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Abstract

O
wing to the continual growth of 

multimodal data (or feature spac­

es), we have seen a rising interest 

in multimedia applications (e.g., object 

classification and searching) over these 

heterogeneous data. However, the accu­

racy of classification and searching tasks 

is highly dependent on the distance esti­

mation between data samples, and simple 

Euclidean (EU) distance has been proven 

to be inadequate. Previous research has 

focused on learning a robust distance 

metric to quantify the relationships 

among data samples. In this context, 

existing distance metric learning (DML) 

algorithms mainly leverage on label 

information in the target domain for 

model training and may fail when the 

label information is scarce. As an 

improvement, transfer metric learning 

(TML) approaches are proposed to lever­

age information from other related 

domains. However, current TML algo­

rithms assume that different domains 

explore the same representation; thus, 

they are not applicable in heterogeneous 

settings where the data representations of 

different domains vary. In this research, 

we propose xTML, a novel unified het­

erogeneous transfer metric learning 

framework, to improve the distance esti­

mation of the domains of interest (i.e., 

the target domains in classification and 

searching tasks) when limited label 

information, complementary with ex ­

tensive unlabeled data, is provisioned for 

model training. We further illustrate 

how our proposed framework can be 

applied to a selected list of multimedia 

applications, including opinion mining, 

deception detection and online product 

searching. Qualitative and quantitative 

comparisons between our proposed 

algorithm and alternative solutions 

demonstrate the advantages of our pro­

posed framework in multiple perfor­

mance metrics.
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I. Introduction

Multimodal data plays an important role 

in multimedia applications, for example, 

sentiment (or public opinion [1]) analysis, 

deception detection and online product 

(or service) search [2], [3]. The enormous 

amount of data to be analyzed in these 

applications often come from different 

modalities, channels and/or feature spac­

es. As an example, human sentiment can 

be interpreted from multiple feature 

domains, including body actions, facial 

expressions, voice intonation, speech 

contents, etc. In another example, a tweet 

often consists of an image with an asso­

ciated text description. Phone call scams 

can also be screened based on the unique 

voice signatures and speech contents of 

the intruders. A product search system 

usually provides an image or video of 

the product on its designated webpage, 

which may also contain some text de ­

scriptions or tags, as well as related 

hyperlinks. Indeed, it has been recog­

nized that classification and search appli­

cations over these multimodal data can 

potentially facilitate tacklings of a range 

of high­impact societal problems, such as 

lowering crime rates and improving cus­

tomer experiences.

However, existing data analysis algo­

rithms do not perform well for these 

multimedia applications. This is mainly 

attributed to the fact that the heteroge­

neous data have different physical mean­

ings and/or statistical properties [4]. 

Existing algorithms for handling hetero­

geneous data mainly fall into the follow­

ing two categories:

 ❏ Multiview (or Multimodal) Learning 

(MVL). The goal of MVL approaches 

[4]–[7] is to identify an appropriate 

combination of multiple heteroge­

neous representations for prediction.

 ❏ Heterogeneous Transfer Learning 

(HTL). The goal of HTL [8]–[10] is to 

improve the learning performance for 

the tasks/domains of interest (i.e., target 

domain) by applying knowledge/skills 

learned from other related tasks/

domains (i.e., source domains), where 

the data representations vary between 

the source and target domains.

These two alternative approaches are 

proposed for different scenarios. The for­

mer usually assumes that both the train­

ing and test samples have established 

representations in all domains and that 

abundant label information exists for 

model training. In the latter case, the label 

information available for training is insuf­

ficient in the target domains due to high 

labeling cost [11], and inference is per­

formed in each target domain, based on a 

target model trained with transferred 

information from the source domain(s).

In this research, we focus on the 

HTL algorithms, which currently face 

some technical challenges. A frequently 

utilized strategy in the HTL method is 

to transform the heterogeneous features 

into a common subspace to reduce the 

differences between the heterogeneous 

domains [10]. This is then followed by 

a distance metric derived from the 

learned transformation. This strategy is 

effective in some cases. However, most 

of these algorithms are limited in that 

they can deal with two domains only 

(i.e., one source domain and one target 

domain). In reality, one would expect 

more than two domains in many real­

world applications, for example, review 

documents may be written in more than 

two languages in multilingual sentiment 

classification [10]. Some approaches [9], 

[12] have been proposed to deal with 

scenarios involving more than two 

domains. Nevertheless, these approaches 

are not explicitly optimized with respect 

to particular distance metric. Moreover, 

they can only learn linear transforma­

tions across candidate domains, and thus 

may fail when the samples lie in highly 

nonlinear feature spaces (e.g., visual fea­

ture spaces). A comprehensive survey of 

heterogeneous transfer metric learning 

algorithms can be found in [13], which 

summarizes existing efforts, provides 

insightful discussions, and identifies sev­

eral potential future directions.

As a sequel of our survey work [13], 

we propose in this article a unified math­

ematical framework, termed as xTML, to 

address the aforementioned challenges 

for the HTL algorithms. Our proposed 

xTML framework outperforms compar­

atively existing HTL approaches from 

multiple aspects:

 ❏ It optimizes explicitly with respect to 

the distance metric; thus, the results 

are more appropriate for distance 

estimation.

 ❏ It allows knowledge transfer across 

an arbitrary number of heteroge­

neous domains; hence, the resulted 

model is more flexible in practice.

 ❏ It aims to learn either linear or non­

linear target metrics; therefore, the 

model is appropriate for many appli­

cations, including those that involve 

challenging visual analyses.

Specifically, we investigate different 

knowledge­transfer strategies and vali­

date the designed models for a list of 

selected multimedia applications. Our 

main contribution is a unified mathe­

matical framework that can explicitly 

learn either linear or nonlinear target 

metrics, enabling the use of heteroge­

neous knowledge transferred from an 

arbitrary number of source domains to 

guide multimodal classification and mul­

timedia search applications in the target 

domain(s). Moreover, we substantiate the 

proposed unified framework with a spe­

cific mathematical formulation and 

alternative optimization strategies that 

are easy and straightforward to follow.

The remainder of this article is orga­

nized as follows. In Section II, we present 

the proposed xTML framework in a 

structured manner, with its mathematical 

architecture, alternative transfer strategy 

designs and an unified optimization 

approach. In Section III, we apply the 

proposed xTML framework to three 

multimedia applications, namely, public 

opinion mining, deception detection 

and online product search. Qualitative 

comparisons between our proposed 

Our proposed xTML framework, catered for multimodal 

data, is particularly suitable for multimedia applications, 

for example, sentiment analysis, deception detection and 

online product search, to name a few.
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 framework and alternative solutions, and 

numerical results for the online product 

search application are presented in Sec-

tion IV. Section V summarizes this work.

II. Unified xTML Framework

In this section, we present our proposed 

unified xTML framework for heteroge-

neous transfer metric learning, in a top-

down manner.

A. Framework Overview

Fig. 1 illustrates the overall architecture 

of our proposed xTML framework for 

multimodal classification or multimedia 

searching. The proposed architecture 

consists of two parts:

 ❏ Offline metric learning, which uses 

limited label information and large 

amounts of unlabeled multimodal (or 

multimedia) data; and

 ❏ Online classification or search, which 

can predict the class label or find sim-

ilar items for any test data in a real-

time manner, based on the learned 

distance metric.

Our proposed xTML framework 

works as follows. In the offline met-

r ic learning stage, each unlabeled 

multimodal data point is represented 

in all M heterogeneous domains. The 

distance between any two instances 

xmi  and xmj  in the mth domain is 

given by the formula of ,d x xmi mjm =z ^ h  

x xm m 2
2

mi mj< <z z-^ ^h h  for some learned 

function .mz  We project the various 

representations of each unlabeled 

instance into a common subspace uti-

lizing the set of mapping functions 

, , , .M1 2 fz z z" ,  In this way, knowledge 

derived from the limited label informa-

tion can then be transferred across all 

domains, allowing them to enhance each 

other during the learning of the map-

ping functions and the distance metrics. 

This process leads to an optimal distance 

metric parameterized by the learned mz
)  

for the mth domain. In the online classifi-

cation or search stage, the test data point 

is represented in the mth domain. By 

adopting the learned metric for existing 

classifications (such as k-nearest neighbor 

(kNN)) or retrieval (such as learning to 

rank [14]) models, appropriate class labels 

or the most closely related items can be 

obtained for the test instance. Notice that 

no target domain is specified in this 

model and the metrics are learned for all 

domains simultaneously. At the same 

time, this approach is also capable of sup-

porting the case in which the representa-

tions of input test instances can be of 

arbitrary types. For example, when the 

target domain is specified, we propose to 

learn the target mapping by “pushing” 

the target subspace to be close to an inte-

gration of all the remaining subspaces. 

For example, we can learn the target 

mapping by minimizing the divergence 

between the induced representation of 

the unlabeled multimodal data point by 

the target mapping and a linear combina-

tion of the induced representations of the 

same data point by the other mappings.

Our proposed xTML framework 

extends the traditional distance metric 

learning [15], [16] in several aspects, 

including:

 ❏ Heterogeneous Knowledge Transfer across 

Multiple Domains. Knowledge can be 

transferred across an arbitrary num-

ber of heterogeneous domains, and 

the different domains enhance each 

other in metric learning. It follows 

that more reliable metrics can be 

obtained in this manner than by 

learning them separately, especially 
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FIGURE 1 Architecture of our proposed xTML framework. The core of this framework is an offline metric learning module, in which arbitrary lin-
ear or nonlinear distance metrics are learned for an arbitrary number of heterogeneous domains simultaneously. Limited labeled data are pro-
vided in each domain, while large amounts of unlabeled multimodal data exist for establishing domain connections. Complex interactions 
between all the different domains can be exploited to derive an enhanced distance metric for each domain. Based on this enhanced metric, 
considerably better classification or search performances can be obtained in each domain.
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when only limited label information 

is provided for the domains.

 ❏ Mapping Function Flexibility. The pro­

posed framework can learn either lin­

ear or nonlinear mapping functions, 

in response to the varying data 

characteristics.

The novelty of our proposed xTML 

framework, compared to other existing 

heterogeneous transfer learning ap ­

proaches, lies in the fact that arbitrary 

structures of the data distribution can be 

adapted into an arbitrary number of 

models, based on the mappings .mz" ,  

For example, it includes the nonlinear 

metric learning using the kernel trick in 

[20] as a special case by letting ,Uz }=  

where }  is a mapping induced by a 

reproducing kernel based on the theory 

of reproducing kernel Hilbert spaces 

(RKHS) [21]. It also allows other non­

linear function learning techniques, such 

as gradient boosting regression tree 

(GBRT) [22] and deep learning [23], to 

be incorporated for nonlinear metric 

learning. In addition, since there are mul­

tiple domains included in the optimiza­

tion, it is critical to exploit the relevance 

of different domains to avoid zero or 

negative transfer, where attention [24] 

and adversarial learning [25] mechanisms 

can be incorporated. For example, the 

attention scheme can be used to assign 

different weights to different source sam­

ples, allowing highly correlated source 

samples to contribute more to the target 

model training. Similarly, adversarial 

learning can be used to select source 

samples that are difficult to discriminate 

from the target samples. Such source 

samples are more useful during the 

target model training. In Fig.  2, we 

introduce a taxonomic approach for 

understanding how our proposed 

xTML stands out in the category of the 

HTL research. HTL algorithms can be 

characterized by the number of domains 

(two versus multiple) they address and 

the nature of their distance functions (lin­

ear versus nonlinear). Our framework 

exploits the nonlinear and complex 

interactions between an arbitrary number 

of domains, making it versatile for diverse 

multimedia applications.

B. Fundamental Theory

The key decision in our proposed 

xTML framework is how to conduct 

effective knowledge transfer across het­

erogeneous domains. Specifically, due to 

the differences in various instance spac­

es, the main challenges involve obtaining 

a common representation of heteroge­

neous domains, and demonstrating how 

that common representation preserves 

the correlation between different do ­

mains. These pressing challenges can be 

addressed under a generalized notion of 

Mahalanobis distance [26]. In distance 

metric learning (DML), it is common to 

learn the Mahalanobis distance, denoted 

as follows:

 , ,d Ax x x x x xA i j i j
T

i j= - -^ ^ ^h h h  (1)

where A is a metric parameter that can 

be factorized as A UU T=  due to its 

positive semidefinite property. By 

 applying this factorization, we can obtain 

, .d U Ux x x xA i j i j 2
2< <= -^ h  DML can be 

conducted in the feature space deter­

mined by a mapping ,}  i.e., ,d x xA i j =^ h  
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FIGURE 2 Illustration of the novelty of the proposed xTML framework. The existing HTL approaches consider only linear interactions between 
two domains [17], linear interactions between multiple domains [12], or nonlinear interaction between two domains [18], [19]. In comparison, 
our proposed xTML framework aims to exploit nonlinear and complex interactions between an arbitrary number of domains. In the two-domain 
case, the source domain has considerably more labeled data than that of the target domain; thus, the source domain is utilized to help the tar-
get metric learning. In the multiple-domain case, the labeled data are limited in all domains; hence, the different domains are reinforced by 
helping each other during metric learning.
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,( ) ( )UU x xi j 2
2< <}} -  enabling us to bet­

ter exploit the structure of the data distri­

bution. It follows that the distance can be 

further denoted as

 , ,( ) ( )d x x x xi j i j 2
2< <z z= -z^ h  (2)

where ( ) ( )U$ $z }=  is an integrated map­

ping function that can be either linear or 

nonlinear. Leveraging this general form of 

distance measurement, we propose three 

alternative strategies to enable knowledge 

transfer, as presented in next subsection.

C. Computation Models  

for Knowledge Transfer

Using the generalized notion of distance 

measurement, we introduce three al ­

ternative computation paradigms (cf. 

Fig.  3) in our proposed xTML frame­

work, to enable knowledge transfer across 

domains, as follows:

 ❏ Representation-based Model: All the M 

original representations ,xmn
U

n
N

1

U

=" ,  

, , ,m M1 2 f= of the unlabeled 

instances are projected into a common 

subspace as ,z
U

n
N

1mn

U

=" ,  , , , .m M1 2f=  

The transformed representations should 

be close to each other because they 

belong to the same instance. By maxi­

mizing the covariance (or equivalently 

minimizing the divergence) of the 

transformed representations, we can 

find a subspace for knowledge transfer.

 ❏ Distance-based Model: This model does 

not explicitly find a subspace but aims 

to minimize the distances between the 

mapped instances of different domains, 

i.e., ,d x x
U

m
U

m
U

2
2

mij mi mj< <z z= -^ ^h h  m = 

, , , ,M1 2 f  so that they are close to 

each other. In this way, all the different 

domains help one another to narrow 

the hypothesis space of the distance 

metrics parameterized by .mz" ,
 ❏ Kernel-based Model: This model does 

not explicitly find a common sub­

space, but minimizes the divergence of 

the kernels ,k x xmij mi mj
U

m
U T

m
U

z z= ^ ^ ^hh h  

, , , ,m M1 2 f=  induced by the 

mappings of different domains. This 

minimization also serves as a penalty 

for the metric hypothesis space of 

each domain.

In these paradigms, we treat all domains 

in an equal manner and conduct knowl­

edge transfer across them. If the target 

domain is specified, the target mapping 

can be learned by minimizing the diver­

gence between the target representation 

(resp. distance or kernel) and a chosen/

learned integration of all the remaining 

representations (resp. distances or kernels).

In this article, we next develop a math­

ematical framework to quantify the effec­

tiveness of these alternative computational 

models. A quantitative measurement of 

these computing paradigms in the xTML 

framework provides a solid foundation for 

the unified mathematical framework.

D. Unified Optimization Framework

The key benefit of our proposed xTML 

model is its ability to leverage knowl­

edge (such as label information) from 

related domains for metric learning in a 

target domain. In the metric learning, 

the label information (domain expert 

knowledge) is often provided in a weak­

ly supervised way, for instance, pair­ or 

triplet­based constraints. For example, it 

is common to use the must­link/can­

not­link constraint in classification to 

indicate whether a pair of instances 

,x xi j^ h are similar or dissimilar. In a 

search application, the label information 
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FIGURE 3 Three alternative computation paradigms: (a) representation-based model, where the knowledge transfer is conducted by maximizing 
the representation covariance of different domains in a common subspace; (b) distance-based model, where the knowledge transfer is conduct-
ed by minimizing the distances between corresponding sample pairs in different domains; and (c) kernel-based model, where the knowledge 
transfer is conducted by minimizing the divergence of the kernels between corresponding sample pairs in different domains.
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is usually given by a relative constraint 

on a triplet , , ,x x xi j k^ h  i.e., x j  should 

be more similar to x i  than .xk  By intro­

ducing a loss function ( ),g $  we can 

derive the conditional risk of a sample 

pair ,x xi j^ h with the distance metric 

parameterized by z as follows:

; , , , ,y g y d1x x x xi j ij ij i jzW = - z^ ^ ^h h h6 @
 (3)

where y ij  indicates the similarity of the 

pair of interest. Similarly, the risk of a 

sample triplet is given by

; , , ,

, .

( )

( )

( ) ([

])

g d

d

x x x x x

x x

i j k i k

i j

zW =

-

z

z

 
(4)

Recently, angular loss [27] has been pro­

posed to improve the robustness of met­

ric learning algorithms, and the risk 

based on the angular loss is given by

 ; , ,
( , )

( , )
,( ) g

d

d

2
x x x

x x

x x
i j k

k c

i j
zW =

z

zc m  (5)

where .( )/2x x xc i j= +  Given M hetero­

geneous domains, we assume that the 

labeled training set Dm
L  (of size )Nm  is 

small in size for the mth domain but there 

exists a large unlabeled training set DU  (of 

size ),N U  in which the data have repre­

sentations in all domains. Such unlabeled 

data are usually easy to collect in practice 

[17]. It follows that the general risk mini­

mization problem can be formulated as

;

, , , ; ,

, , , ,

, , , ,

( ) ( )

( )

( )

argmin

R

m M1 2

s.t.

D

D

H

m m m
L

m

M

M
U

m M

1

1 2

1 2

m m
M

1

f

f

f

!

z

c z z z

z z z z

e z W=

+

=

z ==" ,
/

 (6)

where ;( )Dm m
L

zW  is the empirical risk 

w.r.t. mz  on the training set in the mth 

domain, , , ;( )R DM
U

1fz z  is some reg­

ularizer to enforce information trans ­

f e r  across different domains, and 

, , ,( )H M1 2fz z z  is the hypothesis space. 

Here, the regularizer is constructed pri­

marily by using the unlabeled data as pre­

sented in the computation model section.

Notice that the optimization problem 

in (6) is a generic formulation, the fol­

lowing components should be specified 

for individual applications (scenarios):

 ❏ A mapping function of the specific task. 

This function can be either linear or 

nonlinear as determined by an as ­

sumed structure of the data distribu­

tion. In the linear case, the mapping 

function is usually given by a transfor­

mation matrix U. In the nonlinear 

case, we can choose ( ) ( ).U$ $z }=  

Alternatively, we may also directly 

choose z to be a GBRT, a neural net­

work, and so on.

 ❏ A chosen computing paradigm, for 

example, representation­based, dis­

tance­based or kernel­based model.

 ❏ A specific loss with respect to the dis­

tance metric associated with the appli­

cation task, such as ranking based loss 

[28] for multimedia search.

Under this framework, our objective is 

to derive optimal algorithms to learn a 

reliable metric for the target domain 

that has the limited label information, 

and the ultimate goal is to improve the 

classification accuracy or search perfor­

mance (e.g., mean average precision 

[29]) of the target application task.

The optimization problem (6) can 

be solved via well­established optimiza­

tion algorithms. Specifically, we pro­

pose to adopt an iterative algorithm, 

where one parameter mz  is updated 

in each iteration and all other ,mz l"
m m!l , are fixed. This iterative algo­

rithm will be further coupled with a 

specific correlation maximization or 

divergence minimization strategy for 

the regularizer. We propose to adopt 

several alternative correlation maximi­

zation or divergence minimization 

strategies, for example,

1) high­order canonical correlation max­

imization [30],

2) Burg matrix divergence minimiza­

tion [28],

3) Bregman divergence minimization [31],

4) log­determinant divergence mini­

mization [32], or

5) Von Neumann divergence minimi­

zation [33].

The solutions to these special cases are 

expected to offer insights on how in ­

formation is transferred across differ­

ent domains.

III. Multimedia Applications

Our proposed xTML framework, 

catered for multimodal data, is particu­

larly suitable for multimedia applications, 

for example, sentiment analysis, decep­

tion detection and online product 

search, to name a few. In these applica­

tions, the sample representations usually 

stem from different sources (e.g., image, 

audio, text, etc.), or exist in different fea­

ture spaces (e.g., color, shape, texture, 

etc.). To save human labeling effort, we 

adopt the proposed xTML technique to 

learn the optimal metr ic for each 

domain (representation) by utilizing the 

limited label information in each 

domain and transferring information 

between different domains. The final 

classification (for sentiment analysis and 

Internet fraud detection) or search is 

performed based on the distances calcu­

lated using the learned metrics. Details 

on how to apply our proposed xTML 

framework are presented as follows.

A. Opinion Mining

Opinion mining [1], or basic sentiment 

analysis, aims to classify the polarity (posi­

tive, negative or neutral) of private states, 

such as opinions, evaluations or senti­

ments. Advanced sentiment analysis classi­

fies the states beyond mere polarity into 

emotional categories, e.g., happy, angry 

and sad. It follows that opinion mining 

has a variety of applications, including 

marketing, customer service, public opin­

ion analysis [34] and analysis of political 

debates. For example, a merchant can 

understand market demands of products 

and plan their supplies accordingly by 

analyzing consumers’ review comments. 

In another example, service quality can 

be improved by analyzing previous ser­

vice recordings. Similarly, Netizens’ 

opinions can be gleaned from microblogs 

(e.g., tweets) to acquire quantitative 

insights for government discourse on cri­

sis management [1].

Most of the existing works on senti­

ment analysis are confined to textual data. 

However, due to the rapid growth in 

Internet usage and social networks, online 

users (i.e., “netizens”) tend to express their 

opinions on social media platforms 

in multimodal formats, including audio, 



84    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2020

images, and videos. In addition, customer 

service is typically provided by voice calls. 

Therefore, it is crucial to develop a sys­

tem that can classify sentiments from 

diverse modalities.

In Fig. 4, we propose to adopt appro­

priate computation paradigms and learn 

enhanced distance metrics for different 

modalities, by using a small number of 

labeled reviews in each modality in con­

junction with large numbers of unla­

beled multimodal reviews. The objective 

is to accurately predict the polarity of a 

person’s state in terms of any modality.

B. Deception Detection

Deception detection intends to judge 

whether an individual is lying. The deci­

sion can be made according to either a 

person’s physiological responses or non­

physiological traits. In the deception 

detection literature, the most commonly 

adopted approach is the polygraph test, 

performed by asking the subject to 

answer some designed questions and 

recording their physiological indices (such 

as heart rate, blood pressure, etc.) for anal­

ysis. However, polygraph results are usual­

ly not admitted as evidence in most 

courts because the technique has signifi­

cant error rates, and it is even possible to 

trick the system by well­trained subjects. 

Some other issues with polygraph tests 

include that they can be performed only 

in the presence of the subject, and they 

often require the recording devices to be 

in direct physical contact with the subject.

Recently, an increasing number of 

works have focused on utilizing nonphysi­

ological traits to detect deception. For 

example, unique linguistic patterns can be 

found in the verbal and written output of 

liars to discriminate them from people 

telling the truth. Voice stress analysis (VSA), 

which studies voice patterns and speech 

fluctuations, is also useful for deception 

detection and has been claimed to be bet­

ter than the polygraph test. Another prom­

ising trait for noninvasive lie detection is 

facial microexpressions [35].

In this study, we focus on deception 

detection via nonphysiological features 

(cf. Fig.  5). Using the proposed xTML 

framework, we can design algorithms to 

learn reliable metrics for different modali­

ties, such as surrounding texts, speech 

texts, vocal sounds, and images or videos, 

where the objective is to minimize the 

deception detection error while allowing 

the input data consisting of arbitrary types.

C. Online Product Search

It is quite popular to shop for products 

that are the same or similar to those 

shown on TV programs. We have devel­

oped a prototype system to meet this 

eminent market need. The goal of the 

system is to create an effortless TV­to­

Online (T2O) experience [2], [3]. An 

essential module in this system is a prod­

uct search function.

In the product search application, each 

data point may be associated with  multiple 

modalities. For example, it is common to 

use an image together with surrounding 

texts or tags to describe a product. There 

may also be affiliated hyperlinks, and it is 

often necessary to extract various types of 

features to represent the image.

In this application, we adopt a rank­

ing­based loss in the proposed xTML 

framework. Hence, the learned metrics 

are particularly suitable for product 

search (cf. Fig.  6). In addition, tensor­

based correlation maximization [30] is 

introduced to explore the high­order 

statistics between all domains. It follows 

that our xTML approach encodes more 

correlation information in the learned 

metrics than does the traditional pair­

wise correlation maximization. As a 

Unlabeled Multimodal Reviews

Test Data

Visual Features

Audio Features

Text Features

Visual/Audio/Text Features

Heterogeneous

Transfer Metric

Learning
ASR

Improved

Visual/Audio/Text

Metric

Classification

Limited Label Information

FIGURE 4 xTML application in sentiment analysis and opinion mining. Different types of features, including visual, audio and text features, are 
extracted from the review videos. Large amounts of unlabeled multimodal reviews together with limited labeled reviews are utilized to learn an 
improved metric for each feature type, allowing the polarity of a person’s state to be accurately inferred.

It is quite popular to shop for products that are the same 

or similar to those shown on TV programs. We have 

developed a prototype system to meet this eminent 

market need.
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result, the xTML approach is expected 

to achieve better performance in prod-

uct search accuracy, as presented in the 

next section.

IV. Comparative Studies

In this section, we first present a qualita-

tive analysis of our proposed framework, 

compared against a few existing solu-

tions for each application. The advantag-

es of our proposed xTML framework 

are further verified by a numerical anal-

ysis of the product search application.

A. Qualitative Analysis

We qualitatively compare our proposed 

xTML framework with four alternative 

solutions, list as follows:

 ❏ EU: a method to directly calculate the 

Euclidean distance between samples.

 ❏ RAML [28] and FRML [36]: two 

alternative ranking-based distance 

metric learning algorithms without 

knowledge transfer.

 ❏ MTDA [12]: a competitive hetero-

geneou s  mu l t i t a s k  l e a r n i ng 

approach.

 ❏ RHMTML [2]: a recently proposed 

heterogeneous multitask metr ic 

learning approach for retrieval.

We further introduce a comparison 

framework for evaluating alternative 

solutions in five aspects, namely:

Unlabeled Multimodal

Scams or Nonscams

Test Data

GIST Features

SIFT Features

Text Features

GIST/SIFT/Text Features

Heterogeneous

Transfer Metric

Learning

Improved

GIST/SIFT/Text

Metric

Classification

Limited Label Information

Scam

Scam

Nonscam

FIGURE 5 xTML application in deception detection. Different types of features, such as GIST, SIFT and text features, are extracted to represent the 
scam or nonscam data. By utilizing both the limited labeled data and abundant multimodal unlabeled data, improved distance metrics can be 
learned for all the different features simultaneously, after which satisfactory scam detection results can be obtained.

I) Offline Metric Learning

Unlabeled Multimodal Products

GIST
Features

SIFT
Features

Text
Features

Covariance

Tensor

Limited Side Information

Relevant

Irrelevant

Ranking Based

Heterogeneous

Transfer Metric

Learning

TV Online

ACR

Embedded Items

Product of Interest

(POI)

GIST/SIFT

Features

Improved

GIST/SIFT

Metric

Original Same Similar

II) Online POI Acquisition and Search

…

FIGURE 6 xTML application for online product search, which is a basic service in the emerging TV-to-online paradigm. Different types of features 
are extracted to represent the products. Large amounts of unlabeled multimodal data and limited labeled data are utilized to learn an improved 
distance metric for each type of feature, and ranking-based loss is adopted to make the learned metric particularly suitable for search.
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1) the presence of metric learning;

2) the presence of knowledge transfer;

3) the number of labelled samples required 

to achieve satisfactory performance;

4) the time complexity;

5) the algorithms’ performances in 

terms of MAP [29], AUC [37], etc.

Table 1 summarizes our comparison 

results. In particular, RAML and FRML 

learn metrics for different domains 

 separately without knowledge transfer. 

MTDA aims to learn discriminative fea­

ture transformations, each of which can 

be used to derive a metric. Since the 

high­order correlation maximization par­

adigm is utilized, the time complexity of 

our xTML method is higher than those 

of other solutions. Nevertheless, our 

method needs far less labeled  samples to 

achieve satisfactory performance, and its 

performance is much better, given equal 

numbers of labeled samples. Therefore, 

our proposed framework is noteworthy 

from several aspects, which we believe 

will result in better performance, as veri­

fied in the next subsection.

B. Quantitative Analysis

In this research, we have also conducted 

an initial evaluation of the proposed 

xTML framework for the online product 

search application. Specifically, we choose 

the representation­based computing par­

adigm, the ranking­based loss, and the 

high­order canonical correlation maxi­

mization strategy. Our experiments are 

conducted using 10 product categories 

(such as book and computer) from the 

NUS­WIDE dataset [38]. Based on this 

selection, each subset consists of 23,539 

images with associated tags. Three differ­

ent types of features, i.e., the bag of SIFT 

visual words (local visual), wavelet texture 

(global visual) and tags (textual) are 

regarded as the heterogeneous domains, 

and we evaluate the performance using 
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FIGURE 7 Average MAP and AUC of all domains versus the number of common factors on the NUS dataset, where the number of labeled sam-
ples for each concept is 10. Learning the metric can significantly improve the performance, and the proposed method consistently outperforms 
other alternative approaches.

Nevertheless, our method needs far less labeled samples 

to achieve satisfactory performance, and its performance 

is much better, given equal numbers of labeled samples.

TABLE 1 Comparisons of different solutions (dm  and Nm  are the feature dimension and the number of labeled samples of the mth 
domain, and r and r’ are the resulting and some intermediate feature dimension, respectively. k1, k2 and k3 are constants, d’ = 

d
1

M

m
m

=
%  and dm

r  is the average feature dimension of all domains).
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two popular criteria: the mean average 

precision (MAP) [29] and the area under 

the ROC curve (AUC) [37].

Moreover, we have compared our 

proposed xTML framework to the 

Euclidean (EU) baseline, two popular 

ranking­based DML algorithms (RAML 

[28] and FRML [36]), and two compet­

itive heterogeneous transfer learning 

approaches (MTDA [12] and RHMT­

ML [2]). The experimental results are 

illustrated in Fig. 7. From the results, we 

make the following observations:

1) All the metric learning algorithms 

outperform the EU baseline signifi­

cantly. This result demonstrates the 

effectiveness of metric learning in this 

application.

2) The transfer­approach MTDA is 

comparable to but sometimes slight­

ly worse than are the single­domain 

DML algorithms without knowl­

edge transfer. This result can be 

attributed to the fact that MTDA is 

mainly designed for classification.

3) Our proposed xTML model is superi­

or to all other approaches in most 

cases and its performance is much 

more stable.

This numerical evaluation validates the 

effectiveness of our proposed computing 

paradigm and knowledge transfer strategy.

Finally, we compare the computa­

tional complexity of all the competing 

solutions in term of the training time, in 

Fig. 8. The EU baseline is not included 

because it does not require training. The 

results show that the time costs of the 

transfer approaches are higher than those 

of DML algorithms without transfer. 

Although our proposed method has the 

highest training time cost, some parallel 

computing techniques could be adopted 

to accelerate the training process. It 

should be noted that the prediction time 

costs of all these approaches are compa­

rable because only the learned metric or 

mapping is utilized for final inference.

V. Conclusion

In this article, we proposed the xTML 

framework, a unified heterogeneous 

transfer metric learning approach, for 

multimodal classification and multime­

dia search in diverse applications, 

including sentiment analysis, deception 

detection and online product search. 

Compared with the existing heteroge­

neous transfer learning approaches, our 

method is capable of handling an arbi­

trary number of heterogeneous domains 

and exploiting the arbitrary structures 

of the data distribution. In our pro­

posed framework, large amounts of 

unlabeled data are utilized to bridge 

different domains, and we provide three 

alternative computing paradigms for 

knowledge transfer. We also validate 

the effectiveness of the representation­

based paradigm and correlation maxi­

mization strategy in an online product 

search application and report quantita­

tive results. Moving forward, we plan to 

validate other paradigms and strategies 

and provide theoretical analyses of 

multiple real­world applications for 

multimedia practice.

Acknowledgment

This research is supported in part by Singa­

pore NRF2015ENC­GDCR01001­003, 

administrated via IMDA, NRF2015ENC­

GBICRD001­012, administrated via BCA, 

Youth Program of the National Social Sci­

ence Fund of China under No.16CXW008, 

and National Natural Science Foundation 

of China (NSFC) under No. 61971457.

References
[1] L. Liu, Government Discourse in Risk Society: Problems 
and Countermeasures. China Radio International Publish­
ing House, 2017.
[2] Y. Luo, Y. Wen, D. Tao, and Q. Fu, “Toward effortless 
TV­to­Online (T2O) experience: A novel metric learn­
ing approach,” in Proc. IEEE Global Communications Conf., 
Washington, D.C., Dec. 4–8, 2016. doi: 10.1109/GLO­
COM.2016.7842335.
[3] Q. Fu, Y. Luo, Y. Wen, D. Tao, Y. Li, and L.­Y. Duan, 
“Toward intelligent product retrieval for TV­to­Online 
(T2O) application: A transfer metric learning approach,” 
IEEE Trans. Multimedia, vol. 20, no. 8, pp. 2114–2125, 
Aug. 2018. doi: 10.1109/TMM.2018.2791803.
[4] Y. Luo, D. Tao, C. Xu, C. Xu, H. Liu, and Y. Wen, 
“Multiview vector­valued manifold regularization for 
multilabel image classif ication,” IEEE Trans. Neural Netw. 
Learn. Syst., vol. 24, no. 5, pp. 709–722, May 2013. doi: 
10.1109/TNNLS.2013.2238682.
[5] P. Xie and E. Xing, “Multi­modal distance metric 
learning,” in Proc. Int. Joint Conf. Artificial Intelligence, Bei­
jing, Aug. 3–9, 2013, pp. 1806–1812.

103

102

101

100

T
ra

in
in

g
 T

im
e
 C

o
s
t 
(s

)

1 5 10 20 30 50 80 100
Number of Common Factors

RAML
FRML
MTDA
RHMTML
xTML

FIGURE 8 Computational time of different approaches on the NUS dataset. The time costs of 
the transfer approaches are higher than those of the DML algorithms without transfer, and the 
proposed method has the highest training cost.

Our method is capable of handling an arbitrary number 

of heterogeneous domains and exploiting the arbitrary 

structures of the data distribution. In our proposed 

framework, large amounts of unlabeled data are utilized 

to bridge different domains, and we provide three 

alternative computing paradigms for knowledge transfer.



88    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2020

[6] Y. Luo, T. Liu, D. Tao, and C. Xu, “Multiview ma­
trix completion for multilabel image classification,” IEEE 
Trans. Image Process., vol. 24, no. 8, pp. 2355–2368, Aug. 
2015. doi: 10.1109/TIP.2015.2421309. 
[7] Y. Luo, Y. Wen, D. Tao, J. Gui, and C. Xu, “Large mar­
gin multi­modal multi­task feature extraction for image 
classification,” IEEE Trans. Image Process., vol. 25, no.  1, 
pp. 414–427, Jan. 2016. doi: 10.1109/TIP.2015.2495116.
[8] X. Shi, Q. Liu, W. Fan, S. Y. Philip, and R. Zhu, 
“Transfer learning on heterogenous feature spaces via spec­
tral transformation,” in Proc. IEEE Int. Conf. Data Mining, 
Sydney, Australia, Dec. 14–17, 2010, pp. 1049–1054. doi: 
10.1109/ICDM.2010.65.
[9] C. Wang and S. Mahadevan, “Heterogeneous domain 
adaptation using manifold alignment,” in Proc. Int. Joint 
Conf. Artificial Intelligence, Barcelona, Spain, July 16–22, 
2011, pp.  1541–1546. doi: 10.5591/978­1­57735­516­8/
IJCAI11­259.
[10] J. T. Zhou, I. W. Tsang, S. J. Pan, and M. Tan, “Het­
erogeneous domain adaptation for multiple classes,” in 
Proc. Int. Conf. Artificial Intelligence and Statistics, Reykjavik, 
Iceland, Apr. 22–25, 2014, pp. 1095–1103.
[11] Y. Luo, T. Liu, D. Tao, and C. Xu, “Decomposition­
based transfer distance metric learning for image classifica­
tion,” IEEE Trans. Image Process., vol. 23, no. 9, pp. 3789–
3801, Sept. 2014. doi: 10.1109/TIP.2014.2332398. 
[12] Y. Zhang and D.­Y. Yeung, “Multi­task learning in 
heterogeneous feature spaces,” in Proc. AAAI Conf. Arti-
ficial Intelligence, San Francisco, Aug. 7–11, 2011, pp. 574–
579. doi: 10.5555/2900423.2900515.
[13] Y. Luo, Y. Wen, L. Duan, and D. Tao, Transfer met­
ric learning: Algorithms, applications and outlooks. 2018. 
[Online]. Available: arXiv:1810.03944
[14] T.­Y. Liu, “Learning to rank for information retriev­
al,” Found. Trends Inform. Retrieval, vol. 3, no. 3, pp. 225–
331, Mar. 2009. doi: 10.1561/1500000016. 
[15] E. P. Xing, M. I. Jordan, S. Russell, and A. Ng, “Dis­
tance metric learning with application to clustering with 
side­information,” in Proc. Advances in Neural Information 
Processing Systems, 2002, pp. 505–512. 
[16] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance 
metric learning for large margin nearest neighbor classi­
fication,” in Proc. Advances in Neural Information Processing 
Systems, 2005, pp. 1473–1480.
[17] G.­J. Qi, C. C. Aggarwal, and T. S. Huang, “Trans­
fer learning of distance metrics by cross­domain metric 

sampling across heterogeneous spaces,” in Proc. SIAM 
Int. Conf. Data Mining, Anaheim, CA, Apr. 26–28, 2012, 
pp. 528–539. doi: 10.1137/1.9781611972825.46. 
[18] Y. Luo, Y. Wen, T. Liu, and D. Tao, “General hetero­
geneous transfer distance metric learning via knowledge 
fragments transfer,” in Proc. Int. Joint Conf. Artificial Intel-
ligence, Melbourne, Australia, Aug. 19–25, 2017, pp. 2450–
2456. doi: 10.24963/ijcai.2017/341.
[19] Y. Luo, Y. Wen, T. Liu, and D. Tao, “Transferring 
knowledge fragments for learning distance metric from a 
heterogeneous domain,” IEEE Trans. Pattern Anal. Mach. 
Intell., vol. 41, no. 4, pp. 1013–1026, Apr. 2019. doi: 
10.1109/TPAMI.2018.2824309.
[20] R. Chatpatanasiri, T. Korsrilabutr, P. Tangchana­
chaianan, and B. Kijsirikul, “A new kernelization frame­
work for mahalanobis distance learning algorithms,” Neu-
rocomputing, vol. 73, no. 10–12, pp. 1570–1579, June 2010. 
doi: 10.1016/j.neucom.2009.11.037. 
[21] B. Scholkopf and A. J. Smola, Learning with Kernels: 
Support Vector Machines, Regularization, Optimization, and 
Beyond. Cambridge, MA: MIT Press, 2001.
[22] J. H. Friedman, “Greedy function approxima­
tion: A gradient boosting machine,” Ann. Stat., vol. 
29, no. 5, pp. 1189–1232, Oct. 2001. doi: 10.1214/aos/ 
1013203451. 
[23] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, 
“Deep metric learning via lifted structured feature embed­
ding,” in Proc. IEEE Conf. Computer Vision and Pattern Rec-
ognition, Las Vegas, NV, June 27–30, 2016, pp. 4004–4012. 
doi: 10.1109/CVPR.2016.434.
[24] K. Xu et al., “Show, attend and tell: Neural image 
caption generation with visual attention,” in Proc. Int. 
Conf. Machine Learning, Lille, France, July 6–11, 2015, pp. 
2048–2057.
[25] I. Goodfellow et al., “Generative adversarial nets,” in 
Proc. Advances in Neural Information Processing Systems, Mon­
treal, Dec. 8–13, 2014, pp. 2672–2680.
[26] B. Kulis, “Metric learning: A survey,” Found. Trends 
Mach. Learn., vol. 5, no. 4, pp. 287–364, July 2013. doi: 
10.1561/2200000019. 
[27] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep 
metric learning with angular loss,” in Proc. IEEE Int. Conf. 
Computer Vision, Venice, Italy, Oct. 22–29, 2017, pp. 2593–
2601. doi: 10.1109/ICCV.2017.283.
[28] J.­E. Lee, R. Jin, and A. K. Jain, “Rank­based dis­
tance metric learning: An application to image retrieval,” 

in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 
Anchorage, AK, June 24–26, 2008, pp. 1–8. doi: 10.1109/
CVPR.2008.4587389.
[29] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A 
support vector method for optimizing average precision,” 
in Proc. ACM SIGIR Conf. Research and Development Infor-
mation Retrieval, Amsterdam, The Netherlands, July 23–27, 
2007, pp. 271–278. doi: 10.1145/1277741.1277790. 
[30] Y. Luo, D. Tao, K. Ramamohanarao, C. Xu, and Y. 
Wen, “Tensor canonical correlation analysis for multi­
view dimension reduction,” IEEE Trans. Knowl. Data Eng., 
vol. 27, no. 11, pp. 3111–3124, Nov. 2015. doi: 10.1109/
TKDE.2015.2445757. 
[31] S. Si, D. Tao, and B. Geng, “Bregman divergence­
based regularization for transfer subspace learning,” IEEE 
Trans. Knowl. Data Eng., vol. 22, no. 7, pp. 929–942, July 
2010. doi: 10.1109/TKDE.2009.126. 
[32] J. Mei, M. Liu, H. R. Karimi, and H. Gao, “LogDet 
divergence based metric learning using triplet labels,” in 
Proc. ICML Workshop on Divergences and Divergence Learning, 
Atlanta, GA, June 16–21, 2013.
[33] P. Yang, K. Huang, and C.­L. Liu, “Geometry pre­
serving multi­task metric learning,” Mach. Learn., vol. 92, 
no. 1, pp. 133–175, July 2013. doi: 10.1007/s10994­013­
5379­y. 
[34] L. Liu, “Preliminary exploration of mechanism of ac­
tion of microblog in public opinion on emergencies,” J. 
Bimon., vol. 117, no. 2, pp. 55–59, Mar. 2013.
[35] T. Pfister, X. Li, G. Zhao, and M. Pietikäinen, “Rec­
ognising spontaneous facial micro­expressions,” in Proc. 
Int. Conf. Computer Vision, Barcelona, Spain, Nov. 6–13, 
2011, pp. 1449–1456. doi: 10.1109/ICCV.2011.6126401.
[36] D. Lim and G. Lanckriet, “Efficient learning of Ma­
halanobis metrics for ranking,” in Proc. Int. Conf. Machine 
Learning, Beijing, June 21–26, 2014, pp. 1980–1988.
[37] T. Joachims, “A support vector method for multi­
variate performance measures,” in Proc. Int. Conf. Machine 
Learning, Bonn, Germany, Aug. 7–11, 2005, pp. 377–384. 
doi: 10.1145/1102351.1102399. 
[38] T.­S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. 
Zheng, “NUS­WIDE: A real­world web image database 
from national university of Singapore,” in Proc. ACM Int. 
Conf. on Image and Video Retrieval, Santorini Island, Greece, 
July 8–10, 2009. doi: 10.1145/1646396.1646452. 

 

Digital Object Identifier 10.1109/MCI.2020.2976211

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Call for Papers for Journal Special Issues 
Special Issue on “Evolutionary Computation Meets Deep Learning” 

Journal: IEEE Transactions on Evolutionary Computation 
Guest Editors: Weiping Ding, Witold Pedrycz, Gary G. Yen, and Bing Xue 
Submission Deadline: September 1, 2020 
Further Information: Weiping Ding (ding.wp@ntu.edu.cn) 
https://cis.ieee.org/images/files/Documents/call-for-papers/tevc/TEVC_SI_ECDL_CFP.pdf 
 
 

 


