
BioMed Central

Page 1 of 19

(page number not for citation purposes)

BMC Bioinformatics

Open AccessSoftware

XSTREAM: A practical algorithm for identification and
architecture modeling of tandem repeats in protein sequences
Aaron M Newman1 and James B Cooper*1,2

Address: 1Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, USA and 2Department of Molecular,
Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA

Email: Aaron M Newman - a_newman@lifesci.ucsb.edu; James B Cooper* - jcooper@lifesci.ucsb.edu

* Corresponding author

Abstract

Background: Biological sequence repeats arranged in tandem patterns are widespread in DNA

and proteins. While many software tools have been designed to detect DNA tandem repeats (TRs),

useful algorithms for identifying protein TRs with varied levels of degeneracy are still needed.

Results: To address limitations of current repeat identification methods, and to provide an

efficient and flexible algorithm for the detection and analysis of TRs in protein sequences, we

designed and implemented a new computational method called XSTREAM. Running time tests

confirm the practicality of XSTREAM for analyses of multi-genome datasets. Each of the key

capabilities of XSTREAM (e.g., merging, nesting, long-period detection, and TR architecture

modeling) are demonstrated using anecdotal examples, and the utility of XSTREAM for identifying

TR proteins was validated using data from a recently published paper.

Conclusion: We show that XSTREAM is a practical and valuable tool for TR detection in protein

and nucleotide sequences at the multi-genome scale, and an effective tool for modeling TR domains

with diverse architectures and varied levels of degeneracy. Because of these useful features,

XSTREAM has significant potential for the discovery of naturally-evolved modular proteins with

applications for engineering novel biostructural and biomimetic materials, and identifying new

vaccine and diagnostic targets.

Background
Repeated sequences, often organized as extended tandem
arrays, abound in biology, and computational approaches
have been critical for the identification and analysis of
such sequence elements from genomic data. Tandem
Repeats (TRs) are formally defined as two identical copies
of finite non-empty words with no intervening characters
[1]. Since biological sequences evolve naturally by muta-
tion, both by base substitutions and insertions/deletions
(indels), a biological TR is defined as two or more suffi-
ciently similar biological words lacking intervening charac-

ters, where sufficiency is arbitrarily defined. The work
described in this paper focuses exclusively on non-evolu-
tionary TRs (for evolutionary TR detection, see [2]), each
of which has three important properties: consensus
sequence, a word representing the TR pattern, period, the
number of characters in the consensus sequence, and copy
number, the number of words in the entire TR domain.

Bioinformatics studies of TRs have primarily focused on
DNA. DNA TRs are traditionally classified on the basis of
increasing period into microsatellites, minisatellites, and

Published: 11 October 2007

BMC Bioinformatics 2007, 8:382 doi:10.1186/1471-2105-8-382

Received: 23 May 2007
Accepted: 11 October 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/382

© 2007 Newman and Cooper; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/1471-2105/8/382
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17931424
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 2 of 19

(page number not for citation purposes)

large-scale duplications. In some human TR loci, copy
number changes are associated with triplet-repeat expan-
sion diseases that include Huntington's disease and Frag-
ile X Syndrome [3]. Because genomic TR loci are often
highly polymorphic, even expanding and contracting
from generation to generation, DNA TRs have forensic
and biomedical applications, and may play important
roles in genome evolution [4,5].

Nucleotide repeats occurring in protein coding genes can
result in protein sequences containing repetitive elements.
Though less studied than DNA repeats, peptide repeats are
likewise known to be widespread in nature [6-8]. Peptide
TRs impart a modular architecture to proteins and are
found in important structural proteins such as animal col-
lagens and keratins, insect and spider silks, plant cell wall
extensins, and the proteins that form adhesive plaques
and byssal threads of bivalve mussels [9-13]. TR domains
are also found in other modular proteins, including prion
proteins, ice nucleation and antifreeze proteins, FG-rich
proteins in nuclear pore complexes, surface antigens of
microbial pathogens and parasites, histones, and zinc-fin-
ger transcription factors. [14-20]. Peptide TRs may pro-
vide an evolutionary shortcut for the modular
construction of new proteins through recombination and
copy number adjustment [6,7,21,22]. To understand both
the evolutionary diversity and functional significance of
protein TRs, facile methods for the a priori identification
and analysis of TRs from protein sequence databases will
be critical.

Numerous bioinformatics tools have been developed for
de novo repeat detection in DNA and protein sequences.
One class of tools utilizes sequence self-alignment (SSA)
[23-26]. Importantly, SSA approaches allow for the substi-
tutions and indels in repeat sequences that often arise in
biology. Because protein repeat detection tools that use
SSA (RADAR, TRUST, Pellegrini et al. method) detect all
repeated sequences, not only TRs, these algorithms may
incorrectly characterize TR domains as non-TRs. With
Ω(n2) time complexity (where n = length of input
sequence), SSA algorithms are less than ideal for long pro-
tein sequences and repeat-detection in large multi-
genome datasets. An alternative strategy implemented for
a priori peptide repeats detection is based on a sliding win-
dow (SW) approach [22,26-28]. In general, SW algo-
rithms are simple to implement, but do not readily
accommodate indels and are thus likely to miss many
degenerate TRs. The Ω(n3) time complexity of SW algo-
rithms used to detect repeats of all periods also renders
this strategy inappropriate for analysis of long sequences.

An efficient heuristic employed for detecting DNA TRs in
whole genome data relies on seed extension (SE) [29,30].
Seed extension algorithms have Ω(n) time complexity for

repeat detection, and depending on implementation, can
approximate O(n) time complexity, making them fast
enough for analyses of large sequence databases. Further-
more, since SE allows for both indels and substitutions,
this method is very appropriate for repeat finding applica-
tions in naturally evolving biological sequences.

To complement and improve upon current software tools
for peptide repeat detection, we implemented a SE algo-
rithm to explicitly locate exact and degenerate (with sub-
stitutions and indels) TRs of all periods in protein
sequences. This new tool, called XSTREAM for Variable
('X') Sequence Tandem Repeats Extraction and Architec-
ture Modeling, was designed to efficiently mine large
genomic datasets for TRs of any period, to effectively char-
acterize degenerate TR domains, and to produce concise
TR output. Important features of XSTREAM include novel
heuristics that achieve 1) practical running time without
period limitations, 2) effective reduction of TR output
redundancy, 3) merging of discontinuous degenerate TR
domains, 4) identification of nested TR architectures, and
5) TR domain clustering. Though developed specifically
for analyzing TR protein sequences, XSTREAM works
equally well to extract TR patterns in DNA sequences, or
for that matter, TRs in any ASCII string of characters. The
practical utility of XSTREAM is demonstrated through test-
ing and validation using publicly available genome
sequence data.

Implementation
The XSTREAM program implements a SE approach that
includes heuristics to efficiently and effectively detect
exact and degenerate TRs of any period from large input
sequence datasets. The program utilizes two important
strategies in addition to SE to achieve practical running
times without period limitations: a user-modifiable
sequence alignment method called Gap-Restricted
Dynamic Programming (GRDP), and a new long-period
TR filter (both described in the Appendix). In addition,
XSTREAM applies several strategies, including the use of
irreducible repeats, to effectively combat the redundancy in
TR detection inherent in biological TR sequences. Other
novel features incorporated into XSTREAM include merg-
ing of degenerate TR domains and modeling of nested TR
architectures. XSTREAM provides non-redundant output
of TRs meeting a suite of user-defined criteria for attributes
such as minimum and maximum period, minimum copy
number, minimum domain length, minimum % input
sequence coverage, and maximum character mismatch.

Algorithm

The primary functionalities of XSTREAM, as shown in Fig-
ure 1, can be divided into five high level stages: Pre-
Processing, TR Detection, TR Characterization, Post-
Processing, and Output. For a technical description of the

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 3 of 19

(page number not for citation purposes)

algorithm, presented within the same organizational con-
text, refer to the Appendix section.

Pre-Processing

For processing by XSTREAM, input sequences must be in
FASTA format. Valid sequences are sent to the seed detec-
tion module. XSTREAM searches the input sequence for
short exact substring repeats, or seeds, of two or three
sizes, depending on the input length (see [29] for an excel-
lent example of the use of seeds, or k-tuple probes in TR
detection). Seed pairs are used to provide starting points

and potential periods for TR detection. The use of seeds
allows XSTREAM to rapidly identify putative TRs. For
every adjacent pair of matching seeds, XSTREAM records
both the sequence distance between them and the
sequence index of the leftmost seed. Each distance is a
potential TR period.

TR Detection

Following seed detection, XSTREAM attempts to extend
each seed pair. Two sequence iterators move downstream
from each seed in a parallel manner, returning characters
for comparison. Running totals of character match and
mismatch are kept. We define i as the amount of character
matching required between two tandemly arranged words
in order for them to be designated a TR. For example, if i
is set to 0.8, then at least 80% of the aligned characters
among two words at a given period must be identical.
Seed extension always stops when for any seed pair, the
iterator for the leftmost seed collides with the rightmost
seed. If at any point during the procedure, the character
mismatch count divided by the current potential period
exceeds or equals 1 - i, seed extension is aborted, thereby
reducing running time. Similarly, seed extension is pre-
maturely terminated if the match count becomes suffi-
ciently high. To include indels during seed extension, we
use a novel heuristic, which is presented in the Appendix
section.

Each candidate TR resulting from successful seed exten-
sion is subjected to further expansion using the same basic
mechanism as seed extension. XSTREAM examines
sequence space both downstream and upstream of the
current candidate domain using increments equal to the
TR period. Potential repeat copies are evaluated by com-
paring new sequence space with the reference repeat,
which is the leftmost repeat resulting from the initial seed
extension. If indels are allowed and if domain expansion
using seed extension fails to agree with i, we invoke a sec-
ond strategy. The second approach, termed GRDP (see
Appendix), can more accurately perform a subsequence
pairwise comparison at the expense of slightly increased
running time. A novel feature of our implementation is
the user's ability to limit the maximum width of the
dynamic programming (DP) matrix (parameter g), result-
ing in θ(n) time and space complexities for global pair-
wise alignments.

Following domain expansion, we instantiate a procedure
called maximality. Employing a user-adjustable scoring
scheme, maximality finds the longest stretch of characters
both downstream and upstream that can legitimately be
added to each candidate TR. This procedure is invoked
because TRs in nature do not always occur in integer copy
numbers and XSTREAM's TR domain expansion method
is limited to integer copies.

XSTREAM Program Flow ChartFigure 1
XSTREAM Program Flow Chart. Activity Diagram of
XSTREAM modeled using Enterprise Architect version
4.10.739 (Sparx Systems).

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 4 of 19

(page number not for citation purposes)

Finally, XSTREAM masks input sequence space corre-
sponding to each maximally extended candidate TR.
Sequence masking prevents further seed extensions in
sequence regions that constitute TR domains, thus func-
tioning to prevent output redundancy as well as reduce
running time. For details of sequence masking, refer to
Redundancy Elimination I as well as Two-stage TR detec-
tion in the Appendix.

TR Characterization

To further refine each candidate TR, XSTREAM segments
every TR domain into its component copies. Parsing can
be accomplished by a trivial subdivision of the TR domain
using the current period, an optimal subdivision using
wrap-around dynamic programming (WDP, [31]), or a
heuristic subdivision using GRDP. For details about
implementation and when each method is invoked, refer
to the Appendix section.

Following TR parsing, each TR undergoes a multiple align-
ment of its copies. A procedure identical in concept to
STAR Alignment is used when indels are allowed. Because
practical running time is emphasized in our implementa-
tion, pairwise sequence comparisons during STAR Align-
ment may be computed in a non-optimal manner using
GRDP.

Following multiple alignment of each TR, a consensus
sequence is computed. Each consensus is democratically
derived using the majority rule. In addition, XSTREAM
computes an error associated with the consensus – the
lower the error, the stronger the agreement between the
consensus and its represented domain. We define I as the
minimum allowable matching between the consensus
and the aligned TR for the TR to be reported to the user.
For example, if I equals 0.8, then the consensus error can-
not exceed 0.2 or 20% disagreement.

Next, XSTREAM inspects the edges of each aligned TR
domain (with TR copy number greater than 2) for accord-
ance with the consensus. If either edge mismatches with
the consensus, that edge is truncated. Since all TRs must
have at least 2 copies, edge trimming is not performed on
TR domains with TR copy number = 2.

Occasionally, because of matching considerations, TR
domains are identified with periods that are reducible.
Therefore, the last step of TR Characterization functions to
reduce overestimated TR periods (see Redundancy Elimi-
nation II in the Appendix).

Post-Processing

XSTREAM attempts to merge sufficiently similar TRs that
either overlap in the input sequence or are in close enough
proximity to one another. To compute sufficient similar-

ity, XSTREAM invokes the concept of cyclical permuta-
tions, which enables effective consensus sequence
comparison (see Merging and Consensus Comparison in the
Appendix). As a result, XSTREAM can identify TR domains
with large regions of indels and/or substitutions that,
without merging, would be reported as separate TRs. This
procedure is thus important for detecting rapidly evolving
TR sequences.

Following merging, XSTREAM invokes a series of finaliz-
ing functions called finishing touches, which serve to fine-
tune the characterization of each TR domain as well as
remove TRs that are insufficiently fit for output. TR char-
acterization refinement involves rerunning maximality,
redoing multiple alignment, rerunning reducibility, and
looking for nested TRs (see Appendix). After additional
characterization, finishing touches removes TRs with
unacceptable amounts of overlap (see Redundancy Elimi-
nation III in the Appendix). Finally, remaining TRs are
tested for agreement with user-defined filtration criteria.

All TRs that satisfy the output criteria are sent to the con-
sensus comparison (CC) module. CC clusters TRs on the
basis of consensus similarity. By ordering TRs by consen-
sus sequence homology in the output, XSTREAM reduces
output redundancy while facilitating the identification of
TR families from the input dataset. Related TRs may reflect
structural or functional homology of their corresponding
protein sequences. The current implementation of CC
only compares TRs of equal period.

Output

XSTREAM automatically generates HTML files in a format
similar to the output from Tandem Repeats Finder (TRF)
[29]. HTML output 1 contains a TR summary table and list
of TR information, including sequence positions, period,
and copy number. The range of sequence positions for
each TR is hyperlinked to HTML output 2, which displays
TR multiple alignments and consensus sequences. In the
case of a multiple sequence input, XSTREAM generates
HTML output 3, which reports a list of all input sequences
containing reported TRs. An additional output option is a
colored TR schematic, in PNG or HTML format, that rep-
resents the modular architectures of TR-containing
sequences. The main user-definable output parameters of
XSTREAM are presented in Table 1. A list of all user-
defined parameters can be found on the XSTREAM web-
server [32].

Results
XSTREAM was coded using Java Standard Edition 5.0. To
evaluate our implementation, we demonstrated and vali-
dated key features of XSTREAM using a variety of input
datasets. First, a run time analysis shows the practicality of
XSTREAM for TR detection in whole genomic sequence

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 5 of 19

(page number not for citation purposes)

data. Second, multiple sequence alignments, merging,
and nesting are demonstrated using anecdotal output
examples. Third, the ability of XSTREAM to detect protein
TR domains is validated using published results from five
protozoan parasite genomes. Finally, we present sche-
matic diagrams illustrating the utility of XSTREAM for
graphically depicting modular architectures of TR pro-
teins. In all cases, default parameter values were used
unless stated otherwise (see Table 1). All tests and data
collection were carried out using a Windows XP PC with a
64-bit AMD Athlon dual core 1.8 Ghz processor and 2 Gb
RAM.

A principle attribute of XSTREAM is practical running time
for large sequence datasets. To measure how running time
varies with differing input sequence lengths and parame-
ter values, we used XSTREAM to analyze DNA sequences.
We chose DNA over protein sequences simply because
DNA sequences cover a substantially larger range of
sequence lengths than proteins, thus enabling a more
accurate assessment of running time. XSTREAM was run
on DNA sequences ranging from 0.23 Mbp to 202 Mbp,
either with gaps (g = 3) or without gaps (g = 0). For these
analyses, sequences were examined in two sets. Shorter
sequences, < 10 Mbp, were processed with minimum TR
domain length minD = 20 and minimum period MinP =
1, and no period restrictions. For longer sequences, we
used minD = 50 and MinP = 10, and due to memory limi-
tations, maximum period was set to 100 kbp. In addition,
for periods 10 – 999 we used a divide-and-conquer
approach (see Appendix) with fragment length = 1 Mbp.
As shown in Table 2, running time increased approxi-
mately linearly with increasing sequence length for all
DNA sequences with or without gaps (R2 > 0.99). Next,
the effect of increasing dataset size on running time was
examined by analyzing four Swiss-Prot datasets ranging in
size from 40,292 to 230,150 non-redundant protein

sequences, and setting minD = 10 and MinP = 1. As
expected, since XSTREAM processes each protein
sequence individually, running time scaled linearly (R2 >
0.998), as indicated in Table 2. A running time of less than
7. 5 min for the detection of degenerate TRs (using g = 3)
from the Swiss-Prot 50.5 dataset clearly demonstrates the
practicality of XSTREAM for multi-genome data mining.

In addition to efficient TR detection, other important
capabilities of XSTREAM are demonstrated with the data
shown in Figures 2, 3, 4 and Table 3. A multiple alignment
of a degenerate TR domain found in the C. elegans hypo-
thetical protein CE22309 is presented in Figure 2. Shown
above the alignment are the standard numerical proper-
ties reported by XSTREAM for each TR domain: sequence
position, period, copy number, and consensus error. Each
alignment is additionally described by a consensus
sequence (below the dashed double line) and a consensus
error string (below the consensus).

The TR example shown in Figure 2 also highlights the util-
ity of the merging feature of XSTREAM when applied to
overlapping domains with different periods. Without
merging, this TR domain would be reported as several dis-
tinct TR fragments. The merging of two non-overlapping
TR domains from an A. thaliana hypothetical protein (gi
9293925) is illustrated in Figure 3. This example illus-
trates the utility of incorporating a highly degenerate
intervening sequence to define a larger TR domain that,
without merging, would have been divided into two dis-
continuous regions (x's denote non-matching characters).
As in proteins, DNA TRs may also contain extensive
degeneracy. The high copy number TR domains shown in
Table 3 represent additional successful applications of
XSTREAM's merging feature. Taken together, the merging
of (non)overlapping TR regions allows XSTREAM to suc-
cessfully model the architectures of TR domains that have

Table 1: User-defined parameters

Definition Default Value

Minimum character identity i 0.7 for proteins
0.8 for nucleotides

Minimum consensus matching I 0.8

Minimum copy number MinC 3

Minimum period MinP 3 for proteins
10 for nucleotides

Maximum period MaxP Half of input sequence length

Maximum consecutive gaps g (see Appendix) 3

Maximum indel error (see Appendix) 0.5

Shown in this table are seven important user-adjustable parameters used by XSTREAM. These parameters function to limit the extent of TR
degeneracy as well as to restrict the TR period and copy number of reported TRs. Default parameter values were empirically chosen to
preferentially identify and model long degenerate repeat regions rather than shorter repetitive regions with higher sequence identity (e.g., where I
= 1.0 and g = 0). We acknowledge that alternative architectures may exist for some complex repetitive domains. By including these and additional
modifiable parameters, XSTREAM provides considerable user control over TR degeneracy and output filtration.

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 6 of 19

(page number not for citation purposes)

accumulated extensive substitution and/or indel muta-
tions, or that have arisen through convergent evolutionary
mechanisms.

In addition to extensive degeneracy, TRs may have very
long periods and nested architectures. XSTREAM imple-
ments a novel long-period filtering procedure (see Appen-
dix) to find TRs with periods ≥1000. The utility of this
method is demonstrated by some of the DNA examples in
Table 2 and by the long-period A. thaliana DNA repeats in
Table 3. XSTREAM also incorporates a strategy to find and
describe nested TR architectures, represented by the regu-
lar expression [x,n], with n denoting the number of tan-
dem copies of substring x. An example of TR nesting that
shows two levels of nesting is presented in Figure 4.
Included in the figure is a block diagram illustrating the
hierarchical patterning that epitomizes nested TRs. Taken
together, these merging, long-period filtration, and nest-
ing features make XSTREAM a useful tool for detection
and architecture modeling of TR domains in both nucleo-
tide and protein sequences.

To validate the utility of XSTREAM for detecting TR-con-
taining proteins, we analyzed the proteomes of five para-

site genomes, and compared our output to the TR proteins
identified in these same genomes by TRF [18]. Protein
sequence datasets for these parasites were downloaded
[33] and processed using minP = 1, minD = 90 and mini-
mum copy number minC = 2, or 3. These parameter values
were chosen to emulate the TR criteria used in [18] to find
TR domains in gene sequences of at least ~250 bp. Setting
minD = 90 amino acids for XSTREAM corresponds to a
slightly more stringent 270 bp minimum. Table 4 summa-
rizes the TRs found by XSTREAM, using minC = 3 or minC
= 2, and by TRF [18]. Using minC = 3, XSTREAM identified
more TR containing proteins in all parasites except T.
annulata. In L. infantum, the causative agent of Leishmani-
asis and the focus of the Goto et al. studies [17,18],
XSTREAM found seven TR proteins that they did not iden-
tify, while three of the TR proteins found by TRF were not
detected by XSTREAM. Upon closer examination of the
three "missed" proteins, each was found to have a TR
domain with copy number less than 3, which would not
be reported by XSTREAM using minC = 3. When XSTREAM
was rerun with minC = 2, all 64 of the previously identi-
fied L. infantum TR proteins [18] were found, along with
14 additional TR containing proteins that are schemati-
cally diagrammed in Figure 5 to illustrate the significant

Table 2: Running Time Analysis

Source Length, Mbp Time, min g = 3 Time, min g = 0 Longest period

S. cerevisiae Chr. I 0.23 0.25 0.12 135 (17.9)

S. cerevisiae Chr. VIII 0.56 0.58 0.29 1998 (2)

H. sapiens β TCR 0.68 0.77 0.36 340 (2)

S. cerevisiae Chr. XII 1.0 1.2 0.49 9137 (2)

M. magneticum AMB-1 4.9 6.4 2.2 1158 (4.2)

H. sapiens Chr. I contig 9.8 13.5 4.7 18557 (2.1)

Source Length, Mbp Time, min g = 3 Time, min g = 0 Longest period

H. sapiens Chr. XXI 33.0 34.4 16.4 3379 (2)

R. norvegicus 80.7 86.7 39.1 2715 (2)

H. sapiens Chr. X 127.6 134.7 64.1 4863 (2)

M. musculus Chr I 202.5 239.1 90.0 3773 (2)

Source No. of Proteins Time, min g = 3 Time, min g = 0 # TRs (# TRPs)

Swiss-Prot v.30 40292 1.5 0.55 2428 (3771)

Swiss-Prot v.38 80000 2.6 1.1 3762 (7012)

Swiss-Prot v.45 163633 5.4 2.4 5302 (12359)

Swiss-Prot v.50.5 230150 7.3 3.5 6444 (17097)

Running times for the analysis of different input sequence datasets are shown, with the gap parameter g = 3, or g = 0. The following DNA sequences
were downloaded from NCBI: S. cerevisiae Chromosomes I (gi 85666109), VIII (gi 82795252), and XII (gi 85666119), H. sapiens Chromosomes X (gi
89033689) and XXI (89058287), Chromosome I contig (gi 29789880), and the β T-cell receptor locus (gi 114841177), R. norvegicus Chromosome
XVI (gi 109504251), M. musculus Chromosome I (gi 83274080), and the M. magneticum AMB-1 (gi 82943940) genome. Sequences at the top (0.23 –
9.8 Mbp) were run with minD = 20, minP = 1, and all possible maximum periods. Longer DNA sequences (33 – 202.5 Mbp) were run with minD =
50, minP = 10, and (due to memory limitations) maximum period = 100 kbp; divide-and-conquer (see Appendix) was used for periods < 1000
(fragment length = 1 Mbp). For each longest period found, the copy number is shown in parentheses. These data show a linear relationship between
running time and increasing input sequence length (R2 > 0.99). Running times for analysis of 4 Swiss-Prot datasets, using minD = 10 and minP = 1,
shown at the bottom, including the number of TRs detected (using consensus comparison, see Appendix) and the number of TR-containing
proteins found (in parentheses). XSTREAM running time scaled linearly with increasing Swiss-Prot dataset size (R2 > 0.998).

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 7 of 19

(page number not for citation purposes)

diversity of TR domain architectures within these 14 pro-
teins.

Since TR domains can constitute variable fractions of the
parent protein sequence (Figure 5), XSTREAM incorpo-
rates the simple concept of TR Content, defined as the ratio
of the TR domain length to the input sequence length, as
an additional metric for comparing modular proteins. Use
of this metric allows XSTREAM to filter output using any

arbitrary level of TR content, a feature that is illustrated
using the protein sequence dataset from A. thaliana
(TAIR6_pep_20060907). The Arabidopsis proteome was
analyzed using parameter values MinP = 1 and TR Content
≥ 0.7. The relatively small number of proteins with ≥70%
TR content resulting from this analysis are schematically
depicted in Figure 6. This output clearly reveals the mod-
ular architectures of two large, well-described A. thaliana
protein families (polyubiquitins with period = 76, and

Table 3: Extreme examples of DNA TRs detected by XSTREAM

Genomic Sequence Period Copy# Consensus Error Position

CE Chr III gi 86563600 94 403.6 0.05 7405280–7443237

At Chr I gi 42592260 158 453.7 0.1 14929399–15001291

At Chr I gi 42592260 45653 2.0 0.05 14346314–14437643

3415 8.5 0.01 12767448–12796444

Anecdotal examples of very high copy number and very long period DNA TRs from chromosome I of A. thaliana and chromosome III of C. elegans
are shown.

Multiple Alignment of TR domain from C. elegansFigure 2
Multiple Alignment of TR domain from C. elegans. Standard TR properties are shown above the multiple alignment of a
proline/glycine-rich TR domain in the C. elegans hypothetical protein sequence CE22309 from wormpep173 http://
www.sanger.ac.uk/Projects/C_elegans/WORMBASE/. 'Positions' denotes the corresponding input sequence index range of this
TR domain and 'Copy N' denotes copy number. The consensus error is 0.13 because nG = 99, cG = 29, mG = 583, and tot =
1595 (see Consensus Building in Appendix). Gap characters are shown in red to emphasize the high indel content of this TR.
Below the dashed double line is the consensus sequence followed by the consensus error string shown in blue. Columns of the
alignment with 100% character identity have no symbol in the consensus error string. The symbols ':' and '*' denote a column
with greater than or equal to 50% character identity and a column with less than 50% character identity respectively.

http://www.sanger.ac.uk/Projects/C_elegans/WORMBASE/
http://www.sanger.ac.uk/Projects/C_elegans/WORMBASE/

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 8 of 19

(page number not for citation purposes)

proline-rich extensin-like proteins with period = 25)
along with that of additional TR proteins.

Discussion
The use of a priori computational methods to search
genome databases for repetitive elements has revealed an
abundance of both DNA and peptide repeats in nature,
many of which occur in tandemly repeated patterns
[6,8,26,27]. The detection and analysis of repeated pep-
tide sequences has received considerable attention in
recent years, including the recent publication of a large
protein repeats database [26]. Despite the potential
importance of such repetitive sequences, the available
repeat detection software suffers from both time complex-
ity and output redundancy problems. To address these
issues, and to facilitate the detection and modeling of TR
structures in general, we developed a new software tool
called XSTREAM.

The utility of XSTREAM for efficient and effective detec-
tion of degenerate tandem repeats in large input sequence
datasets was demonstrated by testing and validation. Prac-

tical performance was confirmed by showing that
XSTREAM running time can scale linearly with both
increasing sequence lengths (up to 202.5 Mbp of DNA
sequence) and increasing dataset sizes (up to 230,150
protein sequences). XSTREAM invokes no period limita-
tions and can thus detect TRs with very long periods, as
illustrated by the ~45 kbp tandem duplication identified
in chromosome I of A. thaliana (Table 2). With the imple-
mented merging heuristic, XSTREAM can also identify TR
domains with intermittent regions of high degeneracy,
such as the TR from C. elegans chromosome III with
period 94 and copy number >400 (Table 2), and the pro-
line/glycine-rich protein from C. elegans shown in Figure
2. In addition, by searching for nested TR structures,
XSTREAM detects TRs within TRs (Figure 4), a useful fea-
ture for gaining insights into the evolution of complex TR
architectures.

Output redundancy is a problem inherent in repeat detec-
tion that has often been ignored. For example, using a SW
approach, Katti et al. [27] searched Swiss-Prot 38 for TRs
with periods between 1 and 20, and compiled the TRIPS
database of TRs and their corresponding protein sequence
identifiers http://www.ncl-india.org/trips. In many cases,
TRs with different periods were reported that occupy the
same protein sequence space. The output of another
repeat finding tool [26] also demonstrates the importance
of redundancy removal. The ProtRepeatsDB tool http://
bioinfo.icgeb.res.in/repeats was designed for comparing
repeated peptides from many organisms. Though aware of
redundancy problems, the strategy implemented by Kalita
et al. falls short of providing concise repeat output in
numerous cases. For example, ProtRepeatsDB reported
1312 and 568 distinct perfect peptide repeats in the UBQ3
and UBQ12 polyubiquitin sequences from A. thaliana,
respectively. Unexpectedly, the canonical period 76 TRs
known to characterize polyubiquitins were absent. Such
highly redundant outputs illustrate the importance of the
redundancy removal tactics incorporated into XSTREAM.
By invoking several strategies (see Redundancy Elimina-
tion in Appendix), including the use of irreducible TR peri-
ods [24], XSTREAM produces non-redundant TR output.
Analysis of the A. thaliana proteome by XSTREAM, for
example, reports the UBQ3 and UBQ12 sequences only
once, with an irreducible, period 76 TR covering virtually
the entire protein sequences.

The recent analysis of five protozoan parasite genomes
using TRF [18] provided a reasonable reference for testing
XSTREAM on genome-scale datasets. Using minD = 90 to
mimic the TR domain criterion used by Goto et al,
XSTREAM detected significantly more TR proteins from all
parasite genomes, including all 64 of the previously iden-
tified L. infantum TR proteins [18]. Further analysis of
these 64 TR protein domains revealed that the TR

Discontinuous Domain Merging of TR from A. thalianaFigure 3
Discontinuous Domain Merging of TR from A. thal-
iana. Successful merging of non-overlapping TR regions is
shown by a TR domain from A. thaliana predicted gene prod-
uct gi 9293925. Characters in the intervening degenerate
sequence space that do not match the consensus are each
represented by 'x'. This TR has a period of 9, a copy number
of 8.67, a consensus error of 0.09 [nG = 6, cG = 1, mG = 9, tot
= 88 (95-7 x's) (see Consensus Building and Merging in Appen-
dix)], and is located at sequence positions 1 – 85.

http://www.ncl-india.org/trips
http://bioinfo.icgeb.res.in/repeats
http://bioinfo.icgeb.res.in/repeats

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 9 of 19

(page number not for citation purposes)

domains identified by both algorithms were comparable
in size (data not shown).

Conclusion
By testing XSTREAM on a variety of sequence data, we
demonstrated the utility of this new genome data-mining
tool for identifying TRs with diverse periods and domain
sizes, varied levels of degeneracy, and complex architec-
tures. These capabilities should facilitate potentially sig-
nificant applications. For example, TRs present in parasitic
pathogens are known to elicit important immunological
responses that may provide antigenic protection (e.g.,
[19]). New computational approaches for detecting TR
proteins might thus be useful for identifying novel protein
antigens useful for diagnostics and vaccine development
[17,18]. Secondly, since TR domains are characteristic of

modular structural proteins, use of XSTREAM may lead to
the in silico discovery of phylogenetically diverse proteins
with novel biomaterials and biomimetic applications.

Availability and requirements
Project Name: XSTREAM

Project home page and availability: http://jimcooper
lab.mcdb.ucsb.edu/xstream

Operating system(s): Platform independent

Programming language: Java

Any restrictions to use by non-academics: yes, contact
author JBC for details

Table 4: Number of TR proteins detected in protozoan parasite genomes by XSTREAM and TRF

Species XSTREAM MinC = 3 XSTREAM: MinC = 2 TRF

L. infantum 68 (3, 7) 78 (0, 14) 64

L. major 65 74 59

T. brucei 115 135 73

P. falciparum 252 263 169

T. annulata 10 20 11

Numbers in each column represent the number of different TR-containing proteins detected using minP = 1 and minD = 90 amino acids for
XSTREAM, and a minimum score of 500 for TRF. Within the parentheses, the number on the left represents the number of genes identified in [18]
that were not identified by XSTREAM and the number on the right represents the number of genes identified by XSTREAM that were not identified
by [18]. Comparison of output on an individual protein basis was only possible for L. infantum as Goto et al. (2007) did not report identified proteins
for the other parasites.

Example of a Nested TR ArchitectureFigure 4
Example of a Nested TR Architecture. A nested TR of two hierarchical levels is illustrated with an example from T. brucei
(copy number = 7.78, period = 138, positions = 651 – 1738). Since a nested TR is by definition, a TR within another TR, the
level of nesting depth corresponds to the number of TR domains that encapsulate a particular nested TR. This example shows
nested TRs in two representations: the compressed consensus sequence with nested TRs denoted within brackets, and a
graphical depiction of the hierarchical structure and distribution of nested TRs, with the consensus represented by the brown
bottom bar, and increasing levels of nesting represented by additional bars moving upward.

http://jimcooperlab.mcdb.ucsb.edu/xstream
http://jimcooperlab.mcdb.ucsb.edu/xstream

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 10 of 19

(page number not for citation purposes)

List of abbreviations used
TR, tandem repeat; TRF, Tandem Repeats Finder [29]; DP,
dynamic programming; GRDP, gap-restricted dynamic
programming; SSA, sequence self-alignment; SW, sliding
window; SE, seed extension; WDP, wrap-around dynamic
programming; CC, consensus comparison; ET, edge trim-
ming; CW, comparison wobble; minP, minimum period;
minC, minimum copy number; minD, minimum TR
domain length; HPS, heuristic partitioning strategy

Competing interests
The author(s) declares that there are no competing inter-
ests.

Authors' contributions
AMN conceived of, designed, implemented, tested, and
validated XSTREAM, and wrote the manuscript. JBC con-
ceived of, tested, and validated XSTREAM, and wrote the
manuscript. Both authors approved the final manuscript.

Appendix
Preliminary Notations

• S = input sequence, which takes values from alphabet
{A,C,G,T} for nucleotide sequences and alphabet
{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} for proteins

· |S| = length of S

· S[j] = the character at index j in S with j ≥ 0

· S[i, j] = the subsequence in S from index i to index j
inclusively

• Xi = TR domain i

· |Xi| = length of entire TR domain Xi

· Xi[j] = repeat copy j in Xi with j ≥ 0

· |Xi[j]| = length of copy j

· |Xi[]| = size of array Xi[]

· XiS = lowest index of Xi; starting position in S

· XiE = highest index of Xi; ending position in S

· XiSE = index range [XiS, XiE]

· Ei = copy number (exponent) of Xi

· Ci = consensus sequence of Xi

· Pi = period of Xi = period of Ci

· CEi = consensus error of Xi =

- Without gaps: # of mismatching characters to consensus/
total # of characters in aligned Xi

- With gaps: see Consensus Building

· Ii = indel error of Xi = # of gaps in aligned Xi/total # of
characters in aligned Xi

· Ri = referential repeat copy of Xi: used during TR domain
expansion and maximality

• {X} = {X0, X1,..., Xn} = set of all identified TR domains

Pre-Processing

To find repeats of various periods in any FASTA-formatted
input sequence S, XSTREAM looks, by default, for exact
repetitions (seeds) of lengths 3 and 5. Length 7 is also
used if |S| ≥ 2000. Seed lengths are user-adjustable.

14 L. infantum TR Proteins Found by XSTREAMFigure 5
14 L. infantum TR Proteins Found by XSTREAM. A
colored repeat distribution schematic generated by
XSTREAM showing 14 L. infantum TR-containing proteins
found by XSTREAM and not by Goto et al [18]. All protein
sequence lengths are normalized, and shown from top to
bottom in order of decreasing TR period. TR copies are sep-
arated by a vertical black line. Each color corresponds to a
specific TR domain. In cases where TR domains of adjacent
protein sequences share the same color, such TRs were
grouped into the same class by the consensus comparison
function (see Appendix).

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 11 of 19

(page number not for citation purposes)

XSTREAM records the distance between each pair of adja-
cent seeds, |p - q|, where the lowest index in S of each seed
in the pair is represented by p and q respectively, and p <q.
All seed positions and distances between adjacent seeds

are stored and accessed using a hash table. In addition,
XSTREAM records in an integer array M, the hashcodes
and sequence indices for all seeds of minimum length L,
where L = 3 by default. For instance, a seed of length L

TR Proteins from A. thalianaFigure 6
TR Proteins from A. thaliana. A colored repeat distribution schematic generated by XSTREAM showing the 57 TR-contain-
ing proteins from A. thaliana (TAIR6_pep_20060907) with minP = 1 and minimum TR content = 0.7. These protein sequences
are ordered by decreasing period from top to bottom. The longest period is shown in the top left panel and the shortest is
shown in the bottom right panel. Notice two large classes of protein sequences (polyubiquitins and proline-rich extensin-like
family proteins) as determined by grouping their TR domains with the consensus comparison module (see Appendix).

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 12 of 19

(page number not for citation purposes)

starting in position 5 in S would have its hashcode stored
in M[5]. The utility of M is explained shortly.

TR Detection

Seed Extension

XSTREAM traverses the distance list in order of increasing
distance, and for each set of identical distances, moves
down S in order of increasing indices. For a given seed
pair, let p, q be defined the same as previously and let x, y
be the starting positions of two sequence iterators, where
x = p + L, y = q + L. Further, let d = |p - q|, p* = p + d - 1, and
q* = q + d + ε - 1 where 0 ≤ ε ≤ g (for explanation of g, see
Gap-Restricted Dynamic Programming below; ε is
explained shortly) and q* < |S|. Because the seeds of each
matching pair are of length L, x and y iterate through S in
the regions S[p + L, p*] and S[q + L, q*]. Note that in the
case L = 3, the minimum copy number is 2 for all periods
except periods 1 and 2, which cannot have copy number
less than 4 and 2.5 respectively. We now refer to array M,
which was constructed during seed detection. To bypass
individual character comparison, M is interrogated for
matching hashcodes. If M[x] = M[y] and (x + L) = p* and
(y + L) ≤ q*, x and y are incremented by L (since each hash-
code in M corresponds to a repeat of length L), and a
match of L characters is recorded. By comparing hash-
codes instead of substrings and by allowing jumping in
blocks of L characters, usage of M can decrease XSTREAM
running time. If M[x] = M[y] and x ≤ p* < (x + L), a match
of length min(L, p* - (x - 1)) is recorded, and SE termi-
nates. If M[x] ≠ M[y] and g = 0, XSTREAM compares the
character pair in S at S[x] and S[y]. Whether or not S[x] =
S[y], if (x + 1) ≤ p* and (y + 1) = q*, x and y are incre-
mented by 1, and XSTREAM returns to hashcode compar-
ison using M.

If the case arises where M[x] ≠ M[y] and g > 0, a novel pro-
cedure termed "comparison wobble" (CW) is invoked.
CW allows for efficient approximation of indels using
array M and parameter g. This procedure is one-sided, in
that it fixes x and allows for variations in y, denoted by y*.
We place the following restrictions on y*:

i) |y* - y| ≤ g

ii) y* < |S|

iii) If y* <y, then (y - y*) ≤ L AND (y - y*) <d. We enforce
this constraint to avoid comparing subsequences at the
same pair of positions in S more than once.

iv) y* > Ω, where Ω = highest index in S[q + L, q*] with
matching character from the current seed extension – e.g.
if last match was M[15], then Ω = 15 + L - 1; if last match
was S[15], then Ω = 15. This rule prohibits matching
redundancy.

If ∃y* such that M[x] = M[y*], XSTREAM records a match
of min(L, p* - (x - 1)), increments x by L, sets y ← (y* + L),
and if x ≤ p*, returns to standard SE (see above para-
graph). Because y ← (y* + L), it is possible that y moves
beyond q + d - 1, hence the need for ε. In addition, if a
match is found when y* <y (prior to updating y), the mis-
match record is adjusted to take into account any cur-
rently matching characters that were initially found to be
non-matching. If M[x] ≠ M[∀y*], XSTREAM transitions to
single character comparison using S, and then if space per-
mits, returns to standard comparison using M. An exam-
ple of seed extension with CW is shown in Figure 7.

TR Domain Expansion

Seed extension operates on seed pairs, and therefore, if
successful, only yields putative TRs of copy number 2. To
further extend each potential TR Xi, XSTREAM imple-
ments two procedures, although the second one is used
only if g > 0. First, x is reset to p. In this way the copy in Xi
with the lowest index serves as the character comparison
reference repeat Ri. The value given to q depends upon
whether XSTREAM is attempting to extend Xi downstream
or upstream of Xi's current sequence region. If down-
stream, q is incremented by d. If upstream, q is initially set
to p - d, and decremented by d thereafter. The first method
for domain expansion is exactly the same as seed exten-
sion except x = p, y = q, and the evaluated regions in S are
S[p, p*] and S[q, q*], where 0 ≤ q ≤ (|S| - d). If this proce-
dure is successful, the new copy is added to Xi. If unsuc-

Seed Extension ExampleFigure 7
Seed Extension Example. Extension of the seed pair
'KYR' is illustrated using the input sequence S = PQKYRSA-
CYKYRACYFG (|S| = 19) with parameter values L = 3 and g
= 1. A tracing of this SE example is shown for the sequence
iterator values (x, y) and the compared subwords in S. The SE
subroutine used in each step is indicated in parentheses,
where M = hashcode array and CW = consensus wobble.

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 13 of 19

(page number not for citation purposes)

cessful and if g > 0, XSTREAM invokes the second
procedure, which uses GRDP (see Gap Restricted
Dynamic Programming below) on the same regions in S.
GRDP is better, albeit slower, than CW at identifying indel
regions. Upon completion of GRDP, the number of
matching characters in the alignment is determined and if
that number is high enough, the new copy is added to Xi.
Following success by either expansion method, q is
updated and domain expansion is performed again. If i is
not satisfied, domain expansion ceases, and the current
candidate TR domain is sent to the maximality function.

Maximality

The maximality procedure makes use of Ri, with p remain-
ing equal to the lowest index of Ri. This method finds the
longest valid prefix and suffix of Ri by searching down-
stream and upstream of Xi respectively. A DP sequence
alignment scoring scheme is used, with match = 2, mis-
match = -4, and gaps = -4 (user modifiable). Let l = XiS, r
= XiE, left = l - min(Pi, l), and right = r + min(Pi, |S| - (r +
1)). Further, let Q1 = S[left, l - 1], Q2 = S[r + 1, right], RiQ1

= S[(p + Pi) - min(Pi, l), p + Pi - 1], and RiQ2 = S[p, p +
min(Pi, |S| - (r + 1)) - 1]. Since XSTREAM needs to find the
character pair that corresponds to the highest score, it
reverses the order of characters for both Q1 and RiQ1 prior
to alignment. If g > 0, GRDP is used to align Q1 with RiQ1

and Q2 with RiQ2. If g = 0, the sequences are aligned so
that the members of each sequence pair overlap 100%.
XSTREAM uses the DP scoring scheme regardless of
whether GRDP is used. The highest scoring indices in Q1,
Q2 are denoted Q1* and Q2* respectively. If, at index Q1*,
the score exceeds 0, Xi is extended upstream by (Q1* + 1)
characters, and if the score for index Q2* is greater than 0,
Xi is extended downstream by (Q2* + 1) characters.

Copy Number Computation

For a given Xi, using the indicator function I (I[true] = 1;
I[false] = 0):

Computing Ei in this way demands that Ei ≤ |Xi[]|. Both
gap and masked ('x', see Merging) characters are not con-
sidered during copy number computation. Ei is updated
whenever XSTREAM changes XiS, XiE, Pi, or Xi's multiple
alignment.

Sequence Masking

After each successful seed extension, XSTREAM masks the
sequence space corresponding to the newly detected TR
domain in order to reduce both running time and repeat
redundancy (see Redundancy Elimination I and Two-
stage TR Detection below). Afterward, the next seed pair,
if one exists, is extended.

Period Offset

If g > 0 and comparison wobble is successfully used, then
the period Pi for a given TR Xi may need adjustment. To
approximate a better period, Pi*, we turn to the offset y* -
y for every CW success for a given Xi. Let So = Σ(y* - y), for
all successful extensions, i.e. Xi[∀j] ≠ Ri. Then, Pi* = Pi +
(So/Ei), and Pi ← Pi*. Therefore, Pi is updated using the
average period offset. This function is important for TR
domain parsing when g > 0, since Pi is used to derive a
temporary Ci, which is needed for TR domain alignment.

TR Characterization

TR Domain Parsing

In order to best characterize any TR domain Xi, its copies
are aligned to one another and used to create a consensus
sequence Ci. We describe our consensus derivation proce-
dure shortly. To align Xi, it must be partitioned into its
repetitive parts. For the case g = 0, starting from XiS, S[XiS,
XiE] is cut into as many tandem fragments of length Pi as
possible. Because of maximality, Xi's last copy may have
length less than Pi. Multiple alignment of Xi is achieved by
simply stacking all copies in the order they occur in S. If g
> 0, partitioning of Xi is much more complex. To preserve
practical running time for the case g > 0, we use one of two
segmentation tactics. Both methods require a putative
consensus sequence Ci for a given Xi. XSTREAM therefore
initially partitions Xi in the same way as when g = 0. After-
ward, Xi is aligned using a multiple alignment algorithm
that we describe shortly. Following alignment, a transient
Ci is derived. We now compare/contrast XSTREAM's two
partitioning procedures for the case g > 0.

WDP can optimally parse a TR domain Xi in O(mn) time
given a representative copy of length m (i.e. Ci), where m
= Pi and n = |Xi| [31]. This time complexity is practical up
until mn is very large. Since XSTREAM has no period lim-
itations, we developed a heuristic partitioning strategy
(HPS) that uses GRDP. When mn > 1,000,000 and m > g,
XSTREAM invokes HPS; otherwise, WDP is used. Our ver-
sion of WDP requires two passes through the DP matrix
and therefore computes 2 mn scores, whereas GRDP com-
putes < (2g + 1)n scores. To ensure that HPS makes less DP
matrix computations than WDP, we require m > (g + 1/2),
which is equivalent to m > g since m, g only take integer
values.

As mentioned, both partitioning strategies require Ci.
WDP aligns Ci to the domain D = S[XiS, XiE]. Afterward,
D is cut between every adjacent instance of Ci. HPS works
by first building a concatamer of Ci comprised of n copies
of Ci, where n = |Xi|/|Ci|. Because n may take a non-inte-
ger value, the consensus concatamer can have more or
fewer copies than an optimal partitioning of Xi. After pair-
wise alignment to D using GRDP, |Xi| is segmented in the
same way as described for WDP.

• = ≥ + < ⋅
∀ ∈
∑Ei Xi j Pi Xi j Pi Xi j Pi
j Xi

I[| []|] I[| []|] (| []|/)

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 14 of 19

(page number not for citation purposes)

Multiple Alignment

XSTREAM employs the STAR alignment algorithm for
multiple sequence alignment. The center sequence is com-
puted using GRDP exclusively. We elected to use GRDP
over standard DP because the number of pairwise align-
ments that are needed increases as a function of
(floor(Ei))2 (we use the floor function since Ei may be non-
integer), in which case the last copy is excluded from
being a center sequence. Because our version of STAR does
not use standard DP, it will not always compute an opti-
mal center sequence. Nevertheless, to maximize the prac-
ticality of XSTREAM for large dataset analyses, we decided
that the order of magnitude performance gain provided
by GRDP outweighs the possible decrease in multiple
alignment quality. Since GRDP requires input sequences
of the same length, we temporarily replicate Xi, denoted
by Xi*, and add the dash character '-' to the rightmost end
of all copies of Xi* where |Xi*[j]| <max(|Xi[∀j]|) until
|Xi*[∀j]| = max(|Xi[∀j]|). We then find the center using
Xi*. Following center sequence determination, the TR
multiple alignment is constructed using the conventional
STAR alignment strategy. Because practical running time is
emphasized in our implementation, pairwise sequence
comparisons during STAR Alignment may be computed
in a non-optimal manner using GRDP.

Consensus Building

XSTREAM's consensus derivation procedure makes use of
the majority rule. That is, for the multiple alignment of a
given Xi, the majority character in each column of the
alignment is selected. If no majority exists, then, by and
large, the topmost character is chosen. However, if |Xi[]| =
2, and if within a given column, one character is a gap and
the other is a non-gap, the gap character is added to the
consensus. If, on the other hand, |Xi[]| > 2, and if within
a column, a gap character is tied in number with one or
more non-gap characters, the topmost non-gap character
is added to the consensus.

To compute the consensus error CEi for a given Xi, we
keep track of four variables:

i) The non-gap counter, denoted nG, tallies every non-gap
character that does not match its corresponding consen-
sus character.

ii) The majority gap counter, mG, records the number of
gaps in all columns where the majority character is a gap.

iii) A user-modifiable constant, g* (=3, by default), speci-
fies the maximum number of consecutive gaps in an align-
ment row that can be counted toward CEi. For each row of
the alignment, we count the number of successive gaps
that do not match the consensus until either that number
equals g*, a non-gap character is reached, or the consensus

contains a gap. We resume counting gaps the next time a
gap is encountered in a column where the consensus char-
acter is a non-gap. Let cG equal the final count.

iv) Let tot = total number of characters in the multiple
alignment of Xi, including gaps.

We set CEi = (nG + cG)/(tot - mG). The quantity mG is sub-
tracted from tot so that gaps in columns with a gap major-
ity do not decrease CEi. Further, the addition of cG to the
numerator functions to limit the extent to which gaps
increase CEi. We dampen the role gaps play in CEi since
they are artificial characters. In addition, we force Pi to
equal the number of non-gap characters in Ci, and there-
fore, if necessary, Pi is updated.

Edge Trimming

For each Xi, Edge Trimming (ET) moves downstream from
XiS and upstream from XiE, deleting characters that mis-
match with Ci until the first matching character pair is
found from each direction. Xi is realigned if truncation is
successful from the top-left, since otherwise we would
start the alignment with one or more gaps. If ET is only
successful from the bottom right, no realignment is neces-
sary. In this case, XSTREAM removes both the flagged bot-
tom right portion of the alignment as well as any columns
that contain all gaps. If ET is a success from either direc-
tion, Ci is rebuilt. For each Xi, ET is iteratively invoked
until either |Xi[]| = 2 or both edges of Xi agree with Ci.

Post-Processing

Merging

XSTREAM iterates through {X} in order of increasing
period. Given Pi, ∀i ∈ {X}, the following routine is exe-
cuted:

(1) Define Xtra as min(2Pi - 1, Pi + min(σ, g + (1 - i)·Pi),
max(Pj) ∀j ∈ {X}), where by default, σ = 50. Xtra dictates
the breadth of periods from which to draw TRs for merg-
ing. The conditions restricting Xtra were chosen to avoid
messy and insensible TR domain characterizations as well
as to maintain practical running time.

(2) Let TR set {B} = Xj, ∀j ∈ {X}, where i ≠ j and Pi ≤ Pj ≤
Xtra. Set {X} ← ({X} - {B}). Note: from step (3) to step
(10), we only refer to TRs from {B}.

(3) Sort {B} in increasing order of XjS, ∀j ∈ {B}.

(4) Starting with m = 0, we examine Xm and Xn, ∀m, n ∈
{B}, where n = m + 1

(5) Let Q denote the maximum allowable sequence space
between two combinable TRs, and set Q = min(μ1,
μ2·Pm)·Pm. By default, μ1 = 10 and μ2 = 0.25.

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 15 of 19

(page number not for citation purposes)

(6) if |XmSE ∩ XnSE| ≠ Ø or 0 < (XnS - XmE) ≤ Q, compute
similarity s of Cm and Cn using the consensus comparison
function (refer to consensus comparison section).

else go to step (11).

(7) if s ≥ i, merge Xm and Xn.

else go to step (11).

(8) if |XmSE ∩ XnSE| ≠ Ø, perform the following proce-
dure: From step (6) we obtained the index CnP (refer to
consensus comparison section) corresponding to the best
cyclical permutation of Cn when aligned to Cm. We repar-
tition Xn by slicing its alignment vertically at CnP, thus
ensuring Xn is in phase with Xm before consolidation. We
then merge Xm and Xn, forming Xmn = (Xm ∪ Xn - Xm ∩
Xn). Go to step (10).

(9) if |XmSE ∩ XnSE| = Ø, perform the same procedure as
in step (8) with the exception that the sequence space
between Xm and Xn must be incorporated into Xmn:

i) Let z equal the index in S that corresponds to the char-
acter in Xn[0] that is in the same alignment column as
CnP. Let sequence k = S[XmE + 1, z - 1].

ii) Add Xm in its original form to Xmn.

iii) Tile k in accordance with Cm. To do this, cut k into as
many consecutive fragments {f} of length Pm as possible.
Start cutting k from the end with the lowest index.

iv) Given fi, ∀i ∈ {f} (tile fragments in order of increasing
indices in k),

if |fi| = Pm, use the consensus comparison module to
compute similarity s of fi and Cm.

if s <η, where η <i and η = .5 by default, replace all
characters in fi that do not match to Cm with 'x'
and add fi to Xmn.

else cut fi at the index corresponding to its best
cyclical permutation, resulting in fi1 and fi2.

if (|Xmn[max(j)]| + |fi1|) ≤ (g + Pm), append fi1
to Xmn's last row.

else fi1 becomes a new row in Xmn.

Regardless of what happens to fi1, since fi2 is in
phase with Cm, fi2 becomes a new row in Xmn.

else if |fi| <Pm, add fi to Xmn in the same manner as
fi1 (above).

v) Following the incorporation of k, add Xn to Xmn in the
same way as in step (8).

(10) Remove all gap characters from Xmn, perform multi-
ple alignment on Xmn (without parsing) and derive con-
sensus. We do not include the 'x' character (see (9 iv)) in
the calculations of Emn, Cemn and Imn. if Xmn meets TR
retention criteria, set Xm ← Xmn and {B} ← {B} - Xn.

(11) if m < |B| - 2, increment m by [0 if merging successful;
1 otherwise] and go to step (4).

else set {X} ← {X} ∪ {B}.

Finishing Touches

The following TR domain refinement procedures are
invoked in the order presented:

(1) Maximality – Rerun the maximality function on each
Xi, but set Ri ← Ci. We invoke maximality again because
using Ci as a reference copy may allow for additional
expansion of Xi.

(2) Realignment – For each TR in {X}, make a copy of Xi,
denoted Xi*, and perform multiple alignment on Xi*
using Ci as the center sequence. Ci is not included in the
final alignment of Xi*. If CEi* <CEi, we set Xi ← Xi*.

(3) Reducibility – Rerun redundancy elimination proce-
dure II (see below) on every realigned TR in {X}.

(4) Overlap Removal – If allowed by user, send {X} to
redundancy elimination algorithm III (see below).

(5) Nesting – By default, send {X} to nesting procedure
(see below).

Consensus Comparison

For clustering different TRs, we compare their consensus
sequences. In order to effectively compare consensus
sequences we take into account TR phase variation – the
same TR can have different starting points, leading to con-
sensus sequences of different phases. More formally, every
irreducible Xi can occur in Pi cyclical permutations, and if
a given TR Xj has Ej ≥ 2 + (Pj - 1)/Pj, then Xj has Pj valid
consensus sequence phases. Therefore, we must evaluate
up to Pi consensus alignments for every pair of TRs with
period Pi that also satisfies the same copy number condi-
tion as Xj. For simplification, we treat all TRs the same,
regardless of copy number. Given a pair of TRs, Xi and Xj
where Pi = Pj, XSTREAM fixes Ci and aligns as many
phases of Cj to Ci as are needed to establish similarity. If

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 16 of 19

(page number not for citation purposes)

Consensus Comparison is called from the merging proce-
dure, all phases of Cj are aligned to Ci to locate the best-
aligned cyclical permutation. The leftmost character in the
highest scoring phase of Cj, denoted by CjP, is used during
TR merging. Otherwise, only sufficient similarity is
needed, and thus XSTREAM may align less than all phases
of Cj. If g > 0, all gaps are removed from Ci, Cj prior to
alignment. All alignments of Ci, Cj are computed using
GRDP. For each alignment, XSTREAM counts the number
of matching characters and stores the highest match count
so far in N. If N/Pi ≤ i, XSTREAM groups Xi and Xj. The
time complexity of comparing Ci and Cj is O(Pi2) because
of Pi alignments and O(Pi) alignment time. For every
newly established TR group, the consensus sequence with
the lowest index in {X} becomes the group head or refer-
ential consensus, and is used for all subsequent compari-
sons. The time complexity for performing all consensus
comparisons of the same period without considering
alignment time is O(|X|2). Therefore, the total time com-
plexity of Consensus Comparison is O(|X|2Pi2).

Gap-Restricted Dynamic Programming

A major obstacle to efficient alignment of gapped TRs is
dynamic programming (DP), which, for global pairwise-
sequence alignment, has time complexity O(n2), where n
= TR period. Because optimal alignment of TR copies may,
in some cases, place a temporal burden on the user, we
explored heuristic options. We decided to implement a
non-optimal variant of pairwise global sequence align-
ment DP, which we call gap-restricted DP (GRDP). GRDP
requires a user-modifiable parameter, g, which governs
the maximum number of consecutive gaps that can be
used during GRDP pairwise alignment. Because of g, the
maximum traceable width of the DP matrix is held con-
stant for all periods, is equal to 2g + 1, and is symmetri-

cally distributed with respect to the main diagonal. As a
result, GRDP has space complexity θ(n) and time com-
plexity θ(n), enabling a 1:1 correspondence between
increasing period and running time. The following recur-
sion describes GRDP:

Note that depending on g, we place constraints on where
each score possibility can be computed. The parameters
gap and θ denote gap penalty and match/mismatch values
respectively. By default, all DP procedures use values gap
= -4, mismatch = -4, and match = 2. An example of GRDP
alignment is shown in Figure 8. Also, note that if g = 0,
XSTREAM completely disallows gaps, and thus the deci-
sion to allow insertions/deletions (indels) is left up to the
user. By default, g = 3. In addition, our implementation of
GRDP requires input sequences of equal length. In cases
where input sequences have different lengths, both
sequences are made the same length by appending gap
characters to the shorter sequence. Any columns with two
gaps in the resulting pairwise alignment are removed.
Since standard DP is practical in many situations, several
functions of XSTREAM toggle GRDP on and off depend-
ing on projections of time complexity. GRDP is used in
four major functions: TR domain expansion, TR parsing,
multiple alignment, and consensus comparison.

Redundancy Elimination

XSTREAM implements three strategies to eliminate two
types of TR redundancy – reducible TR periods and TR
domain overlap.

score i j

score i j gap

score i j

score i j

(,) max

(,)

(,)

(,)

=

− +

− +

+ −

1

1

1 1

θ

++

 gap

Sequence Alignment using GRDPFigure 8
Sequence Alignment using GRDP. The matrix on the left represents GRDP sequence alignment of sequences 'ATTCGA'
and 'ATCGAT' with g = 2 and space complexity O(n2). Since g places an upper bound on traceable matrix width, we only use
O(n) space, as shown with the matrix on the right. Notice that because the width of the matrix on the right is 2 g + 1, it
accommodates all of the relevant information from the matrix on the left. The resulting pairwise alignment is also shown.

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 17 of 19

(page number not for citation purposes)

I) XSTREAM searches for TRs in order of increasing period.
As TRs are found, their corresponding sequence space is
flagged, preventing further searching in processed
sequence regions. This tactic combats both kinds of
redundancy and reduces running time.

II) To combat reducible TR periods, XSTREAM is rerun on
the consensus sequence of each TR domain from the input
sequence. (see Figure 1) If the consensus sequence Ci of Xi
contains a TR domain xi that spans Ci's entire length,
XSTREAM repartitions Xi using the consensus of xi, result-
ing in Xi*, whose period is an even multiple of Xi's period.
Xi* is retained and Xi erased (Xi*→Xi) if Xi* passes the
user-adjustable TR filtration criteria.

III) The following redundancy elimination method,
invoked by default, functions to remove TR domain over-
lap. The user can control the execution and parameters of
this method because it may not always be desirable to
remove TR domain overlap and because we are convinced
that the amount of reasonable overlap among TR
domains is an arbitrary matter. We now state the rules that
determine whether for a given TR pair Xi and Xj,
XSTREAM deletes one or neither. The rules are enforced in
the order they are presented; i.e. rule set (i) must fail to
move to rule set (ii) and so on. Let I = |XiSE ∩ XjSE|
(length of intersection of TR domains i, j). By default, α =
.9, β = .75, γ = .9, and δ = .6.

i) if (α·|Xi|) ≤ I ≤ |Xi| and |Xi| ≤ |Xj|

if |Xi| < (β·|Xj|)

delete Xi

else if |Xi| < (γ·|Xj|) and (Ei <Ej or CEi > CEj)

delete Xi

else if |Xi| ≥ (γ·|Xj|) and Ei <Ej

delete Xi

else delete Xj

ii) Same as (i) but swap i and j

iii) if I ≥ (δ·max(|Xi|, |Xj|))

if CEi ≥ CEj and Ei ≤ Ej

delete Xi

else delete Xj

iv) if I ≥ (δ·min(|Xi|, |Xj|))

delete min(|Xi|, |Xj|)

Two-Stage TR Detection

As shown in Table 1, XSTREAM allows the user to restrict
the TR period range. If MinP <T and MaxP ≥ T, TR detec-
tion proceeds in two phases, where phase I examines peri-
ods = T, and phase II examines periods <T. By default, T =
10. This procedure reduces the frequency of inconsistent
results. We now describe our reasoning.

As mentioned in Redundancy Elimination I, TRs are iden-
tified in order of increasing period and sequence space is
masked for every successful seed extension. Because of
these two facts and because the value of MinP can be
altered, it is possible to differentially characterize the same
TR domain Xi, or perhaps miss Xi altogether, for the case
Pi ≥ max[all tested MinP values]. This problem can occur
because as XSTREAM moves up the period ladder toward
Pi, different stretches of sequence space may be removed
in and around Xi for different values of Min. We deter-
mined empirically that by first scanning upward from a
short period, such as 10, we could greatly mitigate this
problem. To illustrate, see Figure 2 for an example of a TR
domain containing many short period TRs. Without Two-
Stage TR Detection, this period 152 TR domain would not
be reported since most of its sequence space would be
masked by its constituent TRs.

Following completion of phase I, all masked sequence
space is reset to unused, thereby allowing shorter period
TRs to be found independently of longer period TRs.
Redundancy removal strategies II and III are invoked later
and will remove any redundancy caused by XSTREAM's
two-stage TR detection procedure.

Long Period TR Filter

To ensure pragmatic running time for all possible periods,
we implemented a heuristic that governs seed extension
for periods greater than or equal to 1000 characters. If |S|
≥ 2000, during seed detection, an additional hashcode
array M* is kept, which stores hashcodes and sequence
positions for seeds of maximum length L*, which by
default is 7. Then, for every pair of seeds with distance ≥
1000, XSTREAM initially invokes a filtration step, which
jumps across M* a user-defined number of times t and
looks for matching hashcodes. This method is identical to
seed extension as described earlier, except that S is not
used and x is incremented by floor(d/t) after each hash-
code comparison. Thus, if g > 0, CW can be invoked.
XSTREAM runs standard seed extension and TR domain
expansion (using M* and L*) on periods ≥ 1000 if and
only if t* matches are recorded during the filtering phase,
where t* = t/3. Therefore, seed pairs with distances ≥ 1000

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 18 of 19

(page number not for citation purposes)

are subjected to a quick and preliminary filter, which
although imperfect, drastically reduces running time for
input sequences on the chromosome size scale. By
default, t = 20.

Nesting

Within each TR consensus sequence, XSTREAM searches
for nested TRs – TRs that occur within TRs. This is a novel
feature in the domain of protein analysis software and
may provide important information about primary
sequence architectures and peptide TR evolution. For a
given Xi, we define a nested TR as a TR present in Ci that
does not span Ci's entire length. Since TR degeneracy can
complicate identifying nested structures, XSTREAM only
looks for nested TRs in consensus sequences. Our proce-
dure detects nested TRs of unlimited nesting depth, with
no gaps and no mismatches. This algorithm employs a
top-down approach to locating TRs, as opposed to the
bottom-up method used by XSTREAM. A top-down
approach is useful for nested TRs because it identifies the
longest period TR first, then in a recursive manner, restarts
the algorithm within that TR, and continually digs deeper
until no more TRs can be found. By working off the greedy
assumption that the longest period TRs are the best candi-
dates for nesting, we avoid issues of TR overlap inherent
in the bottom-up strategy. The main drawback to our nest-
ing method is its time complexity, which is O(n3), where
n = Pi. We therefore restrict this method to TRs from {X}
with periods ≤ 1000 and only find nested TRs with peri-
ods ≤ 300. We set the minimum nested TR period at 1 for
proteins and 2 for nucleotide sequences. The time com-
plexity is O(n3) due to the worst-case scenario of compar-
ing subsequences of all possible sizes in all possible
sequence regions.

Divide and Conquer

XSTREAM implements a user-adjustable divide and con-
quer procedure to reduce memory consumption. If ena-
bled, the input sequence is segmented into overlapping
fragments of length l prior to TR detection. The last frag-
ment of the input sequence may be of length <l. Overlap-
ping regions have length l*, which is equivalent to the
maximum detectable TR period. After all fragments are
processed, the set of identified TRs are directed to the
merging procedure, which functions to both extend TRs
across fragment boundaries and consolidate overlapping
regions. By default, l = 100,000 and l* = 10,000.

Acknowledgements
Support was provided by a Biotechnology Training grant from UC Discov-

ery, and seed funds from Dean of the Division of Mathematical, Life and

Physical Sciences at UCSB. We acknowledge the assistance of Julian Peeters

and Roseanne Krauter for genome data downloading and early testing, Gre-

gory Peters for development of the web interface, David Newman for the

use of Enterprise Architect version 4.10.739, and Stephen Poole, Terrence

Smith, and Arnab Bhattacharya for critically reading the manuscript.

References
1. Landau GM, Schmidt JP, Sokol D: An algorithm for approximate

tandem repeats. J Comp Biol 2001, 8:1-18.
2. Sokol D, Benson G, Tojeira J: Tandem repeats over the edit dis-

tance. Bioinformatics 2007, 23:E30-E35.
3. Cummings CJ, Zoghbi HY: Fourteen and counting: unraveling

trinucleotide repeat diseases. Hum Molec Genet 2000, 9:909-916.
4. Buard J, Vergnaud G: Complex recombination events at the

hypermutable minisatellite CEB1 (D2S90. The EMBO J 1994,
13:3203-3210.

5. Verstrepen KJ, Jansen A, Lewitter F, Fink GR: Intragenic tandem
repeats generate functional variability. Nat Genet 2005,
37:986-990.

6. Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D: A Census of
Protein Repeats. J Molec Biol 1998, 293:151-160.

7. Andrade MA, Perez-Iratxeta C, Ponting CP: Protein Repeats:
Structures, Functions, and Evolution. J Struc Biol 2001,
134:117-131.

8. Gatherer D, McEwan NR: Phylogenetic Differences in Content
and Intensity of Periodic Proteins. J Molec Evol 2005,
60:447-461.

9. Dickerson R, Geis I: The Structure and Action of Proteins Harper & Row;
1969.

10. Hayashi C, Lewis R: Molecular architecture and evolution of a
modular spider silk protein gene. Science 2000, 287:1477-1479.

11. Tierney ML, Varner JE: The Extensins. Plant Physiol 1987, 84:1-2.
12. Inoue K, Takeuchi Y, Miki D, Odo S: Mussel Adhesive Plaque Pro-

tein Gene is a Novel Member of Epidermal Growth Factor-
like Gene Family. J Biol Chem 1995, 270:6698-6701.

13. Qin X, Waite JH: A potential mediator of collagenous block
copolymer gradients in mussel byssal threads. Proc Natl Acad
Sci USA 1998, 95:10517-10522.

14. Garnet AP, Viles JH: Copper binding to the octarepeats of the
prion protein. Affinity, specificity, folding, and co-operativ-
ity; insights from circular dichroism. J Biol Chem 2003,
278:6795-6802.

15. Gazit E: Global analysis of tandem aromatic octapeptide
repeats: The significance of the aromatic-glycine motif. Bio-
informatics 2002, 18:880-883.

16. Frey S, Richter RP, Görlich D: FG-Rich Repeats of Nuclear Pore
Proteins Form a Three-Dimensional Meshwork with Hydro-
gel-Like Properties. Science 2006, 314:815-817.

17. Goto Y, Coler RN, Guderian J, Mohamath R, Reed SG: Cloning,
characterization, and serodiagnostic evaluation of Leishma-
nia infantum tandem repeat proteins. Infect Immun 2006,
74:3939-3945.

18. Goto Y, Coler RN, Reed SG: Bioinformatic Identification of
Tandem Repeat Antigens of the Leishmania donovani com-
plex. Infect Immun 2007, 75:846-851.

19. Stahl HD, Crewther PE, Anders RF, Brown GV, Coppel RL, Bianco
AE, Mitchell GF, Kemp DJ: Interspersed blocks of repetitive and
charged amino acids in a dominant immunogen of Plasmo-
dium falciparum. Proc Natl Acad Sci USA 1985, 82:543-547.

20. Berg JM: Zinc Fingers and Other Metal-binding Domains. J Biol
Chem 1990, 265:6513-6516.

21. Hancock JM, Michelle Simon: Simple sequence repeats in pro-
teins and their significance for network evolution. Gene 2005,
345:113-118.

22. Barney BM: Classification of Proteins Based on Minimal Mod-
ular Repeats: Lessons from Nature in Protein Design. J Pro-
teome Res 2006, 5:473-482.

23. Pellegrini M, Marcotte EM, Yeates TO: A Fast Algorithm for
Genome-Wide Analysis of Proteins With Repeated
Sequences. Proteins 1999, 35:440-446.

24. Heger A, Holm L: Rapid Automatic Detection and Alignment
of Repeats in Protein Sequences. Proteins 2000, 41:224-237.

25. Szklarczyk R, Heringa J: Tracking repeats using significance and
transitivity. Bioinformatics 2004, 20:i311-i317.

26. Kalita MK, Ramasamy G, Duraisamy S, Chauhan VS, Gupta D: Pro-
tRepeatsDB: a database of amino acid repeats in genomes.
BMC Bioinformatics 2006, 7:336-347.

27. Katti MV, Sami-Subbu R, Ranjekar PK, Gupta VS: Amino acid
repeat patterns in proteins sequences: Their diversity and
structural functional implications. Protein Science 2000,
9:1203-1209.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17237101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10767314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10767314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16086015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16086015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15883880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15883880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16665379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7896812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7896812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7896812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9724735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9724735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12075024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12075024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17082456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17082456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17082456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16790767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16790767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16790767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17088350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17088350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3881769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2108957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15716087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15716087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16512661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16512661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10382671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10966575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10966575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16827924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16827924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10892812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10892812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10892812

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2007, 8:382 http://www.biomedcentral.com/1471-2105/8/382

Page 19 of 19

(page number not for citation purposes)

28. Gruber M, Söding J, Lupas AN: REPPER – repeats and their peri-
odicities in fibrous proteins. Nucl Acids Res 2005,
33:W239-W243.

29. Benson G: Tandem repeats finder: a program to analyze DNA
sequences. Nucl Acids Res 1999, 27:573-580.

30. Hauth AM, Joseph DA: Beyond tandem repeats: complex pat-
tern structures and distant regions of similarity. Bionformatics
2002, 18:s31-s37.

31. Benson G: Sequence Alignment with Tandem Duplication. J
Comput Biol 1997, 4:351-367.

32. XSTREAM Web Interface [http://jimcooperlab.mcdb.ucsb.edu/
xstream]

33. Wellcome Trust Sanger Institute [http://www.sanger.ac.uk]

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9862982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9862982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278065
http://jimcooperlab.mcdb.ucsb.edu/xstream
http://jimcooperlab.mcdb.ucsb.edu/xstream
http://www.sanger.ac.uk
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Algorithm
	Pre-Processing
	TR Detection
	TR Characterization
	Post-Processing
	Output

	Results
	Discussion
	Conclusion
	Availability and requirements
	List of abbreviations used
	Competing interests
	Authors' contributions
	Appendix
	Preliminary Notations
	Pre-Processing
	TR Detection
	Seed Extension
	TR Domain Expansion
	Maximality
	Copy Number Computation
	Sequence Masking
	Period Offset

	TR Characterization
	TR Domain Parsing
	Multiple Alignment
	Consensus Building
	Edge Trimming

	Post-Processing
	Merging
	Finishing Touches
	Consensus Comparison

	Gap-Restricted Dynamic Programming
	Redundancy Elimination
	Two-Stage TR Detection
	Long Period TR Filter
	Nesting
	Divide and Conquer

	Acknowledgements
	References

