
XtratuM hypervisor redesign for LEON4 multicore

processor⇤

E. Carrascosa, M. Masmano, P. Balbastre and A. Crespo

Instituto de Informática Industrial, Universidad Politécnica de Valencia,

Camino de Vera s/n, 46022 Valencia, Spain

{ecarrascosa, mmasmano, pbalbastre, acrespo}@ai2.upv.es

Abstract

XtratuM is an open source hypervisor that
uses para-virtualization techniques designed
to comply with safety critical real-time re-
quirements. Several projects aimed to define a
reference architecture for space on-board sys-
tems have adopted XtratuM as a virtualiza-
tion layer in order to enforce the strong spatial
and temporal isolation between software com-
ponents that is required on real-time airborne
systems.

Given the shift in the general trend in pro-
cessor development towards multicore proces-
sors, the European Space Agency (ESA) is
commissioning a set of studies in order to eval-
uate their suitability for their use on the space
market. This paper focuses on the porting of
XtratuM to the LEON4 multicore processor,
in the frame of a ESA study that pursues to
assess its fitness for its use in future space mis-
sions.

Keywords: Hypervisor, para-virtualization,
partitioned systems, RTOS, multicore.

1 Introduction

For the last decade, the European space sec-
tor has developed an interest in partitioned
software architectures based on the Integrated
Modular Avionics (IMA) design concept as a
mean to address security and safety issues.
Partitioned architectures isolate software com-
ponents into independent partitions whose ex-
ecution shall not interfere with that of other
partitions, preserving temporal and spatial
isolation. Virtualization has been proven an
e↵ective method to fulfill those temporal and

⇤This work has been partially funded by the 
Multipartes project (FP7-287702), HISEM (Prometeo 
2009/02), HI-PARTES (TIN2011-28567-C03-03) and 
COBAMI DPI2011-28507-C02-02.

spatial isolation requirements, which led the
European Space Agency (ESA) to adopt Xtra-
tuM [7, 5, 6], a hypervisor for real-time em-
bedded systems specifically designed to meet
safety critical requirements, as the reference
virtualization layer.

At the same time, there has been an
increasing trend towards the use of multi-
core processors in embedded computing due
to their improved performance and low im-
pact on critical aspects of embedded systems,
as power consumption or heath dissipation.
These traits, together with a better trade-o↵
between performance and cost, weight reduc-
tion, and the potential to exploit parallel ex-
ecution, have arisen an interest in the use of
multicore technology in the space sector.

In this context, the ESA launched the
IMA-SP [9] initiative, aimed to promote the
adaptation of the IMA concept to the space
domain. The project defined a partitioned
reference architecture for space on-board soft-
ware based on the ARINC-653 avionics stan-
dard [1, 2], with XtratuM as the virtualiza-
tion layer. However, the IMA-SP project
was focused on monocore processors, and a
series of projects on multicore assessment
for its use on space applications were sub-
sequently launched. After the development
of the LEON4 multicore processor [4], the
project covered by the present paper [8] pro-
moted the porting of the XtratuM hypervisor
to this new target and evaluated its suitability
for partitioned systems.

2 XtratuM

XtratuM is a bare-metal hypervisor intended
for embedded real-time systems that uses
para-virtualization techniques to mimic hard-
ware behaviour as closely as possible. Attend-



ing to its purpose, it has been designed using
the ARINC-653 standard principles as a basis
to achieve temporal and spatial partitioning
on safety critical applications.

2.1 Interface

In order to o↵er basic hardware virtualization
support as well as specific high-level services
based on ARINC-653 to the partitions, Xtra-
tuM provides a set of hypercalls that transfer
control to the hypervisor. This implies that
partitions shall have hypervisor-specific code
to access those services and may need to be
adapted so as to interact with the hypervisor
instead of with the underlying hardware.
Some of the hypercalls are restricted to a
special type of partitions (system partitions)
that are allowed to manage and monitor the
state of the system and other partitions.

// Hardware services
void XM_sparc_set_psr (xm_u32_t psr);
void XM_sparc_flush_cache (void);
void XM_sparc_flush_regwin (void);
// High-level services
xm_s32_t XM_create_queuing_port (

char *portName, xm_u32_t maxNoMsgs,
xm_u32_t maxMsgSize, xm_u32_t direction);

xm_s32_t XM_hm_status (xm_HmStatus_t

*hmStatusPtr);
xm_s32_t XM_trace_event (xm_u32_t bitmask,

xmTraceEvent_t *event);

Listing 1: Example of XtratuM service inter-
face.

2.2 Static Resource Allocation

The allocation of the available hardware
resources to partitions takes place statically
via a configuration file. This allocation
shall be performed according to the needs
of each partition regarding memory areas,
scheduling, communication ports, etc. The
configuration file also specifies the board
resources, the configuration of the virtualized
devices, the set of memory regions allocated
to the hypervisor and the scheduling plan.

<SystemDescription version="1.0.0">
[...]
<ProcessorTable>
<Processor id="0" frequency="80Mhz">
<CyclicPlanTable>

<Plan id="0" majorFrame="2000ms">
<Slot id="0" start="0ms"
duration="1000ms" partitionId="0"/>

<Slot id="1" start="1000ms"
duration="1000ms" partitionId="1"/>

</Plan>
</CyclicPlanTable>

</Processor>
</ProcessorTable>
[...]
<PartitionTable>

<Partition id="0" name="Partition1"
flags="system" console="Uart">
<PhysicalMemoryAreas>
<Area start="0x40180000" size="256KB"
mappedAt="0x40000000"/>

</PhysicalMemoryAreas>
</Partition>
<Partition id="1" name="Partition2"
flags="system" console="Uart">
<PhysicalMemoryAreas>
<Area start="0x401c0000" size="256KB"/>

</PhysicalMemoryAreas>
</Partition>

</PartitionTable>
</SystemDescription>

Listing 2: XML configuration file example.

2.3 Cyclic Scheduler

In order to ensure a strong temporal isola-
tion, XtratuM scheduler implements a cyclic
scheduling policy according to the ARINC-653
specification. This policy assumes previous
knowledge of the time allocation to each par-
tition, which is specified on a cyclic plan that
is statically defined during the design phase.
A cyclic plan consists in a major time frame
(MAF) which is periodically repeated. Inside
the MAF, time is divided in slots with a estab-
lished starting time and duration that are al-
located to a given partition. XtratuM assigns
the processor to the corresponding partition
within each time slot, ensuring that the par-
tition gets only the specified amount of pro-
cessor time. In the case of partitions where
several tasks execute concurrently, the parti-
tion is in charge of internally implementing
its own scheduling algorithm in a transparent
way to the hypervisor (hierarchical schedul-
ing). This policy provides a deterministic be-
haviour while minimizing scheduling overhead
at run-time.

2.4 Trap and interrupt manage-
ment

A processor trap implements an asynchronous
transfer of control to the system as a mecha-
nism to handle hardware interrupts, software
traps and processor exceptions. XtratuM ex-
tends the concept of processor traps with a
new range of additional interrupts (extended
interrupts) to indicate to partitions the ocur-
rence of XtratuM specific events.

Regarding interrupts, XtratuM leaves to
the partitions the management of non-critical
devices and manages only those hardware in-
terrupts belonging to those hardware devices



able to jeopardize the isolation. Hardware in-
terrupts can be allocated only to one partition,
that then has the capacity to mask or unmask
the interrupt line via specific hypercalls.

2.5 Communication Mechanisms

XtratuM provides robust message passing
based mechanisms for inter-partition commu-
nication (between two partitions or between a
partition and the hypervisor). For this pur-
pose, the hypervisor makes available to the
partitions a series of services based on ARINC-
653 defined queuing and sampling ports. On
its side, the hypervisor implements channels
that act as a logical path between source and
destination ports, and it is also responsible for
encapsulating and transporting the messages.

2.6 Health Monitor

XtratuM provides a Health Monitor as a
mechanism to detect and manage unexpected
events. The Health Monitor aims to iden-
tify those faults that can not be handled at
the scope where they take place, and properly
manage those events in order to minimize the
consequences for the whole system. A set of
predefined actions is provided to deal with an
error according to its nature as soon as it is
detected, being its behaviour statically con-
figured through the configuration file. After
the execution of the handling action, a Health
Monitor notification message can be issued
and logged to be accessed by a system parti-
tion, which later can perform a more detailed
error handling.

3 Porting to LEON4

3.1 Target Hardware

Aeroflex Gaisler has developed, in conjunction
with the ESA, the Next Generation Micropro-
cessor (NGMP) prototype, a multicore pro-
cessor to be evaluated for its use in the fu-
ture space missions of the agency that is the
target of this study. The NMPG is a quad-
core 32-bit LEON4 (Sparc V8 cores) running
at 50 MhHz with 4x4Kb instruction and data
Level-1 caches, a shared 256 KB Level-2 cache,
MMU, IOMMU and two shared FPUs.

3.2 Software Architecture

The porting of XtratuM to a multicore pro-
cessor has been performed following a Sym-
metric Multi Processing (SMP) software archi-
tecture approach, where a single OS manages
all the hardware resources. Nevertheless, this
approach is not suitable for its straight adop-
tion, since it poses the undesired restriction of
the use of a single OS for all the applications.
The use of XtratuM o↵ers a more complete
solution consisting on a SMP hypervisor layer
that enforces the time and space partitioning
of the hardware resources, and provides vir-
tualization services to the guest applications
that are able, when needed, to run their own
OS on a virtual processor.

3.3 XtratuM on Multicore Sys-
tems

XtratuM was originally developed for x86
monocore systems, and later ported to LEON2
and LEON3 processors. Therefore, the adap-
tation of XtratuM to a multicore LEON4
processor has required a more extensive re-
design in order to add the necessary capa-
bilities to manage several processors, as well
as the other hardware resources. A SMP
approach creates the need for each proces-
sor to be able to use XtratuM in a concur-
rent way. Consequently, this requirement has
led to implement a fine-grained synchroniza-
tion mechanism that grants exclusive access to
the critical sections of XtratuM, such as spin-
locks protecting shared internal data struc-
tures against race conditions. Additionally,
the partition model has been adjusted in or-
der to allow the use of multicore partitions,
through the incorporation of the concept of
virtual CPU. The more relevant aspects of the
adaptation of XtratuM to LEON4 are detailed
next.

3.3.1 VCPUs

A virtual CPU is an abstraction of a hardware
CPU that models its behaviour. However, a
virtual CPU can be equally allocated to any of
the existing cores. XtratuM provides as many
virtual CPUs as hardware CPUs are on the
system. Virtual CPUs management is analo-
gous to the real hardware behaviour: at the
instant when the partition starts its execution
a single vCPU is active, and it is responsibil-
ity of the partition to initialize the remaining



virtual CPUs. To this end, XtratuM has been
extended with new hypercalls that allow the
partitions to handle virtual CPUs operation.

Figure 1: Hypervisor SMP software architec-
ture

Figure 1 depicts a possible vCPU to real
processor binding scenario.

3.3.2 IOMMU

A specific feature of the LEON4 processor is
the IOMMU. Its inclusion in the LEON4 de-
sign was imposed by the ESA as a way to guar-
antee spatial isolation for I/O devices access.
In absence of this mechanism, the DMA device
may be used to bypass memory isolation be-
tween partitions. Therefore, one of the project
requirements was the assessment of this com-
ponent and its inclusion in the XtratuM re-
design in order to provide IOMMU support.

The IOMMU tables are statically defined
through the configuration file.

3.3.3 Scheduling policies

In the present multicore approach, each CPU
holds its own cyclic scheduler, defining indi-
vidual scheduling plans for each core. Al-
though the use of a cyclic scheduling policy for
partitioned systems is optimal from the tem-
poral isolation point of view, it also represents
a technical hurdle for asynchronous interrupt
handling, given that an interrupt allocated to
one partition may stay pending until the par-
tition is scheduled again. In order to over-
come this issue, XtratuM has also included
a fixed priority scheduling policy that can be
adopted instead, enabling the coexistence of

both scheduling policies. However, there can
be an only scheduling policy assigned to a
given physical CPU. In the case of multicore
partitions, threads can be executed under dif-
ferent scheduling policies on di↵erent proces-
sors, allowing to perform faster I/O commu-
nications. Since a plan switch must occur at
the end of a MAF, an imposed restriction is
that there is an identical MAF for all the cores
running under a cyclic scheduling policy.

4 Performance Evaluation

The performance testing has been conceived
aiming to address three di↵erent aspects of
the implementation: the e↵ect of the hyper-
visor layer, the impact of the partition con-
text switch (PCS) and the influence of the
multicore shared hardware resources (memory
and FPU) on the execution. Thus, the perfor-
mance of XtratuM porting to the LEON4 mul-
ticore processor will be assessed through a se-
ries of tests designed to capture the overheads
introduced by the hypervisor under di↵erent
loads.

Two well-known standard benchmarks
have been used to perform the evaluation:
Dhrystone [10] and CoreMark R� [3]. Dhry-
stone is a synthetic benchmark intended to be
representative of system programming. It is
mainly addressed to evaluate integer opera-
tions. One of the drawbacks of this bench-
mark is that the operations are focused on the
basic CPU working and do not perform an in-
tensive use of the stack. CoreMark is a simple
benchmark that is specifically designed to test
the functionality of a core. It uses basic data
structures and algorithms common to practi-
cally any application. One of the advantages
of this benchmark with respect to Dhrystone
is the overflow of the processor stack (register
window), allowing to analyze more accurately
the impact of the hypervisor layer.

These benchmarks will be run both as
bare-metal applications and as partitions run-
ning on top of XtratuM, and the frequency
of context switches and the number of parti-
tions executing concurrently will be increased

Benchmark Iterations Native (µ-sec) Partitioned (µ-sec) Performance loss
Dhrystone 100000 2006149 2006315 0,008%
CoreMark 1200 15436453 15604193 1,087%

Table 1: Native vs. Partition performance



progressively in order to measure the perfor-
mance of the hypervisor at several di↵erent
load points. The number of iterations se-
lected for each benchmark is a test-dependant
parameter slightly superior to the minimum
number of iterations needed in order for the
test to be valid. A minimal porting regarding
clock access and output has been needed in or-
der to execute these benchmarks as XtratuM
partitions.

4.1 Native versus partition
based applications

This test aims to evaluate the performance
loss due to presence of the hypervisor. The
goal is to compare both benchmarks running
on the native hardware using a bare imple-
mentation against the same benchmarks run-
ning as a partition on top of the virtualisation
layer. The partitioned benchmarks are exe-
cuted under the hypervisor cyclic scheduling.
The slot duration is larger than 30 seconds in
order to complete the execution in one slot and
avoid the e↵ect of the partition context switch
in the measurement. Table 1 shows the results
obtained for both benchmarks.

These results show very low performance
loss in the case of the Dhrystone benchmark.
This is due to the fact that its operation does
not require hypervisor services. On the other
hand, the CoreMark benchmark has an e↵ect
on the stack management. XtratuM provides
a plain stack to the partitions and is in charge
of the window management. In that case,
this test raises 2235 window overflow and un-
derflow traps that are handled by XtratuM.
Each time a trap is raised, XtratuM is exe-
cuted and saves or restores the register win-
dow. The support needed for these operations
corresponds with about a 1% of the CPU.

4.2 Partition context switch im-
pact

To evaluate the impact of the partition con-
text switch on the partition performance, a
CoreMark benchmark partition has been exe-
cuted on top of the virtualization layer with
di↵erent execution slot durations. Table 2
shows the di↵erent scenarios considered and
the achieved results. The first row defines
a slot duration of 30 seconds, which is large
enough to complete the benchmark in one
slot. This value is used as reference value in

the comparison with the subsequent scenar-
ios. The second row defines a slot duration
of 1 second, which means that the benchmark
will be completed in 16 slots. The time re-
quired to complete the execution is then com-
pared with the reference value. The observed
performance loss is attributed to the partition
context switch at the end of each slot. The
following rows detail the results for 500, 100
and 10 milliseconds each.

These results allow to estimate the cost of
the PCS. Taking into account that the di↵er-
ence perceived is due to the number of context
switches, the PCS can be estimated to be in
the range of 149 to 151 microseconds.

4.3 Multicore shared resources
impact

In a first evaluation, the CoreMark benchmark
has been executed at the same time in sev-
eral cores. Table 3 shows the results when the
benchmark is executed in 1, 2 and 3 cores si-
multaneously. The slot duration is 1 second
for all cases.

The results show the direct influence of
the number of cores in the performance loss.
This impact is almost negligible, and could be
explained by the presence of a 128-bit sys-
tem bus, which allows concurrent access by
the cores.

5 Conclusions

The NGMP prototype is the resulting prod-
uct of ESA research concerning future mul-
ticore processor utilization in space missions.
The analysis of the feasibility of its use to
that end comes, thus, as a necessary step. As
a reference high-criticality systems virtualiza-
tion layer, XtratuM has been a natural choice
to assess this point. XtratuM porting to the
LEON4 processor has provided insight on the
challenges of multicore use on partitioned ar-
chitectures.

In this process, XtratuM has been adapted
to support SMP hardware architectures. This
has implied changes in the XtratuM design
internals concerning multiple CPUs manage-
ment, code critical sections protection through
spin-locks, timers and intra-/inter-processor
interrupt handling. Additionally, attending
to the LEON4 specific features XtratuM has
been provided with IOMMU support.



Slot duration No Slots Time (s) Perf. loss CoreMark/MHz
30 sec 1 15,604194 1,538048
1000 ms 16 15,606468 0,0146% 1,537808
500 ms 32 15,608796 0,0295% 1,537497
100 ms 157 15,627475 0,1492% 1,535085
10 ms 1592 15,839812 1,5100% 1,507709

Table 2: CoreMark execution with di↵erent slot durations

Core id Time (s) Perf. loss

Core 0 15,606468

Core 0 15,609504 0,0195%
Core 1 15,609513 0,0195%

Core 0 15,611749 0,0338%
Core 1 15,611685 0,0334%
Core 2 15,611690 0,0335%

Table 3: CoreMark execution with di↵erent
slot durations

The monocore partition model has been
revisited as well in order to support SMP par-
titions by the inclusion of the concept of vir-
tual CPU, with the consequent API modi-
fications. The scheduler has been extended
with fixed priority scheduling policy support
to take advantage of the availability of addi-
tional processors.

Regarding the board evaluation, it has
been observed that LEON4 design overcomes
some of the limitations of classical SMP hard-
ware architectures, such as the memory ac-
cess bottleneck, by implementing a 128-bit bus
width enabling simultaneous access by all the
cores to the L2 cache. Although not intrin-
sic to SMP, LEON4 implements an IOMMU
device in order to address I/O devices spatial
isolation concerns.

As further work, a more extensive evalu-
ation of LEON4 performance remains to be
carried out. Research on the use of di↵erent
software architecture approaches (Asymmet-
ric Multi Processing) could provide useful in-
formation about comparative advantages to-
wards the use of a SMP model.

References

[1] Avionics Application Software Standard
Interface (ARINC-653). PART 1 RE-
QUIRED SERVICES, March 2006. Air-
lines Electronic Eng. Committee.

[2] Avionics Application Software Standard
Interface (ARINC-653). PART 2 EX-
TENDED SERVICES , January 2007.
Airlines Electronic Eng. Committee.

[3] EEMBC. CoreMark Benchmark. http://-
www.coremark.org.

[4] ESA. The ESA Next Generation
Microprocessor (NGMP). http://-
microelectronics.esa.int/ngmp.

[5] M. Masmano, I. Ripoll, A. Crespo, and
J.J. Metge. Xtratum: a hypervisor for
safety critical embedded systems. In
11th Real-Time Linux Workshop, Dres-
den (Germany), 2009.

[6] M. Masmano, I. Ripoll, A. Crespo, J.J.
Metge, and P. Arberet. Xtratum: An
open source hypervisor for TSP embed-
ded systems in aerospace. In DASIA
2009. DAta Systems In Aerospace., Istan-
bul (Turkey), May 2009.

[7] M. Masmano, I. Ripoll, S. Peiró, and
A. Crespo. Xtratum for LEON3: An
open source hypervisor for high integrity
systems. In European Conference on Em-
bedded Real Time Software and Systems.
ERTS2 2010., Toulouse (France), 19-21
May 2010.

[8] M. Patte, V. Le↵tz, M. Zulianello,
A. Crespo, M. Masmano, and J. Coro-
nel. System impact of distributed multi-
core systems. In DASIA 2012. DAta Sys-
tems In Aerospace., Dubrovnik (Croatia),
May 2012.

[9] ESA Project. Integrated Modular Avion-
ics for Space (IMA-SP), 2010-2012.

[10] Reinhold Weicker. DHRYSTONE: A syn-
thetic systems programming benchmark.
Commun. ACM, 27(10):1013–1030, 1984.


