artificial Intelligence 11(6) (1997) 551—
572.

M. Merz, B. Liberman and W. Lamersdorf, Crossing organisational boundaries with mobile agents in
electronic service markets, Integrated Computer-Aided Engineering 6(2) (1999) 91-104.

G. De Michelis, C. Ellis and G. Memmi, eds., Proceedings of the 2nd Workshop on Computer-
Supported Cooperative Work, Petri Nets and Related Formalisms, Zaragoza, Spain (June 1994).

T. Murata, Petri nets: Properties, analysis and applications, Proceedings of the IEEE 77(4) (1989)
541-580.

110

[35]
[36]

[37]

[38]

[39]

[40]
[41]

[42]

VERBEEK, VAN DER AALST AND KUMAR

W. Reisig and G. Rozenberg, eds., Lectures on Petri Nets I: Basic Models, Lecture Notes in Computer
Science, Vol. 1491 (Springer, Berlin, 1998).

A. Reuter and F. Schwenkreis, Contracts — a low-level mechanism for building general-purpose work-
flow management-systems, Data Engineering Bulletin 18(1) (1995) 4-10.

W. Sadiq and M.E. Orlowska, FlowMake Product Information, Distributed Systems Technology Cen-
tre, Queensland, Australia. http://www.dstc.edu.au/Research/Projects/FlowMake/productinfo/index.
html.

W. Sadiq and M.E. Orlowska, Analyzing process models using graph reduction techniques, Informa-
tion Systems 25(2) (2000) 117-134.

H.M.W. Verbeek and W.M.P. van der Aalst, Woflan 2.0: A Petri-net-based workflow diagnosis tool,
in: Application and Theory of Petri Nets 2000, eds. M. Nielsen and D. Simpson, Lecture Notes in
Computer Science, Vol. 1825 (Springer, Berlin, 2000) pp. 475-484.

H.M.W. Verbeek, T. Basten and W.M.P. van der Aalst, Diagnosing workflow processes using Woflan,
The Computer Journal (British Computer Society) 44(4) (2001) 246-279.

Workflow Management Coalition Workflow Standard — Workflow Process Definition Interface - XML
Process Definition Language, WEMC-TC-1025, Draft 0.03a (22 May 2001).

Workflow Management Coalition Workflow Standard — Interoperability Wf-XML Binding, WFMC-
TC-1023, Version 1.1 (14 November 2001).

