
Data Mining and Knowledge Discovery, 7, 23–56, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

XTRACT: Learning Document Type Descriptors
from XML Document Collections

MINOS GAROFALAKIS minos@bell-labs.com
Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, USA

ARISTIDES GIONIS∗ gionis@cs.stanford.edu
Department of Computer Science, Stanford University, Stanford, CA 94305, USA

RAJEEV RASTOGI rastogi@bell-labs.com
Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974, USA

S. SESHADRI∗ seshadri@strandgenomics.com
Strand Genomics, 146, 5th Cross, RMV Ext., Bangalore 560080, India

KYUSEOK SHIM† shim@ee.snu.ac.kr
SNU and AITrc, Kwanak P.O. Box 34, Seoul 151-742, Korea

Editors: Fayyad, Mannila, Ramakrishnan

Received August 10, 2000; Revised November 21, 2001

Abstract. XML is rapidly emerging as the new standard for data representation and exchange on the Web. Unlike
HTML, tags in XML documents describe the semantics of the data and not how it is to be displayed. In addition,
an XML document can be accompanied by a Document Type Descriptor (DTD) which plays the role of a schema
for an XML data collection. DTDs contain valuable information on the structure of documents and thus have a
crucial role in the efficient storage of XML data, as well as the effective formulation and optimization of XML
queries. Despite their importance, however, DTDs are not mandatory, and it is frequently possible that documents
in XML databases will not have accompanying DTDs. In this paper, we propose XTRACT, a novel system for
inferring a DTD schema for a database of XML documents. Since the DTD syntax incorporates the full expressive
power of regular expressions, naive approaches typically fail to produce concise and intuitive DTDs. Instead, the
XTRACT inference algorithms employ a sequence of sophisticated steps that involve: (1) finding patterns in the
input sequences and replacing them with regular expressions to generate “general” candidate DTDs, (2) factoring
candidate DTDs using adaptations of algorithms from the logic optimization literature, and (3) applying the
Minimum Description Length (MDL) principle to find the best DTD among the candidates. The results of our
experiments with real-life and synthetic DTDs demonstrate the effectiveness of XTRACT’s approach in inferring
concise and semantically meaningful DTD schemas for XML databases.

Keywords: Extensible Markup Language (XML), Document Type Descriptor (DTD), regular expressions, MDL
principle

∗This work was done while the author was with Bell Laboratories.
†To whom correspondence should be addressed.

24 GAROFALAKIS ET AL.

1. Introduction

1.1. Motivation and background

The genesis of the Extensible Markup Language (XML) was based on the thesis that
structured documents can be freely exchanged and manipulated, if published in a standard,
open format. Indeed, as a corroboration of the thesis, XML today promises to enable a suite
of next-generation web applications ranging from intelligent web searching to electronic
commerce.

In many respects, XML data is an instance of semistructured data (Abiteboul, 1997).
XML documents comprise hierarchically nested collections of elements, where each el-
ement can be either atomic (i.e., raw character data) or composite (i.e., a sequence of
nested subelements). Further, tags stored with elements in an XML document describe the
semantics of the data rather than simply specifying how the element is to be displayed
(as in HTML). Thus, XML data, like semistructured data, is hierarchically structured and
self-describing.

A characteristic, however, that distinguishes XML from semistructured data models is
the notion of a Document Type Descriptor (DTD) that may optionally accompany an XML
document. A document’s DTD serves the role of a schema specifying the internal structure
of the document. Essentially, a DTD specifies for every element, the regular expression
pattern that subelement sequences of the element need to conform to. DTDs are critical to
realizing the promise of XML as the data representation format that enables free interchange
of electronic data (EDI) and integration of related news, products, and services information
from disparate data sources. This is because, in the absence of DTDs, tagged documents
have little meaning. However, once the major software vendors and corporations agree on
domain-specific standards for DTD formats, it would become possible for inter-operating
applications to extract, interpret, and analyze the contents of a document based on the DTD
that it conforms to.

In addition to enabling the free exchange of electronic documents through industry-
wide standards, DTDs also provide the basic mechanism for defining the structure of the
underlying XML data. As a consequence, DTDs play a crucial role in the efficient storage
of XML data as well as the formulation, optimization, and processing of queries over a
collection of XML documents. For instance, in Shanmugasundaram et al. (1999), DTD
information is exploited to generate effective relational schemas, which are subsequently
employed to efficiently store and query entire XML documents in a relational database.
In Deutsch et al. (1999), frequently occurring portions of XML documents are stored in a
relational system, while the remainder is stored in an overflow graph; once again, the DTD
is exploited to simplify overflow mappings. Similarly, DTDs can be used to devise efficient
plans for queries and thus speed up query evaluation in XML databases by restricting the
search to only relevant portions of the data (see, for example, Goldman and Widom (1999)
and Fernandez and Suciu (1997)). The basic idea is to use the knowledge of the structure
of the data captured by the DTD to prune elements that cannot potentially satisfy the path
expression in the query. Finally, by shedding light on how the underlying data is structured,
DTDs aid users in forming meaningful queries over the XML database.

XTRACT 25

Despite their importance, however, DTDs are not mandatory and an XML document may
not always have an accompanying DTD. In fact, several recent papers (e.g., Goldman et al.
(1999) and Widom (1999)) claim that it is frequently possible that only specific portions of
XML databases will have associated DTDs, while the overall database is still “schema-less”.
This may be the case, for instance, when large volumes of XML documents are automatically
generated from data stored in relational databases, flat files (e.g., HTML pages, bibliography
files), or other semistructured data repositories. Since very little data is in XML format today,
it is very likely that, at least initially, the majority of XML documents will be automatically
generated from pre-existing data sources by a new generation of software tools. In most
cases, such automatically-created document collections will not have an accompanying
DTD. Note that, even though some simple structural descriptions or typings (e.g., Nestorov
et al. (1998) and Goldman and Widom (1997)) of the generated XML data can be made
available, such structural information typically does not incorporate the expressive and
semantic power of regular expressions and, as a consequence, is of limited use as a concise
and meaningful data schema.

Therefore, based on the above discussion on the virtues of a DTD, it is important to devise
algorithms and tools that can infer an accurate, meaningful DTD for a given collection of
XML documents (i.e., instances of the DTD). This is not an easy task. In contrast to simple
structural models (e.g., Nestorov et al. (1998) and Goldman and Widom (1997)), the DTD
syntax incorporates the full specification power of regular expressions; thus, manually
deducing such a DTD schema for even a small set of XML documents created by a user
could prove to be a process of daunting complexity. Furthermore, as we show in this paper,
naive approaches fail to deliver meaningful and intuitive DTD descriptions of the underlying
data. Both problems are, of course, exacerbated for large XML document collections. In
light of the several benefits of DTDs, we can motivate a myriad of potential applications for
efficient, automated DTD discovery tools. For example, users or domain experts looking
for a meaningful description of their XML data can use the DTD description returned
by such tools as a starting point from which more refined schemas can be generated.
As another application, consider an employment web site that integrates information on
job openings from thousands of different web sources including company home pages,
newspaper classified sites, and so on. These XML documents, although related, may not
all have the same structure and, even if some of the documents are accompanied by DTDs,
the DTDs may not be identical. Further, a strategy that simply tries to consolidate the
various DTDs based on simple heuristic rules could easily fail to produce a concise and
meaningful DTD for the integrated collection, especially if there is sufficient variation in
these per-source DTDs. Under such a scenario, an alternative to manually transforming all
the XML documents to conform to a single format would be to simply store the documents
in their original formats and use DTD-discovery tools to derive a single intuitive DTD
description for the entire database. This inferred DTD can then help in the formulation,
optimization, and processing of queries over the database of stored XML documents. Finally,
the ability to extract DTDs for a range of XML formats supported by the major participants
in a specific industrial setting can also aid in the DTD standardization process for the
industry.

26 GAROFALAKIS ET AL.

1.2. Our contributions

In this paper, we describe the architecture of XTRACT, a novel system for inferring an accu-
rate, meaningful DTD schema for a repository of XML documents. A naive and straightfor-
ward solution to our DTD extraction problem would be to infer as the DTD for an element,
a “concise” expression which describes exactly all the sequences of subelements nested
within the element in the entire document collection. As we demonstrate in Section 3, how-
ever, the DTDs generated by this approach tend to be voluminous and unintuitive (especially
for large XML document collections). In fact, we discover that accurate and meaningful
DTD schemas that are also intuitive and appealing to humans (i.e., resemble what a human
expert is likely to come up with) tend to generalize. That is, “good” DTDs are typically reg-
ular expressions describing subelement sequences that may not actually occur in the input
XML documents (Note that this, in fact, is always the case for DTD regular expressions that
correspond to infinite regular languages, e.g., DTDs containing one or more Kleene stars
(∗) (Hopcroft and Ullman, 1979)) In practice, however, there are numerous such candidate
DTDs that generalize the subelement sequences in the input, and choosing the DTD that
best describes the structure of these sequences is a non-trivial task. In the inference algo-
rithms employed in the XTRACT system, we propose the following novel combination of
sophisticated techniques to generate DTD schemas that effectively capture the structure of
the input sequences.

• Generalization. As a first step, the XTRACT system employs novel heuristic algorithms
for finding patterns in each input sequence and replacing them with appropriate regular
expressions to produce more general candidate DTDs. The main goal of the general-
ization step is to judiciously introduce metacharacters (like Kleene stars ∗) to produce
regular subexpressions that generalize the patterns observed in the input sequences. Our
generalization heuristics are based on the discovery of frequent, neighboring occurrences
of subsequences and symbols within each input sequence. In their effort to introduce a
sufficient amount of generalization while avoiding an explosion in the number of resulting
patterns, our techniques are inspired by practical, real-life DTD examples.

• Factoring. As a second step, the XTRACT system factors common subexpressions from
the generalized candidate DTDs obtained from the generalization step, in order to make
them more concise. The factoring algorithms applied are appropriate adaptations of tech-
niques from the logic optimization literature (Brayton and McMullen, 1982; Wang, 1989).

• Minimum Description Length (MDL) principle. In the final and most important step, the
XTRACT system employs Rissanen’s Minimum Description Length (MDL) principle
(Rissanen, 1978, 1989) to derive an elegant mechanism for composing a near-optimal
DTD schema from the set of candidate DTDs generated by the earlier two steps. (Our
MDL-based notion of optimality will be defined formally later in the paper.) The MDL
principle has its roots in information theory and, essentially, provides a principled, sci-
entific definition of the optimal “theory/model” that can be inferred from a set of data
examples (Quinlan and Rivest, 1989). Abstractly, in our problem setting, MDL ranks each
candidate DTD depending on the number of bits required to describe the input collection
of sequences in terms of the DTD (DTDs requiring fewer bits are ranked higher). As a
consequence, the optimal DTD according to the MDL principle is the one that is general

XTRACT 27

enough to cover a large subset of the input sequences but, at the same time, captures the
structure of the input sequences with a fair amount of detail, so that they can be described
easily (with few additional bits) using the DTD. Thus, the MDL principle provides a
formal notion of “best DTD” that exactly matches our intuition. Using MDL essentially
allows XTRACT to control the amount of generalization introduced in the inferred DTD
in a principled, scientific and, at the same time, intuitively appealing fashion.

We demonstrate that selecting the optimal DTD based on the MDL principle has a
direct and natural mapping to the Facility Location Problem (FLP), which is known to be
NP-complete (Hochbaum, 1982). Fortunately, efficient approximation algorithms with
guaranteed performance ratios have been proposed for the FLP in the literature (Charikar
and Guha, 1999), thus allowing us to efficiently compose the final DTD in a near-optimal
manner.

We have implemented our XTRACT DTD derivation algorithms and conducted an exten-
sive experimental study with both real-life and synthetic DTDs. Our findings show that, for
a set of random inputs that conform to a predetermined DTD, XTRACT always produces
a DTD that is either identical or very close to the original DTD. We also observe that the
quality of the DTDs returned by XTRACT is far superior compared to those output by the
IBM alphaworks1 DDbE (Data Descriptors by Example) DTD extraction tool, which is
unable to identify a majority of the DTDs. Further, a number of the original DTDs correctly
inferred by XTRACT contain several regular expressions terms, some nested within one
another. Thus, our experimental results clearly demonstrate the effectiveness of XTRACT’s
methodology for deducing fairly complex DTDs.

Several extensions to DTDs, e.g., Document Content Descriptors (DCDs) and XML
Schemas, are being evolved by the web community. These extensions aim to add typing
information since DTDs treat all data as strings. Therefore, XTRACT, can be used with little
or no changes for inferring DCDs and XML Schemas in conjunction with other mechanisms
for inferring the types. However, these proposals are still evolving and none of them have
stabilized—therefore, we do not concentrate on these extensions in this paper.

1.3. Roadmap

The remainder of the paper is organized as follows. After discussing related work in
Section 2, we present an overview of our approach to inferring DTDs in Section 3. Section 4
describes how the MDL principle is employed within XTRACT to compose a “good” DTD
from an input set of candidate DTDs. In Sections 5 and 6, we present generalization and
factoring algorithms for producing candidate DTDs that are input to the MDL module of
XTRACT. Section 7 discusses the results of our experiments with real-life and synthetic
DTDs. Finally, we offer concluding remarks in Section 8.

2. Related work

The XTRACT approach of generating intuitive, semantically-meaningful DTDs based on
the information-theoretic MDL principle is novel and has not been previously explored in

28 GAROFALAKIS ET AL.

the database or machine-learning literature. A few DTD extraction software tools can be
found on the web (e.g., the IBM alphaworks DDbE product)—however, it has been our
experience that these tools are somewhat naive in their approach and the quality of the
DTDs inferred by them is poor (see Section 7).

The problem of extracting a schema from semistructured data has been addressed in
Nestorov et al. (1998), Goldman and Widom (1997) and Fernandez and Suciu (1997).
Although, XML can be viewed as an instance of semistructured data, the kinds of schema
considered in Nestorov et al. (1998), Goldman and Widom (1997) and Fernandez and
Suciu (1997) are very different from a DTD. The schema extracted by Nestorov et al.
(1998), Goldman and Widom (1997) and Fernandez and Suciu (1997) attempt to find a
typing for semistructured data. Assuming a graph-based model for semistructured data
(nodes denote objects and labels on edges denote relationships between them), finding a
typing is tantamount to grouping objects that have similarly labeled edges to and from
similarly typed objects. The typing then describes this grouping in terms of the labels of
the edges to (from) this type of objects and the types of the objects at the other end of the
edge. In contrast, one can perhaps view the DTD as having already grouped all objects
based on their incoming edges (tag of the element) into the same type and then describing
the possible sequence of outgoing edges (subelements) as a regular expression. It is the fact
that the outgoing edges from a type can be described by an arbitrary regular expression that
distinguishes DTDs from the schemas in semistructured databases. Since the schemas in
semistructured databases are expressed using plain sequences or sets of edges, they cannot
be used to infer DTDs corresponding to arbitrary regular expressions.

Inference of formal languages from examples has a long and rich history in the field
of computational learning theory, and more related to our work is the extensive study of
the inference of DFAs (deterministic finite automata) (Gold, 1967, 1978; Angluin, 1978)
(see also Pitt (1989) for a detailed survey of the topic). The above line of work is purely
theoretical and it focuses on investigating the computational complexity of the language
inference problem, while we are mainly interested in devising practical algorithms for
real world applications. In this sense, our research is more closely related to the work in
Brazma (1993) which addressed the problem of approximating roughly equivalent regular
expressions from a long enough string, and the work in Kilpeläinen et al. (1995) where the
MDL principle was used to infer a pattern language from positive examples. However, the
problem tackled in Kilpeläinen et al. (1995) is much simpler than ours since they assume
that the set of simple patterns whose subset is to be computed is available. Furthermore,
the patterns they consider are simple sequences that are permitted to contain single symbol
wildcards. In our problem setting, unlike Kilpeläinen et al. (1995), patterns are general
regular expressions and are not known apriori. Ahonen (1996) and Ahonen et al. (1994)
propose an approach for automatically generating context-free grammars from structured
text documents. Their method essentially produces a “union” finite-state automaton for all
example documents and then simplifies/generalizes that automaton (and the corresponding
regular expression) by merging states to guarantee a (k,h)-contextuality requirement (an
extension that they propose to k-contextual regular languages). A potential problem with
this approach is that the amount of generalization introduced depends critically on the values
of the (k, h) parameters, and the resulting regular expressions may need to be manipulated

XTRACT 29

further in order to produce meaningful structural descriptions; to address this, Ahonen et al.
(1994) suggest the use of interactive operations based on certain ad-hoc rules that allow
users to interactively control the amount of generalization injected during the inference
process (e.g., using frequency information from the example set). Young-Lai and Tompa
(2000) propose a more systematic approach based on stochastic grammatical inference that,
basically, takes frequency information directly into account during generalization. Briefly,
their method makes use of frequencies of automaton paths in parameterized statistical tests
in order to determine the states that should be merged. To ensure the validity of these tests,
they introduce an additional statistical test to identify low-frequency components in the
automaton and suggest different heuristics for dealing with such components. Unfortunately,
the effectiveness of this method is, once again, critically dependent on the choice of values
for the different statistical test parameters and “good” choices are not at all obvious; further,
dealing with low-frequency paths needs to rely on ad-hoc rules. In contrast, our XTRACT
approach does not rely on parameterized tests but solely on the solid, information-theoretic
foundation of the MDL principle in order to infer accurate and meaningful DTD schemas.

3. Problem formulation and overview of our approach

In this section, we present a precise definition of the problem of inferring a DTD from a
collection of XML documents and then present an overview of the steps performed by the
XTRACT system. But first, we present a brief overview of XML and DTDs in the following
subsection to make the subsequent discussion concrete.

3.1. Overview of XML and DTDs

An XML document, like an HTML document, consists of nested element structures starting
with a root element. Subelements of an element can either be elements or simply character
data. Figure 1 illustrates an example XML document, in which the root element (article)
has two nested subelements (title and author), and the author element in turn has
two nested subelements. The title element contains character data denoting the title of
the article while the name element contains the name of the author of the article. The
ordering of subelements within an element is significant in XML. Elements can also have
zero or more attribute/value pairs that are stored within the element’s start tag. More details
on the XML specification can be found in Bray et al.

Figure 1. An example XML document.

30 GAROFALAKIS ET AL.

Figure 2. An example DTD.

A DTD is a grammar for describing the structure of an XML document. A DTD con-
strains the structure of an element by specifying a regular expression that its subelement
sequences have to conform to. Figure 2 illustrates a DTD that the XML document in figure 1
conforms to. The DTD declaration syntax uses commas for sequencing, | for (exclusive)
OR, parenthesis for grouping and the meta-characters ?,∗ ,+ to denote, respectively, zero or
one, zero or more, and one or more occurrences of the preceding term. As a special case, the
DTD corresponding to an element can be ANY which allows an arbitrary XML fragment
to be nested within the element. The DTD can also be used to specify the attributes for
an element (using the <!ATTLIST> declaration) and to declare an attribute that refers to
another element (via an IDREF field). We must point out that real-life DTDs can get fairly
complex and can sometimes contain several regular expressions terms with multiple levels
of nesting (e.g., ((ab)∗c)∗). We present examples of real-life DTDs in Sections 5 and 7.

For brevity, in the remainder of the paper, we denote elements of an XML document by
a single letter from the lower case alphabet. Also, we do not include explicit commas in
element sequences and regular expressions since they can be inferred in a straightforward
fashion.

3.2. Problem definition

Our primary focus in this paper is to infer a DTD for a collection of XML documents.
Thus, for each element that appears in the XML documents, our goal is to derive a regular
expression that subelement sequences for the element (in the XML documents) conform
to. Note that an element’s DTD is completely independent of the DTD for other elements,
and only restricts the sequence of subelements nested within the element. Therefore, for
simplicity of exposition, in the rest of the paper, we concentrate on the problem of extracting a
DTD for a single element. In this paper, we do not address the problem of computing attribute
lists for an element—since these are simple lists, their computation is not particularly
challenging.

Let e be an element that appears in the XML documents for which we want to infer
the DTD. It is straightforward to compute the sequence of subelements nested within each
<e></e> pair in the XML documents. Let I denote the set of N such sequences, one
sequence for every occurrence of element e in the data. The problem we address in this
paper can be stated as follows.

Problem statement. Given a set I of N input sequences nested within element e, compute
a DTD for e such that every sequence in I conforms to the DTD.

XTRACT 31

As stated, an obvious solution to the problem is to find the most “concise” regular expres-
sion R whose language is I . One mechanism to find such a regular expression is to factor
as much as possible, the expression corresponding to the OR of sequences in I . Factoring
a regular expression makes it “concise” without changing the language of the expression.
For example, ab|ac can be factored into a(b|c). An alternate method for computing the
most concise regular expression is to first find the automaton with the smallest number of
states that accepts I and then derive the regular expression from the automaton (note that
the obtained regular expression, however, may not be the shortest regular expression for I).
In any case, such a concise regular expression whose language is I , is unfortunately not a
“good” DTD in the sense it tends to be voluminous and unintuitive. We illustrate this using
the DTD of figure 2. Suppose we have a collection of XML documents that conform to
this DTD. Abbreviating the title tag by t , and the author tag by a, it is reasonable to
expect the following sequences to be the subelement sequences of the article element in
the collection of XML documents: t , ta, taa, taaa, taaaa. Clearly, the most concise regular
expression for the above language is t |t(a|a(a|a(a|aa))) which is definitely much more
voluminous and lot less intuitive than a DTD such as ta∗.

In other words, the obvious solution above never “generalizes” and would therefore never
contain metacharacters like ∗ in the inferred DTD. Clearly, a human being would at most
times want to use such metacharacters in a DTD to succinctly convey the constraints he/she
wishes to impose on the structure of XML documents. Thus, the challenge is to infer for
the set of input sequences I , a “general” DTD which is similar to what a human would
come up with. However, as the following example illustrates, there can be several possible
“generalizations” for a given set of input sequences and thus we need to devise a mechanism
for choosing the one that best describes the sequences.

Example 3.1. Consider I = {ab, abab, ababab}. A number of DTDs match sequences in
I – (1) (a | b)∗, (2) ab | abab | ababab, (3) (ab)∗, (4) ab | ab(ab | abab), and so on.
DTD (1) is similar to ANY in that it allows any arbitrary sequence of as and bs, while DTD
(2) is simply an OR of all the sequences in I . DTD (4) is derived from DTD (2) by factoring
the subsequence ab from the last two disjuncts of DTD (2). The problem with DTD (1) is
that it represents a gross over-generalization of the input, and the inferred DTD completely
fails to capture any structure inherent in the input. On the other hand, DTDs (2) and (4)
accurately reflect the structure of the input sequences but do not generalize or learn any
meaningful patterns which make the DTDs smaller or simpler to understand. Thus, none of
the DTDs (1), (2), or (4) seem “good”. However, of the above DTDs, (3) has great intuitive
appeal since it is succinct and it generalizes the input sequences without losing too much
information about the structure of the input sequences.

Based on the discussion in the above example, we can characterize the set of desirable
DTDs by placing the following two qualitative restrictions on the inferred DTD.

R1: The DTD should be concise (i.e., small in size).
R2: The DTD should be precise (i.e, not cover too many sequences not contained in I).

Restriction R1 above ensures that the inferred DTD is easy to understand and succinct
thus eliminating, in many cases, exact solutions, i.e., regular expressions whose language

32 GAROFALAKIS ET AL.

is exactly I . Restriction R2, on the other hand, attempts to ensure that the DTD is not too
general and captures the structure of input sequences, thus eliminating a DTD such as ANY.
While the above restrictions seem reasonable at an intuitive level, there is a problem with
devising a solution based on the above restrictions. The problem is that restrictions R1 and
R2 conflict with each other. In our earlier example, restriction R1 would favor DTDs (1)
and (3), while these DTDs would not be considered good according to criterion R2. The
situation is exactly the reverse when we consider DTDs (2) and (4). Thus, in general, there
is a tradeoff between a DTD’s “conciseness” and it’s “preciseness”, and a good DTD is
one that strikes the right balance between the two. The problem here is that conciseness
and preciseness are qualitative notions—in order to resolve the tradeoff between the two,
we need to devise quantitative measures for mathematically capturing the two qualitative
notions.

3.3. Using the MDL principle to define a good DTD

We use the MDL principle (Rissanen, 1978, 1989) to define an information-theoretic mea-
sure for quantifying and thereby resolving the tradeoff between the conciseness and precise-
ness properties of DTDs. The MDL principle has been successfully applied in the past in a
variety of situations ranging from constructing good decision tree classifiers (Quinlan and
Rivest, 1989; Mehta et al., 1995) to learning common patterns in sets of strings (Kilpeläinen
et al., 1995).

Roughly speaking, the MDL principle states that the best theory to infer from a set of
data is the one which minimizes the sum of

(A) the length of the theory, in bits, and
(B) the length of the data, in bits, when encoded with the help of the theory.

We will refer to the above sum, for a theory, as the MDL cost for the theory. The MDL
principle is a general one and needs to be instantiated appropriately for each situation. In our
setting, the theory is the DTD and the data is the sequences in I . Thus, the MDL principle
assigns each DTD an MDL cost and ranks the DTDs based on their MDL costs (DTDs
with lower MDL costs are ranked higher). Furthermore, parts (A) and (B) of the MDL cost
for a DTD depend directly on its conciseness and preciseness, respectively. Part (A) is the
number of bits required to describe the DTD and is thus a direct measure of its conciseness.
Further, since a DTD that is more precise captures the structure of the input sequences
more accurately, fewer bits are required to describe the sequences in I in terms of a more
precise DTD. As a result, Part (B) of the MDL cost captures a DTD’s preciseness. The
MDL cost for a DTD thus provides us with an elegant and principled mechanism (rooted in
information theory) for quantifying (and combining) the conflicting concepts of conciseness
and preciseness in a single unified framework, and in a manner that is consistent with our
intuition. By favoring concise and precise DTDs, and penalizing those that are not, it ranks
highly exactly those DTDs that would be deemed desirable by humans.

Note that the actual encoding scheme used to specify a DTD as well as the data (with the
help of the DTD) plays a critical role in determining the actual values for the two components

XTRACT 33

of the MDL cost. We defer the details of the actual encoding scheme to Section 4. However,
in the following example, we employ a simple encoding scheme (a coarser version of the
scheme in Section 4) to illustrate how ranking DTDs based on their MDL cost closely
matches our intuition of their goodness.

Example 3.2. Consider the input set I and DTDs from Example 3.1. We compute the MDL
cost of each DTD, which, as mentioned earlier, is the cost of encoding the DTD itself and
the sequences in I in terms of the DTD. We then rank the DTDs based on their MDL costs
(DTDs with smaller MDL costs are considered better). In our simple encoding scheme, we
assume a cost of 1 unit for each character.

DTD (1), (a | b)∗, has a cost of 6 for encoding the DTD. In order to encode the sequence
abab using the DTD, we need one character to specify the number of repetitions of the
term (a | b) that precedes the ∗ (in this case, this number is 4), and 4 additional characters
to specify which of a or b is chosen from each repetition. Thus, the total cost of encoding
abab using (a | b)∗ is 5 and the MDL cost of the DTD is 6 + 3 + 5 + 7 = 21. Similarly,
the MDL cost of DTD (2) can be shown to be 14 (to encode the DTD) + 3 (to encode
the input sequences; we need one character to specify the position of the disjunct for each
sequence) = 17. The cost of DTD (3) is 5 (to encode the DTD) + 3 (to encode the input
sequences—note that we only need to specify the number of repetitions of the term ab for
each sequence) = 8. Finally, DTD (4) has a cost of 14 + 5 (1 character to encode sequence
ab and 2 characters for each of the other two input sequences) = 19.

Thus, since DTD (3) has the least MDL cost, it would be considered the best DTD by
the MDL principle—which matches our intuition.

From the above example, it follows that the MDL principle indeed provides an ele-
gant mechanism for quantifying and resolving the tradeoff between the conciseness and
preciseness properties of DTDs. Specifically,

1. Part (A) of the MDL cost includes the number of bits required to encode the DTD—this
ensures that the inferred DTD is succinct.

2. Part (B) of the MDL cost includes the number of bits needed for encoding the input
sequences using the DTD. Usually, expressing data in terms of a more general DTD
(e.g., (a | b)∗ in Example 3.2) requires more bits than describing data in terms of a more
specific DTD (e.g., (ab)∗ in Example 3.2). As a result, using the MDL principle ensures
that the DTD we choose is a fairly tight characterization of the data.

The MDL principle, thus, enables us to choose a DTD that strikes the right balance between
conciseness and preciseness.

3.4. Overview of the XTRACT system

The architecture of the XTRACT system is illustrated in figure 3(a). As shown in the figure,
the system consists of three main components: the generalization module, the factoring
module and the MDL module. Input sequences in I are processed by the three subsystems
one after another, the output of one subsystem serving as input to the next. We denote the

34 GAROFALAKIS ET AL.

Figure 3. Architecture of the XTRACT system.

outputs of the generalization and factoring modules by SG and SF , respectively. Observe
that both SG and SF contain the initial input sequences in I . This is to ensure that the
MDL module has a wide range of DTDs to choose from that includes the obvious DTD
which is simply an OR of all the input sequences in I .2 In the following, we provide a
brief description of each subsystem; we defer a more detailed description of the algorithms
employed by each subsystem to later sections.

3.4.1. The generalization subsystem. For each input sequence, the generalization mod-
ule generates zero or more candidate DTDs that are derived by replacing patterns in the
input sequence with regular expressions containing metacharacters like ∗ and | (e.g., (ab)∗,
(a | b)∗). Note that the initial input sequences do not contain metacharacters and so the
candidate DTDs introduced by the generalization module are more general. For instance,
in figure 3(a), sequences abab and bbbe result in the more general candidate DTDs (ab)∗,
(a | b)∗ and b∗e to be output by the generalization subsystem. Also, observe that each
candidate DTD produced by the generalization module may cover only a subset of the input
sequences. Thus, the final DTD output by the MDL module may be an OR of multiple
candidate DTDs.

Ideally, in the generalization phase, we should consider all DTDs that cover one or more
input sequences as candidates so that the MDL step can choose the best among them. How-
ever, the number of such DTDs can be enormous. For example, the sequence ababaabb is
covered by the following DTDs in addition to many more—(a | b)∗, (a | b)∗a∗b∗, (ab)∗(a |
b)∗, (ab)∗a∗b∗. Therefore, in this paper, we outline several novel heuristics, inspired by
real-life DTDs,3 for limiting the set of candidate DTDs SG output by the generalization
module.

XTRACT 35

3.4.2. The factoring subsystem. The factoring component factors two or more candidate
DTDs in SG into a new candidate DTD. The length of the new DTD is smaller than the
sum of the sizes of the DTDs factored. For example, in figure 3(a), candidate DTDs b∗d
and b∗e representing the expression b∗d | b∗e, when factored, result in the DTD b∗(d | e);
similarly, the candidates ac, ad, bc and bd are factored into (a | b)(c | d) (the pre-factored
expression is ac | ad | bc | bd). Although factoring leaves the semantics of candidate DTDs
unchanged, it is nevertheless an important step. The reason being that factoring reduces the
size of the DTD and thus the cost of encoding the DTD, without seriously impacting the
cost of encoding input sequences using the DTD. Thus, since the DTD encoding cost is a
component of the MDL cost for a DTD, factoring can result in certain DTDs being chosen
by the MDL module that may not have been considered earlier. We appropriately modify
factoring algorithms for boolean functions in the logic optimization area (Brayton and
McMullen, 1982; Wang, 1989) to meet our needs. However, even though every subset of
candidate DTDs can, in principle, be factored, the number of these subsets can be large and
only a few of them result in good factorizations. We propose novel heuristics to restrict our
attention to subsets that can be factored effectively.

3.4.3. The MDL subsystem. The MDL subsystem finally chooses from among the set of
candidate DTDs SF generated by the previous two subsystems, a set of DTDs that cover
all the input sequences in I and the sum of whose MDL costs is minimum. The final DTD
is then an OR of the DTDs in the set. For the input sequences in figure 3(a), we illustrate
(using solid lines) in figure 3(b), the input sequences (in the right column) covered by the
candidate DTDs in SF (in the left column).

The above cost minimization problem naturally maps to the Facility Location Problem
(FLP), for which polynomial time approximation algorithms have been proposed in the lit-
erature (Hochbaum, 1982; Charikar and Guha, 1999). We adapt the algorithm from Charikar
and Guha (1999) for our purposes, and using it, the XTRACT system is able to infer the
DTD shown at the bottom of figure 3(b).

4. The MDL subsystem

The MDL subsystem constitutes the core of the XTRACT system—it is responsible for
choosing a set S of candidate DTDs from SF such that the final DTD D (which is an
OR of the DTDs in S) (1) covers all sequences in I , and (2) has the minimum MDL
cost. Consequently, we describe this module first, and postpone the presentation of the
generalization and factoring modules to Sections 5 and 6, respectively.

Recall that the MDL cost of a DTD that is used to explain a set of sequences, com-
prises of

(A) the length, in bits, needed to describe the DTD, and
(B) the length of the sequences, in bits, when encoded in terms of the DTD.

Thus, in the following subsection, we first present the encoding schemes for computing
parts (A) and (B) of the MDL cost of a DTD. Subsequently, in Section 4.2, we present the

36 GAROFALAKIS ET AL.

algorithm for computing the set S ⊆SF of candidate DTDs whose OR yields the final DTD
D with the minimum MDL cost. Note that the candidate DTDs inSF can be complex regular
expressions (containing ∗, | etc.) output by the generalization and factoring subsystems.

4.1. The encoding scheme

We begin by describing the procedure for estimating the number of bits required to encode
the DTD itself (part (A) of the MDL cost). Let � be the set of subelement symbols that
appear in sequences in I . Let M be the set of metacharacters |,∗ , +, ?, (,). Let the length
of a DTD viewed as a string in � ∪ M, be n. Then, the length of the DTD in bits is
n log(| � | + | M |). As an example, let � consist of the elements a and b. The length
in bits of the DTD a∗b∗ is 4 × log(2 + 6) = 12. Similarly, the length in bits of the DTD
(ab|abb)(aa|ab∗) is 16 × 3 = 48.

We next describe the scheme for encoding a sequence using a DTD (part (B) of the MDL
cost). The encoding scheme constructs a sequence of integral indices (which forms the
encoding) for expressing a sequence in terms of a DTD. The following simple examples
illustrate the basic building blocks on which our encoding scheme for more complex DTDs
is built:

1. The encoding for the sequence a in terms of the DTD a is the empty string ε.
2. The encoding for the sequence b in terms of the DTD a | b | c is the integral index 1

(denotes that b is at position 1, counting from 0, in the above DTD).
3. The encoding for the sequence bbb in terms of the DTD b∗ is the integral index 3 (denotes

3 repetitions of b).

We now generalize the encoding scheme for arbitrary DTDs and arbitrary sequences. Let
us denote the sequence of integral indices for a sequence s when encoded in terms of a DTD
D by seq(D, s). We define seq(D, s) recursively in terms of component DTDs within D
as shown in figure 4. Thus, seq(D, s) can be computed using a recursive procedure based
on the encoding scheme of figure 4. Note that we have not provided the definitions of the
encodings for operators + and ? since these can be defined in a similar fashion to ∗ (for +,
k is always greater than 0, while for ?, k can only assume values 1 or 0). We now illustrate
the encoding scheme using the following example.

Example 4.1. Consider the DTD (ab|c)∗(de| f g∗) and the sequence abccabfggg to be
encoded in terms of the DTD. Below, we list how Steps (A), (B), (C), and (D) in figure 4
are recursively applied to derive the encoding seq((ab|c)∗ (de| f g∗), abccabfggg).

1. Apply Step (B). seq((ab|c)∗, abccab))seq((de| f g∗), fggg)
2. Apply Step (D). 4 seq(ab|c,ab)seq(ab|c,c)seq(ab|c,c) seq(ab|c,ab)seq((de| fg∗), fggg)
3. Apply Step (C). 4 0 seq(ab, ab) 1 seq(c, c) 1 seq(c, c) 0 seq(ab, ab) 1 seq(f g∗, fggg)
4. Apply Step (A). 4 0 1 1 0 1 seq(f g∗, fggg)
5. Apply Steps (A), (B) and (D). 4 0 1 1 0 1 3

XTRACT 37

Figure 4. The encoding scheme.

In order to derive the final bit sequence corresponding to the above indices, we need to
include in the encoding the unary representation for the number of bits required to encode
the indices 4 and 3. Thus, we obtain the following bit encoding for the sequence (we have
inserted blanks in between the encoding for successive indices for clarity).

seq((ab|c)∗(de| f g∗), abccabfggg) = 1110100 0 1 1 0 1 11011

In Steps (B), (C), and (D), we need to be able to determine if a sequence s matches a
DTD D. Since a DTD is a regular expression, well-established techniques for finding out
if a sequence is covered by a regular expression can be used for this purpose (Hopcroft and
Ullman, 1979) and have a complexity of O(|D| · |s|) (|s| denotes the length of sequence s).
These methods involve constructing a non-deterministic finite automaton for D and can
also be used to decompose the sequence s into subsequences such that each subsequence
matches the corresponding sub-part of the DTD D, thus enabling us to come up with the
encoding.

Note that there may be multiple ways of partitioning the sequence s such that each sub-
sequence matches the corresponding sub-part of the DTD D. In such a case, we can extend
the above procedure to enumerate every decomposition of s that match sub-parts of D, and
then select from among the decompositions, the one that results in the minimum length
encoding of s in terms of D. The complexity of considering all possible decompositions,
however, is much higher and therefore not included in our XTRACT implementation.

38 GAROFALAKIS ET AL.

4.2. Computing the DTD with minimum MDL cost

We now turn our attention to the problem of computing the final DTD D (which is an OR
of a subset S of candidate DTDs in SF) that covers all the input sequences in I and whose
MDL cost for encoding sequences in I is minimum. The above minimization problem maps
naturally to the Facility Location Problem (FLP) (Hochbaum, 1982; Charikar and Guha,
1999). The FLP is formulated as follows: Let C be a set of clients and J be a set of facilities
such that each facility “serves” every client. There is a cost c(j) of “choosing” a facility
j ∈ J and a cost d(j, i) of serving client i ∈ C by facility j ∈ J . The problem definition
asks to choose a subset of facilities F ⊂ J such that the sum of costs of the chosen facilities
plus the sum of costs of serving every client by its closest chosen facility is minimized, that is

min
F⊂J

{ ∑
j∈F

c(j) +
∑
i∈C

min
j∈F

d(j, i)

}
(1)

The problem of inferring the minimum MDL cost DTD can be reduced to FLP as follows:
Let C be the set I of input sequences and J be the set of candidate DTDs in SF . The cost of
choosing a facility is the length of the corresponding candidate DTD. The cost of serving
client i from facility j , d(j, i), is the length of the encoding of the sequence corresponding
to i using the DTD corresponding to the facility j . If a DTD j does not cover a sequence i ,
then we set d(j, i) to ∞. Thus, the set F computed by the FLP corresponds to our desired
set S of candidate DTDs.

The FLP is NP-hard; however, it can be reduced to the set cover problem and then
approximated within a logarithmic factor as shown in Hochbaum (1982). In our imple-
mentation, we employ the randomized algorithm from Charikar and Guha (1999) which
approximates the FLP within a constant factor if the distance function is a metric. Even
though our distance function is not a metric, we have found the FLP approximations pro-
duced by Charikar and Guha (1999) for our problem setting to be very good in practice.
Furthermore, the time complexity of Charikar and Guha (1999) for computing the approx-
imate solution is O(N 2 · log N), where N = |I |.

5. The generalization subsystem

The quality of the DTD computed by the MDL module is very dependent on the set of
candidate DTDs SF input to it. In case SF were to contain only input sequences in I , then
the final DTD output by the MDL subsystem would simply be the OR of all the sequences
in I . However, as we observed earlier, this is not a desirable DTD since it is neither concise
nor intuitive. Thus, in order to infer meaningful DTDs, it is crucial that the candidate DTDs
in SF be general—the goal of the generalization component is to achieve this objective by
inferring a set SG of general DTDs which are then input to the factorization step. As we
mentioned before, the factorization step infers additional factored DTDs and generates SF
which is a superset of SG .

The generalization component in XTRACT infers a number of regular expressions which
we have found to frequently appear in real-life DTDs. Below, we present examples of

XTRACT 39

such regular expressions from real-life DTDs that appear in the Newspaper Association of
America (NAA) Classified Advertizing Standards XML DTD.4

a∗bc∗: DTDs of this form are generally used to specify tuples with set-valued attributes.

<!ELEMENT account-info (account-number,sub-account-

number*)> <!-- Specification for account identification

information -->

(abc)∗: This type of DTD is used to represent a set (or a list) of ordered tuples.

<!ELEMENT days-and-hours (date, time)+> <!-- provide

times/dates when job fairs will be held -->

(a|b|c)∗: The DTD of the form (a|b|c)∗ is frequently used to represent a multiset contain-
ing the elements a, b and c. This DTD is very useful since the elements in the
multiset are allowed to appear multiple times and in any order in the document.
For example, the following DTD specifies that the support information for an ad
can consist of an arbitrary number of audio or video clips, photos, and further
these can appear in any order.

<!ELEMENT support-info (audio-clip | file-id | graphic |

logo | new-list | photo | video-clip | zz-generic-tag)*>

<!-- support information for ad content -->

((ab)∗c)∗: This type of DTD permits nesting relationships among sets (or lists).

<!ELEMENT transfer-info (transfer-number, (from-to,

company-id)+, contact-info)*> <!-- provides parent

information through the multi-level aggregation process.

may be repeated -->

Although our XTRACT algorithms can infer regular expressions that are more complex
than the above, there are certain complex patterns (e.g., patterns containing the optional
symbol (?) nested within Kleene stars) that are not explicitly detected by XTRACT’s gener-
alization subsystem. Such complex expressions are probably less likely to occur in practice;
for example, in the representative set of real-life DTDs used in our experiments (Section 7)
there was only one such instance, namely (ab?c∗d?)∗. Further, we believe that our XTRACT
generalization framework can be appropriately extended with more sophisticated sequence-
analysis heuristics to effectively deal with such “difficult” scenarios.

We now discuss our generalization algorithm which is outlined in figure 5. Procedure
GENERALIZE infers several DTDs for each input sequence in I independently and adds them
to the set SG . Therefore, it may over-generalize in some cases (since we are inferring DTDs
based on a single sequence), but however, our MDL step will ensure that such over-general
DTDs are not chosen as part of the final inferred DTD, if there are better alternatives. Recall

40 GAROFALAKIS ET AL.

Figure 5. The generalization algorithm.

XTRACT 41

that the generalization step is merely trying to provide several alternate candidates to the
MDL step. In particular, SG ⊇ I, and therefore, the DTD corresponding to the OR’s of the
input will be considered by the MDL step.

The essence of procedure GENERALIZE are the procedures DISCOVERSEQPATTERN and
DISCOVERORPATTERN which are repeatedly called with different values for their input pa-
rameters r and d . These parameter values basically control the amount of generalization
injected by XTRACT in the discovered candidate patterns, and using several different com-
binations allows the generalization subsystem to produce a richer collection of candidates
for the final MDL-based pattern selection (that will weed out overly general or overly re-
strictive candidates). The specific parameter values used in the pseudo-code of figure 5 are
ones that we found to perform reasonably well in practice without overloading the set of
potential candidates. We discuss the details of our two generalization procedures and the
exact roles of their input parameters next.

5.1. Discovering sequencing patterns

Procedure DISCOVERSEQPATTERN, shown in figure 5, takes as input an input sequence s
and returns a candidate DTD that is derived from s by replacing sequencing patterns of
the form xx . . . x , for a subsequence x in s, with the regular expression (x)∗. In addition to
s, the procedure also accepts as input, a threshold parameter r > 1 which is the minimum
number of contiguous repetitions of subsequence x in s required for the repetitions to be
replaced with (x)∗. In case there are multiple subsequences x with the maximum number
of repetitions in Step 2, the longest among them is chosen, and subsequent ties are resolved
arbitrarily.

Note that instead of introducing the regular expression term (x)∗ into the sequence s,
we choose to introduce an auxiliary symbol that serves as a representative for the term.
The auxiliary symbols enable us to keep the description of our algorithms simple and
clean since the input to them is always a sequence of symbols. We ensure that there
is a one-to-one correspondence between auxiliary symbols and regular expression terms
throughout the XTRACT system; thus, if the auxiliary symbol, A denotes (bc)∗ in one
candidate DTD, then it represents (bc)∗ in every other candidate DTD. Also observe that
procedure DISCOVERSEQPATTERN may perform several iterations and thus new sequencing
patterns may contain auxiliary symbols corresponding to patterns replaced in previous itera-
tions. For example, invoking procedure DISCOVERSEQPATTERN with the input sequence s =
abababcababc and r = 2 yields the sequence A1cA1c after the first iteration, where A1 is
an auxiliary symbol for the term (ab)∗. After the second iteration, the procedure returns the
candidate DTD A2, where A2 is the auxiliary symbol corresponding to ((ab)∗c)∗. Thus, the
resulting candidate DTD returned by procedure DISCOVERSEQPATTERN can contain Kleene
stars nested within other stars. Finally, we have chosen to invoke DISCOVERSEQPATTERN

(from GENERALIZE) with three different values for the parameter r to control the eagerness
with which we generalize. For example, for the sequence aabbb, DISCOVERSEQPATTERN

with r = 2 would infer a∗b∗, while with r = 3, it would infer aab∗. In the MDL step, if
many other sequences are covered by aab∗, then a DTD of aab∗ may be preferred to a DTD
of a∗b∗ since it more accurately describes sequences in I .

42 GAROFALAKIS ET AL.

The time complexity of the procedure is dominated by the first step that involves finding
the subsequence x with the maximum number of contiguous repetitions. Since s contains
at most O(|s|2) possible subsequences and computing the number of repetitions for each
subsequence takes O(|s|) steps, the complexity of the first step is O(|s|3) per iteration, in
the worst case.

5.2. Discovering OR patterns

Procedure DISCOVERORPATTERN infers patterns of the form (a1|a2| . . . |am)∗ based on the
locality of these symbols within a sequence s. It finds out such locality by first partition-
ing (performed by procedure PARTITION) the input sequence s into the smallest possible
subsequences s1, s2, . . . , sn , such that for any occurrence of a symbol a in a subsequence
si , there does not exist another occurrence of a in some other subsequence s j within a dis-
tance d (which is a parameter to DISCOVERORPATTERN). Each subsequence si in s is then
replaced by the pattern (a1|a2| . . . |am)∗ where a1, . . . , am are the distinct symbols in the
subsequence si . The intuition here is that if si contains frequent repetitions of the symbols
a1, a2, . . . , am in close proximity, then it is very likely that si originated from a regular
expression of the form (a1|a2| . . . |am)∗. As an illustration, on the input sequence abcbac,
procedure DISCOVERORPATTERN returns

• a A1ac for d = 2, where A1 = (b | c)∗,
• a A2 for d = 3, where A2 = (a | b | c)∗, and
• A2 for d = 4, where A2 = (a | b | c)∗.

A critical component for discovering OR patterns is procedure PARTITION, which we
now discuss in more detail. Before that, we define the following notation for sequences. For
a sequence s, s[i, j] denotes the subsequence of s starting at the i th symbol and ending at
the j th symbol of s. Procedure PARTITION constructs the subsequences in the order s1, s2,
and so on. Assuming that s1 through s j have been generated, it constructs s j+1 by starting
s j+1 immediately after s j ends and expanding the subsequence s j+1 to the right as long
as required to ensure that there is no symbol in s j+1 that occurs within a distance d to the
right of s j+1. By construction, there cannot exist such a symbol to the left of s j+1. Note
that the condition whether a symbol in si occurs within a distance d outside si can be
checked in O(|s|) time if we keep track of the next occurrence outside si of every symbol
in si —this can be achieved by initially constructing for every symbol, the locations of its
occurrences in s sorted order. Therefore, the time complexity of procedures PARTITION and
DISCOVERORPATTERN can be easily shown to be O(|s|2).

Note that procedure GENERALIZE invokes DISCOVERORPATTERN on the DTDs that result
from calls to DISCOVERSEQPATTERN and therefore it is possible to infer more complex
DTDs of the form (a|(bc)∗)∗ in addition to DTDs like (a|b|c)∗. For instance, for the input
sequence s = abcbca, procedure DISCOVERSEQPATTERN invoked with r = 2 would return
s ′ = a A1a, where A1 = (bc)∗, which when input to DISCOVERORPATTERN returns s ′′ = A2

for d = |s ′|, where A2 = (a|A1)∗. Further, observe that DISCOVERORPATTERN is invoked
with various values of d (expressed as a fraction of the length of the input sequence) to

XTRACT 43

control the degree of generalization. Small values of d lead to conservative generalizations
while larger values result in more liberal generalizations.

6. The factoring subsystem

In a nutshell, the factoring step derives factored forms for expressions that are an OR of a
subset of the candidate DTDs in SG . For example, for candidate DTDs ac, ad, bc and bd in
SG , the factoring step would generate the factored form (a | b)(c | d). Note that since the
final DTD is an OR of candidate DTDs in SF , factored forms are candidates, too. Further, a
factored candidate DTD, because of its smaller size, has a lower MDL cost, and is thus more
likely to be chosen in the MDL step. Thus, since factored forms (due to their compactness)
are more desirable (see restriction R1 in Section 3), factoring can result in better quality
DTDs. In this section, we describe the algorithms used by the factoring module to derive
factored forms of the candidate DTDs in SG produced by the generalization step.

Factored DTDs are common in real life, when there are several choices to be made.
For example, in the DTD in figure 2, an article may be categorized based on whether it
appeared in a workshop, conference or journal; it may also be classified according to its
area as belonging to either computer science, physics, chemistry etc. Thus, the DTD (in
factored form) for the element article would then be as follows:

<!ELEMENT article(title, author*, (workshop | conference | journal),
(computer science | physics | chemistry | ...))

The set of candidate DTDs output by the factorization module, SF , in addition to the
factored forms generated from candidates in SG , also contains all the DTDs in SG . Ideally,
factored forms for every subset of SG , should be added to SF to be considered by the MDL
module. However, this is clearly impractical, since SG could be pretty large. Therefore, in
the following subsection, we propose a heuristic for selecting sets of candidates in SG that
when factored yield good factored DTDs. We then present a brief description of the factoring
algorithm itself, which is an adaptation of factoring algorithms for boolean expressions from
the logic optimization literature.

Note that each candidate DTD in SG is a sequence of symbols, some of which can
be auxiliary symbols. Recall that auxiliary symbols translate to regular expressions on
symbols in �, and there is a one-to-one correspondence between auxiliary symbols and the
expressions that they represent.

6.1. Selecting subsets of SG to factor

In this section, we describe how we choose subsets of SG that lead to good factorizations.
Intuitively, a subset S of SG is a good candidate for factoring if the factored form of S is
much smaller than S itself. In addition, even thoughSG may contain multiple generalizations
that are derived from the same input sequence, it is highly unlikely that the final DTD will
contain two generalizations of the same input sequence. Thus, factoring candidate DTDs in

44 GAROFALAKIS ET AL.

SG that cover similar sets of input sequences does not lead to factors that can improve the
quality of the final DTD.

We thus conclude that if a subset S of SG to yield good factored forms it must satisfy the
following two properties:

1. Every DTD in S has a common prefix or suffix with a number of other DTDs in S.
Further, as more DTDs in S share common prefixes or suffixes, or as the length of the
common prefixes/suffixes increases, the quality of the generated factored form can be
expected to improve.

2. The overlap between every pair of DTDs D, D′ in S is minimal, that is, the intersection
of the input sequences covered by D and D′ is small. This is important because, as
mentioned above, a factored DTD adds little value (from an MDL cost perspective)
over the candidate DTDs from which it was derived if it cannot be used to encode a
significantly larger number of input sequences compared to the sequences covered by
each individual DTD.

Definitions. In order to state properties (1) and (2) for a set S of DTDs more formally,
we need to first define the following notation. For a DTD D, let cover(D) denote the
input sequences in I that are covered by D (note that auxiliary symbols are expanded
completely when cover for a DTD is computed). Then, overlap(D, D′) is defined as the
fraction of the input sequences covered by D and D′ that are common to D and D′, that
is, overlap(D, D′) = |cover(D)∩cover(D′)|

|cover(D)∪cover(D′)| . Thus, for a sufficiently small value of the (user-
specified) parameter δ, by ensuring that overlap(D, D′) < δ for every pair of DTDs D and
D′ in S, we can ensure that S satisfies Property (2) mentioned above.

In order to characterize Property (1) more rigorously, we introduce the function
score(D, S) which attempts to capture the degree of similarity between prefixes/suffixes
of DTD D and those of DTDs in the set S of DTDs. Intuitively, a DTD with a high score
with respect to set S is a good candidate to be factored with other DTDs in set S. For a DTD
D, let pref (D) and suf (D) denote the set of prefixes and suffixes of D, respectively. Let
psup(p, S) denote the support of prefix p in set S of DTDs, that is, the number of DTDs in
S for which p is a prefix. Similarly, let ssup(s, S) denote number of DTDs in S for which
s is a suffix. Then score(D, S) is defined as follows.

score(D, S) = max({|p| · psup(p, S) : p ∈ pref (D)} ∪ {|s| ∗ ssup(s, S) : s ∈ suf (D)})

Thus, the prefix/suffix p/s of D, for which the product of p/s’s length and its support
in S is maximum, determines the score of D with respect to S. The intuition here is that
if DTD D has a long prefix or suffix that occurs frequently in set S, then this prefix can
be factored out thus resulting in good factored forms. The function score is thus a good
measure of how well D would factor with other DTDs in S.

Algorithm. Procedure FACTORSUBSETS, shown in figure 6, first selects subsets S of SG
to factor that satisfy properties (1) and (2) mentioned earlier. Each of these subsets S is
then factored by invoking procedure FACTOR (in Step 15) described in the next subsection.
Assuming that the factoring algorithm returns F1 | F2 | . . . Fm , each of the Fi is added to
SF that is then input to the MDL module.

XTRACT 45

Figure 6. Choosing subsets of SG for factoring.

We now discuss how procedure FACTORSUBSETS computes the set S of candidate DTDs
to factor. First, k seed DTDs for the sets S to be factored are chosen in the for loop spanning
Steps 4–7. These seed DTDs have a high score value with respect to SG and overlap mini-
mally with each other. Thus, we ensure that each seed DTD not only factors well with other
DTDs in SG , but is also significantly different from other seeds. In Steps 9–14, each seed
DTD is used to construct a new set S of DTDs to be factored (thus, only k sets of DTDs
are generated). After initializing S to a seed DTD D, in each subsequent iteration, the next
DTD D′ that is added to S is chosen greedily—it is the one whose score with respect to
DTDs in S is maximum and whose overlap with DTDs already in S is less than δ.

Complexity results. The time complexity of selecting the sets S to factor in the FACTOR-
SUBSETS procedure can be shown to be O(N 2 · (N + L)), where N = |I | and L is the
maximum length of an input sequence in I . The reason for this is that the initial computa-
tion of score(D, SG) for every DTD D in SG requires us to compute the support of every
prefix and suffix of D inSG . SinceSG contains O(N) DTDs, and each DTD can have at most
2L prefixes/suffixes, there are at most O(N · L) distinct prefixes and suffixes. The supports
for these can be computed in O(N · L) steps by storing them in a trie structure. Thus, the
time complexity of computing the scores for all the DTDs in SG (in Steps 1–2) is O(N · L).

Computing the overlap between a pair of DTDs requires O(N) time to compute the
intersection and union of the input sequences they cover. Thus, the worst-case time com-
plexity to compute the overlap between all pairs of DTDs in SG is O(N 3). Assuming that

46 GAROFALAKIS ET AL.

we precompute the overlapping DTD pairs in SG , SeedSet can be computed in O(N) steps
(since the number of seeds, k, is a constant). Furthermore, the time complexity of comput-
ing each set S of DTDs to be factored can be shown to be O(N 2 · L) since the while loop
(Steps 11–14) performs at most O(N) iterations and the cost of recomputing the scores for
DTDs in S′ (with respect to S) in each iteration is O(N · L) (as before, this can be achieved
by maintaining a trie structure for prefixes and suffixes of DTDs in S).

6.2. Algorithm for factoring a set of DTDs

In this section, we show how the factored form for a set S of DTDs can be derived—the
expression we factor is actually the OR of the DTDs in S. Algorithms for computing the
optimum factored form, that is, the one with the minimum number of literals have been
proposed earlier in Lawler (1964). However, the complexity of these exact techniques are
impractical for all but the smallest expressions. Fortunately, however, there exist heuristic
factoring algorithms for boolean functions (Wang, 1989) which work very well in practice.
Factored forms of boolean functions are very useful in VLSI design, since in most design
styles such as complex-gate CMOS design, the implementation of a function directly cor-
responds to a factored form, and thus factored forms are useful in estimating area and delay
in a multi-level logic synthesis and optimization system.

We adapt the technique for factoring boolean expressions from Wang (1989) for our
purposes. There is a close correspondence between the semantics of DTDs and those of
boolean expressions. The sequencing operator in DTDs is similar to a logical AND in
boolean algebra, while the OR operator (|) is like a logical OR. However, there exist certain
fundamental differences between DTDs and boolean expressions. First, while the logical
AND operator in boolean logic is commutative, the sequencing operator in DTDs is not (the
ordering of symbols in a sequence matters!). Second, in boolean logic, the expression a | ab
is equivalent to a; however, the equivalent DTD for a | ab is ab? Our factoring algorithm
makes appropriate modifications to the algorithm from Wang (1989) to handle the above-
mentioned differences between the semantics of DTDs and boolean algebra. The details
of our factoring procedure (termed FACTOR) can be found in the pseudo-code depicted in
figure 7. The following example illustrates the key steps of our factoring algorithm.

Example 6.1. Consider the set S = {b, c, ab, ac, df , dg, ef , eg} of input sequences corre-
sponding to the expression b|c|ab|ac|df |dg|ef |eg whose factored form is a?(b|c)|(d|e)(f |g).
Before we present the steps that FACTOR performs to derive the factored form, we introduce
the DIVIDE operation that constitutes the core of our algorithm. For sets of sequences S, V ,
DIVIDE(S, V) returns a quotient Q and remainder R such that S = V ◦ Q ∪ R (here, V ◦ Q
is the set of sequences resulting from concatenating every sequence in Q to the end of every
sequence in V). Thus, for the above set S and V = {d, e}, DIVIDE(S, V) returns the quotient
Q = { f, g} and remainder R = {b, c, ab, ac}. We are now in a position to describe the
steps executed by FACTOR to generate the factored form.

1. Compute set of potential divisors for S. These are simply sets of prefixes that have a
common suffix in S. Thus, potential divisors for S include {d, e} (both f and g are

XTRACT 47

Figure 7. Factoring algorithm.

common suffixes) and {1, a} (both b and c are common suffixes). The symbol “1” is
special and denotes the identity symbol with respect to the sequencing operator, that is,
1s = s1 = s for every sequence s.

2. Choose divisor V from set of potential divisors. This is carried out by first dividing S
by each potential divisor V to obtain a quotient Q and remainder R, and then selecting
the V for which the triplet (V, Q, R) has the smallest size. In our case, V = {d, e}
results in a smaller quotient and remainder (Q = { f, g}, R = {b, c, ab, ac}) than {1, a}
(Q = {b, c}, R = {df , dg, ef , eg}) and is thus chosen.

3. Recursively factor V , Q and R. The final factored form is FACTOR(V)FACTOR(Q)|
FACTOR(R), where V = {d, e}, Q = { f, g} and R = {b, c, ab, ac}. Here, V and Q

48 GAROFALAKIS ET AL.

cannot be factored further since they have no divisors. Thus, FACTOR(V) = (d|e) and
FACTOR(Q) = (f |g). However, R can be factored more since {1, a} is a divisor. Thus,
repeating the above steps on R, we obtain FACTOR(R) = (1|a)(b|c). Thus, the final
factored form is (1|a)(b|c)|(d|e)(f |g).

4. Simplify final expression by eliminating “1”. The term (1|a) in the final expression can
be further simplified to a? Thus, we obtain the desired factored form for S.

7. Experimental study

In order to determine the effectiveness of XTRACT’s methodology for inferring the DTD
of a database of XML documents, we conducted a study with both synthetic as well as
real-life DTDs. We also compared the DTDs produced by XTRACT with those generated
by the IBM alphaworks DTD extraction tool, DDbE5 (Data Description by Example), for
XML data. Our results indicate that XTRACT outperforms DDbE over a wide range of
DTDs, and accurately finds almost every original DTD while DDbE fails to do so for most
DTDs. Thus, our results clearly demonstrate the effectiveness of XTRACT’s approach that
employs generalization and factorization to derive a range of general and concise candidate
DTDs, and then uses the MDL principle as the basis to select amongst them.

7.1. Algorithms

In the following, we describe the two DTD extraction algorithms that we considered in our
experimental study.

7.1.1. XTRACT. Our implementation of XTRACT includes all the three modules as de-
scribed in Sections 4, 5, and 6. In the generalization step, we discover both sequencing and
OR patterns using procedure GENERALIZE. In the factoring step, k = N

10 subsets are chosen
for factoring and the parameter δ is set to 0 in the procedure FACTORSUBSETS. Finally, in
the MDL step, we employ the algorithm from Charikar and Guha (1999) to compute an
approximation to the FLP.

7.1.2. DDbE. We used Version 1.0 of the DDbE DTD extraction tool in our experiments.
DDbE is a Java component library for inferring a DTD from a data set consisting of well-
formed XML instances. DDbE offers parameters which permit the user to control the
structure of the content models and the types used for attribute declarations. Some of the
important parameters of DDbE that we used in our experiments, along with their default
values, are presented in Table 1.

The parameter c specifies the maximum number of consecutive identical tokens that
should not be replaced by a list. For example, the default value of this parameter is 1 and
thus all sequences containing two or more repetitions of the same symbol are replaced with
a positive list. That is, aa is substituted by a+. The parameter d determines the number
of applications of factoring. For a set of input sequences that conform to the DTD of
a(b|c|d)(e| f |g)h, for increasing values of the parameter d, DDbE returns the DTDs in
Table 2.

XTRACT 49

Table 1. Description of parameters used by DDbE.

Parameter Meaning Default

c Maximum number of consecutive identical tokens not replaced by a list 1

d Maximum depth of factorization 2

Table 2. DTDs generated by DDbE for increasing values of parameter d.

Parameter value (d) DTD obtained

1 (acg|ace|adf |abg|abe|acf |adg|ade|abf)h

2 a(cg|ce|df |bg|be|cf |dg|de|bf)h

3 a((c|b|d)g|(d|c|b) f |(c|b|d)e)h

4 a((c|b|d)g|(d|c|b) f |(c|b|d)e)h

As shown in the table, for d = 1, factorization is performed once in which the rightmost
symbol h is factored out. When the value of d becomes 2, the leftmost symbol a is also
factored out. A further increase in the value of d to 3 causes factorization to be performed
on the middle portion of the expression and the common expression (b|c|d) to be extracted.
However, note that subsequent increases in the value of d (beyond 3) do not result in further
changes to the DTD. This seems to be a limitation of DDbE’s factoring algorithm since
examining the DTD for d = 3, we can easily notice that e, f and g have a common factor
of (b|c|d) with different placement of the symbols within the parenthesis. However, the
current version of DDbE cannot factorize this further.

7.2. Data sets

In order to evaluate the quality of DTDs retrieved by XTRACT, we used both synthetic
as well as real-life DTD schemas. For each DTD for a single element, we generated an
XML file containing 1000 instantiations of the element. These 1000 instantiations were
generated by randomly sampling from the DTD for the element. Thus, the initial set of
input sequences I to both XTRACT and DDbE contained somewhere between 500 and
1000 sequences (after the elimination of duplicates) conforming to the original DTD.

7.2.1. Synthetic DTD data set. We used a synthetic data generator to generate the syn-
thetic data sets. Each DTD is randomly chosen to have one of the following two forms:
A1|A2|A3| . . . |An and A1 A2 A3 . . . An . Thus, a DTD has n building blocks where n is ran-
domly chosen number between 1 and mb, where mb is an input parameter to the generator
that specifies the maximum number of building blocks in a DTD. Each building block
Ai further consists of ni symbols, where ni is randomly chosen to be between 1 and ms
(the parameter ms specifies the maximum number of symbols that can be contained in
a building block). Each building block Ai has one of the following four forms, each of
which has an equal probability of occurrence: (1) (a1|a2|a3| . . . |ani) (2) a1a2a3 . . . ani (3)

50 GAROFALAKIS ET AL.

Table 3. Synthetic DTD data set.

No. Original DTD

1 abcde|efgh|ij|klm

2 (a|b|c|d| f)∗gh

3 (a|b|c|d)∗|e
4 (abcde)∗ f

5 (ab)∗|cdef |(ghi)∗

6 abcdef (g|h|i | j)(k|l|m|n|o)

7 (a|b|c)d∗e∗(fgh)∗

8 (a|b)(cdefg)∗hijklmnopq(r |s)∗

9 (abcd)∗|(e| f |g)∗|h|(ijklm)∗

10 a∗|(b|c|d|e| f)∗|gh|(i | j |k)∗|(lmn)∗

(a1|a2|a3|a4| . . . |ani)
∗ (4) (a1a2a3a4 . . . ani)

∗. Here, the ai ’s denote subelement symbols.
Thus, our synthetic data generator essentially generates DTDs containing one level of nest-
ing of regular expression terms.

In Table 3, we show the synthetic DTDs that we considered in our experiments (note
that, in the figure, we only include the regular expression corresponding to the DTD). The
DTDs were produced using our generator with the input parameters mb and ms both set to
5. Note that we use letters from the alphabet as subelement symbols.

The ten synthetic DTDs vary in complexity with later DTDs being more complex than
the earlier ones. For instance, DTD 1 does not contain any metacharacters, while DTDs 2
through 5 contain simple sequencing and OR patterns. DTD 6 represents a DTD in factored
form while in DTDs 7 through 10, factors are combined with sequencing and OR patterns.

7.2.2. Real-life DTD data set. We obtained our real-life DTDs from the Newspaper As-
sociation of America (NAA) Classified Advertising Standards XML DTD produced by the
NAA Classified Advertising Standards Task Force.6 We examined this real-life DTD data
and collected six representative DTDs that are shown in Table 4. Of the DTDs shown in
the table, the last three DTDs are quite interesting. DTD 4 contains the metacharacter ? in
conjunction with the metacharacter ∗, while DTDs 5 and 6 contain two regular expressions
with ∗’s, one nested within the other.

7.3. Quality of inferred DTDs

7.3.1. Synthetic DTD data set. The DTDs inferred by XTRACT and DDbE for the syn-
thetic data set are presented in Table 5. As shown in the table, XTRACT infers each of the
original DTDs correctly. In contrast, DDbE computes the accurate DTD for only DTD 1
which is the simplest DTD containing no metacharacters. Even for the simple DTDs 2–5,
not only is DDbE unable to correctly deduce the original DTD, but it also infers a DTD
that does not cover the set of input sequences. For instance, one of the input sequences
covered by DTD 2 is gh which is not covered by the DTD inferred by DDbE. Thus, while

XTRACT 51

Table 4. Real-life DTD data set.

No. Original DTD Simplified DTD

1 <!ENTITY % included-elements a|b|c|d|e
”audio-clip|blind-box-reply|graphic|linkpi-char|video-clip”>

2 <!ELEMENT communications-contacts (a|b|c|d|e)∗
(phone|fax|email|pager|web-page) ∗ >

3 <!ELEMENT employment-services(employment-service.type, ab∗c∗
employment-service.location ∗ (e.zz-generic-tag)∗)>

4 <!ENTITY % location” addr∗, geographic-area? city? state-province? a∗b?c?d?
postal-code? country?”>

5 <!ELEMENT transfer-info(transfer-number, (from-to, company-id)+, (a(bc)+d)∗
contact-info) ∗ >

6 <!ELEMENT real-estate-services(real-estate-service.type, (ab?c∗d?)∗
real-estate-service.location? r-e.response-modes∗, r-e.comment?)∗>

Table 5. DTDs generated by XTRACT and DDbE for synthetic data set.

No. Original DTD DTD inferred by XTRACT DTD inferred by DDbE

1 abcde|efgh|ij|klm abcde|efgh|ij|klm abcde|efgh|ij|klm

2 (a|b|c|d| f)∗gh (a|b|c|d| f)∗gh gh(a|b|c|d| f)+gh

3 (a|b|c|d)∗|e (a|b|c|d)∗|e (e(a|c|d|b)+e)

4 (abcde)∗ f (abcde)∗ f (f (a|e|d|c|b)+ f)

5 (ab)∗|cdef |(ghi)∗ (ab)∗|cdef |(ghi)∗ cdef (a|b|g|i |h)+cdef

6 abcdef (g|h|i | j)(k|l|m|n|o) abcdef (g|h|i | j)(k|l|m|n|o) abcdef (j(o|l|m|n|k)|g(o|l|n|m|k)|
h(m|l|n|k|o)|i(o|l|n|m|k))

7 (a|b|c)d∗e∗(fgh)∗ (a|b|c)d∗e∗(fgh)∗ ((c|b|a)d+e+|ad+|bd+|c(e+|d+)?|
ad∗|be∗))(f |h|g)+((a|b|c)d+e+|
c(e+|d+)?|a(e+|d+)?|b(e+|d+)?)

8 (a|b)(cdefg)∗ (a|b)(cdefg)∗ ((((a|b)hijabcdefg)|b|a)
hijklmnopq(r |s)∗ hijklmnopq(r |s)∗ (c|g| f |e|d|s|r)+((b|a)?hijkamnopq))

9 (abcd)∗|(e| f |g)∗|h|(ijklm)∗ (abcd)∗|(ijklm)∗|h|(e| f |g)∗ h(a|d|c|b|e|g| f |i |m|l|k| j)+h

10 a∗|(b|c|d|e| f)∗|gh|(i | j |k)∗| a∗|(b|c|d|e| f)∗|gh|(i | j |k)∗| (a+|gh)(e| f |d|i | j |l|n|m|k|c|b)+
(lmn)∗ (lmn)∗ (a+|gh)

XTRACT infers a DTD that covers all the input sequences, the DTD returned by DDbE may
not cover every input sequence. DTD 4 exemplifies the two typical behaviors of DDbE—
(1) sequence f that is not frequently repeated is appended to both the front and the back
of the final DTD, and (2) symbols that are repeated frequently are all OR’d together and
encapsulated by the metacharacter +. For example, DDbE incorrectly identifies the term
(abcde)∗ to be (a|b|c|d|e)∗ which is much more general. Thus, the DDbE tool has a ten-
dency to over-generalize when the original DTDs contain regular expressions with Kleene
stars. This same trend to over-generalize can be seen in DTDs 8–10 also. On the other
hand, as is evident from Table 3, this is not the case for XTRACT which correctly infers

52 GAROFALAKIS ET AL.

every one of the original DTDs even for the more complex DTDs 8–10 that contain various
combinations of sequencing and OR patterns. This clearly demonstrates the effectiveness of
our generalization module in discovering these patterns and our MDL module in selecting
these general candidate DTDs as the final DTDs.

Also, as discussed earlier, DDbE is not very good at factoring DTDs. For instance, unlike
XTRACT, DDbE is unable to derive the final factored form for DTD 6. Finally, DDbE
infers an extremely complex DTD for the simple DTD 7. The results for the synthetic data
set clearly demonstrate the superiority of XTRACT’s approach (based on the combination
of generalization, factoring and the MDL principle) compared to DDbE’s for the problem
of inferring DTDs.

7.3.2. Real-life DTD data set. The DTDs generated by the two algorithms for the real-life
data set are shown in Table 6. Of the six DTDs, XTRACT is able to infer the first five
correctly. In contrast, DDbE is able to derive the accurate DTD only for DTDs 1 and 2, and
an approximate DTD for DTD 3. Basically, with an additional factoring step, DDbE could
obtain the original DTD for DTD 3. Note, however, that DDbE is unable to infer the simple
DTD 4 that contains the metacharacter ? In contrast, XTRACT is able to deduce this DTD
because it’s factorization step takes into account the identity element “1” and simplifies
expressions of the form 1|a to a? DTD 5 represents an interesting case where XTRACT is
able to mine a DTD containing regular expressions containing nested Kleene stars. This is
due to our generalization module that iteratively looks for sequencing patterns. On the other
hand, DDbE simply over-generalizes DTD 5 by ORing all the symbols in it and enclosing
them within the metacharacter +. Finally, neither XTRACT nor DDbE is able to correctly
infer DTD 6. (The approximate DTD derived by XTRACT for DTD 6 is rather complex
and, therefore, we chose to omit it from Table 6.) The reason for XTRACT’s failure is
that our generalization subsystem does not explicitly detect patterns containing the optional
symbol (?) nested within Kleene stars. Working with other real-life DTDs, we also found
that XTRACT can have some difficulties in inferring a concise and meaningful schema
for very complicated DTD patterns with multiple levels of operator nesting. Finding such
“difficult” patterns requires that a more sophisticated analysis of symbol occurrences within
and across sequences be performed in XTRACT’s generalization engine, and we plan to
pursue this further as part of our future work.

Table 6. DTDs generated by XTRACT and DDbE for real-life data set.

NO Simplified DTD DTD obtained by XTRACT DTD obtained by DDbE

1 a|b|c|d|e a|b|c|d|e a|b|c|d|e
2 (a|b|c|d|e)∗ (a|b|c|d|e)∗ (a|b|c|d|e)∗

3 (ab∗c∗) ab∗c∗ (ab+c∗)|(ac∗)

4 a∗b?c?d? a∗b?c?d? (a+b(c|(c?d))?)|((b|a+)?cd)|
((a+|b)?d)|((a+|b)?c)|a+|b)

5 (a(bc)+d)∗ (a(bc)∗d)∗ (a|b|c|d)+

6 (ab?c∗d?)∗ – (a|b|c|d)+

XTRACT 53

7.4. Comparisons with Fred (Shafer, 1995)

Another recent approach towards automatic generation of DTDs from sample tagged doc-
uments, is the Grammar Builder Engine (GB-Engine) developed at the Online Computer
Library Center (OCLC), Inc. OCLC’s GB-Engine is embedded in a number of systems and
Fred is currently the most popular of these systems. Automatic DTD creation is one of the
services offered in Fred.

Despite our efforts, we have not been able to run the Fred system on our collection of
XML documents, so all of our comments here are based on the development in the original
Fred paper (Shafer, 1995). In short, Fred is comparable with the Generalization module of
XTRACT. Fred first deduces the structural types of a specific element by syntactic analysis
of the document, and then it combines these types to deduce the resulting DTD. Combining
element types is achieved by applying a sequence of generalization and reduction rules. An
example of a generalization rule is replacing type aaa with type a+. Reduction rules include
removing empty parentheses, collapsing ORs and ANDs, combining identical bases (e.g.,
(ab)∗|a?b? becomes (a?b?)∗), eliminating redundancies (mostly up to a syntactic level),
and so on. The user selects which of these rules are applied, but the order of application is
predefined by the system.

Fred does not perform any kind of factoring. Factoring is present in both the DDbE and
XTRACT systems and, from our experience, it turns out to be very useful in improving the
conciseness of the resulting DTDs. In addition, compared to XTRACT, the Fred system lacks
all the advantages of the MDL module, which we believe it is the most distinctive feature of
our system and one of the most important contributions of our paper. In particular, the order
in which the various generalization and reduction rules are applied by Fred is somehow
arbitrary, and while a particular rule order is good for one element a different order might
be better for another. XTRACT is addressing exactly this problem by proposing a well-
motivated, information-theoretic measure of goodness for DTDs and by using this measure
to select the best DTD among many candidates generated in the previous modules. Our
experience with the XTRACT system has verified that the MDL module indeed selects the
most intuitive DTDs. Due to the lack of the MDL module, we believe that DTDs generated
by Fred could be arbitrarily complex or arbitrarily general.

8. Conclusions

In this paper, we presented the architecture of the XTRACT system for inferring a DTD for a
database of XML documents. The DTD plays the role of a schema and thus contains valuable
information about the structure of the XML documents that it describes. However, since
DTDs are not mandatory, in a number of cases, documents in an XML database may not have
an accompanying DTD. Thus, the DTD inference problem is important, especially given
the critical role that the DTD plays in the storage as well as the formulation, optimization
and processing of queries on the underlying data.

The problem of deriving the DTD for a set of documents is complicated by the fact that the
DTD syntax incorporates the full expressive power of regular expressions. Specifically, as
we showed, naive approaches that do not “generalize” beyond the input element sequences

54 GAROFALAKIS ET AL.

fail to deduce concise and semantically meaningful DTDs. Instead, XTRACT applies so-
phisticated algorithms in three steps to compute a DTD that is more along the lines that a
human would infer. In the first generalization step, patterns within the input sequences are
detected and more “general” regular expressions are substituted for them. These “gener-
alized” candidate DTDs are then processed by the factorization step that factors common
expressions within the DTDs to make them more succinct. The first two steps thus produce
a range of candidate DTDs that vary in their conciseness and precision. In the third and
final step, XTRACT employs the MDL principle to select from amongst the candidates the
DTD that strikes the right balance between conciseness and preciseness—that is, a DTD
that is concise, but at the same time, is not too general. The MDL principle maps naturally
to the Facility Location Problem (FLP), which we solved using an efficient approximation
algorithm recently proposed in the literature.

We compared the quality of the DTDs inferred by XTRACT with those returned by the
IBM alphaworks DDbE (Data Descriptors by Example) DTD extraction tool on synthetic
as well as real-life DTDs. In our experiments, XTRACT outperformed DDbE by a wide
margin, and for most DTDs it was able to accurately infer the DTD while DDbE completely
failed to do so. A number of the DTDs which were correctly identified by XTRACT were
fairly complex and contained factors, metacharacters and nested regular expression terms.
Thus, our results clearly demonstrate the effectiveness of XTRACT’s approach that employs
generalization and factorization to derive a range of general and concise candidate DTDs,
and then uses the MDL principle as the basis to select amongst them. While we are encour-
aged by XTRACT’s performance, we are continuing to further enhance our algorithms to
infer even more complex DTDs (than those considered in this paper).

Acknowledgment

The work of Kyuseok Shim was partially supported by the Korea Science and Engineer-
ing Foundation (KOSEF) through the Advanced Information Technology Research Center
(AITrc).

Notes

1. See http://www.alphaworks.ibm.com/formula/xml.
2. Note that our result DTDs are not necessarily deterministic, in the sense that the DTD can, at some points,

have more than one valid matches for elements in a conforming XML document. For XML parsers that have
such determinism requirements, standard constructions for removing non-determinism (Hopcroft and Ullman,
1979) can be applied to the DTD output by XTRACT.

3. The DTDs are available at Robin Cover’s SGML/XML web page (http://www.oasis-open.org/cover/).
4. These can be accessed at http://www.naa.org/technology/clsstdtf/Adex010.dtd.
5. The DDbE tool and a detailed description of it is available at http://www.alphaworks.ibm.com/
6. This can be accessed at http://www.naa.org/technology/clsstdtf/Adex010.dtd.

References

Abiteboul, S. 1997. Querying semi-structured data. In Proceedings of the International Conference on Database
Theory (ICDT), pp. 1–18.

XTRACT 55

Ahonen, H. 1996. Generating grammars for structured documents using grammatical inference methods. Ph.D.
Thesis, University of Helsinki.

Ahonen, H., Mannila, H., and Nikunen, E. 1994. Forming grammars for structured documents: An application of
grammatical inference. In Proceedings of the 2nd Intl. Colloquium on Grammatical Inference and Applications,
pp. 153–167.

Angluin, D. 1978. On the complexity of minimum inference of regular sets. Information and Control, 39(3):337–
350.

Brayton, R.K. and McMullen, C. 1982. The decomposition and factorization of boolean expressions. In Interna-
tional Symposium on Circuits and Systems, pp. 49–54.

Bray, T., Paoli, J., and Sperberg-McQueen, C.M. Extensible markup language (XML). Available at
http://www.w3.org/TR/REC-xml.

Brazma, A. 1993. Efficient identification of regular expressions from representative examples. COLT, 236–242.
Charikar, M. and Guha, S. 1999. Improved combinatorial algorithms for the facility location and k-median prob-

lems. In 40th Annual Symposium on Foundations of Computer Science.
Deutsch, A., Fernandez, M., and Suciu, D. 1999. Storing semistructured data with stored. In Proc. of the ACM

SIGMOD Conference on Management of Data.
Fernandez, M. and Suciu, D. 1997. Optimizing regular path expressions using graph schemas. In Proceedings of

the International Conference on Database Theory (ICDT).
Goldman, R., McHugh, J., and Widom, J. 1999. From semistructured data to XML: Migrating the lore data model

and query language. In Proceedings of the 2nd International Workshop on the Web and Databases (WebDB’99),
pp. 25–30.

Gold, E.M. 1967. Language identification in the limit. Information and Control, 10(5):447–474.
Gold, E.M. 1978. Complexity of automaton identification from given data. Information and Control, 37(3):302–

320.
Goldman, R. and Widom, J. 1997. Dataguides: Enabling query formulation and optimization in semistructured

databases. In Proceedings of the 23rd International Conference on Very Large Data Bases, Athens, Greece.
Hochbaum, D.S. 1982. Heuristics for the fixed cost median problem. Mathematical Programming, 22:148–162.
Hopcroft, J.E. and Ullman, J.D. 1979. Introduction to Automaton Theory, Languages, and Computation. Addison-

Wesley, Reading, MA.
Kilpeläinen, P., Mannila, H., and Ukkonen, E. 1995. MDL learning of unions of simple pattern languages from

positive examples. In Second European Conference on Computational Learning Theory, EuroCOLT, pp. 252–
260, Barcelona.

Lawler, E. 1964. An approach to multilevel boolean minimization. Journal of the ACM, 11(3):283–295.
Mehta, M., Rissanen, J., and Agrawal, R. 1995. MDL-based decision tree pruning. In Int’l Conference on Knowl-

edge Discovery in Databases and Data Mining (KDD-95), Montreal, Canada.
Nestorov, S., Abiteboul, S., and Motwani, R. 1998. Extracting schema from semistructured data. In Proceedings

of the ACM SIGMOD Conference on Management of Data, pp. 295–306.
Pitt, L. 1989. Inductive inference, DFAs, and computational complexity. Analogical and Inductive Inference. In

Proceedings of the 1989 Intl. Workshop on Analogical and Inductive Inference, Reinhardsbrunn Castle, GDR,
pp. 18–44.

Quinlan, J.R. and Rivest, R.L. 1989. Inferring decision trees using the minimum description length principle.
Information and Computation, 80:227–248.

Rissanen, J. 1978. Modeling by shortest data description. Automatica, 14:465–471.
Rissanen, J. 1989. Stochastic Complexity in Statistical Inquiry. World Scientific Publ. Co: Singapore.
Shafer, K.E. 1995. Creating dtds via the gb-engine and fred. In Proceedings of the SGML’95 Conference, Boston,

MA. Available at http://www.oclc.org/fred/docs/sgml95.html.
Shanmugasundaram, J., He, G., Tufte, K., Zhang, C., DeWitt, D., and Naughton, J. 1999. Relational databases for

querying XML documents: Limitations and opportunities. In Proc. of the Int’l Conf. on Very Large Data Bases,
Edinburgh, Scotland.

Wang, A.R.R. 1989. Algorithms for multi-level logic optimization. Ph.D. Thesis, The University of California,
Berkeley.

Widom, J. 1999. Data management for XML: Research directions. IEEE Data Engineering Bulletin, 22(3):
44–52.

56 GAROFALAKIS ET AL.

Young-Lai, M. and Tompa, F.W.M. 2000. Stochastic grammatical inference of text database structure. Machine
Learning, 40(2):111–137.

Minos Garofalakis is a Member of Technical Staff at the Internet Management Research Department of Bell
Labs, Lucent Technologies. He received his B.Sc. in 1992 from the Computer Engineering and Informatics Dept.
of the University of Patras (UOPCEID). He also spent the following year at UOPCEID as a post-graduate fellow.
In the Fall of 1993, he joined the graduate program in Computer Sciences at the University of Wisconsin-Madison,
where he received his M.Sc. (1994) and Ph.D. (1988). He joined Bell Labs in Murray Hill, New Jersey, in September
1998.

Minos’ current research interests lie in the areas of data streaming, approximate query processing, data mining,
network management, and XML databases. He is a member of ACM and IEEE, and has served as a program
committee member for several conferences in the database area, including ACM SIGMOD, VLDB, ACM SIGKDD,
and IEEE ICDE.

Aristides Gionis received the B.S. degree in Computer Science from the University of Athens, Greece in 1994,
and the M.S. degree in Computer Science from Stanford University in 1998. Currently, he is a Ph.D. student in the
Computer Science Department of Stanford University. His current research interests include Design and Analysis
of Algorithms, Data Mining, Information Retrieval, and Web Searching.

Rajeev Rastogi is the Director of the Internet Management Research Department at Bell Labs, Lucent Technolo-
gies. He received the B.Tech. degree in Computer Science from the Indian Institute of Technology, Bombay in
1988, and the masters and Ph.D. degrees in Computer Science from the University of Texas, Austin, in 1990 and
1993, respectively. He joined Bell Labs in Marray Hill, New Jersey, in 1993 and became a Distinguished Member
of Technical Staff (DMTS) in 1998.

Rajeev Rastogi is active in the field of databases and has served as a program committee member for several
conferences in the area. He currently serves on the editorial board of IEEE Transactions on Knowledge and Data
Engineering. His writings have appeared in a number of ACM and IEEE publications and other professional
conferences and journals. His research interests include database systems, network management, storage systems
and knowledge discovery. His most recent research has focused on the areas of network topology discovery,
monitoring, configuration and provisioning, data mining, and high-performance transaction systems.

S. Seshadri is the CEO of Strand Genomics, a biosciences knowledge management company developing algorithms
and solutions in the area of Bioinformatics. Seshadri obtained his Ph.D. in Computer Sciences from the University
of Wisconsin-Madison in 1992. Before joining Strand Genomics, Seshadri spent 6 years on the faculty of IIT,
Bombay, and another 3 years at Bell Labs, Lucent Technologies where he was instrumental in the design and
development of several important network-management products. His research interests include the areas of
network management, query optimization, transaction processing, and parallel databases.

Kyuseok Shim is currently an Assistant Professor at Seoul National University in Korea. Previously, he was an
Assistant Professor at Korea Advanced Institute of Science and Technology (KAIST) in Korea. Before joining
KAIST, he was a member of technical staff (MTS) and one of the key contributors to the Serendip data mining
project at Bell Laboratories. Before that, he worked for Quest Data Mining project at IBM Almaden Research
Center. He received B.S. degree in Electrical Engineering from Seoul National University in 1986, and the M.S.
and Ph.D. degrees in Computer Science from University of Maryland, College Park, in 1988 and 1993 respectively.

Kyuseok Shim has been working in the area of databases focusing on data mining, data warehousing, query
processing and query optimization, XML and semi-structured data. He is currently on the editorial board of the
VLDB Journal and KAIS journal. He has published several research papers in prestigious conferences and journals.
He has also served as a program committee member on ACM SIGKDD, ACM SIGMOD, EDBT, ICDE, ICDM,
PAKDD, and VLDB conferences.

