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Abstract XML documents have recently become ubiquitous because of their varied appli-

cability in a number of applications. Classification is an important problem in the data mining

domain, but current classification methods for XML documents use IR-based methods in

which each document is treated as a bag of words. Such techniques ignore a significant

amount of information hidden inside the documents. In this paper we discuss the problem

of rule based classification of XML data by using frequent discriminatory substructures

within XML documents. Such a technique is more capable of finding the classification char-

acteristics of documents. In addition, the technique can also be extended to cost sensitive

classification. We show the effectiveness of the method with respect to other classifiers. We

note that the methodology discussed in this paper is applicable to any kind of semi-structured

data.

Keywords XML/Semi-structured data . Classification . Rule induction . Tree mining

1. Introduction

The classification problem is defined as follows. We have an input data set called the training

data which consists of a set of multi-attribute records along with a special variable called

the class. This class variable draws its value from a discrete set of classes. The training data

is used to construct a model which relates the feature variables in the training data to the
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class variable. The test instances for the classification problem consist of a set of records

for which only the feature values are known while the class value is unknown. The training

model is used in order to predict the class variable for such test instances.

In recent years, XML has become a popular way of storing many data sets because the

semi-structured nature of XML allows the modeling of a wide variety of databases as XML

documents. XML data thus forms an important data mining domain, and it is valuable to

develop classification methods for such data. Currently, the problem of classification on

XML data has not been very well studied, in spite of its applicability to a wide variety of

problems in the XML domain.

Since XML documents are also text documents, a natural alternative for such cases is

the use of standard information retrieval methods for classification. A simple and frequently

used method for classification is the nearest neighbor classifier (Duda & Hart, 1973). This

method works quite well for most text applications containing a small number of class labels.

Other methods like Support Vector Machines (SVM) (Joachims, 2002) and Latent Semantic

Analysis (Dumais et al., 1988) have proven to be successful in text classification. However,

classifying using only the text ignores a significant amount of structural information in

the XML documents. The classification behavior of the XML document may be hidden

in the structural information available inside the document. In such cases, the use of IR

based classifiers is likely to be ineffective for XML documents. Another approach for XML

mining is to directly use association rule based classifiers such as CBA (Liu, Hsu, & Ma,

1998), CAEP (Dong et al., 1999) or CMAR (Li, Han, & Pei, 2001), on the XML data. Even

though an XML data record has hierarchical structure, its structure can be flattened out into

a set, which allows the use of an association classifier. However, this also results in loss of

structural information.

In this paper, we will discuss the problem of constructing structural rules in order to

perform the classification task. The training phase finds the structures which are most closely

related to the class variable. In other words, the presence of a particular kind of structural

pattern in an XML document is related to its likelihood of belonging to a particular class.

Once the training phase has been completed, we perform the testing phase in which these

rules are used to perform the structural classification. We will show that the resulting system

is significantly more effective than an association based classifier because of its ability to

mine discriminatory structures in the data.

The main contribution of this paper is to propose XRules, a structural rule-based classifier

for semi-structured data. In order to do so, we also develop XMiner which mines pertinent

structures for multiple classes simultaneously. We extend our classifier to the cost sensitive

case, so that it can handle normal as well as skewed class distributions. We also show that

our class assignment decisions are rooted in Bayesian statistics.

2. Structural rules: concepts

2.1. XML as trees

A rooted, labeled, tree, T = (V, E) is a directed, acyclic, connected graph, with V =
{0, 1, . . . , n} as the set of vertices or nodes, E = {(x, y)|x, y ∈ V } as the set of edges.

One distinguished vertex r ∈ V is designated the root, and for all x ∈ V , there is a unique

path from r to x. Further, l : V → L is a labeling function mapping vertices to a set of labels

L = {ℓ1, ℓ2, . . .}. The size of T is the number of nodes in T. In an ordered tree the children

of each vertex are ordered (i.e., if a vertex has k children, then we can designate them as
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Fig. 1 Embedded subtree.

the first child, second child, and so on up to the kth child), otherwise, the tree is unordered.

In this paper, we model XML documents as ordered, labeled, rooted trees i.e., child order

matters, and each node has a label. This is justified since tree structured XML documents are

the most widely occurring ones in real applications. We note that even if an XML document

is not a tree, it can always be converted into one by using a node splitting methodology

(Anderson et al., 2002). Further, we do not distinguish between attributes and elements of

an XML document; both are mapped to the label set.

If x, y ∈ V and there is a path from x to y, then x is called an ancestor of y (and y a

descendant of x), denoted as x ≤p y, where p is the length of the path from x to y. If x ≤1 y

(i.e., x is an immediate ancestor), then x is called the parent of y, and y the child of x. If x

and y have the same parent, x and y are called siblings, and if they have a common ancestor,

they are called cousins.

Subtrees Given trees T = (Vt , Et ) and S = (Vs, Es), we say that T is an isomorphic

subtree of S iff 1 there exists a one-to-one mapping ϕ : Vt → Vs , such that (x, y) ∈ Et iff

(ϕ(x), ϕ(y)) ∈ Es . If ϕ is onto, then T and S are called isomorphic. T is called an induced

subtree of S = (Vs, Es), denoted T �i S, iff T is an isomorphic subtree of S, and ϕ preserves

labels, i.e., l(x) = l(ϕ(x)),∀x inVt . That is, for induced subtrees ϕ preserves the parent-child

relationships, as well as vertex labels. The induced subtree obtained by deleting the rightmost

leaf in T is called an immediate prefix of T. The induced subtree obtained from T by a series

of rightmost node deletions is called a prefix of T.

T = (Vt , Et ) is called an embedded subtree of S = (Vs, Es), denoted as T �e S iff there

exists a 1-to-1 mapping ϕ : Vt → Vs that satisfies: i) (x, y) ∈ Et iff ϕ(x) ≤p ϕ(y), and ii)

l(x) = l(ϕ(x)). That is, for embedded subtrees ϕ preserves ancestor-descendant relationships

and labels. Embedded subtrees are thus a generalization of induced subtrees; they allow not

only direct parent-child branches, but also ancestor-descendant branches. As such embedded

subtrees are able to extract patterns “hidden” (or embedded) deep within large trees which

might be missed by the traditional definition. As an example, consider Figure 1, which shows

three trees. Let us assume we want to mine subtrees that are common to all three trees (i.e.,

100% frequency). If we mine induced trees only, then there are no frequent trees of size more

than one. On the other hand, if we mine embedded subtrees, then the tree shown in the box is

a frequent pattern appearing in all three trees; it is obtained by skipping the “middle” node in

each tree. This example shows why embedded trees are of interest. Henceforth, a reference

to subtree should be taken to mean an embedded subtree, unless indicated otherwise.

Support If T �e S, we also say that S contains T or T occurs in S. Note that each

occurrence of T in S can be identified by its unique match label, given by the sequence

ϕ(x0)ϕ(x1) · · · ϕ(x|T |), where xi ∈ Vt . That is, a match label of T is given as the set of

1 if and only if
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matching positions in S. Let δS(T ) denote the number of occurrences of the subtree T in

a tree S. Let dS be an indicator variable, with dS(T ) = 1 if δS(T ) > 0 and dS(T ) = 0 if

δS(T ) = 0.

Let D denote a database (a forest) of trees. For a tree T, we define its absolute support in

D, denoted π A(T, D), as the number of trees in D that contain at least one occurrence of T,

i.e.,

π A(T, D) =
∑

S∈D

dS(T ) = |{S ∈ D|T � S}| (1)

The weighted support of T is defined as πW (T, D) =
∑

S∈D δS(T ), i.e., total number of

occurrences of T over all trees in D. The (relative) support of T in D, denoted π(T, D), is

defined as the fraction of trees in D that contain T, i.e.,

π (T, D) =
π A(T, D)

|D|
(2)

T is said to be frequent in D if π (T, D) ≥ πmin, where πmin is a user defined minimum

support threshold. We denote by Fk the set of all frequent subtrees of size k, which are also

called as k-(sub)trees. In some domains one might be interested in using weighted support,

instead of support. Both of them are allowed in our mining approach, but we focus mainly

on support.

2.2. Cost-based classification

The classification model discussed in this paper can be used for the general case of cost-

sensitive classification (Domingos, 1999). In this section, we provide some definitions rele-

vant to this topic. We assume that the training database D for classification consists of a set of

|D| structures, each of which is associated with one of k class variables. Let C = {c1 . . . ck}
be the k classes in the data. For a structure T ∈ D, we use the notation T .c to refer to

the class associated with T. We assume that each of these structures is an XML document

that can be represented in tree format. Therefore the database D is essentially a forest

with N components, so that each of the trees in the forest is labeled with a class variable.

The class label of each structure in D induces a partition of the database into k disjoint

parts. Let Di = {T ∈ D|T .c = ci }, i.e., Di consists of all structures with class ci . Clearly

D =
⋃k

i=1 Di .

The goal of classification is to learn a model, R : D → C,R(T ) = c j (where T ∈ D and

c j ∈ C), that can predict the class label for an unlabeled test instance. We can find out how

well the classifier performs by measuring its accuracy. Let D be some collection of structures

T with known labels T .c. Let η(D) = |{T ∈ D|T .c = R(T )}| denote the number of correct

predictions made by the model for examples in D. Thus, η(Di ) gives the number of correct

predictions for examples with class ci , and η(D) =
∑k

i=1 η(Di ) gives the total number of

correct predictions made by R over all classes. The accuracy α of the classification model

R on data set D is the ratio of correct predictions to the total number of predictions made:

α(R,D) = η(D)

|D| .

Cost-sensitive accuracy For many classifier models, the accuracy is often biased in favor

of classes with higher probability of occurrence. In many real applications, the cost of

predicting each class correctly is not the same, and thus it is preferable to use the notion of
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cost-sensitive accuracy. For each class ci , let wi denote a positive real number called weight,

with the constraint that
∑k

i=1 wi = 1. The cost-sensitive accuracy, denoted αcs , is defined

as the weighted average of the accuracy of the classifier on each class. Formally, we define

αcs(R,D) =
k

∑

i=1

(wi × α(R,Di )) (3)

There are several cost-models that one could use to compute the classification accuracy:

� The proportional model uses wi = |Di |/|D|, i.e., weights are proportional to the proba-

bility of the class in D.
� The equal model uses wi = 1/k, i.e., all classes are weighted equally.
� The inverse model uses wi = 1/|Di |

∑k
j=1 1/|D j |

, i.e., weights are inversely proportional to the

class probability.
� The custom model uses user-defined weights wi .

Lemma 2.1. For proportional model αcs(R,D) = α(R,D).

Proof: αcs(R,D) =
∑k

i=1(
|Di |
|D| α(R,Di )) =

∑k
i=1

|Di |
|D| × η(Di )

|Di | =
∑k

i=1
η(Di )

|D| = η(D)

|D| =
α(R,D) �

In this paper we will contrast the inverse cost-model with the proportional and equal

model. The inverse model works well for binary classification problems with skewed class

distribution, since it gives a higher reward to a correct rare class prediction.

2.3. Rule support

Rules are defined as entities which relate the frequent structures on the left hand side to the

class variables on the right. Such rules are able to relate the complex structural patterns in

the data to the class variable. Formally, a structural rule is an entity of the form T ⇒ ci ,

where T is a structure, and ci is one of the k classes.

This rule implies that if T is a substructure of a given XML record x, then the record x is

more likely to belong to the class ci . The “goodness” of such an implication is defined by

two parameters which we refer to as support and strength.

Let D be any collection of trees with class labels drawn from C. The global support of

T ⇒ ci in the database D, is defined as the joint probability of T and ci , i.e., the percentage

of the trees in the database containing T and having class label ci . Formally

π (T ⇒ ci ) = P(T ∧ ci ) =
π A(T,Di )

|D|
= π (T,Di ) ×

|Di |
|D|

(2.4)

The last step follows from Equation (2). The local support of a rule T ⇒ci is simply its

relative frequency in Di , given as π (T,Di )

.
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2.4. Rule strength

The strength of a structural rule can be measured by different measures; we focus on three:

confidence, likelihood ratio, and weighted confidence, as defined below.

2.4.1. Confidence

The confidence of the structural rule T ⇒ ci is defined as the conditional probability of class

ci given T, i.e., the ratio of the number of trees containing T and having class label ci , to the

number of trees containing T in the entire database. Formally, we define

ρ(T ⇒ ci ) = P(ci |T ) =
P(T ∧ ci )

P(T )
=

π A(T,Di )

π A(T,D)
(5)

Let us assume that we have k classes (k ≥ 2), and let C̄i = C − {ci } be the set of all classes

other than ci . We define D̄i = D − Di to be the set of trees in D with their classes taken

from C̄i . Our approach for multi-class problems (with k > 2) is to treat them as a binary

class problem as follows: we compare each class ci with the rest of the classes taken as a

group to form a negative class C̄i . That is, we compare ρ(T ⇒ ci ) with ρ(T ⇒ C̄i ). Using

the observation that D = Di + D̄i , we can rewrite Equation (5) as:

ρ(T ⇒ ci ) =
π A(T,Di )

π A(T,Di ) + π A(T, D̄i )
(6)

It is clear that ρ(T ⇒ ci ) = 1 − ρ(T ⇒ C̄i ).

2.4.2. Likelihood ratio

The likelihood ratio for a rule T ⇒ ci is defined as the ratio of the relative support of T in

examples with class ci , to the relative support of T in examples having negative class C̄i .

Formally, it is defined as follows:

γ (T ⇒ ci ) =
π (T,Di )

π (T,Di )
=

π A(T,Di )

π A(T,Di )
×

|D̄i |
|Di |

(7)

Lemma 2.2. Likelihood ratio for a rule is related to its confidence by the formula:

γ (T ⇒ ci ) =
ρ(T ⇒ci )

ρ(T ⇒Ci )
×

|Di |
|Di |

Proof: From Equation. (5), we get π A(T,Di ) = ρ(T ⇒ ci ) × π A(T,D) (similarly for

π A(T, Di )). Plugging into Equation (7),

γ (T ⇒ ci ) =
ρ(T ⇒ ci ) × π A(T,D)

ρ(T ⇒ Ci ) × π A(T,D)

|Di |
|Di |

=
ρ(T ⇒ ci )

ρ(T ⇒ Ci )

|Di |
|Di |

�
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2.4.3. Weighted confidence

We define another measure called the weighted confidence, which combines the above two

measures, given as follows:

ρw(T ⇒ ci ) =
π (T,Di )

π (T,Di ) + π (T,Di )
(8)

We can rewrite the Equation (8), as a weighted version of Equation (6), as follows:

ρw(T ⇒ ci ) =
π A(T,Di )/|Di |

π A(T,Di )/|Di | + π A(T,Di )/|Di |

In other words, while confidence uses absolute supports, weighted confidence uses relative

supports (i.e., weighted by class probability). By the next lemma, weighted confidence can

also be thought of as a normalized likelihood measure.

Lemma 2.3. The weighted confidence of a rule is related to its likelihood by the formula:

ρw(T ⇒ ci ) =
γ (T ⇒ ci )

γ (T ⇒ci ) + 1
(9)

Proof: From Equation (7), π (T,Di ) = γ (T ⇒ci ) × π(T,Di ). Plugging into Equation (8),

we get:

ρw(T ⇒ ci ) =
γ (T ⇒ ci ) × π (T,Di )

γ (T ⇒ ci ) × π (T,Di ) + π (T,Di )
=

γ (T ⇒ ci )

γ (T ⇒ ci ) + 1

�

Both ρ and ρw take on values between [0, 1], while γ can take values between [0,∞].

Since we want only predictive rules, we need to remove any rule that lacks predictive power.

Consider a rule (T ⇒ ci ); if its (weighted) confidence ρ = ρw = 0.5 or if its likelihood ratio

γ = 1.0, then T cannot distinguish between the class ci and its negative class C̄i , and we

prune such a rule. In general, the acceptable range of values for a user-defined minimum

confidence threshold is ρmin ∈ (0.5, 1], while the acceptable range for minimum likelihood

is γ min ∈ (1,∞]. In our experiments, we will study the effects of using one strength measure

over another. Let δ denote the measure of strength. For convenience, for confidence we

set δ ≡ ρ (note: the notation ≡ denotes that the two entities are equivalent), for weighted

confidence we set δ ≡ ρw, and for likelihood δ ≡ γ .

We use the notation T ⇒ π, δci to denote a rule with support π and strength δ. Our

goal is to learn a structural rule-set R = {R1, R2, . . . , Rm}, where each rule is of the form

R j : T j ⇒ π, δc
j
i , with π ≥ πmin

i (i.e., rule support is equal to or more than the minimum

support for class ci ) and with δ ≥ δmin. That is, rules which satisfy a user-defined level of

minimum support πmin
i , and a global minimum strength threshold, δmin. Note that δmin ≡ ρmin

for (weighted) confidence based measure and δmin ≡ γ min for likelihood based measure. We
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set the default minimum strength values to ρmin = 0.5 and γ min = 1.0; in fact, these are the

values used in our experiments.

2.4.4. Bayesian interpretation of strength

Let C = {c1, . . . , ck} be the set of k classes, and let C̄i = C − ci . As before Di is the portion

of data set D with class ci and Di is the remaining data set, with class in Ci . Given k

classes, in general, an unseen example T should be assigned to class ci if the probability of

class ci given T, P(ci |T ) is the greatest over all other classes c j , i.e., assign T to class ci

if P(ci |T ) > P(c j |T ) for all c j ∈ C \ c j . Since we compare a class ci against the negative

class Ci , we assign T to class ci if

P(ci |T ) > P(Ci |T ) (10)

⇔
P(T |ci )P(ci )

P(T )
>

P(T |Ci )P(Ci )

P(T )
Bayes thm. (11)

⇔ P(T |ci )P(ci ) > P(T |Ci )P(Ci ) (12)

The three strength measures differ in which equation they use for class prediction. For

instance, confidence measure directly uses Equation (10), since by definition (Equation (5)),

ρ(T ⇒ ci ) = P(ci |T ). Thus using the confidence measure T is assigned to class ci if ρ(T ⇒
ci ) > ρ(T ⇒ Ci ).

The likelihood measure uses Equation (12). Rearranging the terms in Equation (12), we

get
P(T |ci )

P(T |Ci )
>

P(Ci )

P(ci )
. Substituting P(T |ci ) = π A(T,Di )

|Di | = π (T,Di ) (and similarly for P(T |Ci ))

we get: π (T,Di )

π (T,D̄i )
>

P(Ci )

P(ci )
. By definition of likelihood (Equation (7)), we have γ (T ⇒ ci ) =

π (T,Di )

π (T,cal Di )
. Thus Bayes rule (Equation (12)) assigns T to class ci if γ (T ⇒ ci ) >

P(Ci )

P(ci )
.

The likelihood measure assigns T to class ci if γ (T ⇒ ci ) > γ min. If we use the default

value of γ min = 1, this corresponds to ignoring the ratio of class prior probabilities, i.e.,

setting the ratio P(C̄i )

P(ci )
= 1. In general (for proportional or equal cost model) it makes sense to

use the class priors, since in the absence of any information, we should predict the class of T

to be the class with higher prior. However, if ci is rare (inverse cost model), then it is better

to ignore the prior, since the prior ratio is biased in favor of the class with higher probability.

By setting the prior ratio to 1, we set all classes on an equal footing.

Finally, the weighted confidence measure uses Equation 12 (consider its LHS):

LHS =
P(T |ci )P(ci )

P(T )
=

P(T |ci )P(ci )

P(T |ci )P(ci ) + P(T |C̄i )P(C̄i )

=
1

1 + P(T |C̄i )P(C̄i )

P(T |ci )P(ci )

=
1

1 + π (T,Di )

π (T,Di )
× P(C̄i )

P(ci )

setting
π (T,Di )

π (T,Di )
=

1

γ (T ⇒ci )
, we get :

=
γ (T ⇒ci )

γ (T ⇒ci ) + P(C̄i )

P(ci )
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Once again, ignoring class priors ratio (i.e, setting P(C̄i )

P(ci )
= 1), we obtain the definition of

weighted confidence in Equation (9). Thus LHS of Equation 12 corresponds to ρw(T ⇒ ci ),

and by Bayes rules we assign T to class ci if ρw(T ⇒ ci ) > ρw(T ⇒ C̄i ).

As described above, confidence measures strength across the entire database D. On the

other hand, likelihood measures the local tendency of the pattern to be associated with the

target class; it compares the local support of the rule for the target class (ci ) with its local

support for the negative class C̄i (the rest of the classes). In skewed data sets, with uneven class

distributions, confidence is biased in favor of the dominant class, since globally the patterns

associated with this class will have higher absolute supports compared to the minority class.

Likelihood and weighted confidence do not have this bias, since they ignore class priors and

use local relative supports.

3. XRules: structural rule-based classification

The classification task contains two phases. The training phase uses a database of structures

with known classes to build a classification model, in our case a set of structural classification

rules, called a rule-set. The testing phase takes as input a database of structures with unknown

classes, and the goal is to use the classification model to predict their classes.

3.1. Training phase

At the beginning of classification we have a database D =
⋃k

i=1 Di with known classes;

Di is the set of structures with class ci . Our goal is to learn a structural rule-set R =
{R1, R2, . . . , Rm}, where each rule is of the form Ri : T i π,δ⇒ci

j , with π ≥ πmin
j and with

δ ≥ δmin.

There are three main steps in the training phase:

� Mining frequent structural rules specific to each class, with sufficient support and strength.

In this step, we find frequent structural patterns for each class and then generate those rules

which satisfy a user-defined level of minimum support for a class ci (πmin
i ), and a global

minimum strength threshold, δmin.
� Ordering the rules according to a precedence relation. Once a set of classification rules

have been generated, a procedure is required to prioritize the rule set in decreasing level

of precedence and to prune out unpredictive rules.
� Determining a special class called default-class. Since a classifier must predict a class for

all possible test cases, we need to choose a default class which will be the label of a test

example, if none of the rules can be used to predict a label.

3.1.1. Mining structural rules

The first step is accomplished via an efficient structural-rule mining algorithm, XMiner,

which we will discuss in detail in Section 4. For the moment let us assume that XMiner can

be used to find all structural rules related to any class. XMiner\ accepts as input a list of

minimum support thresholds for each class, i.e., πmin
j ,∀ j = 1, . . . , k. XMiner outputs a set

of frequent rules for each class, R j = {R1, . . . , Rm j }, with m j rules, each rule having c j as

the consequent, i.e., Ri : T i π⇒c j and π ≥ πmin
j .
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3.1.2. Pruning and ordering rules

As noted earlier, since we want only predictive rules, we need to remove any rule that lacks

predictive power. For a rule (T ⇒ ci ) ∈ Ri , if its (weighted) confidence ρ = ρw = 0.5 or if

its likelihood ratio γ = 1.0, then T cannot distinguish between the class ci and its negative

class C̄i , and we prune such a rule from Ri . In general, the acceptable range of values for

a user-defined minimum confidence threshold is ρmin ∈ (0.5, 1], while the acceptable range

for minimum likelihood is γ min ∈ (1,∞].

The goal of precedence ordering is to derive the final combined rule-set R from the

rule-set of each class based on a precedence relation, ≪, which imposes a total order on R,

using a method analogous to that proposed in CBA (Liu, Hsu, & Ma, 1998). Given any two

rules Ri : T i πi ,δi⇒ ci and R j : T j π j ,δ j⇒ c j , we say that Ri precedes R j , denoted Ri ≪ R j , if:

1. The strength of Ri is greater than that of R j , i.e., δi > δ j , or

2. δi = δ j , but the support of Ri is greater than that of R j , i.e., πi > π j , or

3. δi = δ j and πi = π j , but Ri contains a smaller number of nodes than R j , i.e., |T i | < |T j |,
or

4. T i occurs lexicographically before T j . The lexicographic ordering of tree structures is

based on a pre-order traversal of the nodes in the tree. Note that this last case will order

the rules in case none of the above conditions hold, since no two rules we mine are equal.

For precedence ordering, we sort the rules across all classes using ≪ to derive the final

ordered rule-set R =
⋃k

i=1 Ri . In the testing phase, the ordered rules are used in various

ways to predict the target class for a new structure with unknown class.

3.1.3. Determining default class

A rule T ⇒ ci is said to match a given tree S, when its antecedent, T, is a substructure of S,

i.e., T � S. A rule set R is said to cover an example tree S, if at least one rule matches S. In

general, a rule set may not necessarily cover all examples (even in the training set D). Since

a classifier must provide coverage for all possible cases, we need to define a default label,

denoted default-class, which will be chosen to be the label of a test example, if none of the

rules match it.

Let 	 = {S ∈ D | � ∃(Ri : T i ⇒ ci
j ) ∈ R ∧ (T i � S)}, be the set of examples from the

training set D which are not covered by the ordered rule-set R. Let 	i = {S ∈ 	|S.c = ci }
be the set of uncovered training examples with class ci .

A simple way to choose the default-class is to pick the majority class in 	, i.e., default-

class = arg maxci
{|	i |}. If 	 = ∅, then pick default-class to be the majority class in D. The

problem with this method is that it does not take into consideration the real cost of the classes

(it uses the proportional cost model by default). The approach we adopt is to choose the class

that maximizes the cost-sensitive accuracy of the resulting rule-based classifier. Let η(D)

denote the number of correct predictions for data set D using our rule-set R. If 	 �= ∅, then

the default class is given as default-class = arg maxci
{wi |	i |

|Di | } (see lemma below). If 	 = ∅,

then the default class is the one with maximum weight wi (obtained by setting 	i = Di ). It

is clear that such a technique is superior from the perspective of a cost-sensitive approach.

Lemma 3.1. The cost-sensitive accuracy is maximized for default-class = arg maxc j
{w j |	 j |

|D j | }.
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Proof: Assume 	 �= ∅. The base accuracy for a given class ci in Di is given as α(R,Di ) =
η(Di )

|Di | . By Equation (3) the overall base cost-sensitive accuracy is given as

αcs
old (R,D) =

∑

iǫ[1,k]

wiη(Di )

|Di |

Assume that we pick class c j as the default class. This affects only the accuracy of class

c j due to the addition of correct predictions for class c j in 	, whereas the accuracy of all

ci �= c j remains unchanged. Therefore, we have α(R,D j ) = η(D j )+|	 j |
|D j | . The new overall

accuracy is then given by

αcs(R,D) =
w j (η(D j ) + |	 j |)

|D j |
+

∑

i∈[1,k],i �= j

wiη(Di )

|Di |

After simplifying, we get αcs(R,D) = w j |	 j |
|D j | + αcs

old (R,D). Since αcs
old (R,D) remains the

same no matter which class we pick as default, the overall accuracy is maximized for the

class yielding the maximum value of
w j |	 j |
|D j | .

If 	 = ∅, we set 	 j = D j . So the class yielding maximum accuracy is the one with

maximum w j . �

Corollary 3.1. For the proportional cost model, the accuracy is maximized if the default

class is the majority class in 	 (or in D if 	 = ∅).

Proof: Assume 	 �= ∅. Substituting wi = Di |
|D| in

wi |	i |
|Di | , the term to be maximized, we get

|	i |
|D| . This is maximized for the class with the maximum value of |	i |, i.e., the majority class

in 	. If 	 = ∅, then setting 	i = Di gives the desired result. �

As described above we prune all unpredictive rules having ρmin = 0.5 or γ min = 1.0.

Also recall that when building a model we always compare the confidence of the rule on

class ci versus its negative class C̄i . In some cases, the rules may be poorly related to an

example. This happens when the average (weighted) confidence or likelihood of the rules

which are matched by a given example are close to 0.5 or 1.0, respectively, for a given class

ci . This means that the rule is equally predictive of ci as well as C̄i , and thus not suitable

for classification. If the user sets ρmin > 0.5 or γ min > 1.0 any example with matching

rules having average (weighted) confidence in the range [1 − ρmin, ρmin] or having average

likelihood is in the range [1/γ min, γ min], is assumed to be an ambiguous case, which cannot

be accurately classified. For example, suppose the use sets ρmin = 0.55, then any rule with

confidence in the range [1 − 0.55, 0.55] = [0.45, 0.55] will be discarded. Such ambiguous

cases are added to the default set 	 (essentially treating them as examples having no matching

rule in R), which is used for the final determination of the default-class as described above.

3.2. Testing phase

At the end of training, our classification model is complete. It consists of an ordered collection

of predictive rules R, and a default-class. The testing phase takes as input the classification

model, and a data set D′ of examples with unknown classes (or for evaluation purposes,
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examples with known labels, which have not been used for training). The goal of the testing

phase is to predict the class for each test example. There are two main steps in testing:

� Rule Retrieval: Find all matching rules for a test example.
� Class Prediction: Combine the statistics from each matching rule to predict the most likely

class for the test example.

The rule retrieval step is simple; for each test example S in the database D′, we find the

set of all matching rules, called the matching rule-set, R(S) = {Ri : T i δi

⇒ci |T i � S}.
For predicting the class of S ∈ D′, we can use several different approaches for combining

the statistics of the matching rule-set R(S). There are two cases to be considered: First, if

R(S) = ∅ (i.e., there are no matching rules), the class is predicted to be the default class,

i.e., S.c = default-class. On the other hand, if R(S) �= ∅, then let |R(S)| = r . Also let Ri (S)

denote the matching rules in R(S) with class ci as the consequent, and let |Ri (S)| = ri . Each

rule inRi (S) is of the form T j δ j

⇒c
j
i , with δ j ≥ δmin. Any matching rule T k ∈ R(S) − Ri (S)

is more predictive of a class other than ci . However, XMiner finds the support of T k for

all classes (see Section 4 ), so we can compute the strength of T k for the negative class C̄i

(T k δn

⇒C̄i ). The strength of T k for ci , i.e., the rule T k δk

⇒ci is given as δk = 1 − δn if δ ≡ ρ

(or δ ≡ ρw), and as δk = 1/δn if δ ≡ γ (by Eqations (5), (7), (8)). Thus, for each class ci

we can find the strength of each structural rule for that class. A matching rule with ρ > 0.5

or γ > 1.0 corresponds to a rule with positive predictive power for ci , while a matching

rule with ρ < 0.5 or γ < 1.0 is more predictive of the negative class, and thus has negative

predictive power for ci .

There are several possible methods for combining evidence:

� Average Strength: Compute the average rule strength for each class ci given as δ
µ

i =
∑ri

j=1 δ j

r i .

If δ
µ

i ≥ δmin then we classify S as having class ci . If δ
µ

i has default δmin values ( 0.5 for

ρmin and 1.0 for γ min) for all classes, it means that the test instance cannot be easily

predicted using the rules, and the class is assigned as the default class. The approach can

be generalized to the case where δ
µ

i is ambiguous, i.e., when ρ
µ

i ∈ [1 − ρmin, ρmin] for

(weighted) confidence, and when γ
µ

i ∈ [1/γ min, γ min] for likelihood. In such a case, we

assign S.c to be the default class.
� Best Rule: Find the first rule that matches S, i.e., the first rule in R(S). Since the rule set

is ordered according to precedence ≪, the first rule T ⇒ ci ∈ R(S) is the best or most

predictive (by nature of the total order ≪, a matching rule after this one will either have

less strength, or less support or will be more specific). We thus predict S.c = ci .
� Best K-Rules Apply average strength method for the first K rules in R(S). This is a simple

generalization of the case discussed above.

In our experiments we used the average strength method for combining evidence, since it

gave us the best results. It is easy to see that if only the average strength method is used, then

rule ordering is not required while mining the rules. We note that for average strength-based

method, if the classification behavior of a test instance is ambiguous (equal to or close to

default δmin values), the classifier can also output this fact as useful information to the end

user. While classifiers traditionally strive for 100% coverage (i.e., they predict a label of each

test case), a practical application may often benefit greatly from knowledge of the fact that

certain test instances are harder to classify than others. This results in lower coverage, but a

better understanding of the overall classification process.
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4. XMiner

In order to determine the set of rules, XRules first needs to mine the frequent subtrees in

the data. We chose TreeMiner as a basis for XMiner, since it is a complete method, and it

uses a novel vertical representation for fast subtree support counting.

Given a dataset D with k classes, and thus k partitions Di , one approach to mining

structural rules would be to mine each Di separately using TreeMiner, and then to combine

the results. There are two problems with this approach: (1) XRules needs to know the

support of a tree T in each class, but T may be frequent in one class Di , but not in another D j .

(2) We would need one extra scan to count such missing class supports, thus this approach is

inefficient. For example, let’s assume that rule R is frequent only for class c2. While mining

D1, R will be found to be infrequent and will be discarded. However, when we mine D2,

we find R to be frequent. To compute the strength measures, we need to know R’s support

in all partitions; to obtain the support requires additional scans of those missed partitions.

As opposed to this strategy XMiner extends TreeMiner to simultaneously mine all frequent

trees related to some class, and also incorporates multiple minimum support criteria, one

per class. This ensures that any tree generated is suitable for classification purposes. Like

TreeMiner, XMiner utilizes the vertical tree representation for fast support counting and

uses a depth-first (DFS) pattern search.

4.1. Node number, scope, and match label

Let T = (Vt , Et ) be a tree. We assume that vertex x ∈ Vt is synonymous with (or numbered

according to) its position in the depth-first (pre-order) traversal of the tree T. We use the

notation ni to refer to the ith node according to this numbering scheme, where i = 0 · · · |T | −
1 (for example, the root is vertex n0). Let T (nl ) denote the subtree rooted at node nl , and let

nr be the rightmost leaf (or highest numbered descendant) under nl . Then the scope of x is

given as the interval [l, r ] (or [nl , nr ]). Intuitively, a node’s scope demarcates the range of

vertices under it. Figure 2 shows a database of 3 trees, with 2 classes; for each tree it shows

the node number ni , node scope [l, u], and node label (inside the circle).

Let D denote a database of trees (i.e., a forest), and let subtree T � S for some S ∈ D.

Each occurrence of T in S can be identified by its match label, which is given as the set of

matching positions (in S) for nodes in T. More formally, let {t1, t2, . . . , tn} be the nodes in T,

with |T | = n, and let {s1, s2, . . . , sm} be the nodes in S, with |S| = m. Then T has a match

label {ti1
, ti2

, . . . , tin
}, if and only if: 1) L(tk) = L(sik

) for all k = 1, . . . , n (where L(n) is the

label for node n), and 2) branch b(t j , tk) ∈ T iff si j
is an ancestor of sik

in S. Condition 1)

indicates that all node labels in T have a match in S, while 2) indicates that the tree topology

of the matching nodes in S is the same as T. A match label is unique for each occurrence of

T in S.

4.2. Prefix group and scope lists

Let T be a k-subtree of some tree S. Let xk refer to the last node of T. We say that two

k-subtrees T1, T2 are in a prefix equivalence group iff they share a common prefix up to the

(k − 1)th node. Let P be a prefix subtree of size k − 1. We use the notation [P]k−1 to refer

to its group, which contains all the last items (k-th node) of trees that share P as their prefix.

We use the notation L(T ) to refer to the scope-list of T. Each element of the scope-list is

a triple (t, m, s), where t is a tree id (tid) in which T occurs, s is the scope of xk , and m is a
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Fig. 2 A database of trees for classification.

match label for immediate prefix T. Since a subtree can occur multiple times in a tree, each

tid can be associated with multiple scopes and match labels.

The initial scope-lists are created for single items i that occur in a tree T. Let [l, u] be

the scope of a node with label i. Since the match label of item i is simply l we omit storing

m when dealing with the scope-lists of single items. We will show below how to compute

pattern frequency via joins on scope-lists. Figure 3 shows the scope lists for the frequent

single items (the minimum support is 100% for both classes), for the trees shown in Figure 2.

Consider item 1; since it occurs at node position 0 with scope [0, 3] in tree T0, we add

(0, [0, 3]) to its scope list. Item 1 also occurs in T1 at position n1 with scope [1, 3], so we

add (1, [1, 3]) to L(1). Finally, 1 occurs with scope [0, 7] and [4, 7] in tree T2, so we add

(2, [0, 7]) and (2, [4, 7]) to its scope-list. In a similar manner, the scope lists for other items

are created. Item 5 is not shown, since it is not frequent for any class; it has support 50% in

class c1.

4.3. Tree mining

Figure 4 shows the high level structure of XMiner. The main steps include the computation

of the frequent items and the enumeration of all other frequent subtrees via DFS search

within each group. XMiner also maintains a global class index showing the class for each

tree in the database. This index is used to quickly update the per class support for a candidate

tree to check if it is frequent in any class. Figure 3 shows the class index for the example

database.
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Fig. 3 Tree mining example.

Fig. 4 XMiner: tree mining for classification.

The input to Enumerate-Xrules is a set of elements of a group [P], along with their

scope-lists. Frequent subtrees are generated by joining the scope-lists of all pairs of elements

(including self-joins). Before joining the scope-lists a pruning step can be inserted to ensure

that all subtrees of the resulting tree are frequent. If this is true, then we can go ahead with

the scope-list join, otherwise we can avoid the join. The collection of candidate subtrees is

obtained by extending each tree in a group by adding one more item (the last item) from

another tree in the same prefix group. We use R to denote the possible candidate subtrees

that may result from extending tree with last node x, with the tree with last item y (denoted

x⊗y), and we use L(R) to denote their respective scope-lists.
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The subtrees found to be frequent at the current level form the elements of groups for the

next level. This recursive process is repeated until all frequent subtrees have been enumerated.

In terms of memory management it is easy to see that we need memory to store intermediate

scope-lists for two groups, i.e., the current group [P], and a new candidate group [Px ].

4.4. Scope-list joins (L(x) ∩⊗ L(y))

We now describe how we perform the scope-list joins for any two subtrees in a group [P].

Let sz = [lz, uz] denote the scope for a node z. We say the sx is strictly less than sy , denoted

sx < sy , if and only if ux < ly . We say that sx contains sy , denoted sx ⊇ sy , if and only if

lx ≤ ly and ux ≥ u y . When we join the last elements x⊗y in a group, there can be at most

two possible outcomes, i.e., we either add y as a child of x or as a sibling of x to the class

[Px ].

To check if the subtree, obtained when y is added as a child of x, occurs in an input

tree T with tid t, it is sufficient to search if there exists triples (ty, m y, sy) ∈ L(y) and

(tx , mx , sx ) ∈ L(x), such that: i) ty = tx = t , ii) sy ⊆ sx , and iii) m y = mx .

In other words, we check 1) if x and y both occur in the same tree T with tid t, 2) if y

is within the scope of x, and 3) that x and y are both extensions of the same prefix subtree,

P � T , whose match label is mx = m y . If the three conditions are satisfied, we add the triple

(ty, {m y ∪ lx }, sy) to the scope-list of y in [Px ]. We refer to this case as an in-scope test.

The second pattern checks what happens when y is added as a (embedded) sibling of x.

This happens when both x and y are descendants of node at position j in the prefix P, and the

scope of x is strictly less than the scope of y. To check if y occurs as an embedded sibling in T

with tid t, we need to check if there exists triples (ty, m y, sy) ∈ L(y) and (tx , mx , sx ) ∈ L(x),

such that: i) ty = tx = t , ii) sx < sy , and iii) m y = mx .

If the three conditions are satisfied, we add the triple (ty, {m y ∪ lx }, sy) to the scope-list

of y in [Px ]. We refer to this case as an out-scope test.

Figure 3 shows the process of scope-list joins for both in-scope and out-scope tests. An

example of in-scope test is when we extend item 1 by adding item 2 as a child, i.e., the tree

in prefix group [1], with the branch (1, 2). Let si denote a scope for item i. For tree T0 we

find that s2 = [1, 1] ⊂ s1 = [0, 3]. Thus we add the triple (0, 0, [1, 1]) to the new scope list.

In like manner, we test the other occurrences of item 2 under item 1 in trees T1 and T2. Note

that for T2 there are three instances of the candidate pattern: s2 = [2, 2] ⊂ s1 = [0, 7], s2 =
[5, 5] ⊂ s1 = [0, 7], and s2 = [5, 5] ⊂ s1 = [4, 7]. To check if the new candidate is frequent,

we derive a per class count using the class index. Since the new tree appears in tids 0,1, and 2

(we count only once per tid), using the class index we find that it occurs in classes c1, c2, c1

respectively. Its support for class c1 is 2 and for class c2 is 1. It is thus 100% frequent locally

in both classes. Figure 3 also shows an example of an out-scope test when we join branches

(1, 2) and (1, 4) to obtain the tree shown on the right with prefix group [12].

Since XMiner keeps track of all embeddings, and is a complete method, its computational

complexity is proportional to the number of patterns mined, as well as the maximum number

of embeddings. Both of these terms can be exponential in the number of labels and/or the

maximum size of a tree in the database. On the other hand, the method is more scalable,

typically linear, with respect to the number of trees.

5. Empirical results

We compared our XRules structural classification approach for XML documents against an

IR classifier, as well as the CBA classifier. For the IR classifier (IRC) centroids for each class
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Fig. 5 URLs and their Ids.

were constructed using a clustering process (Aggarwal, Gates, & Yu, 1999). Then, a nearest

neighbor classifier was implemented on these sets of clusters. The CBA implementation was

provided to us by its authors (Liu, Hsu, & Ma, 1998). While there have been some recent

improvements over CBA provided by CAEP (Dong et al., 1999) and CMAR (Li, Han, & Pei,

2001), we use CBA as the representative method. In any case neither CAEP nor CMAR can

handle structural patterns; they use sets. We also compare our approach with a Support Vector

Machine (SVM) classifier, svm-light (Joachims 2002) (http://svmlight.joachims.org/), since

SVMs have proven to be very effective in many domains; we wanted to see how they perform

for structural classification. All experiments were done on a 3.2 GHz Pentium4 machine with

2GB memory and a 200 GB, 7200 rpms IDE disk.

5.1. Data sets

We evaluate our approach on both real and synthetic classification data sets. The advantage

of using synthetic data sets was the additional flexibility in studying the effects of different

kinds of embedded patterns and database size. On the other hand, the real data sets help to

validate the approach in a practical setting.

5.1.1. Real datasets

We use the Log Markup Language (LOGML) (Punin & Krishnamoorthy, 2000), to describe

log reports at the CS department website. LOGML provides a XML vocabulary to structurally

express the contents of the log file information in a compact manner. Each user session

is expressed in LOGML as a graph, and includes both structure and content. LOGML

documents have three parts: a web graph induced by the source-target page pairs in the

raw logs, a summary of statistics (such as top hosts, domains, keywords, number of bytes

accessed, etc.), and a list of user-sessions (subgraphs of the web graph) extracted from the

logs. We used our CS department web site to populate a web graph with the help of a web

crawler. The raw logs are processed by the LOGML generator and turned into one LOGML

document per user-session. We use the web graph to obtain the page URLs and their node

identifiers. For example, the snippet in Figure 5 shows the (node id, URL) pairs (out of a

total of 56623 nodes) we extracted from the CS web graph.

For structural mining we make use of user sessions within the LOGML document. User

sessions are expressed as subgraphs of the web graph, and contain complete history of the

user clicks. Each user session has a name (IP or host name), a list of pages accessed along

with their content, a list of edges giving source and target node pairs, and the attribute utime

showing when the link was traversed. An example XML document snippet is shown in

Figure 6, and the resulting user browsing graph shown in Figure 7. In general the browsing

graph need not be a tree; we convert a graph into a tree by extracting only the forward

edges starting from the root, avoiding cycles or multiple parents. This might result in loss

of information; in general, it would be preferable to extend our classification approach using
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Fig. 6 XML document snippet.

Fig. 7 User browsing tree.

graph mining (Yan & Han, 2002) instead of trees. However, it should be noted that graph

mining is considerably more expensive than tree mining.

The real CSLOG data set spans 3 weeks worth of such XML user-sessions. To convert

this into a classification data set we chose to categorize each user-session into one of two

class labels: edu corresponds to users from an “edu” domain, (also includes “ac” academic

domain), while other class corresponds to all users visiting the CS department from any

other domain. For instance, the class of the XML document snippet shown above with host-

name yen.cc.strath.ac.uk is edu. The goal of classification is to find out if we

can separate users who come from edu versus other domains from their browsing behavior

within the CS web site. Note that the three classifiers used in our experiments use different

kinds of information from the same underlying XML user-sessions. XRules uses only the

subtrees obtained from the XML sessions, as shown in Figure 7. The original URLs or the
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Table 1 Characteristics of datasets.

DB # Sessions edu Other %edu %Other

CSLOG1 8074 1962 6112 24.3 75.7

CSLOG2 7407 1686 5721 22.8 77.2

CSLOG12 13934 2969 10965 21.3 78.7

CSLOG3 7628 1798 5830 23.6 76.4

DB total c1 c2 %c1 %c2

DS1.train 91288 41288 50000 45.2 54.8

DS2.train 67893 17893 50000 26.4 73.6

DS3.train 100000 50000 50000 50.0 50.0

DS4.train 75037 35298 39739 47.0 53.0

DS1.test 88493 38493 50000 43.5 56.5

DS2.test 72510 22510 50000 31.0 69.0

DS3.test 100000 50000 50000 50.0 50.0

DS4.test 74880 37977 36903 50.7 49.3

text is not used at all. CBA uses a flat representation of the trees, namely the node set; for

our example, we obtain the set {13361, 22182, 22521, 27556, 43321}. The SVM classifier is

also based on the flat node set; each node represents a binary feature, and only the presence

of nodes is kept in a feature vector. For our example, SVM will use the binary feature vector

“13361:1 22182:1 22521:1 27556:1 43321:1”; other features are assumed to be “0”. Finally,

IRC uses the entire snippet shown in Figure 6 (including the tags, text, and so on).

As shown in Table 1, we separate each week’s logs into a different data set (CSLOGx,

where x stands for the week; CSLOG12 is the combined data for weeks 1 and 2). Notice that

the edu class has much lower frequency rate than other. Our goal is to minimize the cost of

classification inaccuracy based on the various models. We use the notation CSLOGx − y to

denote that we trained on CSLOGx and tested on CSLOGy. For example, CSLOG1-2 means

that we learned a model from CSLOG1 and tested how well we could predict CSLOG2.

5.1.2. Synthetic datasets

We constructed a synthetic data generation program simulating website browsing behavior.

Each user’s browsing trail is modeled as a tree, and we group users into two classes.

We also ensure that one of the classes depends on the presence of certain subtrees. Data

generation happens via three steps: (i) master tree generation, (ii) subtree generation, and

(iii) classification dataset generation.

Master tree generation: The program first constructs a master website browsing tree, W ,

based on parameters supplied by the user. These parameters include the maximum fanout

F of a node, the maximum depth D of the tree, the total number of nodes M in the tree,

and the number of node labels L. We allow multiple nodes in the master tree to have the

same label. The master tree is generated using the following recursive process. At a given

node we first pick a label by sampling uniformly from the range 1 through L. For each node

we also decide how many children to generate by sampling uniformly at random from the

range 1 to F. For each node in master tree W , we assign (random) probabilities of following

Springer



156 Mach Learn (2006) 62: 137–170

its children nodes, including the option of backtracking to its parent, such that sum of all

the probabilities is normalized to be 1. The probability associated with a branch b = (x, y),

indicates how likely is a visitor at x to follow the link to y. As long as tree depth is less than

or equal to maximum depth D this process continues recursively. The procedure stops once

M nodes have been generated.

Subtree generation: Using the master tree, one can generate a subtree Ti � W by randomly

picking a subtree of W as the root of Ti and then recursively picking children of the current

node according to the probability of following that link. Assume that W has l levels (

i.e., 1 · · · l). Let N j denote all the nodes at level j in tree W , let w j = 1/j denote the weight

associated with level j, and let Pj = w j
∑l

i=1 wi

denote the probability of choosing a node at level

j. The root node of Wi is chosen from W by i) selecting a random level j with probability Pj ,

and ii) selecting a random node r from N j . We add other nodes to Ti via a recursive process

starting at r: Let x be the current node in Ti (x also belongs to W), let x j denote the jth child

of x ( j = 1 . . . k if x has k children), let P(x j ) denote the probability of selecting child j, and

let P(x0) denote the probability of backtracking to the parent of x ( P(xi ),∀i = 0 · · · k were

generated while creating the master tree). We add child xi to T according to its probability

P(xi ). If a child has already been visited, we select one of the other unvisited children, or

we backtrack. The process stops if we have visited all children of the root node r or if we try

to backtrack to the parent of x. Other strategies are also possible.

Classification dataset generation: To create a classification data set we group users into

two classes, c1 and c2. First we generate a small pool of signature trees for class c1, denoted

Tp, using the subtree generation method from above. Second, we generate a larger collection

of trees, denoted TD . TD will be split into two disjoint parts: a training set T ′
D , and a test

set T ′′
D . In the same manner Tp is partitioned into a training ( T ′

p)and testing ( T ′′
p ) pool,

with one exception: T ′
p and T ′′

p need not span Tp and they may have overlap (controlled by

a parameter). Both the training and testing datasets are split into two classes as follows: For

each tree in the training set, T ∈ T ′
D , we check if there exists a tree S ∈ T ′

p such that S � T .

If so, T is assigned to class c1, else it is assigned to class c2. Similarly a tree in T ′′
D is assigned

to class c1 if there is a matching subtree in T ′′
p .

To control the effects of structure in the classification process, i.e., to emphasize structure

based rules to distinguish class c1 from c2, a given fraction fc, called confusion ratio, of

trees that belong to one class (c1) are also added to other class (c2), after flattening out (i.e.,

we add the vertex set of those trees to the other class). This is called one-way addition. If

we also allow members of c2 to be added to c1, it is called a two-way addition. This process

would confuse a method based purely on set mining, since for that fc fraction of trees a

set mining method will not be able to discriminate between the two classes. By varying the

confusion ratio, we can control the degree to which the datasets depend on structural rule

mining.

The different synthetic data sets generated are shown in Table 1. For the DSx data sets,

we trained on DSx-train and tested on DSx-test. The master tree W used the values D =
10, F = 10, M = 100, L = 10. We next generated |TD| = 100, 000 trees for the database

and |Tp| = 1000 trees for the pool. TD was split into training and test sets by using a 50 − 50

split. For DS1, the training and testing pool were both of size 20, with half the trees common

to both. We set fc = 1.0, with one-way addition from c1 to c2. For DS2, the training and

testing pool were identical (of size 10), and fc = 1.0 from c1 to c2. DS3 is the same as DS2,

with two-way confusion. Finally DS4 is same as DS2, but with two-way addition only half

the time ( fc = 0.5).
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Table 2 Number of rules and time.

Train time (s) Testing

DB Sup Rules Trees XM Total time (s)

CSLOG1-2 0.3%, 0.25% 28911 12231 2.1 196.0 176.3

CSLOG2-3 0.3% 19098 2755 1.5 115.3 113.9

CSLOG12-3 0.35% 29028 20745 2.9 369.9 192.6

CSLOG3-1 0.2% 31661 5056 1.9 299.1 252.0

DS1 0.3% 883 307 3.0 66.6 67.8

DS2 0.3% 1589 863 2.4 88.4 105.0

DS3 0.3% 739 234 3.1 60.8 59.2

DS4 0.3% 900 399 2.4 65.6 57.0

5.2. Example of mined patterns

Before we consider the performance of various algorithms on the different datasets, we give

an example of patterns mined by XMiner from the CSLOG1 dataset using the parameters

shown in Table 2. Out of the 29811 rules found, we show some top ranked structural rules

for classes edu and other in Figure 8.

We find that both rules R1 and R2 pertain to class edu, and are from user sessions (most

likely students) interested in the CS2 class taught by Profs. Kettnaker and Stewart at RPI.

On the other hand the rules R3 and R4 apply to class other. R3 shows that many users

who come from outside edu domains are interested in the Madonna lyrics pages maintained

by Kenny Zalewski; likewise R4 characterizes users interested in the Turkish poetry links

maintained by Prof. Adali at RPI. These rules are quite intuitive to understand. Further

analysis of the mined rules revealed that most of the edu users are interested in course pages

and other aspects of academics (undergraduate and graduate), where as most of the other

users are interested in non-academic resource pages maintained by CS students and faculty,

such as the Madonna (Zalewski), Turkish poetry (Adali), and Hockey (Zalewski) pages.

5.3. Comparative classification results

The IRC approach uses the actual text of the data in order to perform the classification.

Therefore, it uses a greater amount of information than a purely structural classifier like

XRules. IRC uses both the node content and edge information from the user-sessions. In

contrast, XRules uses only the structure (tree-format) for the classification process. CBA

uses the associations among different nodes visited in a session in order to perform the

classification, whereas SVM treats each node as a binary feature for classification; thus each

record is a (sparse) binary feature vector.

5.3.1. Weighted ROC analysis

Comparative classification results are shown in Table 3 and Figure 9. Table 3 shows the

weighted accuracy results for the classifiers on different data sets. For the set of parameters

used to run XRules and the number of rules mined see Table 2. Table 3 shows the accuracy

for all three cost models. The best accuracy is highlighted in bold. The accuracy for a random

classifier is also shown, which is computed as follows: Let D be a test dataset, let ci be a

class (out of k possible classes), and let Di be the partition of D with class ci . Then fi = |Di |
|D|

denotes the fraction of test cases having class ci . The Random classifier assigns a class
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Fig. 8 Top ranking structured rules for CSLOGS1.

at random to each test case, thus we expect it to have class-specific accuracy α(Di ) = fi

on class ci . The weighted accuracy of the Random classifier for different cost models

can then be obtained as follows: For the proportional cost model, wi = fi , thus αcs(D) =
∑k

i=1 wi × fi =
∑k

i=1( fi )
2. When k = 2, we get αcs(D) = ( f1)2 + ( f2)2. For the equal

cost model, wi = 1/k, thus αcs(D) =
∑k

i=1 wi × fi = 1
k

∑k
i=1 fi = 1

k
. When k = 2, we get

αcs(D) = 0.5. For the inverse cost model, wi = 1/ fi
∑k

j=1 1/ f j

thus αcs(D) =
∑k

i=1 wi × fi =
∑k

i=1
1/ fi

∑k
j=1 1/ f j

× fi = k
∑k

j=1 1/ f j

. When k = 2, we get αcs(D) = 2
1
f1

+ 1
f2

= 2
f1+ f2
f1 f2

= 2 f1 f2.

Figure 9 plots each classifier as a point in the Weighted Receiver Operating Characteristic

(ROC) space. ROC space is commonly used to illustrate the comparative classification

performance for two-class problems. Let P be the “positive” class and N the “negative”, and

let fP = |DP |
|D| and fN = |DN |

|D| be the fraction of positive and negative classes in D, respectively.

There are four possible outcomes during testing: a) Number of positive examples predicted

correctly as positive (TP), b) Number of negative examples predicted incorrectly as positive

(FP), c) Number of negative examples predicted correctly as negative (TN), and d) Number

of positive examples predicted incorrectly as negative (FN). Note that T P + F N = |DP |
is the number of test examples with class P, and T N + F P = |DN | is the number of test

examples with class N, whereas T P + F P is the number of examples predicted as positives,

and T N + F N is the number of examples predicted as negatives. The true positive rate

(TPR) of a classifier is given as T P
|DP | , and its false positive rate (FPR) is given as T N

|DN | .

Traditional ROC analysis plots the TPR versus the FPR. We extend the traditional ROC

analysis to Weighted ROC Analysis (WROC) as follows. We can the define the Weighted

True Rate (WTR) for a classifier, which is given as the weighted average of the true positive
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Fig. 9 Weighted ROC analysis: Weighted true rate vs. weighted false rate.
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Table 3 Accuracy results and sum of distance from random.

Distance sum

DB Classifier Accuracy(%) Proportional Equal Inverse

CSLOG1-2 XRules 83.63 74.83 74.93 0.97

IRC 74.81 73.04 71.26 0.98

CBA 77.23 50.0 22.77 0.0

SVM 82.87 67.38 51.89 0.74

Random 64.84 50.0 35.16 0.0

CSLOG2-3 XRules 84.29 75.70 76.07 1.01

IRC 77.64 75.23 72.83 1.07

CBA 76.43 50.0 23.57 0.0

SVM 83.0 68.6 54.18 0.79

Random 69.13 50.0 30.87 0.0

CSLOG12-3 XRules 84.39 75.70 76.09 1.03

IRC 76.22 74.85 73.47 1.05

CBA 76.43 50.0 23.57 0.0

SVM 83.39 69.52 55.64 0.83

Random 69.13 50.0 30.87 0.0

CSLOG3-1 XRules 83.51 74.09 75.95 0.97

IRC 73.76 72.0 70.26 0.93

CBA 75.70 50.0 24.30 0.0

SVM 81.95 67.35 52.75 0.74

Random 63.21 50.0 36.79 0.0

DS1 XRules 71.93 74.02 77.14 0.99

CBA 51.35 54.24 57.12 0.18

SVM 56.5 50.0 43.5 0.0

Random 50.85 50.0 49.15 0.0

DS2 XRules 79.77 76.01 72.24 1.10

CBA 68.96 50.0 31.04 0.0

SVM 68.96 50.0 31.04 0.0

Random 57.19 50.0 42.81 0.0

DS3 XRules 61.63 61.63 61.63 0.49

CBA 50.0 50.0 50.0 0.0

SVM 50.0 50.0 50.0 0.0

Random 50.0 50.0 50.0 0.0

DS4 XRules 67.65 67.78 67.91 0.75

CBA 61.65 61.44 61.23 0.49

SVM 62.5 62.65 62.82 0.54

Random 50.01 50.0 49.99 0.0

and true negative rates:

W T R = wP

(

T P

T P + F N

)

+ wN

(

T N

T N + F P

)

= wP

(

T P

|DP |

)

+ wN

(

T N

|DN |

)

= αcs(D) (13)

Thus WTR is the same as weighted accuracy. For the Random classifier, from the analysis of

αcs(D) for k = 2 given above, we know that for the proportional model W T R = f 2
P + f 2

N ,

for the equal model W T R = 0.5 and for the inverse cost model W T R = 2 fP fN Since
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1 − 2 fP fN = ( fP + fN )2 − 2 fP fN = f 2
P + f 2

N (and similarly 1 − ( f 2
P + f 2

N ) = 2 fP fN ),

we immediately see that for Random classifier the WTR for proportional costs is equal to

1 − W T R for the inverse model.

We can define the Weighted False Rate (WFR) for a classifier, which is given as the

weighted average of the false positive and false negative rates:

W F R = wP

(

F P

F P + T N

)

+ wN

(

F N

T P + F N

)

= wP

(

F P

|DN |

)

+ wN

(

F N

|DP |

)

(14)

Since F P = |DN | − T N and F N = |DP | − T P , we also have

W F R = wP

(

|DN | − T N

|DN |

)

+ wN

(

|DP | − T P

|DP |

)

= wP

(

1 −
T N

|DN |

)

+ wN

(

1 −
T P

|DP |

)

= wP + wN −
(

wP

T N

|DN |
+ wN

T P

|DP |

)

= 1 −
(

wP

T N

|DN |
+ wN

T P

|DP |

)

(15)

Notice the “inverse” relationship between WTR (Equation (13)) and WFR (Equation (15)).

However, for the random classifier WTR and WFR are identical. For the random classifier,

we expect fP |DP | correct positive predictions (TP) and fN |DN | correct negative predictions

(TN). This means that the remaining (1 − fP )|DP | = fN |DP | positive examples will be

incorrectly predicted as negatives (FN), and likewise the remaining ( 1 − fN )|DN | = fP |DN |
negative examples will be incorrectly predicted as positives (FP). Plugging these values

in Equation (14) for the random classifier, we have W F R = (wP
fP |DN |
|DN | + wN

fN |DP |
|DP | ) =

wP fP + wN fN = W T R.

Weighted ROC analysis plots the weighted true rate versus the weighted false rate (as

opposed to the FPR versus TPR in ROC analysis). An ideal classifier has WTR 100% and

WFR 0%, which corresponds to the top left corner of the WROC space. In general, a

classifier with as high a WTR and as low a WFR is preferred, thus when comparing multiple

classifiers, the more towards the top left corner a classifier is, the better it is in terms of

classification performance. Also, given that W T R = W F R for the Random classifier, in the

WROC plots shown in Figure 9, the Random classifier is shown as the diagonal line. We

expect a reasonable classifier to perform at least as good as the random classifier and thus

its acceptable region of the WROC space should lie above the diagonal, and towards the top

left corner.

Generally ROC analysis compares multiple classifiers by computing the area of the

convex-hull of the points representing each classifier (above the main diagonal); the classifier

with the most area has better overall classification performance (Provost & Fawcett, 2001).

However, in our case, we only have three points for each algorithm representing the WTR-

WFR values under proportional, equal and inverse costs. Instead of computing the area under

the convex-hull, we can compute the distance of each classifier (i.e., each point in WROC

space) from the diagonal line representing the Random classifier. We can then claim that

a classifier with a larger distance has overall better classification performance. There is an

obvious
√

2/2 = 0.707 upper limit for the maximum distance from the diagonal, which is
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achieved by the ideal classifier with WTR=100% and WFR=0%. In general, the distance

for a classifier can be computed using the formula below:

Lemma 5.1. Given WTR and WFR for a classifier, the distance from the diagonal is given

as |W T R−W F R|√
2

.

Proof: The diagonal line in the WROC plot corresponds to the line L : y = x , with x ∈
[0, 1] and y ∈ [0, 1]. The point P = (W F R, W T R) represents the classifier in WROC

space. We need to first compute the distance of P to L. Let Q = (xq , yq ) be the point on

L closest to P. Since line segment PQ is perpendicular to L, the slope of PQ is −1, and

its equation is P Q : y = −x + b, where b is some constant. Since P lies on PQ, we have

W T R = −W F R + b, giving us b = W T R + W F R. Since Q is on both PQ and L, we

have yq = xq and yq = −xq + b. Solving for xq , we get xq = −xq + b and xq = b/2. Thus

Q = (b/2, b/2), and ‖P Q‖2 =
√

(W F R − b/2)2 + (W T R − b/2)2 = |W T R−W F R|√
2

. �

Lemma 5.2. The distance from the diagonal for a classifier is given as |T P R−F P R|√
2

.

Proof: Let d be the distance from random, d =
√

(W T R−W F R)2

2
given in Lemma 5.1. Con-

sider the numerator term n = W T R − W F R. We substitute Equations (13) and (15) for WTR

and WFR, to get n = wP ( T P
|DP | ) + wN ( T N

|DN | ) − (1 − (wP
T N
|DN | + wN

T P
|DP | )). After simplifying

we get n = (wP + wN )( T P
|DP | − F P

|DN | ) = T P
|DP | − F P

|DN | = T P R − F P R. Putting n back into the

formula for d we get the desired result. �

5.3.2. CSLOGS datasets

Let us consider the accuracy comparison among the different classifiers shown in Table 3. We

can see that for all data sets and all cost models, XRules is the best classifier. For the CSLOG

data sets, XRules delivers an accuracy between 83.51% and 84.39% for the proportional

model compared to IRC’s accuracy from 73.76% to 77.64%, CBA’s accuracy between 75.7%

to 77.23%, and SVM’s accuracy between 81.95% to 83.39%. Thus, the accuracy of XRules

is about 8-10% higher (in absolute difference) than that of IRC, 5–10% higher than that

of CBA, and about 1–1.5% higher than SVM, for the traditional proportional model. For

this model, CBA appears to be a better classifier than IRC. However, the model that CBA

learns generally has only one rule. This rule always predicts a test case to be other. While

this strategy pays off in the proportional cost model (since other is the majority class

with 76–79% occurrence), it does not work for the equal model (50% accuracy) and fails

completely for the inverse cost model (23–24% accuracy). IRC does a much better job than

CBA in distinguishing one class from the other.

For the equal and inverse cost models, we find that XRules has higher accuracy than

SVM, CBA and IRC, though IRC’s performance is close to that of XRules. The accuracy

of XRules is about 0.5%–2% (absolute difference) higher than IRC, 25% higher than CBA,

and about 7% higher than SVM, for the equal cost model. The situation is more pronounced

for inverse model, where the accuracy of XRules is 2.5–6% higher than IRC, 50% higher

than CBA, and 25% higher than SVM. These results are in agreement with our approach of

maximizing the weighted accuracy of XRules for different cost models.

Accuracy alone, however, conveys only one aspect of classification performance. A more

clear picture emerges when one considers the WROC analysis plotting WTR against WFR,
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Fig. 10 Distance from random.

as shown in Figure 9. The WROC plots show the performance for all three cost models. For

example, XRules-p, XRules-e, and XRules-i denote the performance of XRules under

the proportional, equal and inverse cost models, respectively. Note that in Figure 9, we have

also drawn the distance of the XRules(-p/-e/-i) from the Random classifier (i.e., from the

diagonal line).

Figure 10 plots the actual distance from the diagonal for different datasets and classifiers

(the left figure shows the results for the CSLOGS datasets, whereas the right figure shows

results for the synthetic datasets). For IRC, SVM and CBA, we show the distance only

for IRC-p, SVM-p, CBA-p (i.e., for the proportional cost model), since the distance for

the other cost models is the same for these classifiers. That is, for classifiers that do not

explicitly model cost, their TPR and FPR remain the same regardless of the cost model, which

implies, by Lemma 5.2, that their distance from random remains constant. For XRules\
all three distances are shown (XRules-p, XRules-e, XRules-i). For proper comparison

using the WROC plots and distances, we have to compare classifiers (i.e., points in the

WROC space) separately for each cost model. For example, we compare XRules-p only

with other classifiers for the same cost model, namely CBA-p, SVM-p, and IRC-p, and

so on.

From the WROC analysis in Figure 9 and the distances in Figure 10, we can clearly see that

CBA is no better than the Random classifier, since its WTR and WFR lie on the diagonal for all

three cost models; thus the distance for CBA is also 0 for all the CSLOGS datasets. Looking at

the areas in Figure 10, we find that XRules is always better than SVM; the distance of SVM is

0.25 for all three costs, whereas the distance of XRules ranges from 0.3–0.35 for the different

models. Comparing against IRC, XRules\ always has higher distance for the equal model,

but has slightly lower distance for the proportional and inverse costs. In all cases though, as

per Table 3, XRules has higher accuracy. Also once we look at the sum of the distance from

Random for all three cost models for each classifier, as shown in the last column of Table 3,

we can see that for all datasets XRules has higher or competitive performance against the

other classifiers. However for the CSLOGS datasets, IRC represents a viable alternative;

IRC has a slightly better distance score, but XRules gives better accuracy for about the

same distance score. This is interesting since IRC actually uses the text, i.e., the content, of

the documents to make its classification decisions, information that is ignored by XRules.

Nevertheless, there seems to be enough information conveyed by the structure alone to make

XRules competitive with IRC. For the other classifiers that ignore content, XRules is clearly

superior. These results also point to the fact that it may be possible to improve upon both IRC

and XRules by combining both content and structure. We will explore this as part of future

work.
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5.3.3. Synthetic dataset

On synthetic data sets, which do not have content (only structure), the IR classifier does

not work. So we compared only XRules, SVM and CBA. Accuracy results are shown in

Table 3, the WROC plots are shown in Figure 9, and the distances from Random are shown

in Figure 10. On these synthetic datasets XRules is clearly superior to both SVM and CBA,

not only in terms of accuracy, but also in terms of the distance. In fact, for all cost models

XRules outperforms both SVM and CBA.

For DS2 and DS3, both SVM and CBA degenerate into a random classifier. SVM also

performs poorly on DS1, whereas CBA achieves slightly better WTR-WFR ratios. For DS4,

both SVMs and CBA tend to do better, but are clearly worse than XRules. In terms of

accuracy, XRules tends to have 6-20% (absolute difference) higher values than CBA and

SVM for the proportional model across the four datasets, 5–25% higher values for equal and

5-40% higher accuracies for the inverse model. Out of the the four datasets, DS3 is clearly

the toughest for any set-based classifier. The reason is that DS3 has full two-way addition of

trees from class c1 to class c2 and vice versa. Thus both CBA and SVM see the same set of

features for the two classes and are unable to discriminate between them. On the other hand

if we reduce the two way addition to only half the time, as in DS4, both of them are able to

discard the incompatible examples and learn the rules from the remaining examples. Both

DS1 and DS2 have only one-way addition, i.e., examples from c1 are added to c2, so we

expect both CBA and SVM to discriminate c2 from c1 at least by some amount. Nevertheless,

these feature/set-based methods are not able to extract the embedded structure. Thus, from

the clear superiority of XRules for structural classification tasks, we can safely assume that

for those datasets whose structure conveys something about class, we can expect XRules to

be very effective.

In summary, XRules gives consistently better (or competitive) performance than the other

classifiers for all cost models and data sets. It works better than an associative classification

approach like CBA, which flattens out the structure into a set representation. It outperforms

the SVM classifier across the board for both synthetic and real datasets. In terms of accuracy,

it even outperforms an IR based classifier, which explicitly learns over the content, but only

implicitly over the structural information in the XML documents. Using WROC analysis,

we found out that the IR classifier and XRules tend to have comparable overall performance

(WTR-WFR values) on the CSLOGS datasets, since they use different kinds of information

to maximize their classification results, and this suggests that a joint content and structure

based classification approach is likely to perform even better.

5.4. Efficiency results

Table 2 shows the number of frequent patterns (rules) mined by XMiner, and time for

training and testing. The table also shows the minimum support value used for the two

classes. Only for CSLOGS1-2 we used a different value for edu (0.3%) and for other

(0.25%). Note that the Rules column gives the total number of rules mined. Out of these the

number given under Trees column are actually trees (i.e., have at least one branch), where

as the rest are plain sequences (i.e., linear trees). We can see that the number of actual trees

ranges from 14.5% (for CSLOGS3-1) to 71.5% (for CSLOGS12-3). Thus it appears that the

tree mining is adding real value to the mined rules, as opposed to only sequence mining. The

results underscore the high efficiency of that XMiner (XM) engine. The frequent trees for

classification are determined in less than 8 seconds. The total training and testing time are

comparable, since in both cases we have to find the matching rules for each example. This
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Table 4 Effect of strength measure.

DB Strength Proportional Equal Inverse

CSLOG1 γ 81.47 74.73 74.93

ρ 83.63 72.33 68.21

ρw 81.82 74.83 74.78

CSLOG2 γ 82.14 75.70 76.07

ρ 84.29 73.95 70.55

ρw 82.42 75.69 75.77

CSLOG12 γ 81.58 75.76 76.09

ρ 84.39 73.69 69.14

ρw 82.0 75.70 75.56

CSLOG3 γ 81.03 74.09 75.95

ρ 83.51 73.02 71.36

ρw 81.15 74.07 75.78

DS1 γ 70.44 73.68 76.93

ρ 71.93 71.69 71.44

ρw 70.90 74.02 77.14

DS2 γ 56.37 61.65 66.93

ρ 79.77 76.01 72.24

ρw 61.37 65.06 68.76

DS3 γ 61.63 61.63 61.63

ρ 61.45 61.45 61.45

ρw 61.45 61.45 61.45

DS4 γ 59.02 58.88 58.74

ρ 67.65 67.78 67.91

ρw 61.71 61.62 61.52

is needed to determine the default class in training, and to find the accuracy in testing. The

run time can be improved by storing the rules in an appropriate index structure; currently

XRules performs a linear search for matching rules.

5.5. Choice of rule strength

We next study how the choice of strength measure affects the accuracy of XRules, as shown

in Table 4. The best results are in bold. For the proportional model, confidence performs

better than both likelihood and weighted confidence. Its accuracy is typically 2–4% higher

on CSLOG and as much as 20% higher on DSx data sets. This is in agreement based on

the Bayesian interpretation in Section 2.4.4. On the other hand, with the exception of DS2

and DS4, likelihood and weighted confidence perform better than confidence with equal cost

model. The weighted confidence has a slight (if insignificant) edge over likelihood (for both

proportional and equal costs).

The likelihood measure has a slight edge over weighted confidence for the inverse cost

model on CSLOG data sets. These results are in agreement with the discussion in Sec-

tion 2.4.4. The only exceptions are DS2 and DS4 where confidence does better. The reason

is that in these data sets the confusion factor complicates the decision making, since one-way

(two-way) addition adds patterns from one class to the other (and vice-versa). result.

In summary, we conclude that confidence is a better measure for proportional model and

either likelihood or weighted confidence is better for equal or inverse costs. The right choice

of strength measure depends on the data set characteristics and cost model. If we expect
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Table 5 Effect of Likelihood Ratio (CSLOG1-2).

γ min Proportional Equal Inverse #Rules Time

1 81.47 74.73 74.93 28911 176.1

2 81.98 74.67 75.07 28553 173.9

3 82.89 73.83 75.78 25698 155.8

4 83.28 72.58 75.83 24190 144.1

5 83.51 72.14 76.39 17732 105.9

6 83.32 69.93 77.30 12006 71.4

7 83.20 69.37 77.10 10008 59.2

8 82.89 67.81 77.34 8936 54.5

9 82.44 66.27 77.55 8424 49.1

10 82.41 65.79 77.63 8199 47.5

15 81.81 62.62 77.42 7848 45.6

20 81.06 60.28 77.38 7636 44.3

many patterns with similar global supports but different local supports of rare classes, the

likelihood/weighted confidence measure will usually provide better results.

5.6. Effect of minimum strength

Table 5 shows the effect of varying the minimum likelihood γ min on the accuracy of prediction

for CSLOG1-2. Best accuracy for each cost model is in bold. For proportional cost model,

the accuracy tends to increase up to a point (83.51% for γ min = 5) and then starts to drop.

The same effect is observed for inverse model, but the model continues to improve until

γ min = 10. For the equal cost model, the accuracy tails off at the very beginning. Similar

results were obtained for other strength measures. These results suggest that by choosing

an appropriate γ min one can get a model that can behave like ρ for the proportional model

(e.g., at γ min = 5, we get 83.51% accuracy compared to 83.49% accuracy using confidence,

in Table 4), and can improve the accuracy for the inverse model.

6. Related Work

Tree mining, being an instance of frequent structure mining, has obvious relation to asso-

ciation (Agrawal et al., 1996) and sequence (Agrawal & Srikant, 1995) mining. Frequent

tree mining is also related to tree isomorphism (Shamir & Tsur, 1999), tree pattern match-

ing (Cole, Hariharan, & Indyk, 1999) and tree inclusion (Kilpelainen & Mannila, 1995).

Both subtree isomorphism and pattern matching deal with induced subtrees, while we mine

embedded subtrees. Further, we are interested in enumerating all common subtrees in a

collection of trees, and using them for building a classifier.

With the advent of XML as a data representation and exchange standard, there has

been active work in indexing and querying XML documents, which are mainly tree (or

graph) structured; to efficiently answer ancestor-descendant queries various node number-

ing schemes similar to ours have been proposed (Li & Moon, 2001; Zhang et al., 2001;,

Abiteboul, Kaplan, & Milo, 2001). The major difference between these works and ours is

that instead of answering user-specified queries based on regular path expressions, we are

interested in finding all frequent tree patterns among the documents.
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Tree mining has attracted a lot of attention recently. We developed TreeMiner (Zaki, 2002)

to mine labeled, embedded, and ordered subtrees. The notions of scope-lists and rightmost

extension were introduced in that work. (Asai et al. (2002) presented FreqT, an apriori-

like algorithm for mining labeled ordered trees; they independently proposed the rightmost

candidate generation scheme. Wang and Liu (Wang & Liu, 2000) developed an algorithm to

mine frequently occurring subtrees in XML documents. Their algorithm is also reminiscent

of the level-wise A priori (Agrawal et al., 1996) approach, and they mine induced subtrees

only. There are several other recent algorithms that mine different type of tree patterns,

which include FreeTreeMiner (Chi, Yang, & Muntz, 2003) which mines induced, unordered,

free trees (i.e., there is no distinct root); and PathJoin (Xioa et al., 2003), uFreqt (Nijssen

& Kok, 2003), uNot (Asai et al., 2003), and HybridTreeMiner (Chi, Yang, & Muntz, 2004)

which mine induced, unordered trees. TreeFinder (Termier, Rousset, & Sebag, 2002) uses an

Inductive Logic Programming approach to mine unordered, embedded subtrees, but it is not

a complete method, i.e, it can miss many frequent subtrees, especially as support is lowered

or when the different trees in the database have common node labels. A recent method,

XSpanner (Wang et al., 2004), based on a pattern-growth strategy, to mine embedded trees

has also been proposed.

There has also been recent work in mining frequent graph patterns. The AGM algorithm

(Inokuchi, Washio, & Motoda, 2000) discovers induced (possibly disconnected) subgraphs.

The FSG algorithm (Kuramochi & Karypis, 2001) improves upon AGM, and mines only

the connected subgraphs. Both methods follow an Apriori-style level-wise approach. Recent

methods to mine graphs using a depth-first tree based extension have been proposed in

(Yan & Han, 2002, 2003). Another method uses a candidate generation approach based on

Canonical Adjacency Matrices (Huan Wang, & Prins, 2003). There are important differences

in graph mining and tree mining. Our trees are rooted, and thus have a unique ordering of

the nodes based on depth-first traversal. In contrast graphs do not have a root, and allow

cycles. For mining graphs the methods above first apply an expensive canonization step to

transform graphs into a uniform representation. This step is unnecessary for tree mining.

Graph mining algorithms are likely to be overly general (thus not efficient) for tree mining.

Our approach utilizes the tree structure for efficient enumeration.

The work by Dehaspe et al. (Dehaspe, Toivonen, & King, 1998) describes a level-

wise Inductive Logic Programming (ILP) based technique to mine frequent substructures

(subgraphs) describing the carcinogenesis of chemical compounds. Work on molecular

feature mining has appeared in (Kramer, Raedt, & Helma, 2001). The SUBDUE system

(Cook & Holder, 1994) also discovers graph patterns using the Minimum Description Length

principle. An approach termed Graph-Based Induction (GBI) was proposed in (Yoshida &

Motoda, 1995), which uses beam search for mining subgraphs. However, both SUBDUE and

GBI may miss some significant patterns, since they perform a heuristic search. In contrast to

these approaches, we are interested in developing efficient algorithms for tree patterns, and

their use for classification.

The classification problem has been widely studied by the database, data mining, ma-

chine learning, and statistics communities (Aggarwal, 2002; Alsabti, Ranka & Singh,

1998; Ankerst, Ester, & Kriegel, 2000; Cohen 1995; Duda & Hart, 1973; Friedman, 1997;

Garofalakis et al., 2000; Gehrke et al., 1999; James, 1985; Quinlan 1993; Murthy 1998;

Rastogi & Shim 1998; Liu, Hsu, & Ma, 1998; Mehata, Agrawal, & Rissanen, 1996; Safer,

Agrawal, & Meheta, 1996), However, most such methods have been developed for general

multi-dimensional records. For a particular data domain such as strings or text (Aggrawal

2002; Nigam et al., 2000), classification models specific to these domains turn out to be most

effective. Frequent pattern based association rule classifiers such as CBA (Liu, Hau, & Ma,
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1998), CAEP (Dong et al., 1999) or CMAR (Li, Han, & Pei, 2001) have also recently proven

successful. However, these work only on feature-vector data, whereas we are interested

in structural classification. Previous work has looked at the problem of mining sequential

features for use in classification (Kudenko & Hiris, 1998; Lesh, Zaki, & Ogihara, 2000).

A similar approach can also be tried for trees. Recently there has been interest in learning

from relational and structural data (Dzeroski & Lavrac, 2001). Previously, we proposed the

Xrules method for building a structural classifier for XML data (Zaki & Aggarwal, 2003).

This current paper significantly expands on the preliminary conference version. An SVM-

based approach for structured output spaces has recently been proposed (Tsochantaridis

et al., 2004). An approach that utilizes the dependencies in a network of objects to improve

predictions was presented in (Neville & Jensen, 2003). Work has also been done to build

relational Bayesian classifiers (Neville, Jensen & Gallagher, 2003).

7. Summary

In this paper, we discussed an effective rule based classifier for XML data called XRules. The

technique mines frequent structures from the data in order to create the classification rules.

XRules is cost-sensitive and uses Bayesian rule based class decision making. Methods for

effective rule prioritization and testing were also proposed in this paper. The technique was

implemented and compared against CBA as well as an IR classifier. The better performance

of XRules over CBA might be explained through classification information being embedded

in the XML structure, which XRules uses, but CBA does not. Furthermore, it outperforms

the IR based method in spite of the greater amount of input used by the latter. The results

show that structural mining can provide new insights into the process of XML classification.
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