XSS-GUARD : Precise Dynamic Prevention
of

Cross Site Scripting (XSS)
Attacks

Prithvi Bisht (http://cs.uic.edu/~pbisht)
Joint work with : V.N. Venkatakrishnan

Systems and Internet Security Laboratory
Department of Computer Science
University of Illinois, Chicago
USA

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

XSS attacks : number one threat

CVE Vulnerabilities 2004 CVE Vulnerabilities 2006

Others

89.1% Others

78.5%

. ..and the trend continues...

- Second half of 2007 : 80% of all attacks were XSS
- January 2007 : 70% web applications are vulnerable
[source : http://en.wikipedia.org]

. Simple attacks lucrative targets

- <script> alert('xss’);</script> u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

A typical XSS attack

‘ Email

<html>
[evilCode]
</html>

hame=[evilCode]

S

Vulnerable
bank web
application

Claim prize
http://b.com/?name=[evilCode]

Response page
% evilCode executed!

Client
browser

. Attacker controlled code can steal sensitive
information or perform malicious operations.

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

Vulnerable
web
application

)

Automated
Transformation

)

Safe
web
application

. Automated prevention of XSS attacks : server side
. Robust against subtle attacks

. Efficient

UIC

UNIVERSITY OF ILLINOIS
AT CHICAGO

Outline of this talk

Introduction

Web application transformation technique

Robust script identification at server side

XSS-GUARD

- Examples
_ Evaluation results

Related work and summary

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

HTML page : A web application’'s view

User Input

= Output
name= Xxyz sTaT%menTs not
influenced by user

R e e inputs produce
write("hi") programmer
é hi /7 Fn'l'ggnded
i write(name) script code/data

CVD Xyz \<

_ write([code]) [code] 0 ’rhder's may
roduce
O 5 l—gg\el' Bnimended script
Web application code

. Page generated by output statements in a control path.

. Web application’s view : intended regions & others
- Other regions could lead to unintended script code.

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

HTML page : A browser's view

F name= [evilCode]

; write(“hi") hi data
I Owrite(name) [evilCode]|—— code |Browser
é [code] [——> code

6 1 write([code]) e

Web application page

. Browser does not differentiate between injected and
programmer intended scripts.

. Browser's view : a collection of script code & data.

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

A complete view

intended-{ hi '} data

Web lother {_ |[evilCode]| }+ code! | Browser
application | «__________ 1 _________| _______ u

Web application

page Browser view
view >

. . Knows scripts
Knows intentions

. An effective defense would require both these views!

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

If a web application knows
infended scripts
and
all the scripts (including injected)
for a generated HTML page, it can
remove unintended scripts.

Question : How to compute intended scripts?

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

Computing intended code

name= Xyz

- name_c = aaa w data recl
C.S‘ write(realPage, “hi") Xyz data HTML
: write(shadowPage, “hi”) [code] code PA9¢
é write(realPage, name)

write(shadowPage, name_c) hi data Shadow
: v.vr'ite(realPage, [code]) aaa data HTML
5 5wr'|1'e(shadowPage, [code]) [code] code PO9°
Web_
application

. Replicate output statements uninfluenced by user
inputs to create shadow page.

« Other output statements replicated but act on benign
inputs (as intended).

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

Computing intended code...cont.

name = [xssCode]
fname_c = aaaaaaaa

RETRA hi data Real
CS‘ write(realPage, “hi") [xssCode]| code HTML
I | write(shadowPage, “hi") [code] | code P99¢
é. write(realPage, name)

: write(shadowPage, name_c) hi data Shadow
write(realPage, [code]) aaaaaaa | data HTML
5 5wr‘|‘re(shadowPage, [code]) [code] | code PO9°

Web application

Real page contains injected script, but shadow retains
only intended script.

For a real page, its shadow page has intended scripts.

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

Shadow page captures intended code

. Real HTML page = output statements with user inputs

. Shadow HTML page = mirror above output statements
with benign user inputs

. Transform web application to create shadow (intended)
page for each real page

- Define "benign input” for each “real input”.
- Mirror the "actual input” processing on "benign input”.
- Replicate output statements with above processed inputs.

For details on transformation, please refer to

- CANDID: Pre\/en’ring SQL Injection Attacks usin%.
Dynamic Candidate Evaluations, S. Bandhakavi, P. Bisht, P.
Madhusudan, V.N. Venkatakrishnan, ACM CCS 2007,
submitted to ACM TISSEC 2008

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

Idea Revisited

If a web application knows
intended scripts
and
all scripts (including injected)
for a generated HTML page, it can
remove unintended scripts.

Question : How to compute intended scripts?
- By computing shadow pages.

Question : How can application identify all scripts?

What about filters?
u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

IIters eftective

context

. Ineffective against subtle cases

- MySpace Samy worm used eval(inner’ + 'HTML') to evade
“innerHTML" filter.

. Large attack surface

- tags and URI schemes, attributes, event handlers, alternate
encoding...

. Filters analyze inputs without their context of use.

OK . " (X 44
:3 e 3 <script> E\)ll({r
OK

write("pt>") /

HTML page

<script> filter
. Alternate scheme: find scripts in output (HTML page)
- Inputs embedded in context of use in HTML page

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

How Firefox identifies scripts?

: |
—I | . b d J I
XyZ Analysis processing |
[code] e l — |
HTML /— Code
page / Execution
Code Module
identification
scheme

Browser
. Lexical analysis component identifies tokens.
« HTML tag based processing identifies scripts in:

- External resource download e.g., <script src=...>
- Inlined scripts/event handlers e.g., <body onload-=...>
- URI schemes that can have scripts e.qg., javascript/data

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

everaging browser's code iadentitication

mechanhism

. A browser performs precise identification of scripts.

« Robust

- alternate encodings
- large attack surface

. Our approach leverages this at the server side.

|
. !
XYZ | ——) Lexical)y HTML Tag |
[code] | |Analysis processing '
: !
Real HTML page L e o o 1_ |
contains all
scripts identifies all scripts

- Modifications record all scripts in real HTML page.

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

XSS-GUARD : End - to - End

Transformed rltlemzs’r
web
application

2

Q [code] > [code] —.[code]

[code]|]|[code]

{-eede—] ;# aaaaaa

[code]||aaaaaal | real shadow Verified
real shadow page page real
page page page

Removal of injected
code

Safe web application u I c H%lg’HEIF[{:iEE OF ILLINOIS

XS5S-GUARD : intended scripts

name = Xyz

[l name_c = aaa
(5 """"" s (realP] hi Real
_write(realPage, * |; Xy page

write(shadowPage, “hi code]| code
& write(realPage, name)

write(shadowPage, name_c) ~
E write(realPage, [code]) hi
; 6wr‘i‘re(shadowPage, [code]) aaa , Shadow
O [code]| code PA9®

Web application

. All intended scripts in real page have equivalent scripts
in shadow page.

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

XSS-GUARD : Attack prevention

name = <script>...</script> Real
name_cC = aaaaaaaaaaaaaaaad page
<5 i write(realPage, “hi” ; , hi ,
; write(shadowPage, “hi" <script> </script>| code
é. write(realPage, name) [code]
write(shadowPage, name_c) ' "#
: write(realPage, [code]) hi /
: 5wri‘re(shadowPage, [code]) aaaaaaaaaaaaaaaa | data
é [code]
Web application Shadow
page

. Injected script in real page does not have equivalent
script in shadow page, and is removed.

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

XSS-GUARD : Subtle attack case

name_C = aaaaaaaaaa

F name = aaevil(...);

v
‘0

write(shadowPage, "<script>x=")

write(shadowPage, name_c)

5wri1'e(shadowPage, "</script>”)

write(realPage, “<script>x = ")

write(realPage, name)

write(realPage, "</script>")

web application

Rea
page

<script> X = aa;
evil(.'.a.):</scr'ip'r> code

I

<script> x =
aaaaaaaa</script> | code
Shadow
page

. Any unintended addition to existing scripts is

successfully prevented.

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

Effectiveness Evaluation

. Against real world exploits

CVE-2007-5120/5121 JSPWiki defended
CVE-2007-2450 Tomcat HTML Manager defended
CVE-2007-3386 Tomcat Host Manager defended
CVE-2007-3383/3384/2449 | Tomcat Example Web defended
CVE-2006-7196 Applications

. Defended 32 applicable exploits out of 92 : R. Hansen
XSS cheatsheet.

. False negatives : non-Firefox attacks

- Current implementation can be extended

- initial experiments : Defended 35 / 56 non-Firefox attacks

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

Performance Evaluation

. Performance overhead (response time)

Exploits from CVE 5-24 %
Varied response sizes 3-14 %
(1KB - 75KB)

Parse tree comparison of |37 - 42 %
scripts (1 - 5)

. Parse tree comparison is rarely done : in presence of
attacks, or scripts embedding user inputs.

. These numbers indicate worst case performance -

- Negligible network latency in experiments (LAN setup)

- Can be further improved by limiting the tfransformation to only
relevant statements.

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

Some Related Work

. Vulnerability analysis: find vulnerable source-sink pairs eg.

saner: Livshits et al. Usenix 2005, Pixy N. Jovanovic et al. S&P2006,
Xie et al. Usenix 2006, D. Balzarotti et al. CCS 2007...

. Useful but limited to detection

. Server side solutions: filter based or track taint & disallow
at sink : W. Xu et al. Usenix 2006, ...

. Centralized defense but do not know all scripts

. Client side solutions: Firewall like mechanisms to prevent
malicious actions at client

 Noxes E. Kirda, et al. SAC 2006, P. Vogt et al. NDSS 2007
. User controlled protection but do not know intended scripts

. Client-Server collaborative solutions: Clients enforce
application specified policies

« BEEP T. Jim, et al. WWW 2007, Tahoma R. Cox et al. S&P 2006,
Browsershield C. Reis et al. OSDI 2006

. Can determine intended and all scripts but deployment issues

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

Contributions and future work

. A robust server side solution to prevent XSS attacks.

. A mechanism to compute programmer intended code,
useful in defending other code injection attacks.

. Leveraged browser's mechanisms at server side.

Thanks for your attention!
Questions?

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

Backup Slides

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

Taint vs Candidate evaluations

. Taint tracking captures "trust” notion.

. Candidate computation captures "intended
structure”.

. We found taint tracking and limiting tainted
constructs in parse trees, a very powerful
idea. There are no differences in
effectiveness but there are subtle
differences -

« X = taintedX - taintedX + 100.5;
- X will be treated as tainted : false positive?
« X_c = taintedX_c - taintedX_c + 100.5;
- X_c will contain equivalent structure to X.

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

Miscellaneous examples

« Non-Firefox construct based false negative

-
Firefox does not understand vbscript URIs.

. Firefox quirk based exploit
- <script/xss src=""> </script>

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

« Others (3)
. Attacks based on src attributes (2)

~ <XML SRC="xsstest.xml" ID=I></XML> <SPAN
DATASRC=#I DATAFLD=C
DATAFORMATAS=HTML>

- <SCRIPT @=">" .
SRC="http://ha.ckers.org/xss.js"></SCRIPT>

. Javascript / data URI scheme based exploits (30)

- Is ighored in Firefox,
but valid in other browsers.

- We forced all the attributes to be parsed irrespective of
Firefox applicability.

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

Candidate Transformation

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

Performance numbers (detailed)

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

Related work

Filters : don't have adequate context
Output encoding : may forbid all HTML

Taint : Effective, focuses on taintedness, rather than
semantics

Server side solutions :

Client side solutions : Firewall like behavior, may disallow
legitimate scripts, or allow attacks on trusted servers.

Server-client side solutions

u I UNIVERSITY OF ILLINOIS
AT CHICAGO

page and shadow page comparison

with offsets

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

False positive in subtle case

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

xample with existing tilters - prevent

attack

u I c UNIVERSITY OF ILLINOIS
AT CHICAGO

