
XSS-GUARD : Precise Dynamic Prevention
of

Cross Site Scripting (XSS)
Attacks

Prithvi Bisht (http://cs.uic.edu/~pbisht)
Joint work with : V.N. Venkatakrishnan

Systems and Internet Security Laboratory
Department of Computer Science

University of Illinois, Chicago
USA

XSS attacks : number one threat

 …and the trend continues...
Second half of 2007 : 80% of all attacks were XSS

January 2007 : 70% web applications are vulnerable

[source : http://en.wikipedia.org]

 Simple attacks lucrative targets
<script> alert(„xss‟);</script>

XSS

10.9%

Others

89.1%

XSS

21.5%

Others

78.5%

CVE Vulnerabilities 2004 CVE Vulnerabilities 2006

 Attacker controlled code can steal sensitive
information or perform malicious operations.

A typical XSS attack

Claim prize
http://b.com/?name=[evilCode]

Email

Vulnerable
bank web
application

Client
browser

name=[evilCode]

<html>
...
[evilCode]
...
</html>

Response page ...
evilCode executed!
...

Objective

 Automated prevention of XSS attacks : server side

 Robust against subtle attacks

 Efficient

Automated
Transformation

Vulnerable
web

application

Safe
web

application

Outline of this talk

 Introduction

 Web application transformation technique

 Robust script identification at server side

 XSS-GUARD
Examples
Evaluation results

 Related work and summary

HTML page : A web application‟s view

 Page generated by output statements in a control path.

 Web application‟s view : intended regions & others
Other regions could lead to unintended script code.

Web application

User Input
name= xyz

write(“hi”)

write(name)

write([code])

hi

xyz

[code]

HTML
page

Output
statements not
influenced by user
inputs produce
programmer
intended
script code/data

Others may
produce
unintended script
code

HTML page : A browser‟s view

 Browser does not differentiate between injected and
programmer intended scripts.

 Browser‟s view : a collection of script code & data.

write(“hi”)

write(name)

write([code])

hi

[evilCode]

[code]

name= [evilCode]

Browser

data
code

code

Web application

HTML
page

A complete view

 An effective defense would require both these views!

hi

[evilCode]

[code]

HTML
page

Web
application

Browser

data

code

code

intended

other

intended

Web application
view

Knows intentions

Browser view

Knows scripts

Idea

If a web application knows

intended scripts

and

all the scripts (including injected)

for a generated HTML page, it can

remove unintended scripts.

Question : How to compute intended scripts?

write([code])write(realPage, [code])

write(name)write(realPage, name)

write(“hi”)write(realPage, “hi”)

 Replicate output statements uninfluenced by user
inputs to create shadow page.

 Other output statements replicated but act on benign
inputs (as intended).

Computing intended code

Web
application

name= xyz

Real
HTML
page

name_c = aaa

write(shadowPage, name_c)
Shadow
HTML
page

hi
xyz

[code]

hi

aaa
[code]

data
data

code

data
data

code

write(shadowPage, “hi”)

write(shadowPage, [code])

Computing intended code…cont.

 Real page contains injected script, but shadow retains
only intended script.

 For a real page, its shadow page has intended scripts.

Web application

name = [xssCode]

Real
HTML
page

name_c = aaaaaaaa

Shadow
HTML
page

hi
[xssCode]
[code]

hi

aaaaaaa
[code]

data
code

code

data
data

code

write(realPage, “hi”)

write(shadowPage, name_c)
write(realPage, name)

write(realPage, [code])

write(shadowPage, “hi”)

write(shadowPage, [code])

Shadow page captures intended code

 Real HTML page = output statements with user inputs

 Shadow HTML page = mirror above output statements
with benign user inputs

 Transform web application to create shadow (intended)
page for each real page

Define “benign input” for each “real input”.
Mirror the “actual input” processing on “benign input”.
Replicate output statements with above processed inputs.

For details on transformation, please refer to
CANDID: Preventing SQL Injection Attacks using
Dynamic Candidate Evaluations, S. Bandhakavi, P. Bisht, P.
Madhusudan, V.N. Venkatakrishnan, ACM CCS 2007,
submitted to ACM TISSEC 2008

Idea Revisited

If a web application knows

intended scripts

and

all scripts (including injected)

for a generated HTML page, it can

remove unintended scripts.

Question : How to compute intended scripts?

- By computing shadow pages.

Question : How can application identify all scripts?

What about filters?

Filters effective first layer...but lack
context

 Ineffective against subtle cases
MySpace Samy worm used eval(„inner‟ + „HTML‟) to evade
“innerHTML” filter.

 Large attack surface
tags and URI schemes, attributes, event handlers, alternate
encoding...

 Filters analyze inputs without their context of use.

 Alternate scheme: find scripts in output (HTML page)
Inputs embedded in context of use in HTML page

write(“<scri”)

write(“pt>”)

<script>
<scri

pt>

<script> filter

OK

OK

Not
OK

HTML page

How Firefox identifies scripts?

 Lexical analysis component identifies tokens.

 HTML tag based processing identifies scripts in:
External resource download e.g., <script src=...>
Inlined scripts/event handlers e.g., <body onload=...>
URI schemes that can have scripts e.g., javascript/data

hi
xyz

[code]

HTML
page

Browser

Lexical
Analysis

HTML Tag
based
processing

Code
identification

scheme

Code
Execution
Module

Leveraging browser‟s code identification
mechanism

 A browser performs precise identification of scripts.

 Robust
alternate encodings

large attack surface

 Our approach leverages this at the server side.

Modifications record all scripts in real HTML page.

hi
xyz

[code]

Real HTML page

contains all
scripts

Modified
Lexical
Analysis

Modified
HTML Tag
based
processing

identifies all scripts

[code]

XSS-GUARD : End – to - End

Safe web application

Transformed
web

application

HTTP
request

...

aaaaaa

[code]
...

[code]

[code]

real
page

shadow
page

real
page

shadow
page

≈

≈

Removal of injected
code

...

aaaaaa

[code]

...
[code]

...
[code]

Verified
real
page

XSS-GUARD : intended scripts

 All intended scripts in real page have equivalent scripts
in shadow page.

Web application

name = xyz

hi
xyz

[code]

Real
page

hi

[code]

name_c = aaa

aaa

code

code
Shadow
page

≈write(shadowPage, name_c)

write(realPage, “hi”)

write(realPage, name)

write(realPage, [code])

write(shadowPage, “hi”)

write(shadowPage, [code])

XSS-GUARD : Attack prevention

 Injected script in real page does not have equivalent
script in shadow page, and is removed.

Web application

name = <script>...</script>
name_c = aaaaaaaaaaaaaaaaa

hi
<script> </script>

[code]

hi

[code]
aaaaaaaaaaaaaaaa

code

Shadow
page

data

≈

Real
page

write(shadowPage, name_c)

write(realPage, “hi”)

write(realPage, name)

write(realPage, [code])

write(shadowPage, “hi”)

write(shadowPage, [code])

XSS-GUARD : Subtle attack case

 Any unintended addition to existing scripts is
successfully prevented.

web application

name = aa;evil(…);
name_c = aaaaaaaaaa

<script> x = aa;
evil(...);</script>

Real
page

Shadow
page

code

≈
code

<script> x =
aaaaaaaa</script>

write(shadowPage, name_c)

write(realPage, “<script>x = ”)

write(realPage, name)

write(realPage, “</script>”)

write(shadowPage, “<script>x=”)

write(shadowPage, “</script>”)

Effectiveness Evaluation

 Against real world exploits

 Defended 32 applicable exploits out of 92 : R. Hansen
XSS cheatsheet.

 False negatives : non-Firefox attacks
Current implementation can be extended

initial experiments : Defended 35 / 56 non-Firefox attacks

CVE-2007-5120/5121 JSPWiki defended

CVE-2007-2450 Tomcat HTML Manager defended

CVE-2007-3386 Tomcat Host Manager defended

CVE-2007-3383/3384/2449
CVE-2006-7196

Tomcat Example Web
Applications

defended

Performance Evaluation

 Performance overhead (response time)

 Parse tree comparison is rarely done : in presence of
attacks, or scripts embedding user inputs.

 These numbers indicate worst case performance –
Negligible network latency in experiments (LAN setup)

Can be further improved by limiting the transformation to only
relevant statements.

Exploits from CVE 5 – 24 %

Varied response sizes
(1KB – 75KB)

3 – 14 %

Parse tree comparison of
scripts (1 – 5)

37 – 42 %

Some Related Work

 Vulnerability analysis: find vulnerable source-sink pairs e.g.,
saner: Livshits et al. Usenix 2005, Pixy N. Jovanovic et al. S&P2006, Y.
Xie et al. Usenix 2006, D. Balzarotti et al. CCS 2007...

 Useful but limited to detection

 Server side solutions: filter based or track taint & disallow
at sink : W. Xu et al. Usenix 2006, …

 Centralized defense but do not know all scripts

 Client side solutions: Firewall like mechanisms to prevent
malicious actions at client

 Noxes E. Kirda, et al. SAC 2006, P. Vogt et al. NDSS 2007
 User controlled protection but do not know intended scripts

 Client-Server collaborative solutions: Clients enforce
application specified policies

 BEEP T. Jim, et al. WWW 2007, Tahoma R. Cox et al. S&P 2006,
Browsershield C. Reis et al. OSDI 2006

 Can determine intended and all scripts but deployment issues

Contributions and future work

 A robust server side solution to prevent XSS attacks.

 A mechanism to compute programmer intended code,
useful in defending other code injection attacks.

 Leveraged browser‟s mechanisms at server side.

Thanks for your attention!

Questions?

Backup Slides

Taint vs Candidate evaluations

 Taint tracking captures “trust” notion.
 Candidate computation captures “intended

structure”.
 We found taint tracking and limiting tainted

constructs in parse trees, a very powerful
idea. There are no differences in
effectiveness but there are subtle
differences –

 X = taintedX – taintedX + 100.5;
X will be treated as tainted : false positive?

 X_c = taintedX_c – taintedX_c + 100.5;
X_c will contain equivalent structure to X.

Miscellaneous examples

 Non-Firefox construct based false negative

Firefox does not understand vbscript URIs.

 Firefox quirk based exploit
<script/xss src=“”> </script>

Changes done to handle non-Firefox
quirks

 Others (3)

 Attacks based on src attributes (2)
<XML SRC="xsstest.xml" ID=I></XML> <SPAN
DATASRC=#I DATAFLD=C
DATAFORMATAS=HTML>
<SCRIPT a=`>`
SRC="http://ha.ckers.org/xss.js"></SCRIPT>

 Javascript / data URI scheme based exploits (30)
Is ignored in Firefox,
but valid in other browsers.
We forced all the attributes to be parsed irrespective of
Firefox applicability.

Candidate Transformation

Performance numbers (detailed)

Related work

 Filters : don‟t have adequate context

 Output encoding : may forbid all HTML

 Taint : Effective, focuses on taintedness, rather than
semantics

 Server side solutions :

 Client side solutions : Firewall like behavior, may disallow
legitimate scripts, or allow attacks on trusted servers.

 Server-client side solutions

Real page and shadow page comparison
with offsets

False positive in subtle case

Example with existing filters – prevent
attack

