

XRootD and Object Store: A new paradigm

Katy Ellis1,*, Chris Brew1, George Patargias1, Tim Adye1, Rob Appleyard1, Alastair
Dewhurst1 and Ian Johnson1

1STFC - Rutherford Appleton Lab, Harwell, UK

Abstract. The XRootD software framework is essential for data access at
WLCG sites. The WLCG community is exploring and expanding XRootD
functionality. This presents a particular challenge at the RAL Tier-1 as the
Echo storage service is a Ceph based Erasure Coded object store. External
access to Echo uses gateway machines which run GridFTP and caching
servers. Local jobs access Echo via caches on every worker node, but it is
clear there are inefficiencies in the system. Remote jobs also access data via
XRootD on Echo. For CMS jobs this is via the AAA service. ATLAS, who
are consolidating their storage at fewer sites, are increasingly accessing job
input data remotely. This paper describes the continuing work to optimise
both local and remote data access by testing different caching methods.

1 Introduction
The UK Tier 1 is situated at the Rutherford Appleton Laboratory (RAL) and supports all
LHC experiments, as well as a growing number of others in HEP, Astronomy and Space
Science. The RAL disk storage system, known as Echo [1], is an Erasure Coded Ceph Object
Store [2] with Grid compatible APIs. A description of Echo can be found in the next Section.
Access to Echo is primarily via XRootD [3], which is both a protocol name and an open
source suite of fast and highly scalable data access tools commonly used by LHC
experiments. However, XRootD is designed to use with file systems organised in directories.

Echo is not a file system in the traditional sense and does not use a directory structure.
Instead it contains objects, which can be named so as to keep the appearance of a directory
structure, e.g. /my/path/isActually/anObjectName.root. The entire path is a string which
defines the object name.

2 The Echo Storage System
Echo is based on Ceph technology. At the core of Ceph is the CRUSH (Controlled Replication
Under Scalable Hashing) map which is a description of the storage infrastructure and is used
to assign data to particular storage locations whilst ensuring the required level of data
redundancy. The Echo cluster is made up of multiple pools which provide storage to a single
large, or multiple small experiments. Each pool has multiple associated Placement Groups

* Corresponding author: katy.ellis@stfc.ac.uk

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 04006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504006

which are each composed of a set of hard disks. Each disk is managed by an Object Storage
Daemon (OSD). The Placement Groups and OSDs have a many-to-many relationship.

When writing data to Echo, the objects to be stored are first divided into 64 MB stripes.
The software that performs this is known as the libradosstriper [4] and is one of the standard
Ceph APIs. Each stripe is assigned a Placement Group via a hash algorithm. Each stripe is
split into 8 MB shards. Three additional parity shards are calculated and all eleven are stored
on different storage nodes. Of these, any eight are required to reconstruct a stripe. Three out
of eleven OSDs within a group can be unavailable and the data will remain fully accessible.
If up to three shards are lost, the system will recalculate the missing shards and ‘self-heal’.

This type of storage does not use a central database for metadata look-up, and hence scales
extremely well. Each client accesses Echo directly via a gateway which has the ability to both
write and read data as described here. A gateway can be configured as a lightweight service
and is installed on every local worker node.

Although the Echo object store provides several advantages, there are also some
disadvantages to bringing this new technology into existing experiment analysis models.
RAL is unique among WLCG Tier 1s in incorporating this technology although some Tier
2s are employing a similar setup, for example Glasgow in the UK. One of the challenges
encountered during Echo development is the optimisation of access to Echo via XRootD for
the different use cases. Several of these are described in this paper.

3 XRootD setup at RAL
XRootD is used for both file transfers in and out of Echo from offsite and for jobs running
on RAL’s batch farm to access local disk storage. There is also a gridftp plugin for transfers
between sites, but the intention is to phase this out in the medium-term and replace the
functionality with both WebDav (HTTP) and XRootD protocols [5].

The Third Party Copy (TPC) functionality was previously present in XRootD, however
it was not commonly used due to incompatibilities between storage systems. In 2019 a
substantial cross-collaboration effort was made to put it into operation [5, 6]. A TPC transfer
copies a file directly from the source to the destination without streaming it via the command
issuing machine.

As described in Section 2, access to Echo must be done via a gateway. These can be found
on each individual worker node as light weight software layers, as well as on dedicated, heavy
weight, externally facing machines for site-to-site transfers, which are known as external
gateways. Supported specifically for the CMS experiment is the AAA service, which stands
for Any data, Any time, Any where [7, 8] and must also run a gateway. Figure 1 illustrates
these examples schematically, including interfaces between XRootD and libradosstriper.

On top of the Ceph gateway plugin, different flavours of cache or other access mechanism
may be placed. XRootD caching at RAL is currently set up differently for each type of
gateway, with disk caches on the worker nodes, memory caches on the external gateways and
no cache on the AAA proxies. Previous investigations into cache optimisation were presented
in [9].

2

EPJ Web of Conferences 245, 04006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504006

Figure 1: XRootD interactions with Echo

4 CMS Jobs

RAL has observed that CMS jobs spend a significant amount of time in I/O wait and this
reduces their efficiency. Understanding how these jobs access their data is therefore key to
improving their efficiency. Figure 2a shows the efficiency (CPU / Wall Time) of different
types of CMS jobs run. Figure 2b shows the breakdown of the types of jobs run at RAL. It is
therefore expected that the biggest gains in this area can be achieved by improving jobs of
type ‘Processing’ as these jobs are most commonly run at RAL, and have among the lowest
average efficiency. They typically have high I/O requirements, and stream multiple files of
size ~4 GB from local storage. If the data is not immediately available via local storage, the
AAA service is queried, and the files or parts of the files may be transferred from any other
CMS site worldwide.

CMS differs in data access methods from some other experiments which run jobs at RAL.
Where others may download an entire file before it is needed, CMS keeps an open
connection to the storage and accesses only the parts of the file as required. The advantage

Figure 2a: The average CPU efficiency of RAL jobs Figure 2b - the number of each job type

3

EPJ Web of Conferences 245, 04006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504006

of this is that less data overall may be transferred to the worker node. However, the
particular configuration makes multiple small reads less efficient than reading the whole
file and further optimisation could be possible. In addition, studies such as [10] have shown
that changes made at the level of the CMS software have had a significant effect on the
performance of disparate storage systems.

4.1 CMS jobs and Echo – test setup

A typical RAL worker node with specification as shown in Figure 3, was drained and isolated
from the batch farm. The same node was used for every test. Jobs were submitted via
‘condor_submit’ [11] to replicate the normal job submission method, and run in the full
containerized structure as shown in the Figure 3 schematic diagram.

Figure 3: Specification and schematic of RAL worker node setup

 The tests described in this Section use an adapted analysis job to do some event
selection and write a ROOT output file of event properties. The job has to access multiple
files but is not particularly CPU-intensive. A particular dataset was selected for the job to
take as input, with greater or fewer files used for different tests. The dataset was placed on
Echo in the /tmp/ area so that the files would always be accessed from local storage and
never be deleted by the CMS data management system.

4.2 CMS jobs and Echo – cache hint

CMS jobs have an additional line in the XRootD configuration with name cache-hint. A
complete description of this can be found in [3]. As described in Section 3, the way CMS
jobs access data is not as straightforward as simply downloading entire files to the worker
node. The cache-hint allows some individual configuration for non-homogeneous storage
systems. The current standard at RAL is termed Lazy-download. This option caches the file
on to the job in chunks of 128 MB at a time, and was thought to mesh well with the Echo
stripe size of 64 MB. The test described in this section attempts to demonstrate whether this
really is the best option.
 The other cache-hint values are Application-only, where ROOT does the caching, and
Storage-only, in which the caching is handled by the layer just below the CMS software
framework. There is also an Auto-detect option where XrootD makes the decision itself
based on the storage type. Results indicate that this is selecting Application-only for the
RAL worker node.
 Approximately ten test jobs were run for each cache-hint. Each job had 4 files as
input, with a total size of ~9 GB. Table 1 shows the mean time taken to run the job, the
standard deviation, and the total volume transferred by the job.

Worker Node Docker Containers

/pool/xcache/

XRootD client

User job
Job containerXRootD Gateway

XRootD Proxy

XRootD (manager)

Hostname lcg2069

Memory 131 GB

CPU 32

Network b/width 1 GB/s

Storage type Hard disk

Disk volume 1800 GB

4

EPJ Web of Conferences 245, 04006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504006

 In this test, Lazy-download has transferred the entire file, whereas other options have
cached a maximum of 75% of the data. The quickest option, Application-only, has a mean
time of approximately 90% of the mean time taken by Lazy-Download, which was the
slowest on average. Reported CPU (or ‘User’) time was very similar for all tests.

Table 1. Results from the cache-hint tests, averaged over ~10 tests per cache-hint.

Cache-hint Mean time,
min:sec

Standard deviation,
min:sec

NetworkInput,
Mb

Application-only 32:11 0:27 ~6900

Lazy-download 36:04 0:26 9173

Storage-only 35:15 0:35 ~6680

Auto-detect 32:13 0:31 ~6900

 Results indicate that it is worth attempting larger scale tests with the cache-hint
options and particularly Application-only. These small-scale tests are not conclusive, as
CMS jobs are of various types and only one simple job has been demonstrated here.
Reliability at production scale is also a concern.

4.3 CMS jobs and Echo – parallelization

Another suspected influence on the I/O efficiency of CMS jobs is the number of concurrent
jobs or reads running on the worker node. The tests in this section process the same number
of unique files in each case.
 Employing the same isolated computing node described in section 4.1, jobs were run
in batches as illustrated in Table 2. Up to 16 jobs could be run in parallel with the original
memory requirement of 8 GiB per job.
Table 2. Tests of increased parallelization, with mean averages over multiple runs where applicable.

jobs # files
per job

 Total job run
time (min)

Time per file
(min)

Average
throughput per

job (MB/s)

Total
throughput

(MB/s)

1 32 278 8.7 4.42 4.4

2 16 141 8.8 4.42 8.8

4 8 83 10.4 3.87 15.5

8 4 51 12.8 3.24 25.9

16 2 43 21.5 2.14 34.3

 Results in Table 2 show that there are substantial time savings to be made for this job
type with extreme parallelization. All 32 unique files were processed in 36 minutes when
maximally parallelized compared with 278 minutes when all of the resource was used by a
single job. However, note that the ‘merge’ part of the job, where results are combined into a
single output has not been performed in this test.
 The average throughput per job indicates that there is some slowdown in data access
as the number of simultaneous reads increases above eight, as indicated by Figure 4.

5

EPJ Web of Conferences 245, 04006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504006

Figure 4: Throughput achieved with increasing number of simultaneous jobs (solid line), compared

with perfect scaling (dashed line).

5 CMS AAA
The CMS AAA service is designed to provide partial or full datasets to any CMS User
without the need to download it to local storage. This particularly allows for greater
resilience against damaged or missing input files.

CMS jobs commonly read only a small fraction of any file. When Echo was initially
configured there was a concern that many remote reads of small amounts of data could put
significant load on the storage. The CMS AAA servers were therefore configured with
memory caches. These caches fetched a minimum of 32 MB of data at a time, which was
expected to reduce the load on Echo. Figure 5 shows the network throughput into and out
of the CMS AAA proxies. The much higher input shows that most of the pre-fetched data
was never used. The result was an overloaded service that required frequent intervention.

Figure 5: Network Usage over one week for the CMS AAA proxy before changes to the caching.

Inflowing data to the proxy is shown as negative and outflowing data as positive. The scale is
between -4 Gbps and 4 Gbps.

The solution was to simply turn off the memory cache on the proxies. The service then
became much more stable and rarely required intervention. The AAA proxy Network
Usage became balanced with respect to inflowing and outflowing data, as can be seen in
Figure 6.

Figure 6: Network Usage over one week for one CMS AAA proxy after changes to the caching.

Inflowing data to the proxy is shown as negative and outflowing data as positive.

0

20

40

60

80

0 5 10 15 20To
ta

l t
hr

ou
gh

pu
t (

M
B/

s)

Simultaneous jobs

6

EPJ Web of Conferences 245, 04006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504006

6 Conclusions
It has been shown that file transfer times out of the Echo storage system are sensitive to
changes in cache settings. The CMS AAA service was made significantly more stable by
entirely removing the proxy cache. Jobs on RAL worker nodes were shown to be around
10% quicker when using alternate cache-hint values in place of lazy-download. Multiple,
concurrent reads from the same worker node showed some slowdown in the average data
rate per file, and this effect was most significant for eight or more simultaneous reads. This
could indicate that the bottleneck is on the worker node and requires further investigation.

References
1. A. Dewhurst et al., J. Phys.: Conf. Ser. 898 062051 (2017)
2. The Ceph website: https://ceph.io
3. The XRootD website: https://xrootd.slac.stanford.edu
4. The Ceph architecture : https://docs.ceph.com/docs/master/architecture/
5. A. Forti et al., Modernising Third-Party-Copy Transfers in WLCG, presented at CHEP

2019, 10.5281/zenodo.3599529
6. W. Yang et al., Xrootd Third Party Copy for the WLCG and HL-LHC, presented at

CHEP 2019, 10.5281/zenodo.3599613
7. Description of CMS AAA:

https://twiki.cern.ch/twiki/bin/view/Main/CmsXrootdArchitecture
8. L. Bauerdick et al., J. Phys.: Conf. Ser. 396 042009 (2012)
9. A. Dewhurst, A. Lahiff, poster presented at CHEP 2018:

https://indico.cern.ch/event/587955/contributions/2936908/attachments/1683145/2705
081/CHEP18XrootD.pdf

10. Leonardo Sala et al., J. Phys.: Conf. Ser 331 072062 (2011)
11. The HTCondor manual: https://research.cs.wisc.edu/htcondor/manual/

7

EPJ Web of Conferences 245, 04006 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024504006

